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Abstract. For an integer n, a set of m distinct nonzero integers {a1, a2, . . . , am}
such that aiaj + n is a perfect square for all 1 ≤ i < j ≤ m, is called a D(n)-

m-tuple. In this paper, we show that there are infinitely many essentially

different D(n)-quintuples with square elements. We obtained this result by
constructing genus one curves on a certain double cover of A2 branched along

four curves.

1. Introduction

For an integer n, a set of m distinct nonzero integers with the property that the
product of any two of its distinct elements plus n is a square is called a Diophan-
tine m-tuple with the property D(n) or D(n)-m-tuple. The D(1)-m-tuples (with
rational elements) are called simply (rational) Diophantine m-tuples and have been
studied since the ancient time.

The first example of a rational Diophantine quadruple was the set{
1

16
,

33

16
,

17

4
,

105

16

}
found by Diophantus. Fermat found the first Diophantine quadruple in integers
{1, 3, 8, 120}. Euler proved that there exist infinitely many rational Diophantine
quintuples (see [19]), in particular, he was able to extend the integer Diophantine
quadruple found by Fermat to the rational quintuple{

1, 3, 8, 120,
777480

8288641

}
.

Stoll [21] recently showed that this extension is unique.
In 1969, using linear forms in logarithms of algebraic numbers and a reduction

method based on continued fractions, Baker and Davenport [3] proved that if d
is a positive integer such that {1, 3, 8, d} forms a Diophantine quadruple, then d
has to be 120. This result motivated the conjecture that there does not exist a
Diophantine quintuple in integers. The conjecture has been proved recently by He,
Togbé and Ziegler [18] (see also [4, 8]).

On the other hand, it is not known how large can a rational Diophantine tuple
be. In 1999, Gibbs found the first example of rational Diophantine sextuple [17]{

11

192
,

35

192
,

155

27
,

512

27
,

1235

48
,

180873

16

}
.

In 2017, Dujella, Kazalicki, Mikić and Szikszai [12] proved that there are infinitely
many rational Diophantine sextuples, while Dujella and Kazalicki [10] (inspired
by the work of Piezas [20]) described another construction of parametric families
of rational Diophantine sextuples. Recently, Dujella, Kazalicki and Petričević in
[14] proved that there are infinitely many rational Diophantine sextuples such that
denominators of all the elements (in the lowest terms) in the sextuples are perfect
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squares, and in [13] they proved that there are infinitely many Diophantine sextuples
containing two regular quadruples and one regular quintuple. No example of a
rational Diophantine septuple is known. The Lang conjecture on varieties of general
type implies that the number of elements of a rational Diophantine tuple is bounded
by an absolute constant (see the introduction of [12]). Diophantine m-tuples have
been studied over the rings other than Z and Q, for example, Dujella and Kazalicki
[11] computed the number of Diophantine quadruples over finite fields. For more
information on Diophantine m-tuples see the survey article [9].

Sets with D(n) properties have also been extensively studied. It is easy to show
that there are no integer D(n)-quadruples if n ≡ 2 (mod 4), and it is know that
if n 6≡ 2 (mod 4) and n 6∈ {−4,−3,−1, 3, 5, 8, 12, 20}, then there is at least one
D(n)-quadruple [6]. Recently, Bonciocat, Cipu and Mignotte [2] proved that there
are no D(−1)-quadruples (as well as D(−4)-quadruples) thus leaving the existence
of D(n)-quadruples in the remaining six sporadic cases open.

Dražić and Kazalicki [5] described rational D(n)-quadruples with a fixed product
of elements in terms of points on certain elliptic curves. It is not known if there
is a rational Diophantine D(n)-quintuple for every n, and no example of rational
D(n)-sextuple is known if n is not a perfect square.

One can also study m-tuples that have D(n)-property for more than one n.
Adžaga, Dujella, Kreso and Tadić [1] presented several families of Diophantine
triples which have D(n)-property for two distinct n’s with n 6= 1 as well as some
Diophantine triples which are D(n)-sets for three distinct n’s with n 6= 1. Dujella
and Petričević in [15] proved that there are infinitely many (essentially different) in-
teger quadruples which are simultaneouslyD(n1)-quadruples andD(n2)-quadruples
with n1 6= n2, and in [16] showed that the same thing is true for three distinct n’s
(since the elements of their quadruples are squares one of n’s is equal to zero). Our
main result extends the previous results to quintuples.

Note that if {a, b, c, d, e} is a D(n1)-quintuple, and u a nonzero rational, then
{ua, ub, uc, ud, ue} is a D(n1u

2)-quintuple and we say that these two quintuples are
equivalent.

Theorem 1. There are infinitely many nonequivalent quintuples that have D(n1)
property for some n1 ∈ N such that all the elements in the quintuple are perfect
squares. In particular, there are infinitely many nonequivalent integer quintuples
that are simultaneously D(n1)-quintuples and D(n2)-quintuples with n1 6= n2 since
then we can take n2 = 0.

Since every rational Diophantine quintuple is equivalent to some D(u2)-quintuple
whenever u is an integer divisible by the common denominator of the elements in
the quintuple, Theorem 1 will follow if we prove that there are infinitely many
rational Diophantine quintuples with the property that the product of any two of
its elements is a perfect square.

A Diophantine quadruple {a, b, c, d} is called regular if

(a+ b− c− d)2 = 4(ab+ 1)(cd+ 1).

Definition 1. We say that rational Diophantine quintuple {a, b, c, d, e} is exotic if
abcd = 1, quadruples {a, b, d, e} and {a, c, d, e} are regular, and if the product of
any two of its elements is a perfect square.

Denote by S an affine surface defined over Q by

(1+r−2r2t−t2+rt2)(−1+r+2r2t+t2+rt2)(−r−r2−2t−rt2+r2t2)(r−r2−2t+rt2+r2t2) = y2.
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Define a rational map p : S → A5 given by p(r, t, y) = (a, b, c, d, e) where

a =
(r2 − 1)(t2 − 1)(s2 − 1)

8rst
,

b =
2(t2 − 1)rs

(r2 − 1)(s2 − 1)t
,

c =
2(s2 − 1)rt

(r2 − 1)(t2 − 1)s
,

d =
2(r2 − 1)st

(s2 − 1)(t2 − 1)r
,

where s = −1+r2+t+r2t
−1−r2−t+r2t and e is defined by formula (1) from Section 2.

Proposition 2. For every exotic quintuple {a, b, c, d, e} there is a rational point
(r, t, y) ∈ S(Q) on the surface S such that (a, b, c, d, e) = p(r, t, y). Conversely, if
(r, t, y) ∈ S(Q) is a rational point on S in the domain of p, then p(r, t, y) is exotic
quintuple provided that all elements are distinct and nonzero.

Note that one can explicitly determine the degeneracy locus of map p – a finite
set of curves on S such that for every (r, t, y) ∈ S(Q) which is not on any of those
curves we have that p(r, t, y) is exotic quintuple. Thus, any curve on S with an
infinite number of rational points will give rise to infinitely many exotic quintuples.

Denote by π : S → A2 the projection π(r, t, y) = (r, t). Let D1, D2 and D3 be
plane genus zero curves in A2 defined by

D1 : r2t2 − 4r2t− 3r2 − 2rt2 − 2r − 3t2 − 4t+ 1 = 0,

D2 : r2t− r2 + 2rt2 + 2r − t− 1 = 0,

D3 : r2t2 + 3r2 − t2 + 2t− 1 = 0,

and D̃i = π−1(Di) pullbacks of these curves to S via π.

Proposition 3. Curves D̃1, D̃2 and D̃3 are genus one curves defined over Q bira-
tionally equivalent to elliptic curves with positive Mordell-Weil rank. In particular,
there are infinitely many exotic quintuples.

Remark 1. The surface S, as an affine subvariety of a double cover of P1 × P1

ramified in four curves of type (2, 2), is of general type. According to the Bombieri-
Lang Conjecture, there should be only finitely many curves of geometric rank 0 or
1 on S (and they should account for all but finitely many rational points of S). It
is an interesting question if there is any other genus 0 or 1 curve on S besides the
20 genus 0 curves in degeneracy locus, four ramification curves (which have genus

1) and three curves D̃i.

For an example, consider the following parametrization of D3

(r, t) =

(
− 2u+ 1

u2 + u+ 1
,
u2 + 4u+ 1

(u− 1)(u+ 1)

)
.

It defines a curve birational to D̃3 given by quartic

−48
(
u2 − 3u− 1

) (
u2 + 5u+ 3

)
= v2.

The point (u, v) = (3, 36) of this quartic corresponds to (r, t) = (− 7
13 ,

11
4 ) which in

turn is mapped by p to the Diophantine quintuple

M =

{
2252

480480
,

25482

480480
,

2862

480480
,

14082

480480
,

8192

480480

}
.
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Our investigation began with this quintuple.

2. Parametrizing exotic quintuples

Our starting point was the experimental discovery of an exotic rational Dio-
phantine quintuple M (defined in the introduction) which by clearing denomina-
tors gives Diophantine D(4804802)-quintuple with square elements. This quintuple
{a, b, c, d, e} has the following structure which motivated our construction of infinite
families

i) abcd = 1,
ii) quadruples {a, b, d, e} and {a, c, d, e} are regular.

Proposition 4. Let {a, b, c, d} be a rational Diophantine quadruple with abcd = 1.
Then there exist r, s, t ∈ Q\{−1, 0, 1} such that

a = xyz, b =
x

yz
, c =

y

xz
, d =

z

xy
,

where x = t2−1
2t , y = s2−1

2s and z = r2−1
2r . In particular, the product of any two

elements of the quadruple is a perfect square.

Proof. From ab+ 1 = ab+ abcd = ab(1 + cd) it follows that ab is a perfect square,
and similarly for other pairwise products. Set ab = x2, ac = y2 and ad = z2, with

x, y, z ∈ Q. It follows a2 = ab·ac
bc = x2y2

1/z2 , hence a = xyz and b = x
yz , c = y

xz and

d = z
xy (with the appropriate choice of signs). Since x2 +1 is a perfect square, there

is t ∈ Q such that x = t2−1
2t , and similarly for y and z. The claim follows. �

To extend quadruple {a, b, c, d} defined by r, s, t ∈ Q (as in Proposition 4) to
an exotic quintuple it is enough that triples {a, b, d} and {a, c, d} have a common
regular extension e such that ae is a perfect square.

Since both {a, b, d} and {a, c, d} extend to regular quadruples in two different
ways, {e1, e

′
1} and {e2, e

′
2} respectively, to check if there is a common regular ex-

tension a priori we have four conditions to inspect. It is easy to see that the maps
σ1(r, s, t) = (1/r, s, 1/t) and σ2(r, s, t) = ( 1

r , s,−t) are symmetries of the equations
from Proposition 4 defining a, b, c and d, hence both (r, s, t) and σi(r, s, t) give rise
to the same quadruple (a, b, c, d). In general the map (r, s, t) 7→ (a, b, c, d) is 32 : 1,
but we will not need the whole group of symmetries. Moreover, σ1 “maps” e2 to
e′2 and fixes e1, while σ2 maps e1 to e′1 and fixes e2. Therefore, to parametrize
quadruples with common regular extension as above it is enough to solve e1 = e2

for any choice of e1 and e2. Thus for the choice of e1 and e2

(1) e1 =
u1(r, s, t)u2(r, s, t)u3(r, s, t)u4(r, s, t)

8(−1 + r)r(1 + r)(−1 + s)s(1 + s)(−1 + t)t(1 + t)
,

where

u1(r, s, t) = −1− r + s− rs− t− rt− st+ rst,

u2(r, s, t) = 1 + r − s+ rs− t− rt− st+ rst,

u3(r, s, t) = 1− r − s− rs+ t− rt+ st+ rst,

u4(r, s, t) = −1 + r + s+ rs+ t− rt+ st+ rst,

and

e2 =
v1(r, s, t)v2(r, s, t)v3(r, s, t)v4(r, s, t)

8(−1 + r)r(1 + r)(−1 + s)s(1 + s)(−1 + t)t(1 + t)
,
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where

v1(r, s, t) = −1− r − s− rs+ t− rt− st+ rst,

v2(r, s, t) = 1 + r − s− rs− t+ rt− st+ rst,

v3(r, s, t) = 1− r + s− rs− t− rt+ st+ rst,

v4(r, s, t) = −1 + r + s− rs+ t+ rt+ st+ rst,

we obtain the following condition

(s−t)(1+st)(1−r2−s−r2s−t−r2t−st+r2st)(−1−r2+s−r2s+t−r2t+st+r2st) = 0.

Solutions to (s−t)(1+st) = 0 induce degenerate quintuples (with zero element or
with two identical elements) so we can ignore them. To reduce the argument further,
note that a, b, c, d, e1 and e2 are fixed by the map σ3(r, s, t) = (−1/r, s,−1/t).
Moreover, σ3 defines a birational map between affine plane surfaces defined by 1−
r2−s−r2s−t−r2t−st+r2st = 0 and −1−r2+s−r2s+t−r2t+st+r2st = 0 which is
an isomorphism outside the vanishing set of rst(r2−1)(s2−1)(t2−1) = 0. Since the
triples (r, s, t) from this vanishing set do not correspond to Diophantine quintuples,
without loss of generality we can assume that the triples (r, s, t) describing rational
Diophantine quintuples {a, b, c, d, e}, such that abcd = 1 and that both {a, b, d, e}
and {a, c, d, e} are regular, satisfy

(2) 1− r2 − s− r2s− t− r2t− st+ r2st = 0.

On the other hand, the condition that ae1 is a perfect square is equivalent to

(−1− r + s− rs− t− rt− st+ rst)(1 + r − s+ rs− t− rt− st+ rst)

(1− r − s− rs+ t− rt+ st+ rst)(−1 + r + s+ rs+ t− rt+ st+ rst) = y2.

Substituting s from (2) we obtain a defining equation for the affine surface S
defined in the introduction. Thus, we have constructed the rational map from the
introduction

p : S → A5, p(r, t, y) = (a, b, c, d, e),

(defined by (1), (2) and Proposition 4) and proved that for every exotic quintuple
(a, b, c, d, e) there is a rational point (r, t, y) on the surface S such that p(r, t, y) =
(a, b, c, d, e). Note that the pair (r, t) defining the point is not necessarily unique.

Conversely, given (r, t, y) ∈ S(Q) such that p(r, t, y) is defined, the quintuple
p(r, t, y) will be exotic if it is non-degenerate (all elements must be distinct and
nonzero). This finishes the proof of Proposition 2.

3. Construction of curves on S

If we show that the surface S has infinitely many rational points outside the
degeneracy locus of p (a finite set of curves on S whose rational points either map
under p to degenerate quintuples or p is not defined for them), then Proposition
2 will imply Theorem 1. For that, we will construct genus one curves on S which
are defined over Q and birationaly equivalent to elliptic curves (over Q) of positive
Mordell-Weil rank.

Denote by π : S → A2 the projection π(r, t, y) = (r, t), and denote by

C1 : 1 + r − 2r2t− t2 + rt2 = 0,

C2 : −1 + r + 2r2t+ t2 + rt2 = 0,

C3 : −r − r2 − 2t− rt2 + r2t2 = 0,

C4 : r − r2 − 2t+ rt2 + r2t2 = 0,

curves over which the map π is ramified.
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The configuration of these curves has a large symmetry group. One can readily
check that the maps

τ1(r, t) = (−r, t), τ2(r, t) =

(
1

r
,

1

t

)
,

τ3(r, t) =

(
−r, t− 1

t+ 1

)
,

extend to birational automorphisms of C1 ∪ C2 ∪ C3 ∪ C4, and also to birational
automorphisms of S. While we have already encountered maps τ1 and τ2, note
that if p(r, t) = (a, b, c, d, e), then p(τ3(r, t)) = (−d,−c,−b,−a,−e). They generate
a group G of order 16 which acts on the set of plane curves D ⊂ A2. We say that
two plane curves D1 and D2 are equivalent if there is τ ∈ G such that it generates
birational map from D1 to D2.

Remark 2. We remark one curiosity related to τ3. Note that if (a, b, c, d) is
rational Diophantine quadruple with abcd = 1 which corresponds to the triple
(r, s, t), then rational Diophantine quadruple ( 1

a ,
1
b ,

1
c ,

1
d ) corresponds to the triple

( r−1
r+1 ,

s−1
s+1 ,

t+1
t−1 ).

Let D ⊂ A2 be a plane curve of genus zero, and denote by D̃ = π−1(D) a

pullback of D under π. Assume that D̃ is absolutely irreducible of genus g. Genus

g is controlled by the ramification of π|D̃. More precisely, if we resolve singularities

of the projective closures of D̃ and D, and apply Riemman-Hurwitz formula to the

corresponding extension π̃ of π|D̃ we will get

2g − 2 = −4 +N,

where N is the number of ramification points of π̃. In particular, if we want g to
be one, then N must be equal to four.

Denote L =
⋃

i 6=j Ci∩Cj . We have the following criterion for ramification points

of π̃.

Lemma 5. Assume that, for some i, Ci and D intersect transversally at P . If
P /∈ L and if P is nonsingular on D, then π̃ is ramified at P .

The previous lemma suggests that if we want to search for a genus zero plane

curve D for which D̃ = π−1(D) is genus one curve, our best candidates would be
curves that intersect ∪iCi outside L in as few points as possible. This task gets
harder as the degree of D gets bigger — by Bézout’s theorem D and Ci intersect at
3 degD or 4 degD points (counting multiplicities and points at infinity). Also, to
control the genus of D one needs to specify singularities (whose number is described
by Plücker’s formula) which a priori can be anywhere (but it works best for us if
they are on ∪Ci since then this intersection will probably not count for ramification)
so this made systematic computer search impossible for us to implement.

In addition to this approach, in order to employ the symmetry group G, we also
searched for curves D on which some τ ∈ G induces birational automorphism. The
logic behind this is that if, for example, such D intersects Ci (ideally) in L, and if
τ induced birational map between Ci and Cj , then D also intersects Cj in L (since
τ maps L into itself).

4. Results

In our computer search we found three inequivalent genus zero curvesD1, D2, D3 ⊂
A2 defined in the introduction such that the curves D̃i = π−1(Di) are genus one
curves birational to elliptic curve with positive Mordell-Weil rank. Interestingly,
the orbit of each of these curves under the action of G is of size 8 — the curves are
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fixed by elements τ2, τ2 ◦ τ2
3 and τ1, respectively. The following analysis of curves

D̃i finishes the proof of Proposition 3.

4.1. Curve D̃1. We have the following parametrization of the curve D1

ψ1(u) =

(
−3u2 + 4u− 1

3u2 + 8u+ 3
,

2u

(u+ 1)(3u+ 1)

)
,

which gives the following model for D̃1

−192
(
5u2 + 10u+ 3

) (
9u2 + 18u− 1

)
= v2,

which is birational to the elliptic curve

E1 : y2 = x3 − 2892x− 59024,

of rank 1 and torsion subgroup isomorphic to Z/2Z×Z/2Z. A generator of infinite
order in E1(Q) corresponds to u = −60/233 and parameterizes the following exotic
quintuple

a = − 29529940110878678717653

420081952495961042800800
, b = −3041992513146972959

115488479640779256
,

c = − 351416293757343837

2249352029178441082
, d = −1776863948138083954777600

514004191012768208630559
,

e = −927643283361539913482847

141804790226710724159200
.

4.2. Curve D̃2. We have the following parametrization of the curve D2

ψ2(u) =

(
u(2u+ 1)

(u+ 1)(u+ 2)
,−u

2 − 2u− 2

u(u+ 2)

)
,

which gives the following model for D̃2

48
(
u2 + 16u+ 10

) (
3u2 − 2

)
= v2,

which is birational to the elliptic curve

E2 : y2 = x3 − 876x− 9520,

of rank 1 and torsion subgroup isomorphic to Z/2Z×Z/2Z. A generator of infinite
order in E2(Q) corresponds to u = 113

23 and parameterizes the following exotic
quintuple {

− 482493852225

293535838544
,−1058592509345792

1212259417081713
,−1207470487056449

74793264945984
,

− 18858398366873

437001310622800
,−695331110026639

116388239242275

}
.

4.3. Curve D̃3. We have the following parametrization of the curve D3

ψ3(u) =

(
− 2u+ 1

u2 + u+ 1
,
u2 + 4u+ 1

(u− 1)(u+ 1)

)
,

which gives the following model for D̃3

−48
(
u2 − 3u− 1

) (
u2 + 5u+ 3

)
= v2,

which is birational to the elliptic curve

E3 : y2 + xy + y = x3 − x2 − 41x+ 96,
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of rank 1 and torsion subgroup isomorphic to Z/2Z×Z/2Z. A generator of infinite
order in E3(Q) corresponds to u = −4 and parameterizes the following exotic
quintuple {

−5632

1365
,−4459

330
,−143

840
,− 3375

32032
,−2457

1760

}
.

5. Concluding remarks

While we have found infinitely many rational Diophantine quintuples with D(0)
property, it remains open if there is a rational Diophantine quintuple with square el-
ements. On the other hand, there are infinitely many rational Diophantine quadru-
ples with square elements, for example the following two parameter family has this
property

a =
32(s− 1)2(s+ 1)2v2

22(2s3 − 2s+ v2)2
,

b =
v2(−4s3 + 4s+ v2)2

22(s+ 1)2(s− 1)2(−s3 + s+ v2)2
,

c =
(2s3 − 2s+ v2)2

32v2s2
,

d =
42(−s3 + s+ v2)2s2

v2(−4s3 + 4s+ v2)2
.

This family is obtained by taking t = 1/(r − 1) in the notation of Proposition 4.
We have also found an example of a rational Diophantine quadruple with square
elements for which the product abcd 6= 1{(

18

77

)2

,

(
55

96

)2

,

(
56

15

)2

,

(
340

77

)2
}
.
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