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1 Introduction

Let K be a field. In general, an elliptic curve over K is a nonsingular pro-
jective cubic curve over K with at least one K-rational point. Hence, it has
the equation of the form

F (x, y) = ax3 + bx2y + cxy2 + dy3 + ex2 + fxy + gy2 + hx + iy + j = 0,

where a, b, c, . . . , j ∈ K, and the nonsingularity means that in every point
on the curve, considered in the projective plane P2(K) over the algebraic
clusure of K, at least one partial derivative of F is non-zero. Each such
equation can be transformed by birational transformations to the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, (1)

which is called the Weierstrass form.
Program packages which deal with elliptic curves (PARI/GP, APECS,

KANT/KASH, SAGE, MAGMA) usually initialize an elliptic curve as the
vector [a1, a2, a3, a4, a6]. Note that there is no a5. An explanation is that if
we give the weight i to ai, the weight 2 to x and the weight 3 to y, then all
summands in (1) have the weight 6.

If char(K) 6= 2, 3, then the equation (1) can be transformed to the form

y2 = x3 + ax + b, (2)

which is called the short Weierstrass form. Now the nonsingularity means
that the cubic polynomial f(x) = x3 + ax + b has no multiple roots (in
algebraic closure K), or equivalently that the discriminant ∆ = −4a3−27b2

in nonzero.
Thus, if char(K) 6= 2, 3, it is often convenient to define an elliptic curve

E(K) over K as the set of points (x, y) ∈ K×K which satisfy an equation

E : y2 = x3 + ax + b,

where a, b ∈ K and 4a3 + 27b2 6= 0, together with a single element denoted
by O and called the “point in infinity”.

The point in infinity appears naturally if we represent the curve in pro-
jective plane P2(K), i.e. the set of equivalence classes of triples (X,Y, Z) ∈
K3 \ {(0, 0, 0)}, where (X, Y, Z) ∼ (kX, kY, kZ), k ∈ K, k 6= 0. Replacing x
by X

Z and y by Y
Z , we obtain the projective equation of elliptic curve

Y 2Z = X3 + aXZ2 + bZ3.

If Z 6= 0, then (X,Y, Z) has representative of the form (x, y, 1) and it may
be identified by (x, y). But there is one equivalence class with Z = 0. It has
a representative (0, 1, 0), and this point we identify with O.
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One of the most important facts about elliptic curves is that the set
of points on an elliptic curve forms an abelian group (Poincaré, 1908). In
order to visualize the group operation, assume for the moment that K = R.
Then we have an ordinary curve in the plane. It has one or two components,
depending on the number of real roots of the cubic polynomial f(x) =
x3 + ax + b.

1 root – 1 component 3 roots – 2 components

Let E be an elliptic curve over R, and let P and Q be to two points
on E. We define −P as the point with the same x-coordinate but negative
y-coordinate of P . If P and Q have different x-coordinates, then the straight
line though P and Q intersects the curve in exactly one more point, denoted
by P ∗Q. We define P +Q as −(P ∗Q). If P = Q, then we replace the secant
line by the tangent line at the point P . We also define P +O = O+ P = P
for all P ∈ E(R).

secant line tangent line

Using this geometric definition, we can determine explicit algebraic for-
mulas for this group law. Such formulas make sense over any field (with
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small modification for fields of characteristic 2 or 3).

Let P = (x1, y1) and Q = (x2, y2). Then

1) −O = O;

2) −P = (x1,−y1);

3) O + P = P ;

4) if Q = −P , then P + Q = O;

5) if Q 6= −P , then P + Q = (x3, y3), where

x3 = λ2 − x1 − x2, y3 = −y1 + λ(x1 − x3),

λ =

{
y2−y1

x2−x1
, if x2 6= x1,

3x2
1+a

2y1
, if x2 = x1.

The number λ is the slope of the straight line through the points P and Q
in the case P 6= Q, and the slope of the tangent line at the point P in the
case P = Q.

It can be shown that these formulas give an abelian group law on an
elliptic curve over any field K. All properties of an abelian group are evident,
except the associative law.

In this lecture notes, we will mainly consider elliptic curves over Q.
Let us just mention that elliptic curves over finite fields Fq, in particular

for q = p (prime fields) and q = 2k (fields of characteristic 2), are very
important for the application in cryptography.

We will briefly mention some facts on elliptic curves over C. In comput-
ing the arc-length of an ellipse, one integrates a function involving square
root of a cubic or quartic polynomial. Such integrals are called elliptic in-
tegrals. They cannot be expressed by elementary functions, but they can
be expressed in terms of Weierstrass ℘-function. It satisfies the differential
equation of the form (

℘′

2

)2

= ℘3 + a℘ + b.

We can parametrize points on an elliptic curve y2 = x3 + ax + b over C by
(℘(t), 1

2℘′(t)). Moreover, this is a homomorphism, i.e. if P = (℘(t), 1
2℘′(t))

and Q = (℘(u), 1
2℘′(u)), then P + Q = (℘(t + u), 1

2℘′(t + u)). This gives an
elegant proof of the associativity low on an elliptic curve.

Using the function ℘ we can visualize an elliptic curve over C. The func-
tion ℘ is doubly periodic, i.e. there exist ω1, ω2 ∈ C (ω1/ω2 6∈ R) such that
℘(z + mω1 + nω2) = ℘(z) for all m,n ∈ Z. Denote by L the lattice of all
points of the form mω1 + nω2. The the above parametrization is a complex
analytic isomorphism between C/L and E(C). So we can consider E(C) as
the fundamental parallelogram mω1 + nω2 , 0 ≤ m,n < 1, in which we
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“glue” the opposite sides: first we obtain a cylinder, and when we “glue” its
bases, we obtain a torus (a sphere with one “hole” – so elliptic curves have
genus 1).

fundamental parallelogram torus

2 Rational points on elliptic curves

The most important fact on elliptic curves over Q is the Mordell-Weil the-
orem.

Theorem 2.1 (Mordell-Weil). E(Q) is a finitely generated abelian group.

In the other words, there is always a finite set of points P1, . . . , Pk on E
which generates all points in E(Q) by the secant-tangent process. There are
two basic steps in the proof of Mordell-Weil theorem:

• the proof that the index [E(Q) : 2E(Q)] is finite;

• properties of the height function h, defined by h(P ) = lnH(x), where
P = (x, y) and H(m

n ) = max{|m|, |n|}.
Any finitely generated abelian group is isomorphic to a direct product

of cyclic groups. Thus we have the following corollary of Theorem 2.1

Corollary 2.1.
E(Q) ∼= E(Q)tors ×Zr

The subgroup E(Q)tors of points of finite order is called the torsion
group of E, and the integer r ≥ 0 is called the rank of E and it is denoted
by rank(E). By Corollary 2.1, there exist r rational points P1, . . . , Pr on E
such that any rational point P on E can be represented in the form

P = T + m1P1 + · · ·+ mrPr,

where T is a point of finite order and m1, . . . , mr are integers.

We may ask which values are possible for E(Q)tors and rank(E) for
general E, and also how we can compute them for a given E. It appears
that these questions are much easier for the torsion group.
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Theorem 2.2 (Mazur). If E is an elliptic over over Q, then E(Q)tors is
one of the following 15 groups:

Z/nZ, for n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12
Z/2Z×Z/nZ, for n = 2, 4, 6, 8.

Let us now discuss the problem of finding the torsion points on an elliptic
curve

E : y2 = x3 + ax + b

over Q. First, let P = (x, y) be a point of order 2. From 2P = O it follows
P = −P , i.e. (x, y) = (x,−y), which implies y = 0. Hence, the points of order
2 are exactly the points with y-coordinate equal to 0. We may have 0, 1 or
3 such points, depending on the number of rational roots of the polynomial
x3 + ax + b. These points, with the point in infinity O, form a subgroup of
E(Q)tors which is trivial or isomorphic to Z/2Z or to Z/2Z×Z/2Z. Other
point of finite order can be found by the following theorem.

Theorem 2.3 (Lutz-Nagell). Let E be an elliptic curve given by the equation

y2 = x3 + ax + b, a, b ∈ Z.

If P = (x, y) ∈ E(Q)tors, then x, y are integers. (If E is given by the (long)
Weierstrass equation with integer coefficients, then 4x and 8y are integers.)

Corollary 2.2. If P = (x, y) ∈ E(Q)tors, then either y = 0 (and P has
order 2) or y2|∆, where ∆ = −4a3 − 27b2.

Example 2.1. Find the torsion group for the elliptic curve

E : y2 = x3 + 8.

Solution: We have ∆ = −1728. If y = 0, then x = −2 and we have
the point (0,−2) of order 2. If y 6= 0, then y2|1728, i.e. y|24. By testing
all possibilities, we find the following points with integer coordinates: P1 =
(1, 3), P2 = (2, 4), −P1 = (1,−3), −P2 = (2,−4). We compute

2P1 =
(
−7

4
,−13

8

)
, 2P2 =

(
−7

4
,
13
8

)
,

and since the points 2P1 and 2P2 do not have integer coordinates, we
conclude that P1 and P2 are points of infinite order. Hence, E(Q)tors =
{O, (0,−2)} ∼= Z2. ♦

A problem with the application of Lutz-Nagell theorem appears if it is
hard to factorize the discriminant, or if the discriminant has many quadratic
factors.
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An alternative approach is to consider |E(Fp)| for few small primes p such
that p - 2∆, and use the fact that |E(Q)tors| divides |E(Fp)|. This give us
good candidate n for the order of group E(Q)tors. It remains to find a point
of order n. Doud’s algorithm from 1998 uses the Weierstrass ℘-function. We
may assume that its period ω1 is real. If n is odd, then a point P of order
n corresponds to a parameter of the form m

n ω1, where gcd(m, n) = 1. Let
mm′ ≡ 1 (mod n). Then the point m′P also has order n, and its parameter
is 1

nω1. Hence, we conclude that ℘( 1
nω1) has to be an integers. If n is even,

then similar arguments show that one of the numbers ℘( 1
nω1), ℘( 1

nω1 + 1
2ω2)

or ℘( 1
nω1 + 1

2ω1 + 1
2ω2) have to be an integer.

Example 2.2. Find the torsion group for the elliptic curve

E : y2 = x3 − 58347x + 3954150.

Solution: We have 4a2 +27b3 = −372386507784192 = −218 · 317 · 11 (but
we will not use this factorization in our solution). We take first p = 5, and we
find that |E(F5)| = 10. For p = 7 we also obtain |E(F7)| = 10. We conclude
that |E(Q)tors| divides 10. We have (e.g. using arithmetic-geometric mean)

ω1 = 0.198602 . . . ω2 = 0.156713 . . . i.

We compute

℘(
1
10

ω1) = 2539.825532 . . . , ℘(
1
10

ω1 +
1
2
ω2) = −213.000000 . . . ,

so we find a rational point

P = (x, y) = (−213, 2592)

of order 10. Hence, E(Q)tors
∼= Z10, and by computing the multiplies of P

we obtain that

E(Q)tors = {O, (−213, 2592), (651,−15552), (3, 1944), (219,−1296), (75, 0),
(219, 1296), (3,−1944), (641, 15552), (−213,−2592)}.

♦
The questions concerning the rank are much harder, and at present we

don’t have satisfactory answers. It is a folklore conjecture that the rank can
be arbitrary large, i.e. that for any positive integer M there exist a curve
E over Q such that rank(E) ≥ M . However, the current record is the curve
with rank ≥ 28 found by Elkies in 2006. There is a stronger version of this
conjecture which says that for any admissible torsion group G, there exist
an elliptic curve E with E(Q)tors

∼= G and rank(E) ≥ M . Let us define

B(G) = sup{rank(E) : E(Q)tors
∼= G}.

The current records for B(G) for each of 15 admissible torsion groups are
given in the following table:
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G B(G) ≥ Author(s)

0 28 Elkies (2006)
Z/2Z 18 Elkies (2006)
Z/3Z 13 Eroshkin (2007,2008)
Z/4Z 12 Elkies (2006)
Z/5Z 6 Dujella & Lecacheux (2001)
Z/6Z 8 Eroshkin (2008), Dujella & Eroshkin (2008), Elkies (2008), Dujella (2008)
Z/7Z 5 Dujella & Kulesz (2001), Elkies (2006)
Z/8Z 6 Elkies (2006)
Z/9Z 4 Fisher (2009)
Z/10Z 4 Dujella (2005,2008), Elkies (2006)
Z/12Z 4 Fisher (2008)

Z/2Z× Z/2Z 14 Elkies (2005), Eroshkin (2008), Dujella & Eroshkin (2008)
Z/2Z× Z/4Z 8 Elkies (2005)
Z/2Z× Z/6Z 6 Elkies (2006)
Z/2Z× Z/8Z 3 Connell (2000), Dujella (2000,2001,2006,2008),

Campbell & Goins (2003), Rathbun (2003,2006), Dujella & Rathbun (2006),
Flores, Jones, Rollick, Weigandt & Rathbun (2007), Fisher (2009)

Assume that E has a rational point of order 2. In that case the computa-
tion of the rank is usually much easier than in the general case. The method
is called the “descent using 2-isogeny”. We may assume that the point of
order 2 is the point (0, 0). Then E has the equation of the form

y2 = x3 + ax2 + bx.

The “2-isogenous curve” E′ has the equation

y2 = x3 − 2ax2 + (a2 − 4b)x

In general, an isogeny is a homomorphism between two elliptic curves which
is given by rational functions. In our case, the isogeny is ϕ : E → E′,
ϕ(P ) = ( y2

x2 , y(x2−b)
x2 ) for P = (x, y) 6= O, (0, 0), and ϕ(P ) = O otherwise.

Analogously we can define ψ : E′ → E. It holds that ψ ◦ ϕ(P ) = 2P , and
these two isogenies appear in the first step of the proof of Mordell-Weil
theorem.

Write x and y in the form x = m
e2 , y = n

e3 and insert them in the equation
for E. We obtain

n2 = m(m2 + ame2 + be4).

Let b1 = ± gcd(m, b), mb1 > 0. Then m = b1m1, b = b1b2, n = b1n1 and

n2
1 = m1(b1m

2
1 + am1e

2 + b2e
4).

Since the factors on the right hand side are coprime, we conclude that there
exist integers M and N such that m1 = M2, b1m

2
1 + am1e

2 + b2e
4 = N2,

and finally we obtain the equation

N2 = b1M
4 + aM2e2 + b2e

4 (3)

in unknowns M , e and N . We also have the following conditions gcd(M, e) =
gcd(N, e) = gcd(M, N) = 1.
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The rank of E can be computed in the following way. For each factoriza-
tion b = b1b2, where b1 is a square-free integer, we write down the equation
(3). We need to decide whether or not each of these equations has a solution
in integers (note that for such equations everywhere local solubility does not
imply global global solubility). Each solutions (M, e,N) of the equation (3)
induce a point on E with the coordinates x = b1M2

e2 , y = b1MN
e3 . Let r1 be

the number of factorizations for which the corresponding equation (3) has a
solution, and let r2 be the number defined in the same way for the curve E′.
Then there exist nonnegative integers e1 and e2 such that r1 = 2e1 , r2 = 2e2

and it holds that
rank (E) = e1 + e2 − 2.

In the case when rank is equal to 0 (and we are able to prove this), using
Lutz-Nagell theorem we can find all rational, and then also all integer points
on that elliptic curve. This is not unrealistic assumption, since it is expected
that a “random” elliptic curve has 50% chance to have rank 0.

Example 2.3. Consider the set {1, 2, 5}. It has so called property D(−1)
since 1 · 2 − 1, 1 · 5 − 1 and 2 · 5 − 1 are perfect squares. We may ask is it
possible to extended this triple to a quadruple with the same property, i.e.
does it exist x ∈ Z such that

1 · x− 1, 2 · x− 1, 5 · x− 1

are perfect square. We will show that x = 1 is the only solution, and since 1 ∈
{1, 2, 5}, this means that {1, 2, 5} cannot be extended to a D(−1)-quadruple.
We will solve this problem by finding all integer points on the elliptic curve

y2 = (x− 1)(2x− 1)(5x− 1). (4)

Solution: Multiplying the equation by 102 and with substitution 10y 7→
y, 10x 7→ x we obtain the equation in the Weierstrass form:

y2 = x3 − 17x2 + 80x− 100.

By translation x 7→ x + 5, we get the equation in which the points (0, 0) is
a point of order 2:

E ; y2 = x3 − 2x2 − 15x.

Its 2-isogenous curve is

E′ : y2 = x3 + 4x2 + 64x.

For the curve E, possibilities for the number b1 are ±1, ±3, ±5, ±15, with
the corresponding Diophantine equations N2 = M4 − 2M2e2 − 15e4, N2 =
−M4−2M2e2+15e4, N2 = 3M4−2M2e2−5e4, N2 = −3M4−2M2e2+5e4,
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N2 = 5M4 − 2M2e2 − 3e4, N2 = −5M4 − 2M2e2 + 3e4, N2 = 15M4 −
2M2e2 − e4, N2 = −15M4 − 2M2e2 + e4. Because of the symmetry, it is
enough to examine the first four equations. The first equation has a solution
M = 1, e = 0, N = 1, and the fourth equation has a solution M = 1,
e = 1, N = 0. The second equation leads to N2 = (3e2 −M2)(5e2 + M2).
Since gcd(3e2−M2, 5e2 + M2) ∈ {1, 2}, we have two possibilities. However,
3e2 − M2 = s2 is impossible modulo 3 because (−1

3 ) = −1, while 5e2 +
M2 = 2t2 is impossible modulo 5 because (2

5) = −1. The third equation
leads to N2 = (M2 + e2)(3M2 − 5e2). Again we have two possibilities, but
they both lead to a contradiction: 3M2 − 5e2 = t2 is impossible modulo 5
because (3

5) = −1, while M2 − 5e2 = 2t2 is impossible modulo 8 because
3M2 − 5e2 ≡ 6 (mod 8) and 2t2 ≡ 2 (mod 8). Hence, e1 = 2.

For E′ we have b′1 ∈ {±1,±2} and the corresponding Diophantine equa-
tions are N2 = M4 + 4M2e2 + 64e4, N2 = −M4 + 4M2e2 − 64e4, N2 =
2M4+4M2e2+32e4 and N2 = −2M4+4M2e2−32e4. The first equation has
a solution M = 1, e = 0, N = 1. The second and fourth equations lead to
N2 = −(M2−2e2)2−60e4, resp. N2 = −2(M2−e2)2−30N2, and obviously
have no solutions. The third equation leads to 2·(N/2)2 = (M2+e2)2+15e4,
and it has no solutions modulo 5 because (2

5) = 1. Hence, e2 = 0.
We conclude that rank (E) = 2 + 0− 2 = 0.
It remains to find torsion points on E. We have three points of order 2:

(0, 0), (−3, 0), (5, 0). All other torsion points (x, y) should satisfy y2|14400,
i.e. y|120. We can check all possibilities and we find no integer solution.
Alternatively, we can observe that |E(F7)| = 4 and 7 - ∆, so E(Q)tors

cannot have more than 4 points. Hence, all rational points on E are O,
(0, 0), (−3, 0), (5, 0), which implies that all rational points on the curve (4)
are O, (1, 0), (1

2 , 0), (1
5 , 0). Thus, the only integer x with the property that

1 · x− 1, 2 · x− 1 and 5 · x− 1 are perfect squares is x = 1. ♦

3 Some classical problems related to elliptic curves

3.1 Hardy-Ramanujan taxicab problem

The taxicab problem is related with a famous mathematical story. When
Ramanujan was in the hospital in London, his colleague Hardy came to
visit. Hardy remarked that he had come in taxicab number 1729, and surely
that was a rather dull number. Ramanujan instantly replied that, to the
contrary, 1729 is a very interesting number, since it is the smallest number
expressible as the sum of two cubes in two different ways. Indeed, 1729 =
93 + 103 = 13 + 123. We may consider the cubic equation

x3 + y3 = 1729. (5)

We claim that all integer points on (5) are given by (x, y) = (9, 10), (10, 9),
(1, 12), (12, 1). This is easy to prove because the cubic x3 + y3 factors. We
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have
(x + y)(x2 − xy + y2) = 1729 = 7 · 13 · 19.

So we consider all possible factorizations 1729 = AB and solve the system
x + y = A, x2 − xy + y2 = B. We find that we only get integer solutions for
the two pairs (A,B) = (3, 133) and (A,B) = (9, 91), and these lead to the
four solutions listed above.

We may ask whether there exist a positive integer m which can be rep-
resented as a sum of two cubes in three different ways, or more generally
in M different ways. The answer is that for every positive integer M there
exist a positive integer m such that the equation x3 + y3 = m has at least
M integer solutions.

Consider the curve
C : x3 + y3 = 9.

It has an obvious rational points (1, 2). By substitutions s = 12/(x + y),
t = 12(x− y)/(x+ y) we find that C is birationally equivalent to the elliptic
curve

E : t2 = s3 − 48.

The point (1, 2) on C corresponds to the point P = (4, 4) on E. Since
3P = (73/9, 595/27), by Lutz-Nagell theorem, we conclude that P is a point
of infinite order (in fact, P is the generator of E(Q)), and therefore the curves
E and C have infinitely many rational points. For the given positive integer
M we choose M rational points Q1, Q2, . . . , QM on the curve C. It is easy
to see that the coordinates of these point are of the form Qi = (ai/di, bi/di).
Let us define m = 9(d1d2 · · · dM )3. Now we have M integer points on the
curve x3+y3 = m, with coordinates obtained by multiplying the coordinates
of the points Qi (i = 1, . . . M) by d1d2 · · · dM .

The smallest number which can be represented as a sum of two cubes
on three different ways is

87539319 = 1673 + 4363 = 2283 + 4233 = 2553 + 4143.

Remark 3.1. Similar construction can be used to show that for any positive
integer N , there exist integers u and v such that the system of Pellian
equations

x2 − 2y2 = u, y2 − 3z2 = v

has more than N integer solutions.

3.2 Diophantine m-tuples

A set of m positive integers with the property that the product of any
two of them increased by unity is a perfect square is called a Diophantine
m-tuple. Set of m nonzero rationals with the same property is called a ra-
tional Diophantine m-tuple. The first rational Diophantine quadruple, the
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set {1/16, 33/16, 17/4, 105/16}, was found already by Diophantus. The first
Diophantine quadruple (in integers) was found by Fermat, and it was the
set {1, 3, 8, 120}. Indeed, we have

1 · 3 + 1 = 22, 1 · 8 + 1 = 32, 1 · 120 + 1 = 112,

3 · 8 + 1 = 52, 3 · 120 + 1 = 192, 8 · 120 + 1 = 312.

Euler showed that Fermat’s set can be extended with the fifth rational
number 777480/8288641. The first rational Diophantine 6-tuple was found
in 1999 by Gibbs. It was the set

{11/192, 35/192, 155/27, 512/27, 1235/48, 180873/16}.

Several such 6-tuples are known (with all possible combinations of signs),
but it is not known whether there exist any rational Diophantine 7-tuple.

In 1969, Baker and Davenport, using Baker’s theory on linear forms in
logarithms of algebraic numbers and a reduction method based on continued
fractions, proved that if d is a positive integer such that {1, 3, 8, d} forms
a Diophantine quadruple, then d = 120. It implies that the Fermat’s set
{1, 3, 8, 120} cannot be extended to a Diophantine quintuple. It is known
(Dujella, 2004) that there does not exist a Diophantine 6-tuple, and there are
only finitely many Diophantine quintuples. On the other hand, no absolute
upper bound for the size of rational Diophantine tuples is known.

Let {a, b, c} be a (rational) Diophantine triple, i.e.

ab + 1 = r2, ac + 1 = s2, bc + 1 = t2.

In order to extend this triple to a quadruple, we have to solve the system

ax + 1 = ¤, bx + 1 = ¤, cx + 1 = ¤. (6)

It is natural idea to assign to this system the elliptic curve

E : y2 = (ax + 1)(bx + 1)(cx + 1).

There are three rational points on E of order 2: A = (−1/a, 0), B =
(−1/b, 0), C = (−1/c, 0), and also obvious rational points P = (0, 1),
S = (1/abc, rst/abc). It is not so obvious, but it is easy to verify that S = 2R,
where R = ((rs + rt + st + 1)/abc, (r + s)(r + t)(s + t)/abc).

It is clear that every rational solution of the original system (6) induce
a rational point on E. On the other hand, it can be shown that the x-
coordinate of the point T ∈ E(Q) satisfies (6) if and only if T −P ∈ 2E(Q).
Hence, the x-coordinates of the points P + S and P − S satisfy the system
(6). These x-coordinates are

a + b + c + 2abc± 2rst,
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which shows that every Diophantine triple can be extended to a Diophan-
tine quadruple. The addition and subtraction of the point S has another
interesting property. Namely, if x-coordinate of the point T ∈ E(Q) satisfies
(6), then for the points T ± S = (u, v) it holds that xu + 1 is a square. This
result implies that every Diophantine quadruple {a, b, c, d} can be extended
to a rational Diophantine quintuple {a, b, c, d, e}. Note that the number e
obtained by this construction satisfies e < 1, and therefore e is not a positive
integer.

Exercise 3.1. Extend Diophantus’ set {1/16, 33/16, 17/4, 105/16} to a ra-
tional Diophantine quintuple.

Example 3.1. The elliptic curve

y2 = (x + 1)(3x + 1)(8x + 1) (7)

has rank equal to 1, so it has infinitely many rational points and the Dio-
phantine triple {1, 3, 8} can be extended to infinitely many rational Diophan-
tine quadruples (e.g. by x = 777480

8288641). However, this curve only the following
integer points

(x, y) = (−1, 0), (0,±1), (120,±6479).

From (7) we have

x + 1 = µ2µ3x
2
1,

3x + 1 = µ1µ3x
2
2,

8x + 1 = µ1µ2x
2
3,

where µ1, µ2, µ3 are square-free integers such that µ1|5, µ2|7, µ3|2. Using
elementary arguments, we can exclude all possibilities except µ1 = µ2 = µ3.
Indeed, it is clear that only solution in negative integers is x = −1, so we
may assume that x ≥ 0 and that µ1, µ2, µ3 are positive. But, the equations
8x + 1 = 5x2

3, 8x + 1 = 7x2
3 and 8x + 1 = 35x2

3 are all impossible modulo
8. Hence, µ1 = µ2 = 1. But, the system x + 1 = 2x2

1, 3x + 1 = 2x2
2 is also

impossible modulo 8, which shows that µ3 = 1.
As we already mentioned, the case µ1 = µ2 = µ3 has been solved by

Baker and Davenport, by transforming the problem into an inequality for
the linear form in logarithms

Λ = n log(2 +
√

3)−m log(3 + 2
√

2) + log

(
2
√

2(1 +
√

3)√
3(2
√

2± 1)

)
.

An analogous result is known (Dujella, 2000) for the family of elliptic
curves

Ek : y2 = ((k − 1)x + 1)((k + 1)x + 1)(4kx + 1),
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(k ≥ 3), under the assumption that rank (Ek) = 1 (it is expected that this
assumption holds for 50% of curves in the family, since it has the “generic
rank” equal to 1). It is proved that all integer points on Ek for k ≥ 3 are

(x, y) = (0,±1), (16k3 − 4k,±(128k6 − 112k4 − 20k2 − 1)).

Note that for k = 2 we have exactly the curve (7). Also, {k − 1, k + 1, 4k}
is a Diophantine triple for all k ≥ 2. We conjecture that the result does
not depend on the rank (some experimental supports to this conjecture are
given by Dujella (2000) and Najman (2009)).

4 Elementary results on the equation y2 = x3 + k

Mordell proved in 1922 that the number of integer points on an elliptic curve
is finite. In 1929, Siegel generalized this result and proved that any curve,
defined over the rationals, with genus at least 1, had only finitely many
integer points. In 1966, Baker proved an explicit upper bound for the size
of solutions (i.e. max(|x|, |y|)). These are very deep results. But there are
many elementary results on integer points on some concrete elliptic curves.
We give here some results of such type for Mordell curve y2 = x3 + k. The
results are mainly due to Mordell. Let us mentioned that these curves were
systematically studied by Gebel, Pethő and Zimmer, who solved them for
all integers k in the range 0 < |k| ≤ 10000.

Proposition 4.1. Let k = (4b − 1)3 − 4a2, where a is an integer with no
prime factors of the form 4l + 3. Then the equation y2 = x3 + k has no
solutions in integers x and y.

Proof: As k ≡ −1 (mod 4), we have y2 ≡ x3 − 1 (mod 4). Since y2 ≡ 0
or 1 (mod 4), x cannot be even nor congruent to −1 modulo 4. Hence, x ≡ 1
(mod 4). We can write the equation y2 = x3 + (4b− 1)3 − 4a2 in the form

y2 + 4a2 = x3 + (4b− 1)3 = (x + 4b− 1)(x2 − x(4b− 1) + (4b− 1)2).

The second factor x2 − x(4b − 1) + (4b − 1)2 is congruent to 3 modulo 4.
Thus it has at least one prime factor p which is congruent to 3 modulo 4.
But, p can divide a sum of two squares y2 + 4a2 only if y and a are both
divisible by p, contradicting the assumption that a has no prime factors of
the form 4l + 3.

Some integers k satisfying the conditions of Proposition 4.1: k = −5, 11,
23, −73.

The proof of the following result is completely analogous to the proof of
Proposition 4.1.

Proposition 4.2. Let k = (4b + 2)3 − (2a + 1)2, where all prime factors of
2a + 1 are of the form 4l + 1. Let the equation y2 = x3 + k has no solutions
in integers x and y.
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Proposition 4.3. Let k = 2b2−a3, where a ≡ 2, 4 (mod 8), b ≡ 1 (mod 2)
and all prime factors of b are of the form 8l±1. Then the equation y2 = x3+k
has no integer solutions.

Proof: From y2 ≡ x3 + 2 (mod 4), it follows that x 6≡ 0 (mod 2) and
x 6≡ 1 (mod 4). Hence, x ≡ 3 (mod 4), i.e. x ≡ 3 ili 7 (mod 8). We can
write our equation in the form

y2 − 2b2 = x3 − a3 = (x− a)(x2 + ax + a2).

If x ≡ 3 (mod 8), then x2 + ax + a2 ≡ 1 + 3a + a2 ≡ ±3 (mod 8), which
implies that x2 + ax + a2 has at least one prime factor p of the form 8l± 3.
By the assumption, p does not divide b, and therefore

(
2
p

)
=

(
2b2

p

)
=

(
y2

p

)
= 1,

contradicting the fact that (2
p) = 1 if and only if p ≡ ±1 (mod 8).

If x ≡ 7 (mod 8), then x − a ≡ 7 − a ≡ ±3 (mod 8), so x − a has at
least one factor of the form 8l ± 3, and we obtain a contradict in the same
way as before.

Some values of k satisfying the the conditions of Proposition 4.3: k = −6,
34, 58, −62, 66, 90.

The proof of the following result is completely analogous to the proof of
Proposition 4.3.

Proposition 4.4. Let k = −2b2− a3, where a ≡ 4 (mod 8), b ≡ 1 (mod 2)
and all prime factors of b have the form 8l + 1 or 8l + 3. Then the equation
y2 = x3 + k has no integer solutions.

Exercise 4.1. Show that the equation y2 = x3+45 has no integers solutions.

5 Elliptic curves and Thue equations

Consider the equations of the form

y2 = x3 + ax2 + bx + c,

where the coefficients a, b, c are integers, and the cubic polinomial f(x) =
x3+ax2+bx+c has no multiple roots. We will describe Mordell’s argumenta-
tion which shows that this equation has only finitely many integer solution.
Since there are methods for efficient solving of Thue equation (Tzanakis and
de Weger), this will also give one general method for finding integer points
on an elliptic curve.

The idea is to factorize the polynomial

f(x) = x3 + ax2 + bx + c = (x− ϑ1)(x− ϑ2)(x− ϑ3). (8)
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Thus we get the fields Q(ϑi) in which we consider the equation (8). There
are three possiblities:

1) all three roots of f are rational (and integer);

2) one root of f is rational, while other two are quadratic irrationals;

3) f is irreducible over Q, its roots are algebraic integers of degree 3.

We will give some details only for the third case. In Z, the following
simple fact holds: if XY = Z l and gcd(X, Y ) = 1, then there exist U, V ∈ Z
such that X = ±U l, Y = ±V l. We need here the following generalization of
this fact in an algebraic number field K:

Lemma 5.1. All solutions of the equation XY = cZ l, where (X, Y )|δ for
given ideal δ, have the shape

X = λε1U
l, Y = µε2V

l, Z = νε3UV,

where U and V are arbitrary integers in K, ε1, ε2, ε3 are units, λ, µ, ν are
elements K. The six numbers (ε1, ε2, ε3, λ, µ, ν) are taken from a finite set
and they satisfy λµε1ε2 = cνlεl

3.

Let us consider the equation (8) in the field K = Q(ϑi). We will describe
the transformation of an elliptic curve to Thue equations. Lemma 5.1 implies

x− ϑi = m(r + sϑi + tϑ2
i )

2, (9)

where r, s, t ∈ Z, and m is an element of a finite set in Q(ϑi). Indeed, ϑi is
an algebraic number of degree 3, so every element in K can be written in the
form α+βϑi +γϑ2

i , α, β, γ ∈ Q. Although {1, ϑi, ϑ
2
i } need not be a basis for

OK, it can be shown that if 1
d(r+sϑi+tϑ2

i ) ∈ OK and gcd(d, r, s, t) = 1, then
d2 divides the discriminant ∆[1, ϑi, ϑ

2
i ] = (ϑ1−ϑ2)2(ϑ1−ϑ3)2(ϑ2−ϑ3)2. Thus

we have only finitely many possibilities for d, which can be “transferred” to
m.

The number m (each of finitely many of them) can also be written in the
form m = r0 + s0ϑi + t0ϑ

2
i , where r0, s0, t0 ∈ Q. If we insert this in (9), and

express ϑ3
i and ϑ4

i in terms of 1, ϑi, ϑ
2
i , the comparison of the coefficients of

1, ϑi and ϑ2
i , gives three equations of the form

f1(r, s, t) = 0, f2(r, s, t) = 1, f3(r, s, t) = x,

where f1, f2, f3 are ternary quadratic forms with rational coefficients. The
solvability of the equation f1(r, s, t) = 0 can be determined efficiently. If it
is solvable, then all solutions are given by

gr = q1(u, v), gs = q2(u, v), qt = q3(u, v),
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where q1, q2, q3 are binary quadratic forms with integer coefficients, and g
can assume only finitely many integer values. Inserting this in the equation
f2(r, s, t) = 1, we obtain finitely many equation of the form

h(u, v) = g2, (10)

where h is a homogeneous polynomial of degree 4 with integer coefficients.
It can be checked that h is not a square of a polynomial of degree 2. Thue’s
theorem implies that (10) has only finitely many solutions, and therefore the
original elliptic equation also has only finitely many integer solutions (which
can be obtained from f3(r, s, t) = x).

Example 5.1. Find all triangular numbers which are equal to a product of
three consecutive positive integers (problem was introduced by Mohanty in
1988, and solved by de Weger in 1989). Triangular numbers are numbers of
the form Tn = n(n+1)

2 . De Weger showed that there are exactly 6 solutions
of this problem:

T3 = 1 · 2 · 3, T15 = 4 · 5 · 6, T20 = 5 · 6 · 7, T44 = 9 · 10 · 11,
T608 = 56 · 57 · 58, T22736 = 636 · 637 · 638.

The given condition can be written in the form n(n+1)
2 = m(m+1)(m+2).

Under the substitution x = 2m+2, y = 2n+1, we obtain the elliptic equation

y2 = x3 − 4x + 1 (11)

(we are interested in integer points on (11) such that x ≥ 4 is even and y ≥ 3
is odd). We claim that the elliptic curve (11) has exactly 22 integer points:

(x, y) = (−2,±1), (−1,±2), (0,±1), (2,±1), (3,±4), (4,±7), (10,±31),
(12,±41), (20,±89), (114,±1217), (1274,±45473).

It is easy to check that exactly last 6 pairs satisfy the desired conditions.
The claim is easy to check for x ≤ 0 (since then obviously x ≥ −2), so

we may assume that x ≥ 1. We are working in the number field K = Q(ϑ),
where ϑ3 − 4ϑ + 1 = 0. Let ϑ = ϑ1 ≈ 0.2541, ϑ2 ≈ −2.1149, ϑ3 ≈ 1.8608.
We need the following information on the field K: OK = Z[ϑ], h(K) = 1 and
fundamental units are ϑ and 2− ϑ. From

y2 = (x− ϑ)(x2 + ϑx + (ϑ2 − 4)). (12)

we conclude that

x− ϑ = ±ϑi(2− ϑ)jU2, U ∈ Z[ϑ], i, j ∈ {0, 1}.

The same relation holds for each of the conjugates ϑi. For ϑ1 we obtain
(since x ≥ 1 and U ∈ R) that in (12) we have to take the sign +, while for
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ϑ2 we obtain that i = 0. Thus it remains to consider to cases: j = 0 and
j = 1.

j = 0
We are searching for solutions of the form

x− ϑ = (r + sϑ + tϑ2)2. (13)

By comparison of the coefficients of powers of ϑ in (13), we get

s2 + 4t2 + 2rt = 0, t2 − 2rs− 8st = 1, r2 − 2st = x.

It is clear that s is even and t is odd, so r is even. Putting r = 2r1 and
s = 2s1, we obtain

(2s1)2 + (2t + r1)2 = r2
1.

Thus there exit u, v ∈ Z such that

s1 = uv, 2t + r1 = u2 − v2, r1 = ±(u2 + v2).

For the sign + we get t = −v2, and for the sign − we get t = u2. Inserting
these values in the second equation we obtain the equations

v(v3 + 8uv2 − 8u2v) = 1,

and
u(u3 + 8u2v − 8uv2) = 1.

Sinve both homogenous polynomials are reducible, these equations can be
very easily solved. We get the solution (u, v) = (0, 1), (1, 1), (0,−1), (−1,−1)
in the first case, and (u, v) = (1, 0), (1, 1), (−1, 0), (−1,−1) in the second
case. This yields (r, s, t) = (2, 0,−1), (4, 2,−1), (−2, 0, 1), (−4, 2, 1), and x =
4, 20, 12.

j = 1
We are searching for solutions of the form

x− ϑ = (2− ϑ)(r + sϑ + tϑ2)2. (14)

We obtain the equations

2s2 + 9t2 − 2rs + 4rt− 8st = 0, r2 + 4s2 + 18t2 − 4rs + 8rt− 18st = 1,

2r2 + s2 + 4t2 + 2rt− 4st = x.

The first equation yield

0 = 2s2 + 9t2 − 2rs + 4rt− 8st = 2(s− 2t)2 + t2 − 2r(s− 2t).

The substitution z = s− 2t gives t2 = 2z(r − z).
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If z is odd, then there exist u, v ∈ Z such that z = u2, r − z = 2v2, so
that

r = u2 + 2v2, s = u2 + 4uv, t = 2uv,

and we obtain the Thue equation

u4 − 4u3v − 12u2v2 + 4v4 = 1. (15)

If z is even, then there exist u, v ∈ Z such that z = 2u2, r − z = v2, so
that

r = 2u2 + v2, s = 2u2 + 4uv, t = 4uv,

and we obtain the Thue equation

4u4 − 8u3v − 12u2v2 + v4 = 1. (16)

The equations (15) and (16) are indeed Thue equations, i.e. the cor-
responding homogeneous polynomials are irreducible. Thus solving these
equations is not so simple task as in the previous case. However, using the
algorithms for solving Thue equations, based on linear forms in logarithms
and LLL-reduction, it is possible to solve them efficiently. The result is that
all solutions of the equation (15) are (u, v) = (±1, 0), while all solutions
of the equation (15) are (u, v) = (0,±1), (1,−1), (−1, 1), (3, 1), (−3,−1),
(1,−3), (−1, 3).

6 Application of elliptic logarithms

We have already seen that we can efficiently find all integer points on an
elliptic curve if its rank is equal to 0.

In the general case, using elliptic logarithms, it is possible to obtain the
estimate N ≤ N0 for N = max{|n1|, . . . , |nr|} in the expression of an integer
point in the form P = T +n1P1 + · · ·+nrPr. This bound can be significantly
decreased using LLL-algorithm. This method has been proposed in 1994 by
Gebel, Pethő and Zimmer, and independently by Stroeker and Tzanakis.
However, for the application of this method it is crucial to know the rank
and the generators P1, . . . , Pr, which might be a hard problem.

Consider the elliptic curve in Weierstrass form

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

It is isomorphic to a curve with the equation

E′ : y2 = 4x3 − g2x− g3,

and this is exactly the equation satisfied by the Weierstrass ℘-function and
its derivative. Function ℘ is doubly periodic and we may assume that its
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period satisfy ω1 ∈ R and =(ω1/ω2) > 0. Let L be a lattice defined by ω1

and ω2. We have an isomorphism φ : C/L →φ E, given by

z 7→
{

(℘(z)− b2
12 , (℘′(z)− a1x− a3)/2), z 6∈ L,

O, z ∈ L,

where b2 = a2
1 + 4a2. The inverse map ψ is called the elliptic logarithm. It

can be computed as

ψ(P ) =
∫ x+b2/12

∞

dt√
4t3 − g2t− g3

(modL) (17)

(using the arithmetic-geometric mean). Its name comes from the following
property

ψ(P + Q) = ψ(P ) + ψ(Q) (modL).

Let P be an integer point on E. We write P = T + n1P1 + · · · + nrPr,
where T is a torsion point and P1, . . . , Pr are generators of E(Q)/E(Q)tors.
We want to obtain an upper bound for N = max{|n1|, . . . , |nr|}.

To simplify notation, we will assume that E(R) has one component (oth-
erwise one can use the fact that if P is in the “egg”, then 2P is in the infinite
component). The starting point is the following inequality

1
x(P )

≤ c1e
−c2N2

(18)

(The constants c1, c2, . . . is this section depends only on E, and possibly
on the basis of its Mordell-Weil group.) In the proof of (18), the regulator
matrix is used. It is defined as R = (< Pi, Pj >), where

< P, Q >=
1
2
(ĥ(P + Q)− ĥ(P )− ĥ(Q))

and the Neron-Tate height ĥ is defined by

T̂ = lim
n→∞

h(2nP )
4n

.

By the work of Silverman and Siksek we know that there exist constants C1

and C2 (depending on E) such that

C1 ≤ ĥ(P )− h(P ) ≤ C2.

On the other hand, by examining the integral appearing in (17), we can
obtain the inequality

|ψ(P )| ≤ c3

|x(P )| . (19)
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Putting the inequalities (18) and (19) together we obtain

|ψ(P )| ≤ c4e
−c5N2

. (20)

We have
ψ(P ) = n1ψ(P1) + · · ·+ nrψ(Pr) + mω1,

where |m| ≤ rN + 1.
Now we can use deep and powerful result by David (1995), which implies

the following inequality:

|ψ(P )| > e−c6(log N+c7)(log log N+c8)r+2
. (21)

Comparing (20) and (21) with obtain that N ≤ N0, where N0 is a huge
absolute constant (usually something like 10100). However, using a version of
LLL-reduction due to de Weger, this huge upper bound can be significantly
reduced. Thus we obtain N ≤ N1, where N1 is typically around 10. Hence,
provided that r is not too large (say if r ≤ 8), then we can test all (2N1 +1)r

candidates and find all integers points on our elliptic curve.
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