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1 Introduction

The Greek mathematician Diophantus of Alexandria noted that
the rational numbers 1

16 , 33
16 , 17

4 and 105
16 have the following property:

the product of any two of them increased by 1 is a square of a rational
number (see [3]). Fermat first found a set of four positive integers
with the above property, and it was {1, 3, 8, 120}. Later, Davenport
and Baker [2] showed that if d is a positive integer such that the set
{1, 3, 8, d} has the property of Diophantus, then d has to be 120.

There are two well known generalizations of the set {1, 3, 8, 120}:
for all positive integers n the sets

{n, n + 2, 4n + 4, 4(n + 1)(2n + 1)(2n + 3)}, (1)

{F2n, F2n+2, F2n+4, 4F2n+1F2n+2F2n+3} (2)

have the property of Diophantus (see [12], [11]). For n = 1 we get the
Fermat’s solution. In [6], it was proved that these sets are two special
cases of a more general fact. Let the sequence (gn) be defined as:

g0 = 0, g1 = 1, gn = pgn−1 − gn−2, n ≥ 2,

where p ≥ 2 is an integer. Then the sets

{gn, gn+2, (p± 2)gn+1, 4gn+1[(p± 2)g2
n+1 ∓ 1]}

have the property of Diophantus. For p = 2 we get the set (1), and
for p = 3 we get the set (2).

In [1] and [4], the more general problem was considered. Let n be
an integer. A set of positive integers is said to have the property of
Diophantus of order n, symbolically D(n), if the product of any two
distinct elements increased by n is a perfect square. If n is an integer
of the form 4k + 2, k ∈ Z, then there does not exist a Diophantine
quadruple with the property D(n) (see [1, Theorem 1], [4, Theorem
4] or [9, p. 802]). If an integer n is not of the form 4k + 2 and
n 6∈ S = {−4,−3,−1, 3, 5, 8, 12, 20}, then there exists at least one
Diophantine quadruple with the property D(n), and if n 6∈ S∪T , where
T = {−15,−12,−7, 7, 13, 15, 21, 24, 28, 32, 48, 60, 84}, then there exist
at least two distinct Diophantine quadruples with the property D(n)
(see [4, Theorems 5 and 6] and [5, p. 315]). The proof of the former
result is based on the fact that the sets

{m,m(3k + 1)2+ 2k, m(3k + 2)2+ 2k + 2, 9m(2k + 1)2+ 8k + 4} (3)

{m, mk2 − 2k − 2,m(k + 1)2 − 2k, m(2k + 1)2 − 8k − 4}, (4)
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have the property D(2(2k + 1)m + 1). The formulas of this type were
systematically derived in [7].

In this paper we consider the analogous problem for Gaussian in-
tegers. Let z be a Gaussian integer and let m ≥ 2 be an integer. A set
{a1, a2, . . . , am} ⊂ Z[i] \ {0} is said to have the property D(z) if the
product of any two distinct elements increased by z is a square of a
Gaussian integer. Such a set is called a complex Diophantine m-tuple.

The requirement that ai 6= 0 is not essential, except that if we omit
this requirement, the assertion of Theorem 3 becomes trivial. If the
set {a1, a2, . . . , am} is a complex Diophantine quadruple then the same
is true for the set {−a1,−a2, . . . ,−am}. These two m-tuples are said
to be equivalent.

It is proved (Theorem 1) that if b is an odd integer or a ≡ b ≡ 2
(mod 4), then there does not exist a complex Diophantine quadruple
with the property D(a + bi). It is interesting that this condition is
equivalent to the condition that a + bi is not representable as a differ-
ence of the squares of two Gaussian integers. Therefore this result is an
analogue of the corresponding result for ordinary integers, because an
integer n is of the form 4k + 2 iff n is not representable as a difference
of the squares of two integers.

It is also proved (Theorem 2) that if a Gaussian integer z is rep-
resentable as a difference of the squares of two Gaussian integers and
z 6∈ {±2, ±1 ± 2i,±4i}, then there exist at least two nonequivalent
complex Diophantine quadruples with the property D(z).

At the end of this paper, complex Diophantine quadruples with the
property D(l2), l ∈ Z[i], are considered. It is proved (Theorem 3) that
every complex Diophantine pair {a, b} with the property D(l2), where
ab is not a perfect square, can be extended to the complex Diophan-
tine quadruple with the same property in an infinite number of ways.
This is an analogue of the results from [10] and [4] for Diophantine
quadruples with the properties D(1) and D(l2), l ∈ Z.

2 The problem of the existence of the complex
Diophantine quadruples

Theorem 1 If b is an odd integer or if a ≡ b ≡ 2 (mod 4), then
there does not exist a complex Diophantine quadruple with the property
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D(a + bi).

Proof. 1) Suppose that b is an odd integer and the set {aj + bji :
j = 1, 2, 3, 4} has the property D(a + bi). It follows that for j 6= k
there exist integers cjk and djk such that

ajak − bjbk + a + i(ajbk + akbj + b) = c2
jk − d2

jk + 2cjkdjki . (5)

This gives ajbk + akbj ≡ 1 (mod 2). Therefore, at most one aj and
at most one bj are even. So, without loss of generality we can assume
that a1, a2, b1, b2 are odd. Hence, a1b2 + a2b1 ≡ 0 (mod 2), which is
a contradiction.

2) Suppose that a ≡ b ≡ 2 (mod 4) and the set {aj + bji : j =
1, 2, 3, 4} has the property D(a + bi). Then

ajbk + akbj ≡ 0 (mod 2) . (6)

Furthermore, from c2
jk − d2

jk 6≡ 2 (mod 4), we conclude that

ajak − bjbk 6≡ 0 (mod 4) . (7)

Suppose that there does not exist j ∈ {1, 2, 3, 4} satisfying aj 6≡ bj

(mod 2). It follows that the set

{aj + bji

1 + i
=

aj + bj

2
+

bj − aj

2
i : j = 1, 2, 3, 4}

has the property D(a+bi
2i ), contrary to 1).

Accordingly, we can assume that a1 is even and b1 is odd. Now
we conclude from (6) that a2, a3, a4 are even. Hence at most one bj is
even, by (7). Thus, we can assume that b2 and b3 are odd. It follows
that in (5), for j, k ∈ {1, 2, 3}, the product cjkdjk is even, because
ajak − bjbk + a = c2

jk − d2
jk is odd. Therefore

ajbk + akbj ≡ 2 (mod 4) .

Let aj = 2rj , j = 1, 2, 3. Then

rjbk + rkbj ≡ 1 (mod 2) ,

which contradicts the fact that there exist at least two numbers with
the same parity, between the numbers r1, r2, r3.
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The condition of Theorem 1 is equivalent to the condition that the
Gaussian integer a+bi is not representable as a difference of the square
of two Gaussian integers (see [14, p. 449]). Thus we can now rephrase
Theorem 1 as follows.

Corollary 1 If a Gaussian integer z is not representable as a
difference of the squares of two Gaussian integers, then there does not
exist a complex Diophantine quadruple with the property D(z).

Remark 1 If the set {a1, a2, . . . am} ⊂ Z[i] has the property D(z),
then the set {ia1, ia2, . . . , iam} has the property D(−z), and the set
{a1, a2, . . . , am} has the property D(z). According to this, we obtain
that for every z ∈ Z[i] the families of all nonequivalent Diophantine
quadruples with the properties D(z), D(−z), D(z) and D(−z) have
the same cardinality.

Theorem 2 Let z = x + yi be a Gaussian integer. Suppose that
y is even and that x ≡ 2 (mod 4) implies y ≡ 0 (mod 4). If z 6∈
{±2,±1± 2i,±4i}, then there exist at least two nonequivalent complex
Diophantine quadruples with the property D(z).

Proof. Let us introduce the following temporary definition. A
Gaussian integer is said to have the property (P ) if there exist at least
two nonequivalent complex Diophantine quadruples with the property
D(z).

If a Gaussian integer z satisfies the condition of Theorem 2, then
z can be represented in one of the following forms

z = (2a+1)+2bi, z = 4a+(4b+2)i, z = 4a+4bi, z = (4a+2)+4bi.

Therefore the proof falls naturally into four parts.

1) The sets

{1, (9a2 + 8a− 9b2 + 1) + (18ab + 8b)i,
(9a2 + 14a− 9b2 + 6) + (18ab + 14b)i,

(36a2 + 44a− 36b2 + 13) + (72ab + 44b)i},
(8)

{1, (a2 − 2a− b2 − 2) + (2ab− 2b)i, (a2 − b2 + 1) + 2abi,
(4a2 − 4a− 4b2 − 3) + (8ab− 4b)i} (9)

have the property D((4a + 3) + 4bi). These sets are obtained from
(3) and (4) for m = 1 and k = a + bi. It remains to determine the
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pairs (a, b) for which the above sets have at least two equal elements
or some of the elements equal to zero, and the pairs (a, b) for which
the quadruples (8) and (9) are equivalent. It is easy to check that
the above cases appear iff (a, b) ∈ {(−1, 0), (0, 0), (1, 0), (2, 0), (3, 0)}.
Consequently, all Gaussian integers of the form z = (4a + 3) + 4bi,
z 6∈ {−1, 3, 7, 11, 15}, have the property (P ).

Since there exist an infinite number of (positive integer) Diophan-
tine quadruples with the property D(1), Remark 1 implies that there
exist an infinite number of complex Diophantine quadruples with the
property D(−1). From [4, Theorems 5 and 6] we see that there exist at
least two (positive integer) Diophantine quadruples with the property
D(11), and at least one (positive integer) Diophantine quadruple with
the properties D(−7), D(7), D(−15) and D(15). A trivial verification
shows that the sets {1,−4,−3+2i,−3−2i} and {2,−14,−3+2i,−3−
2i} have the property D(3). Thus we have proved that all Gaussian
integers of the form z = (4a + 3) + 4bi have the property (P ).

The sets

{i, (18ab + 6a + 2b)− (9a2 + 2a− 9b2 − 6b− 1)i,
(18ab + 12a + 2b + 2)− (9a2 + 2a− 9b2− 12b− 4)i,

(72ab + 36a + 8b + 4)− (36a2 + 8a− 36b2 − 36b− 9)i},
(10)

{i, (2ab− 2b− 2)− (a2 − 2a− b2)i,
(2ab + 2a− 2b)− (a2 − 2a− b2 − 2b− 1)i,

(8ab + 4a− 8b− 4)− (4a2 − 8a− 4b2 − 4b− 1)i}
(11)

have the property D((4a+1)+(4b+2)i). These sets are obtained from
(3) and (4) for m = i and k = b − ai. Analysis similar to the above
shows that the sets (10) and (11) are two nonequivalent complex Dio-
phantine quadruples iff (a, b) 6∈ {(0,−1), (0, 0), (2,−2), (2,−1), (2, 0),
(2, 1)}. Consequently, for z = (4a + 1) + (4b + 2)i, z 6∈ {1± 2i, 9± 2i,
9 ± 6i}, there exist at least two nonequivalent complex Diophantine
quadruples with the property D(z).

For z ∈ {9± 2i, 9± 6i}, the relation (10) yields one complex Dio-
phantine quadruple with the property D(z). According to the fact
that the sets {−i, 2− 6i, 6− 5i, 6 + 7i} and {i,−2 + 5i, 2 + 6i, 6 + 9i}
have the properties D(9 + 6i) and D(9 + 2i) respectively, we deduce
that all Gaussian integers of the form z = (4a+1)+(4b+2)i, z 6= 1±2i,
have the property (P ).

If z is of the form (4a+3)+4bi, then −z is of the form (4c+1)+4di,
and if z is of the form (4a + 1) + (4b + 2)i, then −z is of the form
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(4c+3)+(4d+2)i. From this and Remark 1 it follows that all Gaussian
integers of the form z = (4a + 1) + 4bi or z = (4a + 3) + (4b + 2)i,
z 6= −1 ± 2i, have the property (P ). Thus we have proved that all
z ∈ Z[i] of the form z = (2a+1)+2bi, z 6= ±1± 2i, have the property
(P ).

2) Since (1 + i)2 = 2i, multiplying all elements of the set with the
property D((2a + 1) + 2bi) by 1 + i we get the set with the property
D(−4b + (4a + 2)i). Applying 1) we conclude that all z ∈ Z[i] of the
form z = 4a + (4b + 2)i, z 6= ±4± 2i, have the property (P ).

Finally, the fact that the sets {2,−i,−2 − i,−6 − 4i} and {2,
−2 + 3i, −4 − i,−14 + 4i} have the property D(4 + 2i) implies that
all Gaussian integers of the form z = 4a + (4b + 2)i have the property
(P ).

3) Multiplying all elements of the set with the property D(4a +
(4b+2)i) by 1+ i we get the set with the property D((−8b−4)+8ai).
Applying 2) we conclude that all z ∈ Z[i] of the form z = (8a+4)+8bi
have the property (P ).

The sets

{1, (9a2 − 8a− 9b2) + (18ab− 8b)i,
(9a2 − 2a− 9b2 + 1) + (18ab− 2b)i,

(36a2 − 20a− 36b2 + 1) + (72ab− 20b)i},
(12)

{1, (a2 − 6a− b2 + 1) + (2ab− 6b)i,
(a2 − 4a− b2 + 4) + (2ab− 4b)i,

(4a2 − 20a− 4b2 + 9) + (8ab− 20b)i}
(13)

have the property D(8a + 8bi). These sets are obtained from [4, (20)
and (10)] for k = a+bi. These sets are two nonequivalent complex Dio-
phantine quadruples iff (a, b) 6∈ {(0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (5, 0),
(6, 0)}. Hence, all z ∈ Z[i] of the form z = 8a + 8bi, z 6∈ Z1 = {0, 8,
16, 24, 32, 40, 48}, have the property (P ).

Since −8,−16,−24,−32,−40,−48 6∈ Z1, Remark 1 implies that all
Gaussian integers of the form z = 8a + 8bi have the property (P ).

Multiplying all elements of the sets (3) and (4) by 2, for m = i
2

and k = b− ai, we get the sets

{i, (18ab + 6a + 4b)− (9a2 + 4a− 9b2 − 6b− 1)i,
(18ab + 12a + 4b + 4)− (9a2 + 4a− 9b2 − 12b− 4)i,

(72ab + 36a + 16b + 8)− (36a2 + 16a− 36b2 − 36b− 9)i},
(14)
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{i, (2ab− 4b− 4)− (a2 − 4a− b2)i,
(2ab + 2a− 4b)− (a2 − 4a− b2 − 2b− 1)i,

(8ab + 4a− 16b− 8)− (4a2 − 16a− 4b2 − 4b− 1)i}
(15)

with the property D((8a+4)+(8b+4)i). These sets yield two nonequiv-
alent complex Diophantine quadruples for all Gaussian integers of the
form z = (8a + 4) + (8b + 4)i, z 6∈ Z2 = {4± 4i, 36± 4i, 36± 12i}.

Since −4 + 4i,−36 + 4i,−36 + 12i 6∈ Z2, Remark 1 implies that all
Gaussian integers of the form z = (8a+4)+(8b+4)i have the property
(P ).

Multiplying all elements of the sets (3) and (4) by 2, for m = 1+i
2

and k = (a + b) + (b− a)i, we get the sets

{1 + i, (18a2 + 36ab + 16a− 18b2 + 4b + 1)
− (18a2 − 36ab + 4a− 18b2 − 16b− 1)i,

(18a2 + 36ab + 28a− 18b2 + 4b + 8)
− (18a2 − 36ab + 4a− 18b2 − 28b− 4)i,
(72a2 + 144a + 88a− 72b2 + 16b + 17)

− (72a2 − 144ab + 16a− 72b2 − 88b− 9)i},

(16)

{1 + i, (2a2 + 4ab− 4a− 2b2 − 4b− 4)
− (2a2 − 4ab− 4a− 2b2 + 4b)i,

(2a2 + 4ab− 2b2 − 4b + 1)− (2a2 − 4ab− 4a− 2b2 − 1)i,
(8a2 + 16ab− 8a− 8b2 − 16b− 7)

− (8a2 − 16ab− 16a− 8b2 + 8b− 1)i}

(17)

with the property D((16a + 8) + (16b + 4)i), and for m = 1+i
2 and

k = (a + b) + (b− a + 1)i, we get the sets

{1 + i, (18a2 + 36ab + 16a− 18b2 − 32b− 14)
− (18a2 − 36ab− 32a− 18b2 − 16b− 2)i,
(18a2 + 36ab + 28a− 18b2 − 32b− 13)

− (18a2 − 36ab− 32a− 18b2 − 28b− 11)i,
(72a2 + 144ab + 88a− 72b2 − 128b− 55)

−(72a2 − 144ab− 128a− 72b2 − 88b− 25)i},

(18)

{1 + i, (2a2 + 4ab− 4a− 2b2 − 8b− 5)
− (2a2 − 4ab− 8a− 2b2 + 4b + 5)i,

(2a2 + 4ab− 2b2 − 8b− 2)− (2a2 − 4ab− 8a− 2b2 + 2)i,
(8a2 + 16ab− 8a− 8b2 − 32b− 15)

− (8a2 − 16ab− 32a− 8b2 + 8b + 15)i}

(19)
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with the property D(16a+(16b+12)i). From these formulas it follows
that if z = (16a+8)+(16b+4)i, z 6∈ Z3 = {8+4i, 24−12i, 40+4i}, or
if z = 16a + (16b + 12)i, z 6∈ Z4 = {−4i, 32− 4i, 48 + 12i}, then there
exist at least two nonequivalent complex Diophantine quadruples with
the property D(z).

Since −8 + 4i, 24− 12i, 40 + 4i 6∈ Z3 and −32− 4i,−48 + 12i 6∈ Z4,
Remark 1 implies that all Gaussian integers of the form z = (16a +
8) + (16b + 4)i and z = 16a + (16b + 12)i, z 6= −4i, have the property
(P ).

Repeated application of Remark 1 enables us to conclude that all
Gaussian integers of the form z = (16a + 8) + (16b + 12)i or z =
16a+(16b+4)i, z 6= 4i, have the property (P ). This finishes the proof
of the fact that all Gaussian integers of the form z = 4a+4bi, z 6= ±4i,
have the property (P ).

4) Multiplying all elements of the sets (3) and (4) by 1 + i, for
m = 1−i

2 and k = (a + b) + (b− a)i, we get the sets

{1, (36ab+10a+6b+1)− (18a2+6a−18b2−10b)i,
(36ab+16a+12b+6)− (18a2+12a−18b2−16b−2)i,

(144ab+52a+36b+13)− (72a2+36a−72b2−52b−4)i},
(20)

{1, (4ab− 4a− 2)− (2a2 − 2b2 + 4b + 2)i,
(4ab− 2a + 2b + 1)− (2a2 + 2a− 2b2 + 2b)i,

(16ab− 12a + 4b− 3)− (8a2 + 4a− 8b2 + 12b + 4)i}
(21)

with the property D((8a + 2) + (8b + 4)i), and for m = 1−i
2 and

k = (a + b) + (b− a− 1)i, we get the sets

{1, (36ab−8a+24b−6)− (18a2+24a−18b2+8b+8)i,
(36ab−2a+30b−1)− (18a2+30a−18b2+2b+12)i,

(144ab−20a+108b−15)− (72a2+108a−72b2+20b+40)i},
(22)

{1, (4ab− 6a + 2b− 5)− (2a2 + 2a− 2b2 + 6b)i,
(4ab− 4a + 4b− 2)− (2a2 + 4a− 2b2 + 4b)i,

(16ab− 20a + 12b− 15)− (8a2 + 12a− 8b2 + 20b)i}
(23)

with the property D((8a+6)+8bi). These formulas yield two nonequiv-
alent complex Diophantine quadruples with the property D(z) for all
z = (8a + 2) + (8b + 4)i, z 6∈ {2 + 4i, 2 + 20i, − 6 + 12i}, and for all
z = (8a + 6) + 8bi, z 6∈ {−2,−2 + 16i, 6 + 24i}.

From Remark 1 it may be concluded that for all Gaussian integers
of the forms z = (8a + 2) + (8b + 4)i, z = (8a + 6) + (8b + 4)i,
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z = (8a+6)+8bi, z 6= −2, or z = (8a+2)+8bi, z 6= 2, have the property
(P ). Hence, all Gaussian integers of the form z = (4a+2)+4bi, z 6= ±2,
have the property (P ), which completes the proof.

Corollary 2 Let n 6= ±2 be an integer. Then there exist at least
two nonequivalent complex Diophantine quadruples with the property
D(n).

3 Quadruples with the property D(l2)

Consider now complex Diophantine quadruples with the property
D(z), where z is a square of a Gaussian integer. We will prove an
analogue of the result for ordinary integers from [4].

Let {a, b} ⊂ Z[i] \ {0} be the set with the property D(l2), where
l ∈ Z[i]. This gives

ab + l2 = k2 .

We can certainly assume that l 6= 0. Suppose that ab is not a square
of a Gaussian integer. Under the above assumption there exists at
least one pair of Gaussian integers S and T 6= 0, which satisfy the Pell
equation

S2 − abT 2 = 1 (24)

(see [8, Theorem 1]). Let s + t
√

ab be the fundamental solution of the
equation (24). Now we can apply the construction from [4]. We define
three double sequences yn,m, zn,m and xn,m, n, m ∈ Z as follows:

yn,m =
l

2
√

b
{(
√

a +
√

b)[
1
l
(k +

√
ab)]n(s + t

√
ab)m

+ (
√

b−
√

a)[
1
l
(k −

√
ab)]n(s− t

√
ab)m},

zn,m =
l

2
√

a
{(
√

a +
√

b)[
1
l
(k +

√
ab)]n(s + t

√
ab)m

+ (
√

a−
√

b)[
1
l
(k −

√
ab)]n(s− t

√
ab)m} ,

xn,m = (y2
n,m − l2)/a = (z2

n,m − l2)/b .

Analysis similar to those in [4, Theorems 1 and 2] shows that if xn,m

and xn+1,m are Gaussian integers, then the set {a, b, xn,m, xn+1,m} has
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the property D(l2). From [4, (6)] we deduce that x−1,m, x0,m and x1,m

are Gaussian integers for all integers m. We are now in the position
to show that by means of these numbers we can construct an infinite
number of Diophantine quadruples with the property D(l2). We need
the following lemma which is easily proved.

Lemma 1 Let n ∈ {−1, 0, 1}. If j and m are integers such that
yn,j = yn,m and zn,j = zn,m, then j = m.

Theorem 3 Let l be a Gaussian integer and suppose that the set
{a, b} ⊂ Z[i] has the property D(l2). If the number ab is not a square
of a Gaussian integer, then there exist an infinite number of complex
Diophantine quadruples of the form {a, b, c, d} with the property D(l2).

Proof. Consider the sets {a, b, x−1,m, x0,m} and {a, b, x0,m, x1,m}
for m ∈ Z. If xn,m = 0, then y2

n,m = l2 and z2
n,m = l2, i.e. yn,m, zn,m ∈

{−l, l}. From Lemma 1 we conclude that for n ∈ {−1, 0, 1} there are
at most four numbers which are equal to zero, between the numbers
xn,m, m ∈ Z. In the same manner we can see that for n ∈ {−1, 0, 1}
there are at most four numbers which are equal to a, and at most four
numbers which are equal to b, between the numbers xn,m, m ∈ Z. It is
easily seen that the relation x0,m = x±1,m implies y2

0,m = al(b−a)
2(k−l) , and

the former equality holds for at most four integers m, by Lemma 1.
Thus the sets {a, b, x0,m, x−1,m} and {a, b, x0,m, x1,m} are complex

Diophantine quadruples with the property D(l2) for all but a finite
number of integers m, and we conclude from Lemma 1 that there is
an infinite number of distinct sets between them.

Example 1 In [1] and [13], it was proved that the Diophantine
triples {1, 2, 5} and {1, 5, 10}, with the property D(−1), cannot be ex-
tended to the Diophantine quadruples with the same property. We will
show how these triples can be extended to the complex Diophantine
quadruples with the property D(−1). Since the number −1 = i2 is a
perfect square in Z[i], and the number 1 · 5 = 5 is not, we can apply
our construction to the relation

1 · 5 + i2 = 22 .

We have a = 1, b = 5, l = i, k = 2, and thus x0,0 = 0, x1,0 = 10,
x−1,0 = 2, x2,0 = −168, x−2,0 = −24, x3,0 = 3026, x−3,0 = 442, . . . .
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Therefore the sets {1, 2, 5,−24}, {1, 5, 10,−168}, {1, 5,−24, 442} and
{1, 5,−168, 3026} are complex Diophantine quadruples with the prop-
erty D(−1). In this case, the use of the double sequence was unnec-
essary because from s = 2i and t = −i it follows that xn,m = xn−m,0.

Example 2

3 · (−4i) + (1 + 3i)2 = (1− 3i)2 .

In this case, x−1,m, x0,m, x1,m, x2,m, x3,m ∈ Z[i], and from s = 5 and
t = 1 + i we obtain the following sets with the property D(−8 + 6i):

{3,−4i, 5− 10i, 40 + 20i}, {3,−4i, 40 + 20i,−111 + 138i},
{3,−4i, 9 + 58i,−240− 20i}, {3,−4i,−240i− 20i, 285− 970i},

{3,−4i, 285− 970i, 3720 + 1960i},
{3,−4i, 3720 + 1960i,−11079 + 13522i},
{3,−4i, 681 + 5682i,−23720− 1960i}, . . . .

REFERENCES
References

[1] E. Brown, Sets in which xy + k is always a square, Math. Comp. 45
(1985), 613-620.

[2] H. Davenport and A. Baker, The equations 3x2−2 = y2 and 8x2−7 = z2,
Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137.

[3] Diophantus of Alexandria, Arithmetics and the Book of Polygonal Num-
bers, Nauka, Moscow, 1974 (in Russian).

[4] A. Dujella, Generalization of a problem of Diophantus, Acta Arith. 65
(1993), 15-27.

[5] A. Dujella, Diophantine quadruples for squares of Fibonacci and Lucas
numbers, Portugal. Math. 52 (1995), 305-318.



Problem of Diophantus and Davenport 13

[6] A. Dujella, Generalized Fibonacci numbers and the problem of Diophan-
tus, Fibonacci Quart. 34 (1996), 164-175.

[7] A. Dujella, Some polynomial formulas for Diophantine quadruples,
Grazer Math. Ber. (to appear).

[8] L. Fjellstedt, On a class of Diophantine equations of the second degree
in imaginary quadratic fields, Ark. Mat. 2 (1953), 435-461.

[9] H. Gupta and K. Singh, On k-triad sequences, Internat. J. Math. Math.
Sci. 8 (1985), 799-804.

[10] P. Heichelheim, The study of positive integers (a, b) such that ab + 1 is
a square, Fibonacci Quart. 17 (1979), 269-274.

[11] V. E. Hogatt and G. E. Bergum, A problem of Fermat and the Fibonacci
sequence, Fibonacci Quart. 15 (1977), 323-330.

[12] B. W. Jones, A variation on a problem of Davenport and Diophantus,
Quart. J. Math. Oxford Ser. (2) 27 (1976), 349-353.

[13] S. P. Mohanty, M. S. Ramasamy, The simultaneous Diophantine equa-
tions 5y2 − 20 = x2 and 2y2 + 1 = z2, J. Number Theory 18 (1984),
356-359.
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