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Diophantus: Find four (positive rational) numbers such

that the product of any two of them, increased by 1, is

a perfect square: {
1

16
,
33

16
,
17

4
,
105

16

}

Fermat: {1,3,8,120}

Euler: {1,3,8,120, 777480
8288641}

ab+1 = r2 7→ {a, b, a+ b+2r,4r(a+ r)(b+ r)}

1



Definition: A set {a1, a2, . . . , am} of m non-zero integers

(rationals) is called a (rational) Diophantine m-tuple if

ai · aj +1 is a perfect square for all 1 ≤ i < j ≤ m.

Question: How large such sets can be?

Conjecture 1: There does not exist a Diophantine

quintuple.

Baker & Davenport (1969): {1,3,8, d} ⇒ d = 120

(problem raised by Gardner (1967), van Lint (1968))
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Arkin, Hoggatt & Strauss (1978): Let

ab+1 = r2, ac+1 = s2, bc+1 = t2

and define

d+,− = a+ b+ c+2abc± 2rst.

Then {a, b, c, d+,−} is a Diophantine quadruple

(if d− ̸= 0).

Conjecture 2: If {a, b, c, d} is a Diophantine quadruple,

then d = d+ or d = d−, i.e. all Diophantine quadruples

satisfy

(a− b− c+ d)2 = 4(ad+1)(bc+1).

Such quadruples are called regular .
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D. & Fuchs (2004): All Diophantine quadruples in

Z[X] are regular.

D. & Jurasić (2010): In Q(
√
−3)[X], the Diophantine

quadruple

{√
−3

2
,−

2
√
−3

3
(X2 − 1),

−3+
√
−3

3
X2 +

2
√
−3

3
,
3+

√
−3

3
X2 +

2
√
−3

3

}
is not regular.
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D. & Pethő (1998): {1,3} cannot be extended to a

Diophantine quintuple

Fujita (2008): {k− 1, k+1} cannot be extended to a

Diophantine quintuple

D. (2004): There does not exist a Diophantine sextuple.

There are only finitely many Diophantine quintuples.

Fujita (2009): If {a, b, c, d, e}, with a < b < c < d < e,

is a Diophantine quintuple, then {a, b, c, d} is a regular

Diophantine quadruple.
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Cipu & Trudgian (2016): Number of Diophantine

quintuples is less than 1.18 · 1027.

He, Togbé & Ziegler (201?): There does not exist

a Diophantine quintuple.

Fujita & Miyazaki (2017); Any fixed Diophantine

triple can be extended to a Diophantine quadruple in

at most 11 ways by joining a fourth element exceeding

the maximal element in the triple.
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There is no known upper bound for the size of rational
Diophantine tuples.

Euler: There are infinitely many rational Diophantine
quintuples. Any pair {a, b} such that ab+1 = r2 can be
extended to a quintuple.

Arkin, Hoggatt & Strauss (1979): Any rational Dio-
phantine triple {a, b, c} can be extended to a quintuple.

D. (1997): Any rational Diophantine quadruple {a, b, c, d},
such that abcd ̸= 1, can be extended to a quintuple (in
two different ways, unless the quadruple is “regular”
(such as in the Euler and AHS construction), in which
case one of the extensions is trivial extension by 0).

Gibbs (1999): { 11
192,

35
192,

155
27 , 51227 , 123548 , 18087316 }
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Question: If {a, b, c, d, e} and {a, b, c, d, f} are two ex-

tensions from D. (1997) and ef ̸= 0, is it possible that

ef +1 is a perfect square?

D., Kazalicki, Mikić & Szikszai (2017): There are

infinitely many rational Diophantine sextuples.

Moreover, there are infinitely many rational Diophan-

tine sextuples with positive elements, and also with any

combination of signs.
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By DKMS (2017), there exist infinitely many triples,
each of which can be extended to sextuples on infinitely
many ways.

Piezas; D. & Kazalicki (2017): There are infinitely
many sextuples {a, b, c, d, e, d} with fixed products ab and
cd.

Gibbs (2017): The quintuple{
243

560
,
147

5040
,
1100

63
,
7820

567
,
95

112

}
can be extended to two different sextuples, by 38269

6480
and 196

45 .

Open question: Is there any rational Diophantine sep-
tuple?
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Diophantine m-tuples of finite fields

Let p be a prime and N(m)(p) the number of Diophan-

tine m-tuples with elements in Fp (we consider 0 to be

a square in Fp).

Since half of the elements of F×p are squares, heuristi-

cally, one expects that a randomly chosen m-tuple of

different elements in F×p will have the Diophantine prop-

erty with probability 1/2(
m
2), i.e. we expect

N(m)(p) =
1

2(
m
2)

pm

m!
+ o(pm).

This can be justified by using Weil’s estimate for char-

acter sums.
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D.& Kazalicki (201?): Let m ≥ 2 be an integer. If

p > 22m−2m2 is a prime, then there exists a Diophantine

m-tuple in Fp.

Explicit formulas for N(k)(p) for k = 2,3,4:

N(2)(p) =


(p−1)(p−2)

4 , if p ≡ 1 (mod 4),
p2−3p+4

4 , if p ≡ 3 (mod 4).

N(3)(p) =


(p−1)(p−3)(p−5)

48 , if p ≡ 1 (mod 4),
(p−3)(p2−6p+17)

48 , if p ≡ 3 (mod 4).

The formula for N(4)(p) is given in terms of the Fourier

coefficients of the certain modular forms.
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Definition: For a nonzero integer n, a set of m distinct

nonzero integers {a1, a2, . . . , am} such that aiaj + n is

a perfect square for all 1 ≤ i < j ≤ m, is called a

Diophantine m-tuple with the property D(n) or simply

a D(n)-set. Note that a Diophantine m-tuple is a D(1)-

set.

A. Kihel & O. Kihel (2001): Is there any Diophantine

m-triple (i.e. D(1)-set) which is also a D(n)-set for

some n ̸= 1?

{8,21,55} is a D(1) and D(4321)-triple (D. (2002))

{1,8,120} is a D(1) and D(721)-triple (Zhang & Gross-

man (2015))
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Question: For how many different n’s with n ̸= 1 can

a D(1)-set also be a D(n)-set.

Adžaga, D., Kreso & Tadić (2017): There exist in-

finitely many Diophantine triples (i.e. D(1)-sets) which

are also D(n)-sets for two distinct n’s with n ̸= 1.

There exist examples of Diophantine triples which are

also D(n)-sets for three distinct n’s with n ̸= 1.

Main tool: elliptic curves induced by Diophantine triples.
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Elliptic curves induced by Diophantine triples

Let {a, b, c} be a Diophantine triple and let ab+1 = r2,

ac + 1 = s2, bc + 1 = t2. We are interested in integer

solutions x of the system of equations

x+ ab = �, x+ ac = �, x+ bc = �. (∗)

Consider the corresponding elliptic curve

E : y2 = (x+ ab)(x+ ac)(x+ bc).

Since E has only finitely many integer points, there are

only finitely many n’s such that {a, b, c} is a D(n)-set.
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E has several obvious rational points:

A=(−ab,0), B=(−ac,0), C=(−bc,0), P =(0, abc), S=(1, rst).

Proposition: For T ∈ E(Q) we have that x = x(T )

is a rational solution of the system (*) if and only if

T ∈ 2E(Q).

Hence, we are interested in points in 2E(Q) ∩ Z2. One

such point in the point S, which corresponds to x = 1.

Indeed, S = 2R, where

R = (rs+ rt+ st+1, (r + s)(r + t)(s+ t)) ∈ E(Q) ∩ Z2.
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A,B,C are points of order 2. In general, we may expect
that the points P and S are two independent points of
infinite order. However, if c = a+b±2r, where ab+1 =
r2 (such triples are called regular), then 2P = ±S.

We want to find triples {a, b, c} for which 2kP + ℓS ∈ Z2

for some k, ℓ ∈ Z. We have

x(2P ) =
1

4
(a+ b+ c)2 − ab− ac− bc.

Lemma: Let a, b, c be nonzero integers such that a +
b+ c is even. Then {a, b, c} is a D(n)-set for

n =
1

4
(a+ b+ c)2 − ab− ac− bc,

provided n ̸= 0. Furthermore, n = 0 is equivalent to
c = a+b±2

√
ab (and thus impossible if {a, b, c} is a D(1)-

triple), while n = 1 is equivalent to c = a+b±2
√
ab+1.
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Corollary: Any Diophantine triple {a, b, c} such that

a + b + c is even and c ̸= a + b ± 2
√
ab+1 is also a

D(n)-set for some n ̸= 1.

A computer search, {a, b, c} is a D(1)-set, a, b ≤ 1000,

c ≤ 1000000: the points S − 2P and 4P never have

integer coordinates, while the point S+2P = 2(R+P )

has integer coordinates for the following (a, b, c);

(4,12,420), (4,420,14280), (12,24,2380), (12,420,41184),

(24,40,7812), (40,60,19404), (60,84,40612), (84,112,75660),

(112,144,129540), (144,180,208012), (180,220,317604),

(220,264,465612), (264,312,660100), (312,364,909900).

We will show that there are infinitely many such exam-

ples.
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We first note that all the examples above satisfy an
additional condition that x(S + 2P ) = a + b + c. A
straightforward calculation shows that the condition
x(S + 2P ) = a + b + c is equivalent to q1q2q3 = 0,
where

q1 = −4+ a2 − 2ab+ b2 − 2ac− 2bc+ c2,

q2 = a2 − 4a− 2ac− 4c+ c2 − 2ab− 4b− 8abc− 2bc+ b2,

q3 = −4a− 4b− 4c− 2ab− 2ac− 2bc− 4abc+ a2 + b2 + c2

− 2a2b− 2a2c− 2ab2 − 2ac2 − 2b2c− 2bc2 − 2a2b2

+2a3 +2b3 +2c3 + a4 + b4 + c4 − 2a2c2 − 2b2c2.

The condition q1 = 0 is equivalent to c = a + b ±
2
√
ab+1, but in that case x(2P ) = 1, so in this way we

do not get a Diophantine triple which is also a D(n)-set
for two distinct n’s with n ̸= 1. The equation q3 = 0
has no solutions in Diophantine triples {a, b, c}.
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Thus, the only interesting condition for us is q2 = 0. It

is equivalent to

c = 2+ a+ b+4ab± 2
√
(2a+1)(2b+1)(ab+1),

and this is exactly the condition that {2, a, b, c} is a

regular Diophantine quadruple.

It can be verified that for such triples n2 = x(S + 2P )

and n3 = x(2P ) satisfy n2 ̸= n3, n1 ̸= 1, n3 ̸= 1.

Theorem: Let {2, a, b, c} be a regular Diophantine quad-

ruple. Then the Diophantine triple {a, b, c} is also a

D(n)-set for two distinct n’s with n ̸= 1.
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Explicit infinite families of Diophantine triples {a, b, c}
satisfying the conditions of the theorem

Corollary: Let i be a positive integer and let

a = 2(i+1)i, b = 2(i+2)(i+1), c = 4(2i2+4i+1)(2i+3)(2i+1).

Then {a, b, c} is a D(n)-set for n = n1, n2, n3, where

n1 = 1,

n2 = 32i4 +128i3 +172i2 +88i+16,

n3 = 256i8 +2048i7 +6720i6 +11648i5 +11456i4 +6400i3

+1932i2 +280i+16.
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Corollary: Let the sequence (bi)i≥0 be defined by

b0 = 0, b1 = 12, b2 = 420, bi+3 = 35bi+2−35bi+1+bi, i ≥ 3,

Then for all positive integers i the triple {4, bi, bi+1} is

a D(n)-set for n = n1, n2, n3, where

n1 = 1,

n2 = 4+ bi + bi+1,

n3 =
1

4
(4+ bi + bi+1)

2 − 4bi − 4bi+1 − bibi+1.
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Triples {a, b, c} which are D(n)-sets for n1 = 1 < n2 <

n3 < n4:

{a, b, c} n2, n3, n4
{4,12,420} 436,3796,40756
{10,44,21252} 825841,6921721,112338361
{4,420,14280} 14704,950896,47995504
{40,60,19404} 19504,3680161,93158704
{78,308,7304220} 242805865,4770226465,13336497750865
{4,485112,16479540} 16964656,2007609136,63955397832496
{15,528,32760} 66609,5369841,15984081

Question: Are there infinitely many such triples?
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A modification of the problem

So far we were interested in the maximum size of a
set N of nonzero integers containing 1 for which there
exists a triple of nonzero integers {a, b, c} which is a
D(n)-set for all n ∈ N . If we omit the condition 1 ∈ N ,
then the size of a set N for which there exists a triple
{a, b, c} of nonzero integers which is a D(n)-set for all
n ∈ N can be arbitrarily large. Indeed, take any triple
{a, b, c} such that the induced elliptic curve E(Q) has
positive rank. Then there are infinitely many rational
points on E. For an arbitrary large positive integer m

we may choose m distinct rational points R1, . . . , Rm ∈
2E(Q), so that we have

x(Ri) + ab = �, x(Ri) + ac = �, x(Ri) + bc = �.
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We do so by taking points of the form 2m1P1+2m2P2+
· · ·+2mrPr, where P1, . . . , Pr are the generators of E(Q).
We then let z ∈ Z \ {0} be such that z2x(Ri) ∈ Z for all
i = 1,2, . . . ,m. Then the triple {az, bz, cz} is a D(n)-set
for n = x(Ri)z

2 for all i = 1,2, . . . ,m.

Question: For a given positive integer k, what can
be said about the smallest in absolute value nonzero
integer n1(k) for which there exists a triple {a, b, c} of
nonzero integers and a set N of integers of size k con-
taining n1(k) such that {a, b, c} is a D(n)-set for all
n ∈ N?

Note that if k ≤ 4, then n1(k) = 1 since we have found
examples of Diophantine triples {a, b, c} which are also
D(n)-sets for three distinct n’s greater than 1.
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We can show that |n1(5)| ≤ 36. To that end we con-

sider the Diophantine triple {1,8,120}, whose induced

elliptic curve E(Q) has rank 3. Following the procedure

described above we find points R1, . . . , R5 ∈ 2E(Q) such

that

x(R1) = 1, x(R2) = 721, x(R3) = 12289/4,

x(R4) = 769/9, x(R5) = 1921/36.

We then let z = 6. It follows that the triple {az, bz, cz} =

{6,48,720} is a D(n)-set for

n = 36,1921,3076,25956,110601.

(We choose R2, . . . , R5 ∈ 2E(Q) so that their x-coordinates

have relatively small denominators. We obtained the

n’s using n = x(Ri)z
2, i = 1,2, . . . ,5).



k |n1(k)| ≤ rank {a, b, c}
5 36 3 {6,48,720}
6 215 3 {28,168,1848}
7 900 4 {380,1400,3240}
8 7740 3 {168,1008,11088}
9 32400 4 {2280,8400,19440}
10 129600 4 {4560,16800,38880}
11 215991 5 {9120,22770,30960}
12 863964 5 {18240,45540,61920}
13 4932144 5 {37128,118440,182280}
14 7706475 5 {46410,148050,227850}
15 30825900 5 {92820,296100,455700}
16 123303600 5 {185640,592200,911400}
17 371289600 5 {59400,108360,223200}
18 4438929600 5 {1113840,3553200,5468400}
19 18193190400 5 {415800,758520,1562400}
20 18193190400 5 {415800,758520,1562400}
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