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Abstract

In this article, we describe a method for finding congruent num-
ber elliptic curves with high ranks. The method involves an algorithm
based on the Monsky’s formula for computing 2-Selmer rank of con-
gruent number elliptic curves, and Mestre-Nagao’s sum which is used
in sieving curves with potentially large ranks. We apply this method
for positive squarefree integers in two families of congruent numbers
and find some new congruent number elliptic curves with rank 6.

1 Introduction

One of the major topics connected with elliptic curves is construction of
elliptic curves with high ranks. Several authors considered this problem
for elliptic curves with prescribed properties and relatively high ranks. For
instance, we cite [6, 14] for the curves with given torsion groups, [2, 9] for
the curves y2 = x3 +dx, [10, 19] for the curves x3 +y3 = k related to the so-
called taxicab problem, [8] for the curves y2 = (ax+1)(bx+1)(cx+1)(dx+1)
induced by Diophantine quadruples {a, b, c, d}, etc. Dujella [6] collected a
list of known high rank elliptic curves with prescribed torsion groups. The
largest known rank of elliptic curves, found by N. D. Elkies in 2006, is 28.

1The second author was partially financed by a grant from Urmia University
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In this work we deal with a family of elliptic curves which are closely
related to the classical Congruent Number problem. A positive squarefree
integer n is called a congruent number if it is the area of a right triangle with
rational sides (A006991, A003273). The problem of determining congruent
numbers is closely related to the curves En : y2 = x3−n2x, which are called
congruent number elliptic curves or CN-elliptic curves. In fact, the positive
squarefree integer n is a congruent number if and only if the Mordell-Weil
rank r(n) of En is a positive integer [13, Chap. 1, Prop. 18]. In this case,
we refer to n itself as a CN-elliptic curve, which corresponds to En. In
1972, Alter, Curtz, and Kubota [1] conjectured that n ≡ 5, 6, 7 (mod 8)
are congruent numbers. In 1975, appealing to the Birch and Swinnerton-
Dyer conjecture and Shafarevich-Tate conjecture, Lagrange [23] deduced a
conjecture on the parity of the r(n) as follows:

r(n) ≡
{

0 (mod 2), if n ≡ 1, 2, 3 (mod 8);
1 (mod 2), if n ≡ 5, 6, 7 (mod 8).

The problem of constructing high rank CN-elliptic curves was consid-
ered by several authors. In 1640, Fermat proved that r(1) = 0, so n = 1
is not a congruent number. Billing [3] proved that r(5) = 1. Wiman
[26] proved that r(34) = 2, r(1254) = 3 and r(29274) = 4 (A062693,
A062694, A062695). In 2000, Rogers [18], based on an idea of Rubin and
Silverberg [22], found the first integers n = 4132814070, 61471349610 such
that r(n) = 5, 6, respectively. Later, in his PhD thesis [19], Rogers gave
other integers with r(n) = 5, 6 smaller than those presented in [18]. Also
he found [19] the first integer n = 797507543735 with r(n) = 7. Dur-
ing the preparation of this paper, Rogers informed us that the smallest n
with r(n) = 5 which he was aware is 48272239, while the smallest n with
r(n) = 6 is 6611719866. This rank 6 curve is known to be minimal [27].
Here we give the complete list on n’s with r(n) = 6 communicated to us by
Rogers [20], other than those curves which are noted above: 66637403074,
94823967361, 129448648329, 179483163699, 208645752554, 213691672290,
226713842409, 248767798521, 344731563386, 670495125874, 797804045274,
898811499201.

In Section 2, we briefly describe the complete 2-descents and 2-Selmer
rank of CN-elliptic curves, denoted by s(n), which is an upper bound for
r(n). In Section 3, we describe Monsky’s formula for computing the value
of s(n). In Section 4, we study Mestre-Nagao’s sum method [15, 16, 7]
which is used as a sieving tool in our algorithm. In Section 5, we design
an algorithm to find high rank CN-elliptic curves, based on the Monsky’s
formula for 2-Selmer rank CN-elliptic curves s(n), and Mestre-Nagao’s sum

2



S(N, n). We applied our algorithm for positive squarefree integers arisen
from two specific families of congruent numbers. We found a large number
of curves with rank 5 and twenty-four new curves with rank 6. We have
not found any new curve with r(n) ≥ 7, although with some variants of our
method we have rediscovered Rogers’ example with r(n) = 7 (and some of
his examples with r(n) = 5 and 6). We have also found several curves with
5 ≤ r(n) ≤ 7, where the upper bound is obtained by MWRANK program
(option -s). It might be a challenging problem to decide whether these
curves have ranks equal to 5 or 7.

In our computations we used the PARI/GP software (version 2.4.0) [17]
and Cremona’s MWRANK program [5] for computing the Mordell-Weil rank
of the CN-elliptic curves (using the method of descent via 2-isogeny).

2 Complete 2-descent and 2-Selmer rank

In this section, we briefly describe an upper bound for Mordell-Weil rank of
CN-elliptic curves r(n), which is based on the cardinality of 2-Selmer group
S(2)(En/Q). We denote this group by S(2). For more details on the (2-
)Selmer groups and related topics, please see [24, Chap. X]. In the following
we will describe 2-descents over Q for the CN-elliptic curves. The number
of 2-descents is the order of S(2). This is a power of 2, and will be a multiple
of 4, on account of the rational points of order 2 on the curve En. We shall
therefore write #S(2) = 2s(n)+2. The exponent s(n) is called 2-Selmer rank
of the curve En. Next we describe the 2-descent process on the curve En.
For a similar argument of complete 2-descent, please see [24, Chap. X, §1],
[23, Sec. 3] and [11, Sec. 2].

Let p1, . . . , pt be the odd prime factors of the squarefree integer n, and
let MQ be the set of all places of Q. Define the sets S and Q(S, 2) as follows.

S = {∞, 2, p1, . . . , pt},

Q(S, 2) =
{

a ∈ Q∗/Q∗2|υp(a) ≡ 0 (mod 2) ∀p ∈ MQ\S
}

.

Theorem 1 Let En be the elliptic curve y2 = x3 − n2x and let O be the
identity element of the group En(Q). With the above notation, we have:

(i) There is an injective homomorphism

θ : En(Q)/2En(Q) −→ Q(S, 2)×Q(S, 2)
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P = (x, y) 7→





(x, x− n), if P 6= O, (0, 0), (n, 0);
(−1,−n), if P = (0, 0);
(n, 2), if P = (n, 0);
(1, 1), if P = O.

(ii) Let (a, b) ∈ Q(S, 2) × Q(S, 2)\{(1, 1), (−1,−n), (n, 2)}. Then (a, b) is
the image of a point P = (x, y) ∈ En(Q)/2En(Q) if and only if the
following system of equations have a common solution (X,Y, Z) ∈
Q∗ ×Q∗ ×Q∗.

(∗) aX2 − bY 2 = n, aX2 − abZ2 = −n.

If such a solution exist then one can take P = (aX2, abXY Z) = (bY 2+
n, abXY Z).

For a proof of this theorem see [24, Chap. X, §1] or [23, Sec. 3] .
Note that the Mordell-Weil rank of the curve En can be found by

r(n) = log2

(
Image(θ)

4

)
;

Also, the cardinality of S(2) is equal to the number of the pairs (a, b) such
that the system (∗) is everywhere locally solvable. If one take the set R =
{±2αpα1

1 · · · pαt
t |α, α1, . . . , αt ∈ {0, 1}} as representatives for Q(S, 2), then it

is immediate that #Q(S, 2) = 2t+2 and so

r(n) ≤ s(n) ≤ 2w(n).

3 Monsky’s formula for 2-Selmer rank

In 1994, P. Monsky [12] proved a theorem on the parity of the 2-Selmer
rank of CN-elliptic curves. He gave a formula for computation of the s(n)
through his proof of this theorem.

Theorem 2 Let n be a positive squarefree integer. Then

s(n) ≡
{

0 (mod 2), if n ≡ 1, 2, 3 (mod 8);
1 (mod 2), if n ≡ 5, 6, 7 (mod 8).
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For a proof of this theorem see Appendix of [12].
Let n be a positive squarefree integer with odd prime factors p1, . . . , pt.

Define the diagonal t × t matrix Dl = (di), for l ∈ {−1,−2, 2} , and the
square t× t matrix A = (aij) as follows:

di =

{
0, if ( l

pi
) = 1;

1, if ( l
pi

) = −1,
aij =

{
0, if (pj

pi
) = 1, j 6= i;

1, if (pj

pi
) = −1, j 6= i,

aii =
∑

j : j 6=i

aij .

Monsky showed that s(n) can be computed as

s(n) =
{

2t− rankF2(Mo), if n = p1p2 · · · pt;
2t− rankF2(Me), if n = 2p1p2 · · · pt,

where Mo and Me are the following 2t× 2t matrices:

Mo =
[

A + D2 D2

D2 A + D−2

]
, Me =

[
D2 A + D2

AT + D2 D−1

]
.

4 Mestre-Nagao’s sum

Now we describe a sieving method for finding the best candidates for high
rank CN-elliptic curves. For any elliptic curve E : y2 = x3 + ax + b over Q,
and every prime number p not dividing the discriminant ∆ = −16(4a3+27b2)
of E, we can reduce a and b modulo p and view E as an elliptic curve over
the finite field Fp. Let #E(Fp) be the number of points on the reduced
curve:

#E(Fp) = 1 + #{0 ≤ x, y ≤ p− 1 : y2 ≡ x3 + ax + b (mod p)}.
There is both theoretical and experimental evidence which suggests that
elliptic curves of high ranks have the property that #E(Fp) is large for
many primes p.

Definition 3 Let N be a positive integer and PN be the set of all primes
less than N . Mestre-Nagao’s sum is defined by

S(N, E) =
∑

p∈PN

(1− p− 1
#E(Fp)

) log p =
∑

p∈PN

−ap + 2
#E(Fp)

log p.

Note that S(N, E) can be computed efficiently with PARI/GP software
[17], provided N is not too large. It is experimentally known [7, 15, 16]
that we may expect that high rank curves have large S(N, E). See [4] for a
heuristic argument which connects this assertion with the famous Birch and
Swinnerton-Dyer conjecture. For a positive squarefree integer n, we denote
S(N, En) by S(N, n).
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5 An algorithm for finding high rank

Now we are ready to exhibit our algorithm for finding high rank CN-elliptic
curves, based on Monsky’s formula for 2-Selmer rank of CN-elliptic curves
s(n) and Mestre-Nagao’s sum S(N, n). In this algorithm, first of all, a list of
different positive squarefree congruent number is considered. Next, for any
integer n in this list, the value of s(n) is computed by the Monsky’s formula
which is described in the section 3. Selecting those n’s with s(n) ≥ s for a
given positive number s, a new list of integers n is scored by Mestre-Nagao
sum S(N, n) using finitely many successive primes. Finally, the Mordell-
Weil rank r(n) is computed by MWRANK for integers n with s(n) ≥ s
and large values of Mestre-Nagao sums. To be more precise, we write our
algorithm step by step as follows.

Step 1. Let s be a positive integer. Choose a non-empty set T of some
squarefree congruent numbers. For any n ∈ T compute s(n) by the
Monsky’s formula. Define the subset Ts of T containing all n ∈ T with
s(n) = s. If Ts is empty choose another set T .

Step 2. Let k be a positive integer. Choose the set Ms as follows:

Ms = {(Ni,Mi) : 0 < N1 < · · · < Nk, 0 < Mi, 1 ≤ i ≤ k} .

Put T 0
s = Ts, and for any i with 1 ≤ i ≤ k, define the recursive sets

T i
s =

{
n ∈ T i−1

s : S(Ni, n) ≥ Mi

}
.

Step 3. Take j, 1 ≤ j ≤ k, such that for any i with j < i ≤ k, the sets
T i

s are empty. Now for any n ∈ T j
s , compute r(n) using Cremona’s

MWRANK [5].

Remark 4 For a given positive integer s in Step 1, choice of starting
set T is very important. To save the time, we should avoid any repeated
elements in T . By applying Theorem 2 and Lagrange’s conjecture about the
parity of r(n), one can expect to find an integer n in the set Ts such that
r(n) is less than s and has the same parity as s.

Remark 5 The most sensitive part of our algorithm is choosing the sets
Ms in Step 2. For a prescribed value of s, we must choose the elements
of Ms and its cardinality in such a way that the total time of available
computations is as small as possible. Note that the elements of the sets T j

s ,
in Step 3, are the best candidates for high rank CN-elliptic curves.
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Remark 6 In Step 3, we try to compute r(n) for any n ∈ T j
s . This

is done by Cremona’s program MWRANK efficiently for small values of n.
However, for large n’s the computation can be much slower, and MWRANK
often gives only lower and upper bounds for r(n).

Given any positive integer s, our algorithm can be implemented in some
different ways depending on the choice of the starting set T in Step 1. To
explain our strategy, we need the next result which gives two specific families
of congruent numbers. For a proof of the cases (I) and (II) see [21] and [23],
respectively. Note that the construction of congruent numbers via case (I)
is the same as that in [22] (originally due to Gouvéa and Mazur), applied
to the curves E1 : y2 = x3 − x and E

′
1 : y2 = x3 + 4x.

Theorem 7 Let u and v be arbitrary positive integers such that u < v,
gcd(u, v) = 1 and u + v is odd. Then the squarefree parts of the following
families of integers are congruent numbers:

(I) uv(v − u)(v + u), (II) uv(u2 + v2)/2.

In this paper, we focused on the integers s ≥ 5 and all different positive
squarefree integers n of the forms (I) and (II) with u < v ≤ 105 and ω(n) ≥ 5,
where ω(n) denotes the number of distinct prime factors of n.

After choosing two sets TI and TII related to the integers of the form (I)
and (II), we then took the starting set of the our algorithm as T = TI ∪ TII

and got different sets Ts for each s ≥ 5. Then for each s ≥ 5, we considered
the related sets Ms as follows:

{Ni}7
i=1 = {500, 1000, 5000, 10000, 15000, 20000, 50000} ,

M5 = {(N1, 10), (N2, 12), (N3, 15), (N4, 20), (N5, 25), (N6, 28), (N7, 30)} ,

M6 = {(N1, 10), (N2, 14), (N3, 18), (N4, 22), (N5, 25), (N6, 30), (N7, 35)} ,

M7 = {(N1, 10), (N2, 15), (N3, 20), (N4, 25), (N5, 30), (N6, 35), (N7, 40)} ,

M8 = {(N1, 10), (N2, 14), (N3, 16), (N4, 20), (N5, 25), (N6, 30), (N7, 35)} ,

M9 = {(N1, 10), (N2, 15), (N3, 20), (N4, 25), (N5, 28), (N6, 30), (N7, 35)} ,

M≥10 = {(N1, 10), (N2, 12), (N3, 15), (N4, 18), (N5, 22), (N6, 25), (N7, 30)} .

For each s ≥ 5 and each i, 1 ≤ i ≤ 7, by choosing (N, M) = (Ni,Mi) ∈Ms

and computing S(Ni, n) for all n ∈ T i−1
s , gets the sets T i

s of n’s that satisfy
S(Ni, n) ≥ Mi. The elements of the sets T j

s are best candidates to give high
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rank CN-elliptic curves. Finally, we used MWRANK to compute Mordell-
Weil rank r(n), for n’s in each of the sets T j

s . This stage of our algorithm
was very time consuming. By the implementation of our algorithm, we have
rediscovered some of the Rogers’ examples with r(n) = 5, 6, and 7. Also,
we were able to find some new CN-elliptic curves with r(n) = 6 and some
curves with 5 ≤ r(n) ≤ 7. We give these curves in the Tables 1 and 2,
respectively.

We give also generators of the Mordell-Weil group for two smallest new
examples with r(n) = 6. By using MWRANK we find 6 indepenent points on
En, which are moreover generators of the Mordell-Weils group, while LLL-
algorithm is used for finding the generators with smaller heights, which are
listed below.

For n = 531670544130 we have the curve

y2 = x3 − 282673567495490277456900x

with the generators

P1 = [-317205078080, 240309412570889200],
P2 = [1110744023070, 1027815645288207600],
P3 = [-8842721250, 49989119984694000],
P4 = [2350922039070, 3511212519485048400],
P5 = [7424745951989070/361, 639554031769152257946000/6859],
P6 = [-165395800834700271/51351556, 11103259191546833925683935833/367985250296]

For n = 602730488666 we have the curve

y2 = x3 − 363284041967555154459556x

with the generators

P1 = [25844642800106/25, 106746067884077780496/125],
P2 = [-89776938384, 178580334935648520],
P3 = [3666632085466, 6925523273366507040],
P4 = [26198594092166458/10609, 4112253205326835858960032/1092727],
P5 = [2097707297289652801/1012036, 2906919721960250194451760705/1018108216],
P6 = [5187004732864967512122/8543489761,

44888914750852091711316911386224/789683302098991]
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n factorization n mod 8 s(n)

531670544130 2·3·5·11·17·107·463·1913 2 6
602730488666 2·29·41·97·137·19073 2 6
1079812755065 5·11·23·41·89·449·521 1 6
1351528542210 2·3·5·7·11·29·31·47·61·227 2 6
1440993982946 2·7·17·23·41·73·281·313 2 8
1544991154746 2·3·13·19·83·163·251·307 2 6
1663586838899 17·103·137·756·9161 3 8
2280190889130 2·3·5·7·11·23·41·257·4073 2 6
4611082954146 2·3·19·41·113·953·9161 2 8
8231905771386 2·3·11·17·19·23·41·43·89·107 2 6
9033322597530 2·3·5·7·11·43·53·59·127·229 2 6
17434310103210 2·3·5·7·11·13·17·19·67·139·193 2 6
46485304142530 2·5·11·19·23·43·67·107·3137 2 6
90181020280890 2·3·5·7·11·251·397·401·977 2 6
165130972136130 2·3·5·7·11·13·29·103·233·7901 2 6
179009302343970 2·3·5·7·17·19·23·47·53·73·631 2 6
181025271456226 2·17·103·127·151·1259·2141 2 6
243339180933145 5·11·401·1049·3169·3319 1 8
339507119347242 2·3·7·17·19·23·37·59·113·401 2 6
444724421083665 3·5·17·31·71·103·137·233·241 1 8
846249312638730 2·3·5·7·11·13·31·37·41·101·349 2 6
1056710141801930 2·5·7·11·41·43·53·71·269·769 2 6
4601440550332626 2·3·7·11·13·17·19·37·41·101·113·137 2 6
13897395819317010 2·3·5·7·11·13·23·29·31·61·113·191 2 6

Table 1: Some new CN-elliptic curves with r(n) = 6
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n factorization n mod 8 s(n)

1024801887174 2·3·13·37·409·769·1129 6 7
1025774078934 2·3·11·17·41·43·641·809 6 7
1649085975174 2·3·11·47·73·97·193·389 6 7
2093383150230 2·3·5·29·73·97·419·811 6 7
2392760979654 2·3·17·41·43·83·160313 6 7
2473595024934 2·3·11·17·41·83·347·1867 6 7
5080701332454 2·3·11·17·41·59·521·3593 6 7
5449406258406 2·3·11·17·41·251·683·691 6 7
7322494848870 2·3·5·17·19·137·151·36529 6 7
7391341307526 2·3·11·19·59·67·523·2851 6 7
7697325362694 2·3·11·137·401·547·3881 6 7
7836495180886 2·17·281·353·971·2393 6 9
7889458857566 2·11·19·881·1049·1571 6 7
8549294440966 2·17·19·37·137·353·5857 6 7
10571147972390 2·5·17·89·277·587·4297 6 7
11050024116846 2·3·11·13·17·29·31·569·1481 6 7
12651761296614 2·3·11·17·19·43·59·449·521 6 7
14020765617254 2·11·17·23·71·241·95257 6 7
19843964725254 2·3·17·19·937·2683·4073 6 7
25161173711039 19·23·29·103·1657·11633 7 7
25837148295902 2·31·97·593·1217·5953 6 9
26755379766174 2·3·23·59·233·353·39953 6 7
29130582949206 2·3·19·113·283·1913·4177 6 7
32334652741974 2·3·11·43·89·113·883·1283 6 7
34243576397574 2·3·73·89·457·953·2017 6 7
35876712238310 2·5·31·41·1289·1361·1609 6 7
44066140293846 2·3·11·17·41·43·59·491·769 6 9
56858065281654 2·3·7·13·19·73·89·769·1097 6 7
57705905931141 3·13·17·131·521·937·1361 5 7
57939619068870 2·3·5·7·11·37·53·89·137·1049 6 7
61639096639029 3·7·13·29·241·2113·15289 5 7
109995988504269 3·17·41·65809·114193 5 7
114490690064454 2·3·11·19·577·1873·84481 6 9
117205364344206 2·3·7·17·73·97·233·293·2377 6 7
119231629856526 2·3·11·17·29·41·59·83·18251 6 7
121466637600990 2·3·5·11·17·31·89·107·1033 6 7
130629627999390 2·3·5·13·17·37·41·97·257·521 6 7
146421396607926 2·3·11·17·19·449·2417·6329 6 7
175656508365734 2·11·97·113·10169·71633 6 9
180196195115046 2·3·11·17·43·83·179·251393 6 7
191519081464326 2·3·7·11·31·41·59·89·89·179·347 6 7
242515586992326 2·3·19·41·73·587·641·1889 6 9
433182183087126 2·3·11·17·41·251·2707·13859 6 7
459848288031405 3·5·7·13·17·41·61·389·20369 5 7
1687029282320910 2·3·5·11·1049·1729·2027 6 7
2053424339679966 2·3·11·17·19·31·43·179·499·809 6 7
2059195525185430 2·5·89·641·823·929·4721 6 9
3167344617712806 2·3·19·73·89·283·3137·4817 6 9
8797235243700486 2·3·11·19·313·577·5147·7547 6 9
342916139097905191 3·13·17·37·53·61·157·1753·6733 7 7

Table 2: Some CN-elliptic curves with 5 ≤ r(n) ≤ 7
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