FOUR SQUARES FROM THREE NUMBERS

ANDREJ DUJELLA AND LÁSZLÓ SZALAY

ABSTRACT. We show that there are infinitely many triples of positive integers a, b, c (greater than 1) such that ab+1, ac+1, bc+1 and abc+1 are all perfect squares.

1. INTRODUCTION

A Diophantine m-tuple is a set of m distinct positive integers with the property that the product of any two of its distinct elements plus 1 is a perfect square. The first example of a Diophantine quadruple was found by Fermat, and it was the set $\{1,3,8,120\}$. In 1969, Baker and Davenport [1] proved that Fermat's set cannot be extended to a Diophantine quintuple. There are infinitely many Diophantine quadruples. E.g., $\{k, k+2, 4k+4, 16k^3+48k^2+44k+12\}$ is a Diophantine quadruple for $k \geq 1$. In 2004, Dujella [3] proved that there is no Diophantine sextuple and that there are only finitely many Diophantine quintuples. Finally, in 2019, He, Togbé and Ziegler [6] proved that there is no Diophantine quintuple.

There are many known variants and generalizations of the notion of Diophantine m-tuples. For a survey of various generalizations and the corresponding references see Section 1.5 of the book [5].

Here we will consider a variant that was introduced in several internet forums¹, and appeared also in Section 14.5 of the book [2], where it is attributed to John Gowland. We will consider triples of positive integers a, b, c with the property that ab + 1, ac + 1, bc + 1 and abc + 1 are perfect squares. Thus, we are interested in Diophantine triples $\{a, b, c\}$ satisfying the additional property that abc + 1 is also a perfect square. If we allow that a = 1, then the problem degenerates from four conditions to only three conditions that b + 1, c + 1 and bc + 1 are perfect squares, or in other words that $\{1, b, c\}$ is a Diophantine triple. It is easy to see that there are infinitely many such triples, e.g. we may take $b = k^2 - 1$, $c = (k + 1)^2 - 1$ for any k > 2. Hence, we will require that a, b, c are positive integers greater than 1.

Several examples of such triples were given in Section 14.5 of [2], e.g., (5, 7, 24), (8, 45, 91), (8, 105, 171), (3, 133, 176), (11, 105, 184), (20, 84, 186), (44, 102, 280), (40, 119, 297), (24, 301, 495), (24, 477, 715). However, it remained an open question whether there exist infinitely many such triples. The main result of this paper gives an affirmative answer to that question.

Theorem 1. There are infinitely many triples of positive integers a, b, c greater than 1 such that ab + 1, ac + 1, bc + 1 and abc + 1 are all perfect squares.

²⁰²⁰ Mathematics Subject Classification. 11D09.

¹https://www.mathpages.com/home/kmath481.htm,

https://benvitalenum3ers.wordpress.com/2015/01/07/abc-ab1ac1bc1abc1-are-all-squares/

2. The construction of infinitely many triples

We will search for the solutions within so-called *regular Diophantine triples*, i.e., triples $\{a, b, c\}$, such that c = a + b + 2r, where $ab + 1 = r^2$. Then $ac + 1 = (a + r)^2$ and $bc + 1 = (b + r)^2$, so $\{a, b, c\}$ is indeed a Diophantine triple. According to [4], most of Diophantine triples are of this form.

By studying and extending the list of known solutions, we can see that many of them have the property that a is of the form $A^2 + 4$:

$$(8 = 2^{2} + 4, 45, 91),$$

$$(8 = 2^{2} + 4, 105, 171),$$

$$(20 = 4^{2} + 4, 84, 186),$$

$$(40 = 6^{2} + 4, 119, 297),$$

$$(40 = 6^{2} + 4, 2387, 3045),$$

$$(85 = 9^{2} + 4, 672, 1235),$$

$$(85 = 9^{2} + 4, 11859, 13952),$$

$$(533 = 23^{2} + 4, 33475, 42456),$$

$$(533 = 23^{2} + 4, 509736, 543235),$$

$$(1160 = 34^{2} + 4, 165627, 194509),$$

$$(1160 = 34^{2} + 4, 2449135, 2556897),$$

$$(7400 = 86^{2} + 4, 7102165, 7568067),$$

$$(7400 = 86^{2} + 4, 101263737, 103002439),$$

$$(16133 = 127^{2} + 4, 482768440, 488366151).$$

Almost all of these examples follow the following pattern: a is of the form $a = A_n^2 + 4$, where A_n is a (two-sided) binary recursive sequence defined by

$$A_0 = 1$$
, $A_1 = 6$, $A_{n+1} = 4A_n - A_{n-1}$.

For $n \ge 1$, the elements of the sequence A_n are: 6, 23, 86, 321, ..., while for $n \le -1$, the elements of the sequence $-A_{-n}$ are: 2, 9, 34, 127, 474,

Next, we study the values of r (from $ab + 1 = r^2$) in observed examples. For each a, we had two triples with given property. We will give details for the second (with larger b) triples. We notice that r's have the form $r = A_n^2 R_n + A_{n+1} - 2$, where

$$R_0 = 2, \quad R_1 = 8, \quad R_n = 4R_{n-1} - R_{n-2} + 1,$$

and again we may extend the recurrence to negative indices, so for $n \leq -1$, the elements of the sequence R_{-n} are: 1, 3, 12, 46, (In the smaller triples, we have $r = A_n^2 R_{n-1} - A_{n-1} - 2$.)

To simplify manipulations with the above introduced recursive sequences, will we express them in the terms of the sequence

$$P_0 = 0, \quad P_1 = 1, \quad P_n = 4P_{n-1} - P_{n-2}.$$

The sequence (P_n) satisfies

(1)
$$P_n = \frac{1}{2\sqrt{3}} \left((2+\sqrt{3})^n - (2-\sqrt{3})^n \right).$$

Let us denote $x = P_{n+1}$, $y = P_n$. Then we have $A_n = x+2y$ and $R_n = \frac{1}{2}(5x-3y-1)$. From (1), it follows easily that

(2)
$$x^2 - 4xy + y^2 = 1.$$

We will use (2) to make further expressions as homogeneous as possible in order to simplify expressions and in particular to allow factorizations. In that way, we obtain

$$\begin{aligned} a &= 5x^2 - 12xy + 8y^2, \\ r &= \frac{17}{2}x^3 - \frac{33}{2}x^2y - \frac{5}{2}x^2 + 14xy^2 + 6xy - 7y^3 - 4y^2, \\ b &= \frac{31}{2}x^4 - \frac{55}{2}x^3y + \frac{75}{2}x^2y^2 - 25xy^3 + 8y^4 - \frac{17}{2}x^3 + \frac{33}{2}x^2y - 14xy^2 + 7y^3, \\ c &= \frac{31}{2}x^4 - \frac{55}{2}x^3y + \frac{75}{2}x^2y^2 - 25xy^3 + 8y^4 + \frac{17}{2}x^3 - \frac{33}{2}x^2y + 14xy^2 - 7y^3. \end{aligned}$$

In order to prove Theorem 1, it remains to check that abc + 1 is a perfect square. First we get

$$abc = \frac{1}{4}(3y+8x)(5x^2-12xy+8y^2)(2y^3-2xy^2-2x^2y+3x^3)$$
$$\times (10y^4-22xy^3+50x^2y^2-39x^3y+28x^4),$$

and then by writing $1 = (x^2 - 4xy + y^2)^5$ in abc + 1, we finally obtain

$$abc + 1 = \frac{1}{4}(22y^5 - 24xy^4 - 8x^2y^3 + 84x^3y^2 - 119x^4y + 58x^5)^2,$$

which shows that abc + 1 is indeed a perfect square.

For example, by taking
$$n = 4$$
, we have $x = 209$, $y = 56$, and we get $a = 1435208$, $r = 2347998213$, $b = 3841321681771$, $c = 3846019113405$, and $abc + 1 = 4604722693427179^2$.

Acknowledgements. A.D. was supported by the Croatian Science Foundation under the project no. IP-2022-10-5008 and the QuantiXLie Center of Excellence, a project co-financed by the Croatian Government and European Union through the European Regional Development Fund (Grant PK.1.1.02.0004).

References

- A. Baker and H. Davenport, The equations 3x² 2 = y² and 8x² 7 = z², Quart. J. Math. Oxford Ser. (2) 20 (1969), 129–137.
- [2] K. Brown, Numbers, Author's edition, 2023.
- [3] A. Dujella, There are only finitely many Diophantine quintuples, J. Reine Angew. Math. 566 (2004), 183–214.
- [4] A. Dujella, On the number of Diophantine m-tuples, Ramanujan J. 15 (2008), 37-46.
- [5] A. Dujella, Diophantine *m*-tuples and Elliptic Curves, Springer, Cham, 2024.
- [6] B. He, A. Togbé and V. Ziegler, *There is no Diophantine quintuple*, Trans. Amer. Math. Soc. 371 (2019), 6665–6709.

(Andrej Dujella) DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, UNIVERSITY OF ZAGREB, BIJENIČKA CESTA 30, 10000 ZAGREB, CROATIA

(László Szalay) Institute of Mathematics, University of Sopron, Bajcsy-Zsilinszky utca 4, Sopron, 9400, Hungary

Email address: duje@math.hr