DIOFANTSKE JEDNADŽBE

5. zadaća
11. 4. 2007.

1. Nađite sva cjelobrojna rješenja jednadžbe

\[(x^3 - 2x^2y + y^3)(x^2 - 3y^2) = 1.\]

2. Dokažite da je derivacija hipergeometrijske funkcije \(F\left(\alpha, \beta \atop \gamma \right| x\right) \) jednak

\[\frac{\alpha\beta}{\gamma} F\left(\frac{\alpha + 1, \beta + 1}{\gamma + 1} \atop x\right).\]

3. Dokažite da hipergeometrijska funkcija \(F = F\left(\alpha, \beta \atop \gamma \right| x\right) \) zadovoljava diferencijalnu jednadžbu

\[x(x - 1)F'' + ((1 + \alpha + \beta)x - \gamma)F' + \alpha\beta F = 0.\]

4. Dokažite da za sve \(p \in \mathbb{Z}, q \in \mathbb{N} \) vrijedi

\[\left|\sqrt[3]{19} - \frac{p}{q}\right| > \frac{10^{-7}}{q^{2.56}}.\]

(Uputa: pronadite prirodne brojeve \(\alpha \) i \(\beta \) takve da vrijedi \(19\alpha^3 - \beta^3 = 1 \), pa primijenite Teorem 3.6 na \(a = 3 \cdot 19 \alpha^3 \) i \(b = 3 \cdot \beta^3 \).)

5. Nađite prirodne brojeve \(p_1, p_2, q \) takve da je \(q > 10 \) i vrijedi

\[\left|\sqrt{2} - \frac{p_1}{q}\right| < \frac{1}{q^2}, \quad \left|\sqrt{3} - \frac{p_2}{q}\right| < \frac{1}{q^2}.\]

6. Nađite prirodan broj \(d \) (takav da ni \(d \) ni \(2d \) nisu potpuni kvadrati), te prirodne brojeve \(p_1, p_2, q \) takve da vrijedi

\[\left|\sqrt{2} - \frac{p_1}{q}\right| < 0.01 \frac{1}{q^{1.5}}, \quad \left|\sqrt{d} - \frac{p_2}{q}\right| < 0.01 \frac{1}{q^{1.5}}.\]

Rok za predaju zadaće je 25.4.2007. Andrej Dujella