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1 Introduction

The sequence of Fibonacci numbers with even subscripts (F2n) has one re-
markable property. If we choose three successive elements of this sequence,
than the product of any two of them increased by 1 is a perfect square.
Indeed,

F2n · F2n+2 + 1 = F 2
2n+1, F2n · F2n+4 + 1 = F 2

2n+2.

This property was studied and generalized by several authors (see refer-
ences). Let us just mention that Hoggatt and Bergum [8] proved that the
number d = 4F2n+1F2n+2F2n+3 has the property that F2n ·d+1, F2n+2 ·d+1
and F2n+4 ·d+1 are perfect squares, and Dujella [7] proved that the positive
integer d with the above property is unique.

The purpose of this paper is to characterize linear binary recursive se-
quences which possess the similar property as the above property of Fi-
bonacci numbers.

We will consider binary recursive sequences of the form

Gn+1 = AGn −Gn−1, (1)

where A,G0, G1 are integers. We call the sequence (Gn) nondegenerated if
|G0|+ |G1| > 0 and the quotient of the roots α, β ∈ C of the characteristic
equation of Gn,

x2 −Ax + 1 = 0,
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is not a root of unity. Let D = A2 − 4, C = G2
1 − AG0G1 + G2

0. Then
nondegeneracy implies |A| ≥ 3 and C 6= 0. Solving the recurrence (1) we
obtain

Gn =
aαn − bβn

α− β
,

where a = G1 −G0β, b = G1 −G0α.

Definition 1 Let k be an integer. A sequence (Gn) is said to have the
property P (k) if GnGn+1 + k and GnGn+2 + k are perfect squares for all
n ≥ 0.

With this notation, we may say that the sequence (F2n) has the property
P (1).

Our main result is the following theorem.

Theorem 1 Let (Gn) be a nondegenerated binary recursive sequence given
by (1). If Gn has the property P (k) for some k ∈ Z, then A = 3 and
k = G2

0 − 3G0G1 + G2
1.

Remark 1 The sequences from Theorem 1 have the form

Gn = G1F2n −G0F2n−2

and for G0 = 0 and G1 = 1 we obtain exactly the sequence (F2n). Note
that the converse of Theorem 1 is also valid. This follows from the formula
GnGn+2 + k = G2

n+1 proved below, and the general fact that if ab + k = r2,
then a(a + b− 2r) + k = (a− r)2.

2 Proof of Theorem 1

Assume that k is an integer such that the sequence (Gn) has the property
P (k). It implies that GnGn+2 + k is a perfect square for all n ≥ 0. On the
other hand,

GnGn+2 =
a2α2n+2 + b2β2n+2 − ab(αβ)n(α2 + β2)

(α− β)2

=
(aαn+1 − bβn+1

α− β

)2

− ab(αβ)n(α− β)2

(α− β)2

= G2
n+1 − ab = G2

n+1 − C .
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Hence, G2
n+1 − C + k is a perfect square for all n ≥ 0. This implies that

k = C.

Our problem is now reduced to finding sequences such that

GnGn+1 + C

is a perfect square for all n ≥ 0.
We have G2

n+1 −AGnGn+1 + G2
n = C (see [9]). Denote

GnGn+1 + C = G2
n − (A− 1)GnGn+1 + G2

n+1

by Hn. It can be easily verified that the sequence (Hn) satisfies the recur-
rence relation

Hn+1 = (A2 − 2)Hn −Hn−1 − C(A2 −A− 4).

Finally, put
Sn = (A2 − 4)Hn − C(A2 −A− 4).

Then the sequence (Sn) satisfies the homogeneous recurrence relation

Sn+1 = (A2 − 2)Sn − Sn−1.

Denote the polynomial (A2 − 4)x2 − C(A2 − A − 4) by R(x). Then our
condition implies that for every n ≥ 0 there exist x ∈ Z such that

Sn = R(x). (2)

Therefore, the equation (2) has infinitely many solutions.
Let D1 = (A2−2)2−4 = A2(A2−4) and C1 = S2

1−S0S2 = −(A2−4)A2C2

be the discriminant and the characteristic of the sequence (Sn), respectively.
Assume also that

Sn =
a1α

2n − b1β
2n

α2 − β2
for some a1 and b1,

and put
Tn = a1α

2n + b1β
2n for all n ≥ 0.

Then, since
T 2

n = D1S
2
n + 4C1 for all n ≥ 0,
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and since the equation Sn = R(x) has infinitely many integer solutions
(n, x), it follows that the equation

y2 = D1R(x)2 + 4C1

has infinitely many integer solutions (x, y). By a well known theorem of
Siegel [20], we get that the polynomial F (X) = D1R(X)2 +4C1 has at most
two simple roots. Since F is of degree 4, it follows that F must have a
double root. Notice that F ′(X) = 2D1R(X)R′(X) = 4(A2 − 4)D1R(X)X.
Certainly, F and R cannot have a common root because this would imply
that C1 = 0, which is impossible since (Gn) is nondegenerated. Hence,
F (0) = 0, which is equivalent to

A2(A2 − 4)[C(A2 −A− 4)]2 − 4A2(A2 − 4)C2 = 0. (3)

Formula (3) implies that

A2 −A− 4 = ±2.

If A2−A−4 = 2 then A = 3 or A = −2, and if A2−A−4 = −2 then A = 2
or A = −1. Since we assumed that the sequence (Gn) is nondegenerated,
i.e. |A| ≥ 3, we conclude that A = 3.

Remark 2 In degenerated cases with A = 0,±1,±2, the sequence (Gn)
also may have the property P (k) for some k ∈ Z. For example, for A = 2
the sequence Gn = a has the property P (b2 − a2); for A = 0 the sequence
G2n = 0, G4n+1 = 2ab, G4n+3 = −2ab has the property P ((a2 + b2)2); for
A = −1 the sequence G3n = a, G3n+1 = b, G3n+2 = −a− b has the property
P (a2 + ab + b2). Here a and b are arbitrary integers.

Acknowledgements. In the first version of the paper, a theorem of
Nemes and Pethő [17, Theorem 3] was used in the last part of the proof
of Theorem 1. The authors would like to thank the referee for detailed
suggestion how to avoid using the result of Nemes and Pethő by direct
application of the theorem of Siegel.
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