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A Diophantine m-tuple is a set of m distinct positive
integers with the property that the product of any two
of its distinct elements plus 1 is a square. Fermat found
the first Diophantine quadruple in integers {1, 3, 8, 120}.
Indeed, we have

1 · 3 + 1 = 22, 1 · 8 + 1 = 32, 1 · 120 + 1 = 112,

3 · 8 + 1 = 52, 3 · 120 + 1 = 192, 8 · 120 + 1 = 312.

Euler was able to extend Fermat’s quadruple to the ra-
tional quintuple {1, 3, 8, 120, 777480/8288641}.

If a set of nonzero rationals has the same property,
then it is called a rational Diophantine m-tuple. The
ancient Greek mathematician Diophantus found the first
example of a rational Diophantine quadruple

{1/16, 33/16, 17/4, 105/16}.
Some of the famous mathematicians of the past like Dio-
phantus, Fermat and Euler, as well as some modern ones
like Fields Medalist Alan Baker, made important contri-
butions to problems related with Diophantine m-tuples,
but many problems still remain open.

It is natural to ask how large these sets, i.e. (rational)
Diophantine m-tuples, can be. This question is almost
completely solved in the integer case. On the other hand,
it seems that in the rational case we do not have even
a widely accepted conjecture. In particular, no absolute
upper bound for the size of rational Diophantinem-tuples
is known. The study of this question leads to surprising
connections with elliptic curves.

Note that in the definition of (rational) Diophantine
m-tuples we excluded the requirement that the product
of an element with itself plus 1 is a square. It is obvi-
ous that for integers such condition cannot be satisfied.
But for rationals there is no obvious reason why the sets
(called strong Diophantine m-tuples) which satisfy these
stronger conditions would not exist. For each element
a of such a set we have that a2 + 1 is a square, there-
fore a = X/Y , where (X,Y, Z) is a Pythagorean triple,
i.e., X2 + Y 2 = Z2. Dujella and Petričević proved in
2008 that there exist infinitely many strong Diophantine
triples, while no example of a strong Diophantine quadru-
ple is known.

In the integer case, it is easy to prove that there exist
infinitely many integer Diophantine quadruples (there are
parametric families for Diophantine quadruples involving
polynomials and Fibonacci numbers, such as
{k, k+ 2, 4k+ 4, 16k3 + 48k2 + 44k+ 12} and {Fk, Fk+2,
Fk+4, 4F2k+1F2k+2F2k+3} for k ≥ 1), while the folklore
conjecture is that there does not exist a Diophantine
quintuple. The first important result concerning this con-
jecture was proved in 1969 by Baker and Davenport. Us-
ing Baker’s theory on linear forms in logarithms of alge-
braic numbers and a reduction method based on contin-
ued fractions, they proved that if d is a positive integer
such that {1, 3, 8, d} forms a Diophantine quadruple, then
d has to be 120. It implies that Fermat’s set {1, 3, 8, 120}
cannot be extended to a Diophantine quintuple. It was
proved in 2004 by Dujella that a Diophantine sextuple
does not exist and that there are only finitely many Dio-
phantine quintuples. Since then, the bound for the num-
ber of possible Diophantine quintuples has been improved
by several authors (at the moment the best bound seems

to be 5.441 · 1026 due to Cipu and Trudgian), but the
question of the existence of Diophantine quintuples is still
open.

It is known that any Diophantine triple {a, b, c} can be
extended to a Diophantine quadruple {a, b, c, d}. Indeed,
with ab+ 1 = r2, ac+ 1 = s2, bc+ 1 = t2, we may take

d = a+ b+ c+ 2abc+ 2rst,

and then ad+1 = (at+ rs)2, bd+1 = (bs+ rt)2, cd+1 =
(cr + st)2. Quadruples of this form are called regular,
and the stronger version of the Diophantine quintuple
conjecture is that all Diophantine quadruples are regular.
Fujita proved that any Diophantine quintuple contains a
regular Diophantine quadruple.

Here we sketch the ideas used in the proof of finite-
ness of Diophantine quintuples and other similar results.
Extending the Diophantine triple {a, b, c}, a < b < c, to
a Diophantine quadruple {a, b, c, d} leads to the system
ad+1 = x2, bd+1 = y2, cd+1 = z2, and by eliminating
d, we get the system of simultaneous Pellian equations:

cx2 − az2 = c− a, cy2 − bz2 = c− b.

Solutions of Pellian equations are contained in finitely
many binary recursive sequences. Thus, the problem
leads to finding intersection of binary recursive sequences,
i.e., finitely many equations of the form vm = wn. These
sequences satisfy vm ≈ αβm, wn ≈ γδn for certain al-
gebraic numbers α, β, γ, δ (e.g. in the case of Diophan-
tine triple {1, 3, 8} treated by Baker and Davenport, α =

(3 +
√
3)/3, β = 2 +

√
3, γ = (4±

√
2)/4, δ = 3 + 2

√
2),

which implies m log β − n log δ + log α
γ

≈ 0. However,

Baker’s theory shows that a linear combination with inte-
ger coefficients of logarithms of algebraic numbers which
is nonzero, cannot be very close to 0 (there are effective
bounds involving the heights of the algebraic numbers
whose logarithms are considered and the size of the inte-
ger coefficients participating in the linear combination).
This gives upper bounds for m,n (logarithmic functions
in c). To obtain lower bounds, we can use the congruence
method (introduced by Dujella and Pethő in 1998) and
consider vm ≡ wn (mod c2). If m,n are small (compared
with c), then ≡ can be replaced by =, and this (hopefully)
leads to a contradiction (if m,n > 2, i.e., if d is not corre-
sponding to a regular quadruple). Therefore, we obtain
lower bounds form,n (small powers of c). Comparing the
upper and lower bound we get a contradiction for large
c.

It is likely that we cannot surpass Fermat by con-
structing Diophantine quintuples. However, in the ratio-
nal case, there exist larger sets with the same property.
Euler found infinitely many rational Diophantine quintu-
ples. The question of the existence of rational Diophan-
tine sextuples remained open for more than two centuries.
In 1999 Gibbs found the first rational Diophantine sex-
tuple

{11/192, 35/192, 155/27, 512/27, 1235/48, 180873/16},

while in 2016 Dujella, Kazalicki, Mikić and Szikszai proved
that there exist infinitely many rational Diophantine sex-
tuples. For example, there are infinitely many such sex-
tuples containing the triple {15/14,−16/21, 7/6}, with
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the simplest example being

{15/14,−16/21, 7/6,−1680/3481,−910/1083, 624/847}.
No example of a rational Diophantine septuple is known.
Moreover, we do not know any rational Diophantine quin-
tuple (or even quadruple) which can be extended to two
different rational Diophantine sextuples.

We now describe connections between rational Dio-
phantine m-tuples and elliptic curves. Let {a, b, c} be a
rational Diophantine triple. In order to extend this triple
to a quadruple, we have to find a rational x such that
ax + 1, bx + 1 and cx + 1 are all squares of rationals.
By multiplying these three conditions, we obtain a single
condition

y2 = (ax+ 1)(bx+ 1)(cx+ 1),

which is in fact the equation of an elliptic curve (non-
singular cubic curve with a rational point). We will ex-
plain below which points on the curve satisfy the original
system of equations and give extensions to Diophantine
quadruples. The set E(Q) of rational points on an elliptic
curve E over Q (affine points [x, y] satisfying the equation
along with the point at infinity) forms an abelian group
with the law of addition defined by the secant and tan-
gent method as follows: we define −P as the point with
the same x-coordinate but negative y-coordinate of P ; if
P and Q have different x-coordinates, then the straight
line though P and Q intersects the curve in exactly one
more point, denoted by P ∗ Q, and we define P + Q as
−(P ∗ Q); if P = Q, then we replace the secant line by
the tangent line at the point P (see Figure 1).
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Moreover, by the Mordell-Weil theorem, the abelian group
E(Q) is finitely generated, and hence it is the product of
the torsion group and r ≥ 0 copies of the infinite cyclic
group: E(Q) ∼= E(Q)tors × Zr.

Let us denote the curve y2 = (ax+ 1)(bx+ 1)(cx+ 1)
by E . We say that E is induced by the Diophantine triple
{a, b, c}. There are three rational points on E of order 2,
namely A = [−1/a, 0], B = [−1/b, 0], C = [−1/c, 0] and
also two other obvious rational points

P = [0, 1], S = [1/abc,
√

(ab + 1)(ac+ 1)(bc+ 1)/abc].

Note that the x-coordinate of the point P − S is exactly
the number d from the definition of regular quadruples.
In general, P and S will be independent points of infi-
nite order. But an important question, with significant
consequences, is whether they can have finite orders, and
which orders are possible.

Now we can answer the question which points on E give
extensions to Diophantine quadruples. Namely, the x-
coordinate of a point T ∈ E(Q) satisfies the original three

conditions if and only if T−P ∈ 2E(Q). It can be verified
that S ∈ 2E(Q). This implies that if x(T ) satisfies the
original conditions, then also the numbers x(T±S) satisfy
them. It can be shown that x(T )x(T ±S)+ 1 is always a
perfect square. Thus, {a, b, c, x(T − S), x(T ), x(T + S)}
is “almost” a rational Diophantine sextuple. The only
missing condition is that

x(T − S)x(T + S) + 1

is a square, and this last condition is satisfied if the point
S is of order 3. In that way, the problem of construction
of rational Diophantine sextuples becomes closely con-
nected with elliptic curves with torsion group Z/2Z ×
Z/6Z. Elliptic curves induced by Diophantine triples
were used by Dujella and Peral in 2014 in constructing
elliptic curves with given torsion and high rank (details
of the current rank records can be found at the web page
http://web.math.hr/~duje/tors/tors.html). It is in-
teresting that any elliptic curve overQ with torsion group
Z/2Z× Z/8Z can be induced by a Diophantine triple.

There are several natural generalizations of the notion
of Diophantine m-tuples. We can replace squares by k-th
powers for fixed k ≥ 3 (Dujella and Bugeaud showed in
2003 that there are no such quadruples for k ≥ 177) or by
perfect powers (Luca showed in 2005 that the cardinality
of such a set is uniformly bounded assuming the abc-
conjecture).

We can replace the number 1 in the conditions “ab+1
is a square” by a fixed integer n. Such sets are called
D(n)-m-tuples. It is easy to show that there are noD(n)-
quadruples if n ≡ 2 (mod 4). Indeed, assume that {a1,
a2, a3, a4} is a D(n)-quadruple. Since the square of an
integer is ≡ 0 or 1 (mod 4), we have that aiaj ≡ 2 or 3
(mod 4). This implies that none of the ai’s is divisible by
4. Therefore, we may assume that a1 ≡ a2 (mod 4). But
now we have that a1a2 ≡ 0 or 1 (mod 4), a contradiction.

On the other hand, it can be shown that if n 6≡ 2
(mod 4) and n 6∈ S = {−4,−3,−1, 3, 5, 8, 12, 20}, then
there exists at least one D(n)-quadruple. For n ∈ S,
the question of the existence of D(n)-quadruples is still
open. There has been some progress in the case n =
−1, due to Dujella, Filipin and Fuchs. It is known that
there does not exist a D(−1)-quintuple and that there
are only finitely many such quadruples (and all of them
have to contain the element 1). These results solve an
old problem investigated by Diophantus and Euler by
showing that there does not exist a set of four positive
integers with the property that the product of any two
of its distinct elements plus their sum is a perfect square.
Indeed, since xy+x+y = (x+1)(y+1)−1, the existence
of such set would imply the existence ofD(−1)-quadruple
with elements ≥ 2.

Instead of over the integers and rationals, the problem
can be considered over any commutative ring with unity.
There are interesting results, due to Franušić, over rings
of integers of certain quadratic fields, which show that
there is close connection between existence of a D(n)-
quadruple and representability of n as a difference of two
squares in the ring. Note that integers ≡ 2 (mod 4) are
exactly those that cannot be represented as a difference
of two squares of integers.

More details on Diophantine m-tuples and the com-
plete list of references can be found at the web page
http://web.math.hr/~duje/dtuples.html.


