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Abstract. We list a number of strategies for construction of elliptic curves
having high rank with special emphasis on those curves induced by Diophan-
tine triples, in which we have contributed more. These strategies have been
developed by many authors.

In particular we present a new example of a curve, induced by a Diophantine
triple, with torsion Z/2Z× Z/4Z and with rank 9 over Q. This is the present
record for this kind of curves.

1. Introduction

An elliptic curve E/K over a field K is a smooth projective variety of genus 1
with a specified K-rational base point O. When the characteristic of K is not equal
to 2 or 3, an elliptic curve can be represented by a Weierstrass equation of the form

E : y2 = x3 +Ax+B, A,B ∈ K with −4A3 − 27B2 ̸= 0.

With these conditions, a group operation, called the chord and tangent process,
with a neutral point O can be defined on the set E(K) of K-rational points. The
following theorem was proved by Mordell [Mo] in 1922 for K = Q and generalized
by Weil [We] in 1928 not only to elliptic curves over number fields but also to
abelian varieties.

Theorem 1. (Mordell-Weil) Let K be a number field and E/K an elliptic curve
defined over K. The set of K-rational points E(K) forms a group and E(K) is
finitely generated. It has the form

E(K) = Etors(K)× Zr

where the torsion subgroup Etors(K) is finite and the non-negative integer r is called
the rank of E/K.

So determining the structure of E(K) involves two problems: the structure of
Etors(K) and the value of the rank r. These two problems are far from being solved
and only partial results are known.

When K = Q the possible Etors(K) are described in the following theorem. See
[K] for a description of the models.

Theorem 2. (Mazur [Ma]) There are 15 possibilities for the torsion group of an
elliptic curve over Q given as follows:

• Z/mZ with 1 ≤ m ≤ 10 and m = 12
• Z/2Z× Z/2mZ with 1 ≤ m ≤ 4
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For quadratic fields the next theorem gives all the possibilities.

Theorem 3. (Kenku and Momose [KM], Kamienny [Ka])

Let K = Q(
√
d), d ∈ Z and square-free, be a quadratic number field and E an

elliptic curve defined over K. Then the torsion subgroup for E(K) is one of the
following 26 groups:

• Z/mZ with 1 ≤ m ≤ 16 and m = 18
• Z/2Z× Z/2mZ with 1 ≤ m ≤ 6
• Z/3Z× Z/3mZ with 1 ≤ m ≤ 2; only possible for K = Q(

√
−3)

• Z/4Z× Z/4Z; only possible for K = Q(
√
−1).

See [Ra] for models.
For other number fields K there are partial results describing the possible torsion

subgroups Etors(K). Even in the case of quadratic fields given a fixed quadratic field
determining which of the 26 possibilities given in the Kamienny, Kenku, Momose
theorem appear in this field is not completely solved.

The problem of determining the rank is a difficult one, and no general algo-
rithm is known to solve it. For the current rank records of elliptic curves over Q,
with prescribed torsion group, see [Du1] for a detailed information. Here follows a
resume.

Torsion Rank Author(s)

0 28 Elkies(2006)

Z/2Z 19 Elkies (2009)

Z/3Z 14 Elkies (2018)

Z/4Z 12 Elkies(2006), Dujella & Peral (2014)

Z/5Z 8 Dujella & Lecacheux (2009), Eroshkin (2009)

Z/6Z 8 Dujella, Elkies, Eroshkin (2008)
Dujella & Peral (2012), Dujella & Peral & Tadić (2014)
Gandhikumar & Voznyy (2019)

Z/7Z 5 Dujella & Kulesz (2001), Elkies (2006)
Eroshkin (2009, 2011), Dujella & Lecacheux (2009)
Dujella & Eroshkin (2009)

Z/8Z 6 Elkies (2006), Dujella & MacLeod & Peral (2013)

Z/9Z 4 Fisher (2009), van Beek (2015)

Z/10Z 4 Dujella (2005,2008), Elkies (2006), Fisher (2016)

Z/12Z 4 Fisher (2008)

Z/2Z× Z/2Z 15 Elkies (2009)

Z/2Z× Z/4Z 9 Dujella & Peral (2012, 2019)

Z/2Z× Z/6Z 6 Elkies (2006), Dujella & Peral & Tadić (2015)

Z/2Z× Z/8Z 3 Connell (2000), Dujella (2000, 2001, 2006, 2008),
Campbel & Goins (2003), Rathbun (2003, 2006, 2013)
Dujella & Rathbun (2006)

In the search of high rank curves it is useful to have high rank families of elliptic
curves (or high rank curves over Q(u)) and then look for particular examples within
these families. The current rank records of elliptic curves over Q(u) with prescribed
torsion subgroup can be seen also in [Du1]. The next table gives a summary.
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0 18 Elkies (2006)

Z/2Z 11 Elkies (2009)

Z/3Z 7 Elkies (2007)

Z/4Z 5 Kihara (2004), Elkies (2007),
Dujella & Peral & Tadić (2014),
Khoshnam & Moody (2016)

Z/5Z 3 Lecacheux (2001), Eroshkin (2009), MacLeod (2014)

Z/6Z 3 Lecacheux (2001), Kihara (2006),
Eroshkin (2008), Woo (2008),
Dujella & Peral (2012)

Z/7Z 1 Kulesz (1998), Lecacheux (2003),
Rabarison (2008), Harrache (2009),
MacLeod (2014)

Z/8Z 2 Dujella & Peral (2012), MacLeod (2014)

Z/9Z 0 Kubert (1976)

Z/10Z 0 Kubert (1976)

Z/12Z 0 Kubert (1976)

Z/2Z× Z/2Z 7 Elkies (2007).

Z/2Z× Z/4Z 4 Dujella & Peral (2012)

Z/2Z× Z/6Z 2 Dujella & Peral (2012, 2015, 2017), MacLeod (2013)

Z/2Z× Z/8Z 0 Kubert (1976)

It is an open question whether the rank of an elliptic curve over a fixed number
field can be arbitrarily large. It was a widely accepted conjecture that there is
no upper bound for the rank of elliptic curves, although no curve over Q of rank
greater than 28 is known. In fact the elliptic curve with the largest known rank
over Q was found by Elkies in 2006 and has rank at least 28 (the rank is exactly
equal to 28 assuming GRH, see [KSW]).

However there are also heuristic arguments that suggest the boundedness of the
rank of elliptic curves. In the following table the second column gives the rank of
known infinite families for each torsion group, over Q, and the third column gives
the predicted maximum, for such kind of infinite families, according to the heuristic
in [PPVW]. So, if this heuristic is true, only a finite number of curves would have
rank higher that 21 and consequently the rank of elliptic curves over Q would be
bounded by an absolute constant.

It can be observed that the known estimates and the prediction in the heuristic fit
very well. In fact for the torsion groups Z/6Z, Z/8Z, Z/2Z×Z/4Z and Z/2Z×Z/6Z
those two values are equal. In all the other cases the predicted value is greater than
the known lower value but only in one or two units.
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Torsion Known Lower Bound Heuristic Prediction

0 19 21

Z/2Z 11 13

Z/3Z 7 9

Z/4Z 6 7

Z/5Z 4 5

Z/6Z 5 5

Z/7Z 2 3

Z/8Z 3 3

Z/9Z 1 2

Z/10Z 1 2

Z/12Z 1 2

Z/2Z× Z/2Z 8 9

Z/2Z× Z/4Z 5 5

Z/2Z× Z/6Z 3 3

Z/2Z× Z/8Z 1 2

2. Strategies

The construction of families of elliptic curves having high rank often is based on
two basic strategies described by Elkies in [El1].

a) The Néron method studies the pencil of cubics passing through a set of
nine rational random points and then looks for independence. See [Sh]
for a detailed description of the method. Families of rank up to 10 where
constructed in this way.

b) The Mestre method uses polynomial identities forcing the existence of ra-
tional points in the curve and then searches for independence conditions.
In this way Mestre was able to construct a rank 11 curve over Q(u), see
[Me1].

There are other strategies such as the following.

c) Restricting to a particular kind of curves.
d) Using the general equation of the curves with a particular torsion group.
e) Looking for good quadratic sections.
f) Also an useful tool in the search for high rank curves overQ(u) are Diophan-

tine triples. In fact, for the torsion group Z/2Z×Z/4Z we have constructed
a rank 4 family using such triples, see [DP1]. This is the current record for
this torsion group.

3. Elliptic curves with j invariant equal to 1728.

3.1. Mestre construction. In order to illustrate some of the strategies mentioned
above we present here the construction of a family of curves having j = 1728. A
model over Q for these curves is

Y 2 = X3 −BX.

In particular when B = d2 the curves are the d-twist of the curve Y 2 = X3 − X
and they are a model for the congruent number problem curve.
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In 1991 Mestre [Me2] constructed a family of curves with j = 1728 and having
rank 4. For the construction Mestre takes the polynomial

P (X) = (X − a)(X − b)(X − c)(X + a+ b+ c).

So P (x) = X4 + a2X
2 + a1X + a0 where

a2 =− (a2 + ab+ b2 + ac+ bc+ c2),

a1 =(a+ b)(a+ c)(b+ c),

a0 =− abc(a+ b+ c).

Then the curve E with equation x4 + a2y
2 + a1y + a0 = 0 has the points (a, a),

(b, b), (c, c) and (−(a+ b+ c),−(a+ b+ c)).
If a0 = −u4 then the curve has an additional independent point with coordinates

O = (−u, 0). The condition a0 = −u4 is equivalent to u4 = abc(a + b + c). Euler,
see [Di] page 660, gave the following solution

u = 1, a =
t(2t2 − 1)

2t2 + 1
, b =

2t2 − 1

2t(2t2 + 1)
, c =

4t

2t2 − 1
.

The curve E, defined over Q(t), has genus 1 and it is equivalent to the elliptic
curve with equation

Y 2 = X3 + a2(a
2
1 − 4a0a2)X.

By taking O as base point, the independence of the other points can be proved
by showing a particular value of t for which the specialized points are independents.
See Silverman [Si, Theorem 11.4] for this kind of result.

For example, for t = 1 the determinant of the matrix of heights is equal to
603.6123....

So the rank is ≥ 4 and the elliptic curve, avoiding denominators, is Y 2 = X3 +
BX where

B = −4(−1 + 2t2)2(1 + 2t2)2(3 + 2t2)(1 + 6t2)(1 + 12t2 + 4t4)(3 + 4t2 + 12t4)

× (1 + 2t2 + 76t4 + 176t6 + 304t8 + 32t10 + 64t12).

3.2. Another construction. In [ACP] the following variant of the method of
Fermigier [Fe] is used in order to get a curve with j-invariant 1728 and rank 4.

The resulting curve has simpler coefficients than the ones in Mestre construction.
Begin with the monic, even polynomial of degree 8

p(x) =
i=4∏
i=1

(x2 − a2i ) = x8 − s1x
6 + s2x

4 − s3x
2 + s4

where si is the i-th elementary symmetric polynomial in 4 variables, evaluated at
(a21, a

2
2, a

2
3, a

4
4). Then p(x) = q(x)2 − r(x) with

q(x) = x4 − s1
2
x2 +

s3
s1

and r(x) = (
s21
4

+
2s3
s1

− s2)x
4 + (

s23
s21

− s4)

The associated cubic model for the quartic y2 = r(x) is the curve y2 = x3 − Bx
with

B = −(
s21
4

+
2s3
s1

− s2)(
s23
s21

− s4).

It has at least the eight rational points (r4a
2
i ,±r4aiq(ai)) where r4 is the coefficient

of x4 in r. Observe that B has degree 14 in each ai. Avoiding denominators, the
curve can be written as

Y 2 = X3 − bX,
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where

b = 4(a1a2 + a3a4)(a1a2 − a3a4)(a1a3 + a2a4)(a1a3 − a2a4)(a1a4 + a2a3)(a1a4 − a2a3)

× (a21 + a22 − a33 − a24)(a
2
1 − a22 + a33 − a24)(a

2
1 − a22 − a33 + a24)(a

2
1 + a22 + a33 + a24).

In [ACP] there are several examples leading to curves with rank 13. Watkins
has found that for (a1, a2, a3, a4) = (304, 722, 1136, 1433) the corresponding curve
in this family has rank 14. The curve for these values, once the fourth powers of b
are reduced, is

Y 2 = X3 − 1610399097550762804067641709089932X.

A basis for a subgroup of the full Mordell-Weil group (modulo torsion) can be
found in [Du1].

Observe that, when considered over the quadratic field Q(i), this curve has rank
equal to 28 due to the fact that it is isomorphic its twist by −1.

4. General equation of curves having torsion group Z/4Z.

Now we explain the construction of Elkies [El1] for curves with torsion group
Z/4Z. He starts with the general surface having torsion Z/4Z. This surface is given
by

Y 2 + aXY + abY = X3 + bX2.

A torsion point of order 4 is (0, 0). Elkies notices that this torsion can be obtained
for some elliptic K3 surfaces. In this case the maximum rank is obtain with the
following type of reducible fibers for such a surface: four of the type I4, two of
the type I2 and four of the type I1, so giving a contribution to the Néron-Severi
group of 4(4 − 1) + 2(2 − 1)) = 14, hence the rank over this surface is at most
20− 2− 14 = 4.

Later on Elkies shows that the discriminant −163 surface does have an elliptic
model that attains rank 4 with torsion group Z/4Z, with

a =(8t− 1)(32t+ 7)

b =8(t+ 1)(15t− 8)(31t− 7).

With a simple change of variables the surface can be written as

Y 2 = X3 + (a2 − 8b)X2 + 16b2X.

Inserting the values of a and bmentioned above results that the followingK3 elliptic
surface

Y 2 =X3 + (65536t4 − 17472t3 − 10176t2 + 18672t− 3535)X2

+ 1024(t+ 1)2(15t− 8)2(31t− 7)2X

has torsion group Z/4Z and rank 4. A torsion point of order 4 in this model is

(32(t+ 1)(15t− 8)(31t− 7), 25(1 + t)(−1 + 8t)(−8 + 15t)(−7 + 31t)(7 + 32t))

and the X-coordinates of four independent points of infinite order are:

X1 =− 361(t+ 1)(31t− 7),

X2 =− 4(t+ 1)(15t− 8)(16t− 7)2,

X3 =− 16(t+ 1)(8t+ 7)2(15t− 8),

X4 =4(15t− 8)(16t+ 1)2(31t− 7).

Elkies mentions, without explicitly writing such examples, that there are several
quadratic sections giving families of rank 5 for this torsion and several combina-
tions of pairs of quadratic section leading to infinite families of curves with rank 6
parametrized by the points of elliptic curves of positive rank.
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Previous to Ekies construction, in 2007, for rank 5 families Kihara [Ki1] and
[Ki2] found in 2004 a family of rank 5. The coefficients in the Kihara construction
are much bigger than those in Elkies examples and so are less suited for finding
good particular examples of high rank curves. In fact the family in Elkies article is
y2 = x3 +A(t)x2 +B(t)x with A(t) depends on a polynomial of degree 4 and B(t)
depends on a polynomial of degree 6, and the examples with rank 5 have polynomial
coefficients of degree 8 and 16 while the corresponding coefficients in the Kihara
family have degrees 52 and 102 respectively. In 2016 Khoshnam and Moody [KhMo]
have given an example of rank 5 over Q(u) with a simpler version of Kihara method.
In fact the coefficients A and B in this family depend of polynomials of degree 19
and 38 respectively.

The value t = 18745
6321 , in the Elkies family, yields a curve with rank 12. This is

the current record for torsion Z/4Z. See [Du1] for details of this curve.
We have made explicit the ideas of Elkies and we have found 26 families of rank

5 and several infinite families of rank 6 parametrized by elliptic curves with positive
rank.

Now we list the 26 substitutions of t leading to subfamilies of rank 5 inside the
rank 4 family of Elkies.

t =
3
(
u2 − 14u+ 1519

)
7 (u2 − 287)

, t =
2
(
u2 − u+ 538

)
3 (u2 + 1604)

, t =
u2 − 38u+ 1216

3 (u2 − 316)
,

t = −u2 − 212u+ 596

4 (u2 − 11076)
, t = −3(6u+ 251)

u2 − 2065
, t = −u2 − 250u− 16352

u2 + 32060
,

t = −u2 − 350u+ 21924

u2 − 22276
, t =

4
(
u2 − 1

)
7u2 + 17

, t = −u2 − 42u− 3640

u2 + 6656
,

t = −u2 − 54u− 272

u2 + 960
, t = − u2 − 135

2(4u+ 75)
, t =

u2 − 3562u+ 2457568

(u− 1120)(u+ 1120)
,

t =
u2 − 1196u− 202816

2(u− 672)(u+ 672)
, t = −u2 + 770u+ 138960

u2 − 79936
, t = − u2 + 42u+ 328

(u− 28)(u+ 28)
,

t = − u2 − 1017

8(4u+ 237)
, t =

u2 − 4u− 3552

2 (u2 − 7696)
, t =

u2 − 22u− 40

u2 − 512
,

t = −
2
(
119u2 + 569

)
5 (723u2 − 1027)

, t = − u2 − 4977

8(7u+ 1083)
, t = − u2 − 1017

8(4u+ 237)
,

t = − u2 − 113

8(7u− 57)
, t = − u2 − 31

2(u2 + 24)
, t = − u2 + 406u+ 11878

(u− 196)(u+ 196)
,

t = −u2 + 4418u− 132540

u2 + 17097660
, t =

7u2 − 1534u+ 82880

u2 − 13809
.

We have also found, in 2014, a second example for a curve with torsion group
Z/4Z and rank 12. It correspond to the value u = 263

619 in one of the subfamilies

given above: the one obtained by the substitution t = 4(u2−1)
7u2+17 . So the value of t in

the initial Elkies family of rank 4 is t = −13083
72895 . This subfamily of rank 5 is given

by the following equation:

y2 = x3 + 3(−224485317− 211193548u2 + 40986498u4 − 2284428u6 + 6034075u8)x2

+ 147456(−7 + u)2(7 + u)2(−9 + 5u)2(9 + 5u)2(17 + 7u2)2(13 + 11u2)2x.
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The rank 12 curve (u = 263
619 ), once fourth powers are reduced, is

y2 = x3 − 198916406773571865520639x2

+ 9918266655370998229616737981585163773911040000x

and 12 independent points of infinite order (on the corresponding reduced minimal
Weierstrass equation) are given in [Du1].

5. Looking for quadratic sections. Z/8Z torsion group case.

5.1. Tate normal form for Z/8Z group. Tate’s normal form for an elliptic curve
with torsion group Z/8Z is given by

E(b, c) : y2 + (1− c)xy − by = x3 − bx2

(see [Kn, Section V.5]). Using the adition law for P = (0, 0) and taking d = b/c we
have

4P =(d(d− 1), d2(c− d+ 1)),

−4P =(d(d− 1), d(d− 1)2)

so P is a torsion point of order 8 for b and c as follows

b =(2v − 1)(v − 1),

c =
(2v − 1)(v − 1)

v

with v a rational, see [Kn, Section V.5]. For these values of b and c we can write
the curve in the form y2 = x3 +A8(v)x

2 +B8(v)x where

A8(v) =1− 8v + 16v2 − 16v3 + 8v4,

B8(v) =16(−1 + v)4v4.

Writing the curve in this form is a convenient way to search for candidates for new
rational points using quadratic sections. In fact their x-coordinates should be either
divisors of B or rational squares times divisors of B.

5.2. Quadratic sections leading to rank 1 subfamilies. In the case of torsion
group Z/8Z families having rank at least 1 over Q(u) have been previously found
by several authors, see [Ku], [Le]. We have improved these results, in [DP2], by
showing the existence of two elliptic curves having this torsion group and rank at
least 2 over Q(u) and the existence of infinitely many elliptic curves over Q with this
torsion group and rank at least 3, parametrized by an elliptic curve with positive
rank. All these improvements use the parametrization of appropriate quadratic
sections. Let us mention that the heuristic from [PPVW, Section 8.3] predicts that
there are only finitely many elliptic curves over Q with torsion group Z/8Z and
rank greater than 3.

For this torsion group we show nine conditions on v leading to rank 1 fami-
lies. Some of them were already known due to the authors quoted before. In fact
Lecacheux found in [Le] two values leading to rank 1 families by using adequate
fibrations of the general model for torsion group Z/8Z. They are vL1 = −2w

w2+2 and

vL2 = w(w+2)
w2+4w+2 which are included in the first and the fourth places in our list.
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x1 = −2v2(−1 + 2v2), v1 =
−2w

2 + w2
,

x2 =
−(−1 + v)4(−5 + 8v)(−5 + 18v)

4(−2 + 3v)2
, v2 =

5(1 + w2)

2(9 + 4w2)
,

x3 =
−4(−3 + v)(−1 + v)2v4(−1 + 3v)

(1− 4v + 2v2)2
, v3 =

(1 + 3w2)

3 + w2
,

x4 = 16(−1 + v)2v2(1− 2v + 2v2), v4 =
w(w + 2)

2 + 4w + w2
,

x5 =
−64(−1 + v)2v2(−1− v + v2)

(−1− 4v + 4v2)2
, v5 =

(−2 + w)w

1 + w2
,

x6 = −(−1 + v)2(1− 6v + 4v2), v6 =
2− 2w + w2

4 + w2
,

x7 = 4v4, v7 =
5− w2

4(1 + w)
,

x8 =
−(−1 + v)2(−5 + 2v)2(25− 70v + 36v2)

(−7 + 6v)2
, v8 =

34− 6w + w2

36 + w2
,

x9 = −4(v − 1)4(4v − 1)

4v − 3
, v9 =

1 + 3w2

4(1 + w2)
.

5.3. Details for one of the families with rank 1. We present here some details
for the family in which we have found two subfamilies with torsion Z/8Z and generic
rank at least 2. It corresponds to the third entry in the table of rank 1 families
above. The fact is that to force the value

x3 =
−4(v − 3)(v − 1)2v4(3v − 1)

(2v2 − 4v + 1)2

to become the x-coordinate of a point in the curve is equivalent to solving

−(v − 3)(3v − 1) = Square,

whose solution is given by v3 = 1+3w2

w2+3 .

By inserting in the general family y2 = x3+A8(v)x
2+B8(v)x the value v = v3(w)

we get the rank 1 family given by y2 = x3 +AA8(w)x
2 +BB8(w)x where

AA8(w) =− 31− 148w2 + 214w4 − 116w6 + 337w8,

BB8(w) =256(−1 + w)4(1 + w)4(1 + 3w2)4.

5.4. A family with rank 2 and torsion group Z/8Z. By searching on several
homogeneous spaces of the associate curve we have found the possibility of imposing
two new conditions which lead to new points. The values xx1 and xx2 jointly with
the specialization of the parameter are

X1 =
(−1 + w)2(1 + w)2(5 + 7w2)2(11 + 25w2)

16
, W1 =

11− u2

10u
,

X2 =
(−1 + w)2(1 + w)2(1 + 11w2)2(7 + 29w2)

16w2
, W2 =

29− 12u+ u2

−29 + u2
.

With these specializations we get two families of rank 2 over Q(u).
Let us give details in the first case. First we see that forcing

x =
(w − 1)2(w + 1)2(7w2 + 5)2(25w2 + 11)

16
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to be the x-coordinate of a new point into the curve

Y 2 = X3+(−31−148w2+214w4−116w6+337w8)X2+256(−1+w)4(1+w)4(1+3w2)4X

we get the condition that 25w2 + 11 has to be a square. This is achieved with

W1 = 11−u2

10u .
Once we insert W1 into the coefficients AA8, BB8 we get as new coefficients

AAA8, BBB8 given by

AAA8 = 337u16 − 41256u14 + 4047356u12 − 288332632u10 + 2363813190u8

− 34888248472u6 + 59257339196u4 − 73087520616u2 + 72238942897,

BBB8 = 256 (363 + 34u2 + 3u4)4 (11 + u)4 (−11 + u)4 (−1 + u)4 (1 + u)4.

The x-coordinates of two independent infinite order points are

X1 =

21252(−11 + u)2(−1 + u)2u2(1 + u)2(11 + u)2(−11 + u2)2(363 + 34u2 + 3u4)4

(102487− 303468u2 + 43482u4 − 2508u6 + 7u8)2
,

X2 =

(−11 + u)2(−1 + u)2(1 + u)2(11 + u)2(11 + u2)2(847 + 346u2 + 7u4)2

64u2
.

The x-coordinate of a torsion point of order 8 is:

T1 =− 8(−11 + u)(−1 + u)(1 + u)(11 + u)(363 + 34u2 + 3u4)3.

That the rank of this curve is at least 2 over Q(u) can be proved using a special-
ization argument, since the specialization map is a homomorphism, see [DP2].

After our preprint presenting the preceding two curves of rank two appeared on
the arXiv, by using similar methods, MacLeod found another two curves of rank 2
[McL].

5.5. Existence of infinitely many curves with rank 3. Finally it can be proved
that there exist infinitely many elliptic curves with torsion group Z/8Z parametrized
by the points of a positive rank elliptic curve. In fact it is enough to see that the
equation W1(r) = W2(s), i.e.:

11− r2

10r
=

29− 12s+ s2

−29 + s2

has infinitely many solutions. This is the same as to solve

319 + 290r − 29r2 − 120rs− 11s2 + 10rs2 + r2s2 = 0

in rational terms, so the discriminant ∆ = 3509 + 62r2 + 29r4 has to be a square.
But t2 = 3509 + 62r2 + 29r4 has a solution, (r, t) = (1, 60) for example, hence it is
birationally equivalent to the cubic y2 = x3 − 463x2 + 45936x whose rank is 2 as
proved with mwrank [Cr]. This, jointly with the independence of the corresponding
points, implies the existence of infinitely many solutions parametrized by the points
of the elliptic curve, see [Le] or [Ra] for this kind or argument.

6. Elliptic curves induced by Diophantine triples

6.1. Definitions and first results.

Definition. A set {c1, c2, . . . , cm} of non-zero integers (rationals) is called a (ra-
tional) D(n)-m-tuple if ci · cj + n is a perfect square for all 1 ≤ i < j ≤ m. A
D(1)-m-tuple is also called a Diophantine m-tuple.
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Let {c1, c2, c3, c4} be a rational Diophantine quadruple. Consider a subtriple
{c1, c2, c3} and define an elliptic curve by the equation

(E) y2 = (c1 x+ 1)(c2 x+ 1)(c3 x+ 1).

We say that E is the elliptic curve induced by the Diophantine triple {c1, c2, c3}.
Let

cicj + 1 = t2i,j , 1 ≤ i < j ≤ 4.

Then the curve E has at least the following three rational points of order 2:

T1 = [−1/c1, 0 ], T2 = [−1/c2, 0 ], T3 = [−1/c3, 0 ],

and at least three other rational points:

(1)



P1 = [ 0, 1 ],

P2 = [ c4, t1,4 t2,4 t3,4 ],

P3 =
[ t1,2 t1,3 + t1,2 t2,3 + t1,3 t2,3 + 1

c1c2c3
,

(t1,2 + t1,3)(t1,2 + t2,3)(t1,3 + t2,3)

c1c2c3

]
.

Our goal is to show that Diophantine triples and quadruples are good tools in
the search for high rank elliptic curves having as torsion group one of the non-cyclic
groups in Mazur’s theorem.

In the case of torsion Z/2Z× Z/2Z we show that adequate specialization of the
parameters induce subfamilies of curves with rank 4, rank 5 and rank 6 and torsion
group Z/2Z × Z/2Z. We use a set of quadruples presented in [Du2]. In [ADP] a
family of rank 5 over Q(t) was constructed, later several families of rank 6 over Q(t)
were found [DP3]. In the general case (not required to be induced by Diophantine
triples) Elkies constructed a family with rank 7.

In our paper [DP1] we constructed a curve over Q(t) induced by Diophantine
triples having rank 4 and torsion group Z/2Z×Z/4Z. We also show an example of
a curve with rank 9. These are the best results known for that torsion.

In the case of torsion Z/2Z×Z/6Z we present three curves over Q(t) with rank
2 induced by Diophantine triples. This ties the results for the general case, see
[DP3]. We also show that the curve with rank 6 over Q, (which is the record for
this torsion group and was found by Elkies, see [Du1]), is induced by a Diophantine
triple.

Finally, in the case of torsion Z/2Z× Z/8Z it is known that all such curves are
induced by Diophantine triples (see [CG, Du4]).

6.2. Rank 3 over Q(t). In [Du2] several families ofD(n)-quadruples are described.
We will use for our construction the one given by

{a, a(k + 1)2 − 2 k, a(2 k + 1)2 − 8 k − 4, a k2 − 2 k − 2}.

For each a and k this quadruple is aD(2 a(2 k+1)+1)-quadruple. Now we specialize
to the following value of k:

k =
−1− 2 a+ n2

4 a
.
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The resulting quadruple is a D(n2)-quadruple and once divided by n we get the
following rational D(1)-quadruple:

(2)



c1(a, n) =
a

n
,

c2(a, n) =
((n− 3)(n− 1) + 2 a)((n+ 1)(n+ 3) + 2 a)

16 an
,

c3(a, n) =
(n− 3)(n− 1)(n+ 1)(n+ 3)

4 an
,

c4(a, n) =
((n− 3)(n− 1)− 2 a)((n+ 1)(n+ 3)− 2 a)

16 an
.

In the terminology of Gibbs this is an irregular and twice semi-regular Diophantine
quadruple. A Diophantine triple {a1, a2, a3} is regular if (a3−a2−a1)

2 = 4(a1a2+
1), while a Diophantine quadruple {a1, a2, a3, a4} is regular if (a4+a3−a1−a2)

2 =
4(a1a2 + 1)(a3a4 + 1). It can be checked that (2) is irregular, but it contains two
regular triples: {c1, c2, c4} and {c2, c3, c4}.

Now we define the elliptic curve associated to the triple {c1, c2, c3} as explained
above, i.e.:

y2 = (c1(a, n)x+ 1)(c2(a, n)x+ 1)(c3(a, n)x+ 1).

Note that we choose an irregular triple which is a subtriple of an irregular quadruple.
Otherwise, by [Du3], the points P1, P2, P3 would not be independent.

Besides the 2-torsion points, this curve has the points with x-coordinate given
by

0, c4(a, n) and
t1,2 t1,3 + t1,2 t2,3 + t1,3 t2,3 + 1

c1(a, n)c2(a, n)c3(a, n)
,

where as before ti,j = ti,j(a, n) =
√
ci(a, n)cj(a, n) + 1, 1 ≤ i < j ≤ 3. In terms of

a and n, the three rational points (1) are:

P1 = [ 0, 1 ],

P2 =
[ (n2 + 4n− 2 a+ 3)(n2 − 4n− 2 a+ 3)

16 an
,

− (n2 − 2 a+ 3)(n4 − 10n2 − 4 a2 + 9)(n4 − 2 an2 − 10n2 − 6 a+ 9)

512 a2 n3

]
,

P3 =
[ 6n

(n− 3)(n+ 3)
,
(n2 + 6 a− 9)(3n2 + 2 a− 3)

4 a(n− 3)(n+ 3)

]
.

Theorem 4. The curve y2 = (c1(a, n)x+1)(c2(a, n)x+1)(c3(a, n)x+1) has torsion
group Z/2Z × Z/2Z and rank ≥ 3 over Q(n, a). The points P1, P2 and P3 are of
infinite order and independent.

6.3. Construction of a curve of rank 4 over Q(t). Now we look for conditions
on a and n such that there are new rational points on the curve. The coordinate
transformation

x 7→ c1(a, n)c2(a, n)c3(a, n)x, y 7→ c1(a, n)c2(a, n)c3(a, n) y

applied to the curve leads to

y2 = (x+ c1(a, n)c2(a, n))(x+ c1(a, n)c3(a, n))(x+ c2(a, n)c3(a, n)).

Next, the change x 7→ x− c1(a, n)c2(a, n) transforms it into

y2 = x(x+ c1(a, n)c3(a, n)− c1(a, n)c2(a, n))

× (x+ c2(a, n)c3(a, n)− c1(a, n)c2(a, n)).
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From this point on, in order to avoid denominators, we will make, when necessary,
the appropriate change of variables to write the curve as

(3) y2 = x3 +Ax2 +B x

where A(a, n) and B(a, n) have are polynomials with integer coefficients. This leads
to the following values of the coefficients A and B:

A(a, n) = 81 + 108 a+ 108 a2 − 96 a3 − 32 a4 − 180n2 − 84 an2 − 120 a2 n2

− 32 a3 n2 + 118n4 − 28 an4 + 12 a2 n4 − 20n6 + 4 an6 + n8,

B(a, n) = 4 a2(9 + 2 a− n2)(3 + 2 a− 4n+ n2)(3 + 2 a+ 4n+ n2)

× (−3 + 2 a+ 3n2)(−9 + 4 a2 + 10n2 − n4).

The x-coordinates of the three infinite order points are

x1 = 4 a2(3 + 2 a− 4n+ n2)(3 + 2 a+ 4n+ n2),

x2 =
(3 + 2 a− 4n+ n2)(3 + 2 a+ 4n+ n2)(9− 6 a− 10n2 − 2 an2 + n4)2

16n2
,

x3 = 2 a(3 + 2 a− 4n+ n2)(3 + 2 a+ 4n+ n2)(−3 + 2 a+ 3n2).

Now we look for those polynomial factors of B that can be conditioned in a
simple way to yield a new point in the curve.

The condition for (3 + 2a − 4n + n2)(−3 + 2a + 3n2)(−9 + 4a2 + 10n2 − n4)
to become the X coordinate of a new point is that 2(9 + 6a + 8a2 − 18n − 4an +
8n2− 2an2+2n3−n4) converts into a square. This can be achieved with the value
n = 7/3. The coefficients of the curve are

A(a) = −2(−51200 + 109440a+ 38880a2 + 55404a3 + 6561a4)

B(a) = 243a2(20 + 3a)(−4 + 9a)(16 + 9a)(80 + 9a)(320 + 81a2),

and the x-coordinates of the preceding points jointly with the new one are

(4)



x1 = 81a2(−4 + 9a)(80 + 9a)

x2 = 27a(20 + 3a)(−4 + 9a)(80 + 9a)

x3 =
1

441
(−4 + 9a)(80 + 9a)(160 + 171a)2

x4 = 3(20 + 3a)(−4 + 9a)(320 + 81a2).

This is a rank 4 curve over Q(a) since it can be proved that the four points quoted
above are independent. The quadruple is

(5)



q1 = −3a

7
,

q2 = − (80 + 9a)(−4 + 9a)

756 a
,

q3 =
320

189 a
,

q4 = − (4 + 9a)(−80 + 9a)

756 a
.

Theorem 5. The elliptic curve induced by the first three components of the Dio-
phantine quadruple (5) has torsion Z/2Z × Z/2Z and rank ≥ 4 over Q(a). The
points with x-coordinate given in (4) are of infinite order and independent.
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6.4. Construction of curves of rank 5 over Q(t). We have found 30 special-
izations of the parameter in the above rank 4 curve leading to curves having rank
5. In four cases with a further specialization we get rank 6 over Q(t).

We present the details in one of the cases and in the other three we just quote
the specialization of the parameter a leading to rank 6 curves.

In order to force 9a(−20+9a)(16+9a)(80+9a) as X coordinate of a new point
in the rank 4 curve we have to parametrize 10(−20 + 9a)(−2 + 9a) = square. We
get

a =
2(−1 + 10w)(1 + 10w)

9(−1 + 10w2)
.

Now the rank 5 curve is Y 2 = X3 +A(w)X2 +B(w)X where

A(w) = −2(−169− 12020w2 + 678000w4 − 12680000w6 + 80000000w8),

B(w) = (−1 + 10w)2(1 + 10w)2(−1 + 20w2)(1 + 80w2)(−31 + 400w2)

(−41 + 500w2)(9− 200w2 + 2000w4).

Five independent points have the X-coordinates as follows

(6)



x1 =
1

9
(−1 + 10w)2(1 + 10w)2(1 + 80w2)(−41 + 500w2),

x2 =
1

9
(−1 + 10w)(1 + 10w)(1 + 80w2)(−31 + 400w2)(−41 + 500w2),

x3 =
1

49
(1 + 80w2)(−11 + 300w2)2(−41 + 500w2),

x4 = (1 + 80w2)(−31 + 400w2)(9− 200w2 + 2000w4),

x5 = 9(−1 + 10w)(1 + 10w)(−1 + 20w2)(−41 + 500w2).

6.5. Construction of curves of rank 6 over Q(t). Now we can force −9(−1 +
10w)2(1 + 10w)2(−1 + 20w2)(−41 + 500w2) as X coordinate of a new point in the
previous rank 5 curve by solving −(−2 + 7w)(2 + 7w) = square, so we have

w =
2(−1 + v)(1 + v)

7(1 + v2)

With this choice of w the curve transforms into the rank 6 curve given by Y 2 =
X3 +A(v)X2 +B(v)X where

A(v) = −2(130752711− 35202346632v2 + 260292593988v4 − 1337869740984v6

+ 1975889131370v8 − 1337869740984v10 + 260292593988v12 − 35202346632v14

+ 130752711v16),

B(v) = −(9− 80v + 9v2)(9 + 80v + 9v2)(−27 + 13v2)2(−13 + 27v2)2

(9 + 8018v2 + 9v4)(31− 258v2 + 31v4)(369− 542v2 + 369v4)

(14409− 41564v2 + 400054v4 − 41564v6 + 14409v8).
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The X-coordinates of six independent points are as follows

(7)



x1 = −1

9
(−27 + 13v2)2(−13 + 27v2)2(9 + 8018v2 + 9v4)

(369− 542v2 + 369v4),

x2 = −1

9
(9− 80v + 9v2)(9 + 80v + 9v2)(−27 + 13v2)

(−13 + 27v2)(9 + 8018v2 + 9v4)(369− 542v2 + 369v4),

x3 = − 1

49
(9 + 8018v2 + 9v4)(369− 542v2 + 369v4)

(661− 3478v2 + 661v4)2,

x4 = (9− 80v + 9v2)(9 + 80v + 9v2)(369− 542v2 + 369v4)

(14409− 41564v2 + 400054v4 − 41564v6 + 14409v8),

x5 = −441(1 + v2)2(−27 + 13v2)(−13 + 27v2)(9 + 8018v2 + 9v4)

(31− 258v2 + 31v4),

x6 = −9(−27 + 13v2)2(−13 + 27v2)2(9 + 8018v2 + 9v4)

(31− 258v2 + 31v4),

and the quadruple becomes:

(8)



q1 =
2(−27 + 13v2)(−13 + 27v2)

21(9 + 178v2 + 9v4)
,

q2 = − (9 + 8018v2 + 9v4)(369− 542v2 + 369v4)

42(−27 + 13v2)(−13 + 27v2)(9 + 178v2 + 9v4)
,

q3 = − 160(9 + 178v2 + 9v4)

21(−27 + 13v2)(−13 + 27v2)
,

q4 =
3(111− 418v2 + 111v4)(237 + 2074v2 + 237v4)

14(−27 + 13v2)(−13 + 27v2)(9 + 178v2 + 9v4)
.

By taking the specialization v = 5 and applying [GT2, Theorem 1.1], we see that
these six points are independent and the rank over Q(v) is exactly equal to 6 and
the torsion group is equal to Z/2Z× Z/2Z.

Theorem 6. The elliptic curve induced by the first three components of the Dio-
phantine quadruple (8) has torsion Z/2Z × Z/2Z and rank = 6 over Q(v). The
points with x-coordinate given in (7) are of infinite order and independent.

Details of the proofs can be seen in [DP3].

6.6. Other curves of rank 6 over Q(t). The following specializations of the
parameter a in the rank 4 curve also produce rank 6 curves

(9)



a1 = −64(831744− 40128v + 4288v2 − 44v3 + v4)

9(−1520 + 88v + v2)(−2736− 264v + 5v2)
,

a2 = −10732176− 628992v + 19192v2 − 576v3 + 9v4

36(−27 + v)v(−364 + 9v)
,

a3 = −5(−10 + 6v + v2)(−18− 18v + 5v2)

9(12− 2v + v2)(3− v + v2)
.

6.7. Torsion Z/2Z × Z/4Z and rank 4. We consider elliptic curves with the
torsion subgroup isomorphic to Z/2Z×Z/4Z. Such curves have an equation of the
form

(10) y2 = x(x+ x2
1)(x+ x2

2), x1, x2 ∈ Q.
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The point [x1x2, x1x2(x1 + x2)] is a rational point on the curve of order 4. The
coordinate transformation x 7→ x

abc , y 7→ y
abc applied to the curve leads to the elliptic

curve y2 = (x+ ab)(x+ ac)(x+ bc) in the Weierstrass form, and by translation we
obtain the equation

(11) y2 = x(x+ ac− ab)(x+ bc− ab).

Therefore, if we can find a, b, c such that ac−ab and bc−ab are perfect squares, then
the elliptic curve induced by {a, b, c} will have the torsion subgroup isomorphic to
Z/2Z× Z/4Z. We may expect that this curve will have positive rank, since it also
contains the point [ab, abc]. A convenient way to fulfill these conditions is to choose
a and b such that ab = −1. Then ac−ab = ac+1 = s2 and bc−ab = bc+1 = t2. It
remains to find c such that{a,−1/a, c} is a Diophantine triple. We get the system

(12) ac+ 1 = �, − c

a
+ 1 = �.

Inserting ac+ 1 = s2 into − c
a + 1 = t2, we obtain

1− s2 + a2 = �
which has the parametric solution of the form

a =
ατ + 1

τ − α
, s =

τ + α

τ − α
.

Inserting this in (11), after some simplifications, we get
(13)
y2 = x3+2(α2+τ2+4α2τ2+α4τ2+α2τ4)x2+(τ+α)2(ατ−1)2(τ−α)2(ατ+1)2x.

Now we force x = (τ +α)2(ατ − 1)(ατ +1) to satisfy the equation (13), and we get
the condition

(14) τ2 + α2 + 2 = �.

By [Ca, §10], the solution of (14) is given by

(15) τ =
r2 − s2 − 2t2 + 2v2

2(rt+ sv)
, α =

rs− 2tv

rt+ sv
.

On the other hand, by forcing x = (τ + α)(ατ − 1)2(τ − α) to satisfy (13), we get
the condition

(16) α2τ2 + 2α2 + 1 = �.

We seek for a parametric solution of the system (14) and (16). By our construction,
this should give a family of elliptic curves with rank at least 3. However, we will
show that the resulting family has rank 4. Motivated by some experimental data,
we take v = 0, r = s+ t+ 1 and insert (15) in (16). We get the quartic in s:

(12t2 + 8t+ 4)s4+(12t3 + 20t2 + 12t+ 4)s3(17)

+ (13t4 + 12t3 + 10t2 + 4t+ 1)s2+(8t5 + 8t4)s+ 4t6 + 8t5 + 4t4 = G2.

Since it contains the point [0, 2t3 + 2t2], it can be transformed into the cubic:

w3 + (13t4 + 12t3 + 10t2 + 4t+ 1)w2(18)

+(−96t8 − 256t6 − 256t7 − 128t5 − 32t4)w

−1152t12 − 3840t11 − 5504t10 − 4608t9 − 2432t8 − 768t7 − 128t6 = H2.

Note that the point [4t2(3t2 + 2t+ 1), 4t2(t− 1)(3t+ 1)(3t2 + 2t+ 1)] lies on (18).
By transforming it back to the quartic (17), we get

s = −7t3 + 9t2 + 3t+ 1

t2 + 6t+ 3
.
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Then we can easily compute:

τ =
(3t2 + 6t+ 1)(5t2 + 2t− 1)

4t(t− 1)(3t+ 1)(t+ 1)
,

α =− (t+ 1)(7t2 + 2t+ 1)

t(t2 + 6t+ 3)
,

a =− (t+ 1)(31t4 + 52t3 + 22t2 − 4t− 1)(3t2 + 2t+ 1)

t(11t4 + 12t3 + 2t2 − 4t− 1)(9t2 + 14t+ 7)
,

b =
t(11t4 + 12t3 + 2t2 − 4t− 1)(9t2 + 14t+ 7)

(t+ 1)(31t4 + 52t3 + 22t2 − 4t− 1)(3t2 + 2t+ 1)
,

c =
(
16(t− 1)(3t+ 1)(t+ 1)t(t2 + 6t+ 3)(3t2 + 6t+ 1)

(5t2 + 2t− 1)(7t2 + 2t+ 1)
)
/

((11t4 + 12t3 + 2t2 − 4t− 1)(9t2 + 14t+ 7)

(31t4 + 52t3 + 22t2 − 4t− 1)(3t2 + 2t+ 1)).

Now we claim that the induced elliptic curve

E : y2 = x3 +A(t)x2 +B(t)x,

where

A(t) =

2(87671889t24 + 854321688t23 + 3766024692t22 + 9923033928t21

+ 17428851514t20 + 21621621928t19 + 19950275060t18

+ 15200715960t17 + 11789354375t16 + 10470452464t15 + 8925222696t14

+ 5984900048t13 + 2829340620t12 + 820299856t11 + 59930952t10

− 66320528t9 − 35768977t8 − 9381000t7 − 1017244t6 + 262760t5

+ 159130t4 + 41096t3 + 6468t2 + 600t+ 25),

B(t) =

(t2 − 2t− 1)2(69t4 + 148t3 + 78t2 + 4t+ 1)2(13t2 − 2t− 1)2

× (9t4 + 28t3 + 18t2 + 4t+ 1)2(11t4 + 12t3 + 2t2 − 4t− 1)2

× (9t2 + 14t+ 7)2(31t4 + 52t3 + 22t2 − 4t− 1)2(3t2 + 2t+ 1)2,

has rank ≥ 4 over Q(t). Indeed, it contains the points whose x-coordinates are

X1 = (9t4 + 28t3 + 18t2 + 4t+ 1)2(11t4 + 12t3 + 2t2 − 4t− 1)2

× (69t4 + 148t3 + 78t2 + 4t+ 1)2,

X2 = (3t2 + 2t+ 1)(9t2 + 14t+ 7)2(13t2 − 2t− 1)

× (9t4 + 28t3 + 18t2 + 4t+ 1)(11t4 + 12t3 + 2t2 − 4t− 1)2

× (31t4 + 52t3 + 22t2 − 4t− 1),

X3 = (3t2 + 2t+ 1)(9t2 + 14t+ 7)2(13t2 − 2t− 1)

× (9t4 + 28t3 + 18t2 + 4t+ 1)2(11t4 + 12t3 + 2t2 − 4t− 1)

× (69t4 + 148t3 + 78t2 + 4t+ 1),

X4 = −(3t2 + 2t+ 1)2(9t2 + 14t+ 7)2(11t4 + 12t3 + 2t2 − 4t− 1)2

× (31t4 + 52t3 + 22t2 − 4t− 1)2.

and a specialization, e.g. t = 2, shows that the four points P1, P2, P3, P4, having
these x-coordinates, are independent points of infinite order. Thus we obtained an



18 A. DUJELLA AND J. C. PERAL

elliptic curve over the field of rational functions with torsion group Z/2Z × Z/4Z
and rank ≥ 4.

This improves previous records (with rank ≥ 3) for curves with this torsion
group, obtained by Lecacheux, Elkies and Eroshkin ([?, El2, Er]).

Moreover, since our curve has full 2-torsion, we can get more precise information
by applying the algorithm by Gusić and Tadić [GT1, Theorem 3.1 and Corollary
3.2]. Using this algorithm we can show that rank(E(Q(t))) = 4 and that the four
points P1, P2, P3, P4 are free generators of E(Q(t)).

Details of the proofs can be seen in [DP1].

7. Examples of curves with high rank

7.1. Torsion Z/2Z × Z/4Z and rank 9 over Q. The first example. In this
section, we are searching for particular elliptic curves over Q with torsion group
Z/2Z×Z/4Z and high rank. In [Du3], several such curves, induced by Diophantine
triples, with rank 7 were presented. In the above notation, they correspond to
α = 2. Here we search for such curves with τ and α of the form (15).

We not only improve the result of [Du3], but by finding a curve of rank 9, we give
the current record for all known elliptic curves with torsion group Z/2Z × Z/4Z.
Previous records with rank 8, due to Elkies, Eroshkin and Dujella ([El2, Er, Du4]),
were found by different methods.

In our search in [DP1], we covered the range |r| + |s| + |t| + |v| ≤ 420, while
in [DP2] we searched also for parameters of special form outside this range. We
use sieving methods, which include computing Mestre-Nagao sums Selmer rank and
Mestre’s conditional upper bound to locate good candidates for high rank, and then
we compute the rank with mwrank. In that way, we found five curves with rank
8 in [DP1] and additional five curves with rank 8 in [DP3], corresponding to the
parameters

(r, s, t, v) =

(20,−11, 25, 68), (82, 9, 73, 30), (55, 31, 142, 15), (91, 55, 33, 104), (157, 127, 43, 12)

(131,−29, 49, 96), (186,−57, 62, 199), (107, 107, 149, 430), (103, 103, 168, 725),

(749, 749, 138, 245)

(the details about these curves can be found on [Du1]). Finally, we find a curve
with rank equal to 9, corresponding to the parameters (r, s, t, v) = (155, 54, 96, 106).
The curve is induced by the Diophantine triple{

301273

556614
, −556614

301273
, −535707232

290125899

}
.

The minimal Weierstrass form of the curve is

y2 = x3 + x2 − 6141005737705911671519806644217969840x

+ 5857433177348803158586285785929631477808095171159063188.

The torsion points and 9 independent points of infinite order can be found in [Du1].

7.2. Torsion Z/2Z × Z/4Z and rank 9 over Q. The second example. Here
we give a different example with torsion group Z/2Z× Z/4Z and rank equal to 9.
We follow the approach from Subsection 6.7, until the condition (14):

τ2 + α2 + 2 = �.

By taking

τ2 + α2 + 2 =
(τ2 + 1

τ
+
(
α− 1

τ

)
t
)2

,
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we get

α =
−2τ2t+ 1− 2t+ t2

τ(t2 − 1)
.

Motivated by some experiments, we now take τ = 1/7 as a possible good choice for
obtaining curves with higher rank. An additional motivation for this choice comes
when we write our curve in the form y2 = x3 +Ax2 +Bx. Here B factorize as

B = 16(τ2t2−τ2−2τ2t+1−2t+t2)2(τ2t−1+t)2(τ2t2−τ2+2τ2t−1+2t−t2)2t2(τ2+1−t)2.

So we have 5 irreducible factors in B. But if we want more factors, we may choose
τ in such a way that some of the factors factorizes, and this means that the dis-
criminant is a square. The discriminant of τ2t2 − τ2 − 2τ2t + 1 − 2t + t2 and
τ2t2 − τ2 +2τ2t− 1+ 2t− t2 with the respect to t is 8τ2(τ2 +1), which is a square
e.g. for τ = 1/7. For τ = 1/7, B factorizes as

256/33232930569601(5t− 4)2(5t− 6)2(50t− 49)2(6t− 5)2(4t− 5)2t2(−50 + 49t)2,

so we have 7 factors instead of 5.
Now we perform a search for high rank curves by using similar sieving methods as

in the previous subsection. We searched for t = t1/t2 in the range max(|t1|, |t2|) <
3000. We found 7 examples with rank equal to 8, for t = 201/170, 245/138,
−800/459, 1610/1417, 1955/1754, 2254/2215, 2301/1670, and one example with
rank equal to 9, for t = 900/781. The last curve is induced by the Diophantine
triple {

181800

127673
, −127673

181800
, − 996869751703

2072406375000

}
.

The minimal Weierstrass form of the curve is

y2 + xy = x3 − 1443705842368492991301675445569878391286260x

+ 518524534126954116322153225511662398609137586525877978241619600.

The torsion points are

O, [405266783558457366120,−202633391779228683060],

[946507577804847126120,−473253788902423563060],

[−5407097445453217968961/4, 5407097445453217968961/8],

[−168805805131761958680,−27521269452973351848551320510260],

[−168805805131761958680, 27521269453142157653683082468940],

[2061820960741456210920,−79415869652391657291324304635060],

[2061820960741456210920, 79415869650329836330582848424140],

while independent points of infinite order are:

[128223174003353679720, 18317099368470117761199421172940],

[956390935331148119400, 3545768914293555321550146272460],

[1016377111024059996120, 10055611157530821697614783806940],

[1697827353996567683370, 54420111049349435946331048024440],

[56495946288484604961066, 13425433378463019292263609689408862],

[289704950331957158160, 11162008755000776928955192667940],

[103668184309638014012632296/625, 1055496671159222837902206275138714086956/15625],

[−11988121387712302153670/9,−238796691154542884537206928300120/27],

[−26537457561058268238635520/29929,−171844066225434189468646360371177721020/5177717].

Acknowledgements. The authors want to deeply thank to the anonymous ref-
erees for a careful reading of our paper and for valuable suggestions which improved
the presentation.
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