
TRIPLES, QUADRUPLES AND QUINTUPLES WHICH ARE

D(n)-SETS FOR SEVERAL n’S

ANDREJ DUJELLA

Dedicated to Professor Michel Waldschmidt on the occasion of his 75th birthday.

Abstract. For an integer n, a set of distinct nonzero integers {a1, a2, ..., am}
such that aiaj + n is a perfect square for all 1 ≤ i < j ≤ m, is called a

Diophantine m-tuple with the property D(n) or simply a D(n)-set. D(1)-sets

are also called Diophantine m-tuples. The first Diophantine quadruple, the
set {1, 3, 8, 120} was found by Fermat. He, Togbé and Ziegler proved in 2019

that there does not exist a Diophantine quintuple. On the other hand, it is
known that there exist infinitely many rational Diophantine sextuples. When

considering D(n)-sets, usually an integer n is fixed in advance. However, we

may ask if a set can have the property D(n) for several different n’s. For exam-
ple, {8, 21, 55} is a D(1)-triple and D(4321)-triple. In joint work with Adžaga,

Kreso and Tadić, we presented several families of Diophantine triples, which

are D(n)-sets for two distinct n’s with n ̸= 1. In joint work with Petričević we
proved that there are infinitely many (essentially different) quadruples which

are simultaneously D(n1)-quadruples and D(n2)-quadruples with n1 ̸= n2.

Moreover, the elements in some of these quadruples are squares, so they are also
D(0)-quadruples. E.g. {542, 1002, 1682, 3642} is a D(81902), D(403202) and

D(0)-quadruple. In recent joint work with Kazalicki and Petričević, we consid-

ered D(n)-quintuples with square elements (so they are also D(0)-quintuples).
We proved that there are infinitely many such quintuples. One example is a

D(4804802)-quintuple {2252, 2862, 8192, 14082, 25482}. In this survey paper,

we describe methods used in constructions of mentioned triples, quadruples
and quintuples.

1. Introduction

A Diophantine m-tuple is a set of m distinct positive integers with the property
that the product of any two of its distinct elements plus 1 is a perfect square. The
first example of a Diophantine quadruple was found by Fermat, and it was the set
{1, 3, 8, 120},

A rational Diophantine m-tuple is a set of m distinct nonzero rational numbers
with the property that the product of any two of its distinct elements plus 1 is the
square of a rational number. Euler was able to extend Fermat’s quadruple to the
rational quintuple {1, 3, 8, 120, 777480

8288641}.
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The ancient Greek mathematician Diophantus of Alexandria was the first one
who studied sets with this property. In the fourth part of his book Arithmetica
[31], Exercise no. 20 states:

Find four numbers (for Diophantus, this meant positive rational
numbers) such that the product of any two among them, increased
by 1 gives a square.

Let us describe how Diophantus solved this exercise (of course, by using contem-
porary mathematical notation). Two numbers with the required property can be
obtained by taking a = x and b = x + 2, so ab + 1 = (x + 1)2. A pair {a, b} such
that ab + 1 = r2, can be extended to a triple by taking c = a + b + 2r. Indeed,
then ac + 1 = (a + r)2, bc + 1 = (b + r)2. In this manner, we obtain c = 4x + 4.
Now, we apply the same construction to the pair {a, c} and the equality ac + 1 =
(2x + 1)2. We obtain d = x + (4x + 4) + 2(2x + 1) = 9x + 6. In this manner, we
obtain the set {a, b, c, d} which satisfies five out of six conditions from the definition
of a Diophantine quadruple. The only missing condition is that bd+ 1 is a square.
Hence, it remains to find a rational solution of the equation 9x2 + 24x + 13 = y2.
Diophantus knew how to solve the equations of the form α2x2 + βx + γ = y2, by
putting y = αx + t. Thus, he searched for a solution in the form y = 3x + t, and
after the substitution, he would obtain a linear equation in variable x. He did not
search for a general solution to the equation; instead, he would introduce a concrete
value and obtain one solution. In this case, he took y = 3x − 4 and obtained the
equation 48x = 3 and the solution x = 1

16 . Thus, he found the first example of

what we call nowadays the rational Diophantine quadruple { 1
16 ,

33
16 ,

17
4 , 105

16 }.
It is natural to ask how large can these sets be. This question was recently com-

pletely solved in the integer case. On the one hand, it is easy to show that there are
infinitely many integer Diophantine quadruples. Namely, there are parametric fam-
ilies of Diophantine quadruples involving polynomials and Fibonacci numbers, such
as {k, k+2, 4k+4, 16k3+48k2+44k+12} and {F2k, F2k+2, F2k+4, 4F2k+1F2k+2F2k+3}
for k ≥ 1. On the other hand, recently, He, Togbé and Ziegler [30] proved that there
is no Diophantine quintuple, and so they solved a long-standing open problem. Pre-
viously, Dujella [12] proved in 2004 that there is no Diophantine sextuple and that
there are at most finitely many Diophantine quintuples. Let us mention that Baker
and Davenport [4] in 1969 obtained the first important result concerning this prob-
lem. Using linear forms in logarithms of algebraic numbers and a reduction method
based on continued fractions, they proved that if d is a positive integer such that
{1, 3, 8, d} is a Diophantine quadruple, then d has to be 120, so that Fermat’s set
{1, 3, 8, 120} cannot be extended to a Diophantine quintuple. So they answered the
question raised by Denton [9], Gardner [26] and van Lint [35].

It is known that any Diophantine triple {a, b, c} can be extended to a Diophantine
quadruple {a, b, c, d}. Indeed, if ab+1 = r2, ac+1 = s2, bc+1 = t2, where r, s, t ∈ N,
then we may take d = a+ b+ c+2abc+2rst, and then ad+1 = (at+ rs)2, bd+1 =
(bs+rt)2, cd+1 = (cr+st)2. This was shown by Arkin, Hoggatt and Strauss [3] in
1979, and in the special case, when c = a+ b+2r, this was already known to Euler.
Quadruples of this form are called regular. In other words, a Diophantine quadruple
{a, b, c, d} is regular if and only if (a+b−c−d)2 = 4(ab+1)(cd+1). The conjecture
that all Diophantine quadruples are regular is still open. Hence, the conjecture
is that for each Diophantine triple {a, b, c}, there is a unique positive integer d,
such that d > max(a, b, c) and that {a, b, c, d} is a Diophantine quadruple. Let
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us mention that Cipu, Fujita and Miyazaki [8] proved that any fixed Diophantine
triple {a, b, c} can be extended to a Diophantine quadruple with an element d such
that d > max(a, b, c) in at most eight ways.

In the rational case, the question is entirely open, and we do not even have a
widely accepted conjecture on how many elements a rational Diophantine m-tuple
can contain. In particular, no absolute upper bound for the size of rational Dio-
phantine m-tuples is known. Euler proved that there are infinitely many rational
Diophantine quintuples. However, the question of the existence of rational Dio-
phantine sextuples remained open for more than two centuries. In 1999, Gibbs
[27] found the first rational sextuple { 11

192 ,
35
192 ,

155
27 , 512

27 , 1235
48 , 180873

16 }, while in 2017,
Dujella, Kazalicki, Mikić and Szikszai [18] proved that there exist infinitely many
rational Diophantine sextuples. Alternative constructions of infinite families of
rational Diophantine sextuples are given in [17, 19, 21]. All these constructions
use various connections between rational Diophantine m-tuples and elliptic curves.
Such connections can be used in the construction of high rank elliptic curves with
given torsion group (see e.g. [22, 23]). No example of a rational Diophantine septu-
ple is known and whether there is such septuple is an open problem. Let us mention
that recently Stoll [38] proved that Euler’s extension of Fermat’s quadruple to the
rational quintuple by the fifth number 777480

8288641 is unique. In particular, this means
that this quintuple cannot be extended to a rational Diophantine sextuple.

There are several natural generalizations of the notion of Diophantine m-tuples.
The generalization which is the most relevant for the present paper is replacing
number 1 in the condition “ab + 1 is a square” by a fixed integer or rational n.
For a (nonzero) integer n, a set of m distinct nonzero integers {a1, a2, . . . , am} such
that aiaj + n is a perfect square for all 1 ≤ i < j ≤ m, is called a Diophantine
m-tuple with the property D(n) or a D(n)-m-tuple or simply a D(n)-set. Note that
a Diophantine m-tuple is a D(1)-set. If elements of such an m-tuple are nonzero
rationals, we call such set a rational D(n)-m-tuple. Usually, n = 0 is excluded from
the definition of D(n)-m-tuples since it is trivial to see that there are infinite D(0)-
sets (we may take any number of perfects squares or squares multiplied with the
same number), but when we combine this condition with other nontrivial conditions,
such as we will do in Sections 4 and 5, interesting problems may appear so in that
context it make sense to allow n = 0 in the definition.

Again, we may ask how large such sets can be. Apart from the case n = 1, the
most studied cases are n = 4 and n = −1. Bliznac Trebješanin and Filipin proved
that there is noD(4)-quintuple [5], while Bonciocat, Cipu and Mignotte proved that
there is no D(−1)-quadruple. It is easy to show that there are no D(n)-quadruples
if n ≡ 2 (mod 4). This result was proved independently in 1985 by Brown, Gupta
and Singh, and Mohanty and Ramasamy [7, 28, 36]. On the other hand, it was
shown in [11] that if n ̸≡ 2 (mod 4) and n ̸∈ S = {−4,−3,−1, 3, 5, 8, 12, 20}, then
there is at least one D(n)-quadruple. The mentioned result of Bonciocat, Cipu and
Mignotte solves the cases n = −1 and n = −4, while for other elements of the set
S, the question of the existence of D(n)-quadruples is still open.

Concerning analogous questions in the rational case (when we usually write q
instead of n), it is known that for any rational number q there exist infinitely many
rational D(q)-quadruples. This result was probably already known to Diophan-
tus, who in the fifth part of Arithmetica gave explicit examples of rational D(q)-
quadruples for q = 5 and q = −6, but his method easily generalizes to arbitrary
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q. Concerning quintuples, Dujella and Fuchs [16] proved that for infinitely many
square-free numbers q there are infinitely many rational D(q)-quintuples. Assum-
ing the Parity Conjecture for twists of certain elliptic curves, they showed that the
density of q ∈ Q such that there exist infinitely many rational D(q)-quintuples is at
least 1/2; the density bound is recently improved to at least 49171/49335 ≈ 0.995
by Dražić [10].

A brief survey on Diophantine m-tuples and their generalizations can be found
in [13] (see also [14]). Last edition of the well-known book Unsolved Problems in
Number Theory by Richard Guy [29] contains a new section devoted to Diophantine
m-tuples, and the problem of the existence of Diophantine quintuples is mentioned
in 2001 by Michel Waldschmidt [39] as one of the important problems at the end of
the second millennium. The author’s web page [15] contains the full list of references
related to Diophantine m-tuples. At the moment, it contains 484 references (38
references before 1990; 95 references before 2000; 245 references before 2010).

2. Triples which are D(n)-sets for several n’s

When considering D(n)-m-tuples, usually an integer n is fixed in advance. How-
ever, we may ask if the same set can at the same time have the property D(n)
for several different n’s. This question was raised by A. Kihel and O. Kihel [33] in
2001. For example, {8, 21, 55} is at the same time a D(1)-triple and D(4321)-triple,
while {1, 8, 120} is a D(1)-triple and D(721)-triple (see [40]).

In this section, we will sketch a joint work with N. Adžaga, D. Kreso and P.
Tadić [1, 2], where we proved that there are infinitely many triples {a, b, c} which
are at the same time D(1), D(n2) and D(n3) triples for 1 < n2 < n3.

The construction uses integer points on elliptic curves related to Diophantine
triples. Let {a, b, c} be a Diophantine triple and let ab + 1 = r2, ac + 1 = s2,
bc+ 1 = t2. We are interested in integer solutions x of the system of equations

(1) x+ ab = □, x+ ac = □, x+ bc = □.

Consider the corresponding elliptic curve obtained by multiplying three conditions
in (1):

E : y2 = (x+ ab)(x+ ac)(x+ bc).

Since E has only finitely many integer points, there are only finitely many n’s such
that {a, b, c} is a D(n)-set. Note that E(Q) has several obvious rational points:

A = (−bc, 0), B = (−ca, 0), C = (−ab, 0), P = (0, abc), S = (1, rst).

By 2-descent (see [34, 4.2, p. 85]), for T ∈ E(Q), we have that x = x(T ) is a rational
solution of the system (1) if and only if T ∈ 2E(Q). Hence, we are interested in
points in 2E(Q) ∩ Z2. One such point is point S, which corresponds to x = 1.
Indeed, S = 2R, where

R = (rs+ rt+ st+ 1, (r + s)(r + t)(s+ t)) ∈ E(Q).

Points A,B,C have order 2, so they are not of interest here. In our search for
Diophantine triples, which are D(n)-sets for several n’s, we are thus led to look for
triples {a, b, c} for which 2kP +ℓS ∈ Z2 for some small integers k and ℓ. In general,
we may expect that the points P and S are two independent points of infinite order.
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However, if c = a+ b± 2r, where ab+1 = r2 (such triples are called regular), then
2P = ±S. We have

x(2P ) =
1

4
(a+ b+ c)2 − ab− ac− bc,

which lead us to the following result

Proposition 1. Let a, b, c be nonzero integers such that a + b + c is even. Then
{a, b, c} is a D(n)-set for

n =
1

4
(a+ b+ c)2 − ab− ac− bc,

provided n ̸= 0. Furthermore, n = 0 is equivalent to c = a + b ± 2
√
ab (and thus

impossible if {a, b, c} is a D(1)-triple), while n = 1 is equivalent to c = a + b ±
2
√
ab+ 1.
Any Diophantine triple {a, b, c} such that a+b+c is even and c ̸= a+b±2

√
ab+ 1

is also a D(n)-set for some n ̸= 1.

A computer search shows that for Diophantine triples {a, b, c} with a, b ≤ 1000,
c ≤ 1000000, the corresponding points S − 2P and 4P never have integer coordi-
nates, while the point S+2P = 2(R+P ) has integer coordinates for 14 triples in the
considered range, e.g. for {4, 12, 420}, {4, 420, 14280}, {12, 24, 2380}, {24, 40, 7812},
{40, 60, 19404}. We will show that there are infinitely many such examples.

We first note that all the examples above satisfy an additional condition that
x(S + 2P ) = a + b + c. A straightforward calculation shows that the condition
x(S + 2P ) = a+ b+ c is equivalent to q1q2q3 = 0, where

q1 = −4 + a2 − 2ab+ b2 − 2ac− 2bc+ c2,

q2 = a2 − 4a− 2ac− 4c+ c2 − 2ab− 4b− 8abc− 2bc+ b2,

q3 = −4a− 4b− 4c− 2ab− 2ac− 2bc− 4abc+ a2 + b2 + c2

− 2a2b− 2a2c− 2ab2 − 2ac2 − 2b2c− 2bc2 − 2a2b2

+ 2a3 + 2b3 + 2c3 + a4 + b4 + c4 − 2a2c2 − 2b2c2.

The condition q1 = 0 is equivalent to c = a + b ± 2
√
ab+ 1, but in that case

x(2P ) = 1, so in this way, we do not get a Diophantine triple which is also a
D(n)-set for two distinct n’s with n ̸= 1. The equation q3 = 0 has no solutions in
Diophantine triples {a, b, c}.

Thus, the only interesting condition for us is q2 = 0. It is equivalent to

c = 2 + a+ b+ 4ab± 2
√

(2a+ 1)(2b+ 1)(ab+ 1),

and this is exactly the condition that {2, a, b, c} is a regular Diophantine quadruple.
It can be verified that for such triples n2 = x(S + 2P ) and n3 = x(2P ) satisfy

n2 ̸= n3, n1 ̸= 1, n3 ̸= 1.
Thus we obtain the following result:

Theorem 2. Let {2, a, b, c} be a regular Diophantine quadruple. Then the Dio-
phantine triple {a, b, c} is also a D(n)-set for two distinct n’s with n ̸= 1.

From Theorem 2, we can get explicit infinite families of Diophantine triples which
are also D(n)-sets for two distinct n’s with n ̸= 1. One example of such an infinite
family of triples is

a = 2(i+ 1)i, b = 2(i+ 2)(i+ 1), c = 4(2i2 + 4i+ 1)(2i+ 3)(2i+ 1),
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with

n2 = 32i4+128i3+172i2+88i+16,

n3 = 256i8+2048i7+6720i6+11648i5+11456i4+6400i3+1932i2+280i+16,

for an arbitrary positive integer i. Other families can be found in [1].

By a computer search, we found 7 example of triples {a, b, c} which are D(n)-sets
for n1 = 1 < n2 < n3 < n4:

{a, b, c} n2, n3, n4

{4, 12, 420} 436, 3796, 40756
{10, 44, 21252} 825841, 6921721, 112338361
{4, 420, 14280} 14704, 950896, 47995504
{40, 60, 19404} 19504, 3680161, 93158704
{78, 308, 7304220} 242805865, 4770226465, 13336497750865
{4, 485112, 16479540} 16964656, 2007609136, 63955397832496
{15, 528, 32760} 66609, 5369841, 15984081

However, the question of whether there are infinitely many such triples remains
open.

If we omit the condition 1 ∈ N , then the size of a set N for which there exists
a triple {a, b, c} of nonzero integers, which is a D(n)-set for all n ∈ N can be
arbitrarily large. Indeed, take any triple {a, b, c} such that the induced elliptic
curve E(Q) has positive rank. Then there are infinitely many rational points on
E. For an arbitrarily large positive integer m, we may choose m distinct rational
points R1, . . . , Rm ∈ 2E(Q), so that we have

x(Ri) + ab = □, x(Ri) + ac = □, x(Ri) + bc = □.

We do so by taking points of the form 2m1P1+2m2P2+· · ·+2mrPr, where P1, . . . , Pr

are the generators of E(Q). We then let z ∈ Z \ {0} be such that z2x(Ri) ∈ Z for
all i = 1, 2, . . . ,m. Then the triple {az, bz, cz} is a D(n)-set for n = x(Ri)z

2 for all
i = 1, 2, . . . ,m.

Example 1. Consider the Diophantine triple {1, 8, 120}, whose induced elliptic
curve E(Q) has rank 3. Following the procedure described above, we find points
R1, . . . , R5 ∈ 2E(Q) such that

x(R1) = 1, x(R2) = 721, x(R3) = 12289/4, x(R4) = 769/9, x(R5) = 1921/36.

We then let z = 6. It follows that the triple {az, bz, cz} = {6, 48, 720} is a D(n)-set
for n = 36, 1921, 3076, 25956, 110601.

3. Diophantine quadruples with the properties D(n1) and D(n2)

In a joint paper with V. Petričević [24], we took one step forward and asked if
there is any set of four distinct nonzero integers, which is a D(ni)-quadruple for
two distinct (nonzero) integers n1 and n2.

If {a, b, c, d} is a D(n1) and D(n2)-quadruple and u is a nonzero rational such
that au, bu, cu, du, n1u

2 and n2u
2 are integers, then {au, bu, cu, du} is a D(n1u

2)
and D(n2u

2)-quadruples. We will say that these two quadruples are equivalent.
This is the main result of [24]:
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Theorem 3. There are infinitely many nonequivalent sets of four distinct nonzero
integers {a, b, c, d} with the property that there exist two distinct nonzero integers
n1 and n2 such that {a, b, c, d} a D(n1)-quadruple and a D(n2)-quadruple.

Since before our work, no such example was known, we started with exten-
sive experiments. The experiments start with a computational search for D(n1)-
quadruples, where −500 000 ≤ n1 ≤ 500 000. For a fixed nonzero integer n1, we
considered divisors of integers of form m2 − n1 in the range m ≤ 333 333 (the de-
tails of the algorithm are described in [24]). For a D(n1)-quadruple {a, b, c, d}, we
searched for integer points on the hyperelliptic curve y2 = (ab + x)(ac + x)(ad +
x)(bc+x)(bd+x)(cd+x) with |x| =≤ 108, x ̸= n1, using Stoll’s program ratpoints

[37], and then checked whether x satisfies the condition for n2.
In that way, we found 26 examples of quadruples, which are simultaneously

D(n1) and D(n2)-quadruples for n1 ̸= n2. Looking for certain patterns among
these examples, we noted 8 quadruples {a, b, c, d} in which a/b = −1/7. Here we
list these quadruples:

{a, b, c, d} {n1, n2} {a, b, c, d} {n1, n2}

-189, -133, 27, 32 6192, 8352 -3, 21, 2597, 3132 11512, 80152
-27, 28, 189, 493 13752, 61272 -1, 7, 64, 119 128, 848

-27, 189, 4189, 6364 194328, 1325304 -1, 7, 4484, 4879 6248, 43688
-3, 21, 1152, 1517 5392, 37312 -1, 7, 22532, 23407 30632, 214376

Looking for additional patterns within these quadruples, we noted that they contain
regular triples. Namely, if AB + n = R2, then {A,B,A+B + 2R} and {A,B,A+
B − 2R} are D(n)-triples. Indeed, A(A + B ± 2R) + n = (A ± R)2, B(A + B ±
2R) + n = (B ± R)2. Let cd + n1 = r2 and cd + n2 = s2. If c + d − 2r = 7 and
c+d−2s = −1, then {7, c, d} is a D(n1)-triple and {−1, c, d} is a D(n2)-triple. The
remaining six conditions from the definition of D(ni)-quadruples can be satisfied
parametrically and we obtain rational quadruples of the form {−1, 7, c, d} depending
on one rational parameter u. By taking u = v/w and getting rid of denominators,
we obtain the following result.

Proposition 4. Let v and w be coprime integers and

v/w ̸∈ {0, 1,−1, 2,−2, 3, 4,−5, 7,−7, 7/2,−7/2, 7/3, 7/4,−7/5,∞}.
Then the set

(2)
{−(−v2 + 7w2)2, 7(−v2 + 7w2)2,−(−2v2 + vw + 7w2)(2v2 − 3vw + 7w2),

(v2 − 3vw + 14w2)(−v2 − vw + 14w2)}

is a D(n1)-quadruple and a D(n2)-quadruple for

n1 = 4(−v2 + 7w2)2(2v4 − v3w − 20v2w2 − 7vw3 + 98w4),

n2 = 4(−v2 + 7w2)2(2v2 − 7vw + 14w2)(v2 + 7w2).

It is clear that if we take v and w to be solutions of the Pell equation v2−7w2 = 1,
the formula (2) gives integer quadruples of the form {−1, 7, c, d}. Furthermore, if
we take v and w to be solutions of the Pellian equation v2 − 7w2 = 2 (which has
infinitely many solutions since (u, v) = (3, 1) is a solution), then all elements of (2)
will be divisible by 4, while corresponding n1 and n2 will be divisible by 16, so by
dividing all elements of the quadruple by the common factor 4, we obtain again
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an integer quadruple of the form {−1, 7, c, d}. Here are some examples obtained in
that way.

{a, b, c, d} {n1, n2}

-1, 7, 119, 64 128, 848
-1, 7, 4879, 4484 6248, 43688

-1, 7, 23407, 22532 30632, 214376
-1, 7, 1191959, 1185664 1585088, 11095568
-1, 7, 5840864, 5826919 7778528, 54449648

-1, 7, 302003332, 301903007 402604232, 2818229576
-1, 7, 1481896324, 1481674079 1975713608, 13829995208

-1, 7, 76695715424, 76694116519 102259887968, 715819215728
-1, 7, 376369378007, 376365836032 501823476032, 3512764332176

-1, 7, 19480219444399, 19480193962244 25973608937768, 181815262564328
-1, 7, 95595918622159, 95595862172804 127461187196648, 892228310376488

4. Doubly regular Diophantine quadruples

Motivated by the results of the previous section, we may ask is it possible to
obtain (infinitely many) quadruples with positive elements which are simultaneously
D(n1) and D(n2)-quadruples for n1 ̸= n2 (note that in the quadruples {a, b, c, d}
from the previous section the elements a and b are always of the opposite sign).
Furthermore, we may ask is it possible to find quadruple with are D(n)-quadruples
for three distinct n’s. Affirmative answers to these questions were given in joint
work with V. Petričević [25]. However, to obtain the affirmative answer to the
second question, we had to allow that one of the n is equal to 0. More precisely,
we proved the following result.

Theorem 5. There are infinitely many nonequivalent sets of four distinct nonzero
integers {a, b, c, d} which are regular D(n1) and D(n2)-quadruples for distinct nonzero
squares n1 and n2. Moreover, we may take that all elements of these sets are perfect
squares, so they are also D(0)-quadruples.

In [25], it is shown how to obtain explicit formulas for quadruples satisfying the
conditions from Theorem 5. Here we give one of them.

Let t be an integer such that t ̸= 0,±1,±2, and let

a = (t− 1)2(t− 2)2(t+ 2)2(3t6 − 2t5 − 13t4 + 8t3 + 16t2 − 16)2

× (5t6 − 6t5 − 27t4 + 40t3 + 32t2 − 64t+ 16)2,

b = 64t2(t− 1)2(t− 2)2(t+ 2)2(t3 − t2 − 3t+ 4)2(t2 − 2)2

× (t3 − t2 − 2t+ 4)2(2t4 − t3 − 7t2 + 4t+ 4)2,

c = t2(t− 1)2(t2 − 3)2(t6 − 6t5 − 3t4 + 28t3 − 8t2 − 32t+ 16)2

× (4t7 − 5t6 − 26t5 + 39t4 + 48t3 − 88t2 − 16t+ 48)2,

d = (t+ 1)2(t3 − t2 − 3t+ 4)2(t6 + 2t5 − 7t4 + 8t2 − 16t+ 16)2

× (4t7 − 7t6 − 22t5 + 49t4 + 20t3 − 88t2 + 32t+ 16)2.
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Then {a, b, c, d} is a D(n1), D(n2) and D(n3)-quadruple, where

n1 = 16t2(t+ 1)2(t− 2)4(t+ 2)4(t− 1)6(t2 − 3)2

× (t3 − t2 − 2t+ 4)2(t3 − t2 − 3t+ 4)2(2t4 − t3 − 7t2 + 4t+ 4)2

× (3t6 − 2t5 − 13t4 + 8t3 + 16t2 − 16)2

× (5t6 − 6t5 − 27t4 + 40t3 + 32t2 − 64t+ 16)2,

n2 = 4t2(t2 − 2)2(t3 − t2 − 3t+ 4)2(t6 + 2t5 − 7t4 + 8t2 − 16t+ 16)2

× (t6 − 6t5 − 3t4 + 28t3 − 8t2 − 32t+ 16)2

× (4t7 − 5t6 − 26t5 + 39t4 + 48t3 − 88t2 − 16t+ 48)2

× (4t7 − 7t6 − 22t5 + 49t4 + 20t3 − 88t2 + 32t+ 16)2,

n3 = 0.

For example, by taking t = 3 in these formulas,

{1066758050, 7214407200, 8024417928, 44219811272}
is a D(90467582183447040000), D(30185892484109116209) and D(0)-quadruple.

Main idea is to construct so-called doubly regular quadruples. A rational D(1)
Diophantine quadruple {a, b, c, d} is called regular is it satisfies the equation

(3) (a+ b− c− d)2 = 4(ab+ 1)(cd+ 1).

A quadruple {a, b, c, d} is called doubly regular if it is a rational D(1) and D(x2)-

quadruple for x2 ̸= 1, such that {a, b, c, d} and {a
x
,
b

x
,
c

x
,
d

x
} are both regular ratio-

nal D(1)-quadruples.
The regularity condition for {a/x, b/x, c/x, d/x} implies the following quartic

equation in x:

(4) 4x4 + (−a2 +2ab+2ad− b2 +2bc+2ac− c2 +2cd− d2 +2bd)x2 +4abcd = 0.

By inserting the regularity condition for {a, b, c, d}, i.e. (3), in the x2-term of (4),
we obtain

4(x2 − 1)(x2 − abcd) = 0.

Since we are interested in solutions with x2 ̸= 1, we get that x2 = abcd. Then
ab + x2 = ab(1 + cd) = 2 implies that ab is a square (and analogously, ac, ad, bc,
bd and cd are squares, so {a, b, c, d} is also a D(0)-quadruple).

We use a parametrization of rational D(1)-triples due to L. Lasić [32]:

a =
2t1(1 + t1t2(1 + t2t3))

(−1 + t1t2t3)(1 + t1t2t3)
,

b =
2t2(1 + t2t3(1 + t3t1))

(−1 + t1t2t3)(1 + t1t2t3)
,

c =
2t3(1 + t3t1(1 + t1t2))

(−1 + t1t2t3)(1 + t1t2t3)
,

modified by the following substitutions:

t1 =
k

t2t3
,

t2 = m− 1

t3
.
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After computing d from the regularity equation, the remaining condition that abcd
is a perfect square can be expressed in terms of an elliptic curve over Q(t) with
positive rank. One of the points of infinite order on that curve gives the above-
mentioned parametric family of quadruples with the required property.

Somewhat simpler examples can be found by a brute force search for param-
eters k,m, t3 with small numerators and denominators which satisfy the condi-
tion that abcd is a perfect square. The simplest example obtained in that way is
{1458, 66248, 5000, 14112} which isD(16769025),D(406425600) andD(0)-quadruple.
By multiplying all elements of this quadruple by 2, we obtain the quadruple

{542, 3642, 1002, 1682}

consisting of four perfect squares.

5. D(n)-quintuples with square elements

In this section, we will describe the joint work with M. Kazalicki and V. Petričević
[20], where the previous results on triples and quadruples are partially extended to
quintuples. Thus, we are interested in the question whether it is possible that the
same set of five nonzero integers is simultaneously a D(n1) and D(n2)-quintuple
for n1 ̸= n2. In order to provide an affirmative answer to this question, we will
allow again that one of the integers n1 and n2 is equal to 0. It will remain an open
problem whether there is an example with nonzero n1 and n2.

Note that if {a, b, c, d, e} is a D(n1)-quintuple, and u a nonzero rational, then
{ua, ub, uc, ud, ue} is a D(n1u

2)-quintuple and we say that these two quintuples are
equivalent.

Theorem 6. There are infinitely many nonequivalent quintuples that have D(n1)
property for some n1 ∈ N such that all the elements in the quintuple are perfect
squares. In particular, there are infinitely many nonequivalent integer quintuples
that are simultaneously D(n1)-quintuples and D(0)-quintuples.

To prove Theorem 6, it suffice to show that there are infinitely many rational
Diophantine quintuples with the property that the product of any two of its el-
ements is a perfect square. Namely, it is clear that every rational Diophantine
quintuple is equivalent to a D(u2)-quintuple where u is a multiple of the common
denominator of the elements in the quintuple.

By performing some experiments, we obtained an example of such rational Dio-
phantine quintuple

(5)
{ 3375

32032
,
143

840
,
2457

1760
,
5632

1365
,
4459

330

}
.

And by multiplying all elements of (5) by 480480, we obtain the D(4804802)-
quintuple

{2252, 2862, 8192, 14082, 25482}
with the desired property.

By analyzing the quintuple (5), we noted that it contains the subquadruple
{ 3375
32032 ,

143
840 ,

5632
1365 ,

4459
330 } with the property that the product of its elements is equal to

1, and two regular subquadruples { 3375
32032 ,

143
840 ,

2457
1760 ,

5632
1365} and { 3375

32032 ,
2457
1760 ,

5632
1365 ,

4459
330 }.

Motivated by this example, we say that a rational Diophantine quintuple {a, b, c, d, e}
is exotic if abcd = 1, the quadruples {a, b, d, e} and {a, c, d, e} are regular, and if
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the product of any two of its elements is a perfect square. We will show that there
are infinitely many exotic quintuples.

Our starting point is the following characterization of rational Diophantine quadru-
ples {a, b, c, d} such that abcd = 1.

Proposition 7. Let {a, b, c, d} be a rational Diophantine quadruple with abcd = 1.
Then there exist r, s, t ∈ Q such that

a = xyz, b =
x

yz
, c =

y

xz
, d =

z

xy
,

where x = t2−1
2t , y = s2−1

2s and z = r2−1
2r . In particular, the product of any two

elements of the quadruple is a perfect square.

Proof. From ab+1 = ab+abcd = ab(1+cd) it follows that ab is a perfect square, and
similarly for other products. Set ab = x2, ac = y2 and ad = z2, with x, y, z ∈ Q. It

follows a2 = ab·ac
bc = x2y2

1/z2 , hence a = xyz and similarly b = x
yz , c =

y
xz and d = z

xy

(with the appropriate choice of signs). Since x2 + 1 is a perfect square, there is

t ∈ Q such that x = t2−1
2t , and similarly for y and z. □

To extend quadruple {a, b, c, d}, given in the terms of r, s, t ∈ Q as in Proposition
7), to an exotic quintuple, it is enough that triples {a, b, d} and {a, c, d} have a
common regular extension e and that ae is a perfect square.

It can be shown (see [20] for details) that the regularity conditions lead to

s =
−1 + r2 + t+ r2t

−1− r2 − t+ r2t
.

It remains to satisfy the condition that ae is a square. This condition leads to
considering several genus 0 curves. One of them is

r2t2 + 3r2 − t2 + 2t− 1 = 0,

with a parametric solution

(r, t) =

(
− 2u+ 1

u2 + u+ 1
,

u2 + 4u+ 1

(u− 1)(u+ 1)

)
.

Then the condition that ae is a square gives the quartic

v2 = −48
(
u2 − 3u− 1

) (
u2 + 5u+ 3

)
,

which has a rational point (u, v) = (0, 12), and thus it is birationally equivalent to
the elliptic curve

y2 + xy + y = x3 − x2 − 41x+ 96,

with rank 1 (a generator is the point P = (2, 3)) and torsion subgroup isomorphic
to Z/2Z × Z/2Z. The point P (the same holds for points P + T , where T is a
torsion point) does not give a solution since the corresponds values of u are zeros of
denominators appearing in the expression for a, b, c, d. The point 2P = (9, 15) on
the elliptic curve gives the point (u, v) = (3, 36) on the quartic, which corresponds
to (r, s, t) = (− 7

13 ,−
7
8 ,

11
4 ) and gives (a permutation of) our startingD(1)-quintuple{

3375

32032
,
4459

330
,
143

840
,
5632

1365
,
2457

1760

}
.

The points 2P + T , where T is a torsion point, give equivalent solutions (with
permuted elements or elements multiplied by −1). The point 3P = (− 262

49 , 4782
343 )
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on the elliptic curve gives the point (u, v) = (− 28
37 ,−

5916
1369 ) on the quartic which

corresponds to (r, s, t) = ( 703
1117 ,−

703
585 ,

1991
585 ) and gives the D(1)-quintuple{

126066472448

914609323485
,
388078111459

22127635530
,
131212873

529696440
,
398601435375

238691175968
,
190854470299

39338018720

}
.

It is clear that this construction provides infinitely many quintuples with the desired
properties by taking multiples mP = (x, y), m ≥ 2, computing the corresponding
u’s from u = −3x+18

−y+3x−15 and inserting it in formulas for a, b, c, d from Proposition 7

and e from the regularity conditions:

a =
(u+ 2)3(u2 − 2u− 2)u3

2(2u+ 1)(u− 1)(u+ 1)(u2 + u+ 1)(u2 + 4u+ 1
,

b =
8(u2 + u+ 1)(2u+ 1)3

u(u− 1)(u+ 2)(u+ 1)(u2 − 2u− 2)(u2 + 4u+ 1)
,

c =
(u2 + u+ 1)(u2 − 2u− 2)(u2 + 4u+ 1)

2u(u− 1)(u+ 2)(u+ 1)(2u+ 1)
,

d =
(u+ 1)3(u2 + 4u+ 1)(u− 1)3

2u(u+ 2)(u2 − 2u− 2)(2u+ 1)(u2 + u+ 1)
,

e = −3(2u7 + 7u6 − 17u5 − 60u4 − 85u3 − 64u2 − 23u− 3

2u(u7 + 4u6 − 6u5 − 32u4 − 17u3 + 24u2 + 22u+ 4)
.

While we have found infinitely many rational Diophantine quintuples with D(0)
property, i.e. the products of any of two of their elements are perfect squares, it re-
mains an open question whether there exists a rational Diophantine quintuple with
square elements. On the other hand, there are infinitely many rational Diophantine
quadruples with square elements, for example, the following two parametric family
has this property

a =
32(s− 1)2(s+ 1)2v2

22(2s3 − 2s+ v2)2
,

b =
v2(−4s3 + 4s+ v2)2

22(s+ 1)2(s− 1)2(−s3 + s+ v2)2
,

c =
(2s3 − 2s+ v2)2

32v2s2
,

d =
42(−s3 + s+ v2)2s2

v2(−4s3 + 4s+ v2)2
.

This family is obtained by taking t = 1/(r − 1) in the notation of Proposition 7,
so it satisfies abcd = 1. We have also found an example of a rational Diophantine
quadruple {a, b, c, d} with square elements for which abcd ̸= 1:{(

18

77

)2

,

(
55

96

)2

,

(
56

15

)2

,

(
340

77

)2
}
.

Here we can mention the result from [19] where it is shown that there exist infinitely
many rational Diophantine sextuples such that denominators of all the elements (in
the lowest terms) in the sextuples are perfect squares. An example of such sextuple
is {

75

82
,−3325

642
,−12288

1252
,
123

102
,
3498523

22602
,
698523

22602

}
.
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