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Abstract. We consider arithmetic progressions on Pellian equations x2 −
d y2 = m, i.e. integral solutions such that the y-coordinates are in arithmetic
progression. We construct explicit in�nite families of d,m for which there ex-
ists a �ve-term arithmetic progression in the y-coordinate, and we prove the
existence of in�nitely many pairs d,m parametrized by points of an elliptic
curve of positive rank for which the corresponding Pellian equations have so-
lutions whose y-component form a six-term arithmetic progression. Then we
exhibit many six-term progressions whose elements are the y-components of
solutions for an equation of the form x2 − d y2 = m with small coe�cients
d,m and also several particular seven-term examples. Finally we show a pro-
cedure for searching �ve-term arithmetic progressions for which there exist a
couple of pairs (d1,m1) and (d2,m2) for which the progression is a solution of
the associated Pellian equations. These results extend and complement recent
results of Dujella, Peth® and Tadi¢, and Peth® and Ziegler.

1. Introduction

The existence of arithmetic progressions in sets of relevance in the theory of num-
bers is a classical problem studied by many authors. Probably the most famous
among them is the problem of primes in arithmetic progressions, solved by B. Green
and T. Tao in [GT]. Bremner considered in [Br1] the existence of arithmetic pro-
gressions on elliptic curves and constructed elliptic curves with 8 rational points
(x, y) whose x-components are in arithmetic progression. Bremner, Silverman and
Tzanakis [BST] showed that the elliptic curve y2 = x(x2 − n2) of rank 1 does not
have non-trivial integral arithmetic progressions. Campbell [Ca] found an in�nite
family of elliptic curves with 9 integral points in arithmetic progression; later on
Ulas [U1] improved this result to an in�nite family with arithmetic progressions of
12 points. Finally MacLeod [ML] got new families of 12 terms and some examples
of progressions with 14 terms. Further examples of similar problems and results
can be found in [Al, Br2, U2].

The case of Pellian equations x2 − d y2 = m has been studied in the the papers
of Dujella, Peth® and Tadi¢ [DPT] and Peth® and Ziegler [PZ]. Dujella, Peth®
and Tadi¢ [DPT] have shown that for any four-term arithmetic progression, except
{0, 1, 2, 3} and {−3,−2,−1, 0}, there exist in�nitely many pairs d,m, with d non-
square and gcd(d,m) square-free, such that the terms of the given progression are
y-components of solutions of the equations

x2 − d y2 = m.

They also exhibit several examples of six-term progressions and an example of
a seven-term progression. Peth® and Ziegler [PZ] have shown that in the case
of �ve-term arithmetic progressions (with di�erent absolute values) there exist at
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most a �nite number of pairs d,m, with d non-square and gcd(d,m) square-free,
such that the elements of the given progression are y-components of solutions.
Recently, Bérczes and Ziegler [BZ] have considered similar problems for geometric
progressions on Pellian equations.

In this note we look for arithmetic progressions of length N whose terms are the
y coordinates of solutions of Pellian equations, that is, we look for integers m, d, a,
∆ > 0 and N > 0 as large as possible such that

(1) d(a+ j∆)2 +m = �, 0 ≤ j ≤ N,

where � denotes any perfect square; a is the �rst term of the arithmetic progression
and ∆ the di�erence. Furthermore, we require that gcd(a,∆) = 1, gcd(d,m) is
square-free, and |a + i∆| ̸= |a + j∆| if i ̸= j. The reason to study only the y-
component is that a three term arithmetic progression can appear only a �nite
number of times as the x-component of a Pellian equation (see [PZ]).

We construct, by two di�erent methods, explicit in�nite families of pairs d,m for
which there exist �ve-term arithmetic progressions. We also prove the existence of
in�nitely many pairs d,m parametrized by points of an elliptic curve of rank 3 for
which the corresponding Pellian equation has a six-term solution. We also show the
existence of in�nitely many 5-term arithmetic progressions for which there exist a
couple of essentially di�erent pairs (d1,m1) and (d2,m2) for which the members of
the progression are solutions of the associated Pellian equations. Finally we give
examples of six and seven term progressions, and of �ve term progressions which
are solutions of two di�erent equations.

2. The first method: direct search

We look for solutions imposing directly that they must satisfy equation (1). To
make things somewhat simpler, we divide by∆2, let α = a/∆, and look for solutions
in Q with ∆ = 1. We begin with 3-term solutions:

d(α+ j)2 +m = x2
j , j = 0, 1, 2.

Solving for m, d and α we get

(2)

d =
x2
0 − 2x2

1 + x2
2

2
,

m =
−x4

0 + 8x2
0 x

2
1 − 16x4

1 + 2x2
0 x

2
2 + 8x2

1 x
2
2 − x4

2

8(x2
0 − 2x2

1 + x2
2)

,

α =
−3x2

0 + 4x2
1 − x2

2

2(x2
0 − 2x2

1 + x2
2)

.

2.1. Four-term progressions. With the above values of m, d and α, we impose
that α+ 3 is also a solution in the following way:

d(α+ 3)2 +m = x2
0 − 3x2

1 + 3x2
2 = (x0 + x3)

2

(we denote the fourth square by (x0+x3)
2, and not x2

3, to simplify further notation).
From here we get

x0 =
−3x2

1 + 3x2
2 − x2

3

2x3
.

Substituting the above value of x0 in (2) we obtain
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(3)

d = 2(9x4
2 − 18x2

2 x
2
1 + 9x4

1 − 2x2
2 x

2
3 − 2x2

1 x
2
3 + x4

3),

m = −2(3x2 − 3x1 − x3)(x2 − x1 − x3)(x2 + x1 − x3)(3x2 + 3x1 − x3)

× (3x2 − 3x1 + x3)(x2 − x1 + x3)(x2 + x1 + x3)(3x2 + 3x1 + x3)

× (9x4
2 − 18x2

2 x
2
1 + 9x4

1 − 2x2
2 x

2
3 − 2x2

1 x
2
3 + x4

3),

α = −27x4
2 + 54x2

2 x
2
1 − 27x4

1 + 14x2
2 x

2
3 − 2x2

1 x
2
3 − 3x4

3.

2.2. Five-term progressions. Next we force α + 4 as another solution, which
gives the quartic equation

(4) 27x4
2 − 54x2

1 x
2
2 + 27x4

1 + 6x2
2 x

2
3 − 14x2

1 x
2
3 + 3x4

3 = � .

This admits the parametric solution
x1 = 24u v,

x2 = −23u2 − v2,

x3 = 23(v − u)(v + u).

The corresponding values for d, m, a and ∆ once simpli�ed and taking o� common
factors are:

(5)

d = 279841u4 − 153410u2 v2 + 34849 v4,

m = 576(23u− 13 v)(23u− 11 v)(23u− 5 v)v2(23u+ 5 v)

× (23u+ 11 v)(23u+ 13 v)(279841u4 − 153410u2 v2 + 34849 v4),

a = −279841u4 + 89930u2 v2 − 52009 v4,

∆ = 279841u4 − 153410u2 v2 + 34849 v4.

An alternative way to parametrize the quartic equation (4) is to take x2 =
x1 + g x3. Then the left-hand side of (4) becomes

x2
3

(
−8x2

1 + 108 g2 x2
1 + (12 g x1 + 108 g3 x1)x3 + (3 + 6 g2 + 27 g4)x2

3

)
.

It is enough to choose particular values of g for which 3 + 6 g2 + 27 g4 is a perfect
square and then parametrize the inner conic in x3. This can be achieved because the
quartic h2 = 3+6 g2+27 g4 is equivalent to the elliptic curve y2 = x3+60x2+864x
whose rank is equal to 1. Moreover, for any g such that −8+108 g2 is a square, we
can parametrize the inner conic in x1. This is possible because −8 + 108 g2 = h2

has a particular solution, for instance g = 1, h = 10.

2.3. Six-term progressions. Finally, the condition that

d(a+ 5∆)2 +m = � ,

where m, d, a and ∆ are given in (5), yields the quartic equation

279841u4 − 166106u2 v2 + 26269 v4 = � .

The corresponding curve is birationally equivalent to the elliptic curve of rank 3

y2 = x3 + 157x2 − 405x ,

giving in�nitely many values of the parameters u, v, for which the Pellian equation
de�ned by the parameters in (5) has a six-term solution.

3. The second method: adjusting polynomials

It is based on the fact that for any monic polynomial P2n ∈ Q[z] of degree 2n
there exist a monic polynomial Qn ∈ Q[z] of degree n and Rn−1 ∈ Q[z] of degree
n − 1 such that P2n = Q2

n − Rn−1. If z ∈ Q is a root of P2n, then Rn−1(z) = �.
This idea has been used in [F, ACP] to construct elliptic curves of high rank.
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3.1. Adjusting with polynomials of degree 6. Consider the polynomial of de-
gree 6

P (z) = (z − a− u∆)
4∏

j=0

(z − a− j∆),

where u is a free parameter. Then

P (z) = (q(z))2 −m−Az − d z2,

where q(x) is a degree 3 polynomial and

m = 2−8∆4
(
256 a2 + 256 a∆u+ 320 a2 u2 + 1600 a∆u2 + 1600∆2 u2

− 160a2 u3 − 800 a∆u3 − 800∆2 u3 + 20 a2 u4 + 120 a∆u4

+ 180∆2 u4 − 4 a∆u5 − 20∆2 u5 +∆2 u6
)
,

A = 2−8∆4
(
−512 a− 256∆u− 640 a u2 − 1600∆u2 + 320 a u3

+ 800∆u3 − 40 a u4 − 120∆u4 + 4∆u5
)
,

d = 2−8∆4
(
256 + 320u2 − 160u3 + 20u4

)
.

Now we make A = 0 with

∆ =
2 a(64 + 80u2 − 40u3 + 5u4)

u(−64− 400u+ 200u2 − 30u3 + u4)
.

After simplifying we get the following uniparametric family of �ve-term solutions

(6)

d = 64 + 80u2 − 40u3 + 5u4,

m = 4(−8 + u)(−6 + u)(−4 + u)2(−2 + u)2u2(2 + u)(4 + u)

× (64 + 80u2 − 40u3 + 5u4),

a = u(−64− 400u+ 200u2 − 30u3 + u4),

∆ = 2(64 + 80u2 − 40u3 + 5u4).

3.2. Adjusting with polynomials of degree 4. Given 0 ≤ k ≤ 4, we consider
the polynomial of degree 4 de�ned by

Pk(z) =
∏

0≤j≤4
j ̸=k

(z − a− j∆).

It can be written as

Pk(z) =
(
qk(z)

)2 −mk − dk z
2,

where qk is a monic polynomial of degree 2 and dk, mk are rational functions of a
and ∆. The equation mk+dk y

2 = � has { a+ j∆ : 0 ≤ j ≤ 4, j ̸= k } as solutions.
In order to complete the �ve-term progression we have to impose the missing term,
y = a+k∆, as a new solution. This produces a quadratic equation, whose solutions
can be parametrized and give a family of Pellian equations with �ve-term solutions.
When k = 0, k = 2 or k = 4, these families turn out to be trivial.

When k = 1 we have

m1 =
∆3(15 a3 + 166 a2∆+ 552 a∆2 + 576∆3)

(4 a+ 9∆)2
,

d1 = − 15∆3

4(4 a+ 9∆)
.

Then m1 + d1(a+∆)2 = � if

409 a2 + 1878 a∆+ 2169∆2 = � .
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Parametrizing this conic and eliminating denominators and super�uous squares we
arrive to the following family

(7)

d1(U,W ) = −15(3U −W )(27U +W )(153U2 + 32U W −W 2),

m1(U,W ) = 32(18U −W )(33U −W )(9U −W )(7U +W )(12U +W )

× (9U + 2W )(153U2 + 32U W −W 2),

a1(U,W ) = 2(162U2 + 39U W −W 2),

∆1(U,W ) = −153U2 − 32U W +W 2,

satisfying d1 (a1 + j∆1)
2 +m1 = � for 0 ≤ j ≤ 4.

The condition d1 (a1 + 5∆1)
2 +m1 = � translates into the quartic

(8) � = −699111U4 + 242028U3 W + 89046U2 W 2 − 468U W 3 − 71W 4.

Since it has a rational point (e.g. with U/W = 1/3), it is birationally equivalent to
the elliptic curve y2 = x3+12x2−180x whose rank is 2, so again we �nd in�nitely
many pairs (d1,m1) having six-term solutions for the corresponding Pellian equation
x2 − d1 y

2 = m1.
A similar construction can be made for k = 3. In this case we get the following

family:

(9)

d3(U,W ) = −(3U −W )(U −W )(85U2 − 36U W −W 2),

m3(U,W ) = 32U(11U − 5W )(5U − 3W )(7U −W )(4U −W )(2U −W )

× (85U2 − 36U W −W 2),

a3(U,W ) = 2(80U2 − 39U W +W 2),

∆3(U,W ) = −85U2 + 36U W +W 2.

The condition d3 (a3 + 5∆3)
2 +m3 = � gives the quartic

(10) � = −1319U4 + 2396U3 W − 930U2 W 2 − 52U W 3 + 49W 4.

Since it has a rational point (e.g. with U = 0), it is birationally equivalent to the
elliptic curve y2 = x3 + 27x2 − 360x of rank 3. Thus, as in the preceding case,
in�nitely many Pellian equations with six-term progressions as solutions can be
derived from it.

4. Five-term progressions for several equations

It is shown in [PZ] that for each �ve-term progression (with di�erent absolute val-
ues) there are at most �nitely many d,m ∈ Z such that d is not a square, gcd(d,m)
is square-free and such that these �ve numbers are y-components of solutions to
x2 − d y2 = m. In this section we use the two �ve-term families given by (7) and
(9) in order to get examples of �ve-term arithmetic progressions having at least two
essentially di�erent pairs (d,m) such that these are solutions of the corresponding
Pellian equations.

Based on the expressions of ∆1 and ∆3, we look for values of the parameters
u, v, v′, w such that ∆1(u+2 v, w+16u+39 v) = ∆3(u− 2 v′, w− 18u− 39 v′). We
have

∆1(u+ 2 v, w + 16u+ 39 v) = −409u2 − 1636u v − 1587 v2 + 14 v w + w2,

∆3(u− 2 v′, w − 18u− 39 v′) = −409u2 + 1636u v′ + 3989 v′2 − 150 v′ w + w2.

Thus we get

w =
1636(v + v′)u+ (1587 v2 + 3989 v′2)

2(7 v + 75 v′)
.
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With this value of w we let v′ = λ v, λ ∈ Q, and impose a1(9u + 18 v, w + 16u +
39 v) = a3(u − 2 v′, w − 18u − 39 v′), which is equivalent to the second degree
equation in v

− 904904λ2 u2 − 4437872λu2 + 1793880u2 + 2030908λ3 u v

− 11116828λ2 u v − 9004588λu v + 4069164u v + 2400871λ4 v2

− 2522100λ3 v2 − 11857862λ2 v2 − 4554900λ v2 + 2306007 v2 = 0.

The discriminant of this equation with respect to v is given by

(75λ+ 7)2(1111λ2 − 2402λ+ 1111)(128161λ2 + 136506λ+ 12969)u2.

So for a rational solution to exist, this expression must be a square, which happens
when

(1111λ2 − 2402λ+ 1111)(128161λ2 + 136506λ+ 12969) = � .

But since the polynomial on the left hand side assumes a square value for λ = −1,
this quartic curve is birationally equivalent to the elliptic curve y2 = x3−34682x2+
293420281x whose rank is 2, so there are in�nitely many solutions λ ∈ Q for which
the Pellian equations corresponding to the pairs (d1,m1) and (d3,m3) admit a
common �ve-term progression as solutions.

In some cases the values of (d1,m1) and (d3,m3) are essentially the same. In
fact, this happens exactly when λ is a rational zero of the resultant of the polyno-
mials a1−a3 and d1 m3−d3 m1, and these zeros are −1, −7/75, 27/41 and 699/457.
Therefore, there are in�nitely many λ ∈ Q which produce di�erent pairs (d1,m1)
and (d3,m3). We show next that this construction produces in�nitely many (es-
sentially) di�erent pairs (a,∆) which give �ve-term progressions satisfying Pellian
equations for two di�erent pairs (d1,m1) and (d3,m3).

Let λ′ ∈ Q produce the pair (a′,∆′), and certain pairs (d1,m1) and (d3,m3).
We are interested in the question how many other rational λ can produce the
(essentially) identical pair (a′,∆′). Let z = a′/∆′ be given. Then we seek for
λ ∈ Q which satisfy the system a1 − a3 = 0 and a1 − z∆1 = 0. After eliminating
the denominators, we look at the resultant of the polynomials a1−a3 and a1−z∆1

(as polynomials in v). The condition that the resultant is equal to 0 gives a (non-
zero) polynomial of degree 8 in λ, the leading coe�cient being

8642970851449 z2 + 34571883405796 z − 2625169872622968,

so it has at most 8 rational solutions λ. Assume that our procedure gives only
�nitely many di�erent pairs (a,∆). Then in�nitely many λ produce the (essentially)
identical pair (a,∆). However, this contradicts what we proved above that at most
8 λ can produce the same pair (a,∆). For instance, take z = −36/41. Then the
resultant is equal to 0 for λ = 11/57, 57/11, 297/791, −755/143. It can be shown
that these four numbers correspond to four 2-torsion points on the elliptic curve
induced by the condition a1 − a3 = 0. The smallest values (λ, u, v) for which the
pairs (d1,m1) and (d3,m3) are di�erent are given in table 1.

5. Examples

In this section we present some of the results found in our search for arithmetic
progressions in solutions of Pellian equations. The search was carried out by looking
for solutions of the quartics (8) and (10), and then computing the parameters
of the Pellian equations and of the corresponding arithmetic progressions using
the formulas given in (7) and (9). The computations made use of mwrank [C],
Mathematica

r [M] and PARI [P].
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Table 1. Small values of (λ, u, v)

λ u v

11/57 -46 57
57/11 46 11

319/157 -2134 785
177/95 -36777 26030

-9669/2257 1989770 760609
4073/1095 -4875791 1158510

5.1. Six-term progressions. Table 2 shows some examples of six-term progres-
sions having small coe�cients. We have chosen |d| ≤ 5000.

Table 2. Six-term examples

d m a ∆

-3416 100096425 -164 61
-2526 65857566775 853 842
-1704 16643051425 -3065 71
-1245 375701326 -295 166
-1091 91408016700 -1913 2182
-1055 27120272256 -5058 211
-10 46046 -67 24
291 2533111350 -3559 1746
631 1115071650 -1335 1262
709 933540300 -3181 1418
795 14889206101 -5711 3392
1065 4548544 -118 71
1171 8967108150 -4525 2342
1731 3934187950 -1571 2308
2226 4296914050 61 424
2370 12731719 -271 158
2905 45752256 -97 83
3095 37309738466 -5689 3714
3865 10250944704 -802 773
4195 33151804686 -1297 1678
4249 3269059200 -1329 607
4249 -62546296725 -4273 9712
4299 14559494950 -4513 2866

5.2. Seven-term progressions. In [DPT] an example of a seven-term progression
was shown. It is included in table 3 jointly with another �ve examples that we have
found in our search.

5.3. A particular symmetric progression of six terms. Consider the 6-term
progression symmetric around the origin {−5,−3,−1, 1, 3, 5 }, corresponding to
values a = −5, ∆ = 2, and let

d = −(u− 5 v)(u− v)v(u+ v),

m = (u− 3 v)(u− 2 v)(u+ 3 v)(u+ 7 v).
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Table 3. Seven-term examples

d m a ∆

-1245 375701326 -461 166
37569 27833977600 -5956 1789

1115646 -747027030131525 -185275 53126
231235 5329956420362574 -294919 92494
505561 12382891041664000 -856524 216669

18529039 18265211513829127697850 -43776175 37058078

A simple computation shows that d(a + j∆)2 + m = � for 0 ≤ j ≤ 5. So there
exist in�nitely many non-equivalent pairs (d,m) for which the corresponding Pellian
equation has the same six-term progression as solution. In order to get an extra
solution both in the left and in the right one has to impose that

u4 − 44u3 v + 222u2 v2 + 4u v3 − 119 v4 = �,

and this quartic is equivalent to the elliptic curve

y2 = x3 + 288x2 + 11520x

whose rank is 1. Thus, the 8-term progression {−7,−5,−3,−1, 1, 3, 5, 7 } is a solu-
tion of in�nitely many Pellian equations. This gives an a�rmative answer to a ques-
tion posed in Section 8 of [PZ]. The smallest two 8-term solutions that appear in this
way correspond to the values (d,m) = (−105, 5434) and (d,m) = (570570, 4406791).

5.4. Five-term solutions for more than one equation. In [DPT] various ex-
amples are shown each having a couple of pairs (d,m) of which they are a solution.
In table 4 we show several additional examples, one of them having three pairs
(d,m). The �rst one and the two last ones were found by the procedure of sec-
tion 4.

Table 4. Five-term solutions for more than one equation

a ∆ d m

-36 41 87945 160389376
984 1026025
-615 10506496

-97 134 1474 70385175
1005 6170164

-157 97 208065 848087296
81480 -111536711

-174 277 1008280 55523430369
-831 887286400

-453 218 -545 111945834
2289 59230600

-471 362 41811 1406035150
1810 143643591

-514 355 10153 -254454912
-242607 201349747456

-494932 209067 1367646625 18094425353599558656
-179887867255 44134212595620130210304

-180106988 106894461 198348195265985 3829671549427453787897212222976
-43046790856584695 2636877642611872714844692076611584
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