R. M. Robinson, Unsymmetrical approximation of irrational numbers, Bull. Amer. Math. Soc. 53 (1947), 351–361.2. Aproksimacije razlomcima specijalnog tipa (Gorana Aras-Gazić, 12.9.2012.)J. Tong, Robinson's theorem on asymmetric Diophantine approximation, Rocky Mountain J. Math. 26 (1996), 329–335.
C. Elsner, On the approximation of irrational numbers with rationals restricted by congruence relations, Fibonacci Quart. 34 (1996), 18-29.3. Lagrangeov i Markovljev spektarL. C. Eggan, On Diophantine approximations, Trans. Amer. Math. Soc. 99 (1961), 102–117.
R. M. Robinson, The approximation of irrational numbers by fractions with odd or even terms, Duke Math. J. 7 (1940), 354–359.
A. M. Rockett, P. Szusz, Continued Fractions, World Scientific, 1992. (Section 4.6)4. Razvoj u verižni razlomak i transcendentnost broja e (Ivana Božić, 3.10.2012.)T.W. Cusick, M.E. Flahive, The Markoff and Lagrange Spectra, American Mathematical Society, 1989.
H. Cohn, A short proof of the simple continued fraction expansion of e, Amer. Math. Monthly 113 (2006), 57–62.5. Zarembina slutnja (Ana Barbir, 26.9.2012.)A. Baker, Transcendental Number Theory, Cambridge University Press, 1990. (Chapter 1)
N. Moshchevitin, On some open problems in Diophantine approximation, preprint, 2012.6. Mahlerova i Koksmina klasifikacija realnih brojeva (Rozarija Jakšić, 16.10.2013.)H. Niederreiter, Dyadic fractions with small partial quontiens, Monatsh. Math. 101 (1986), 309-315.
Y. Bugeaud, Approximation by Algebraic Numbers, Cambridge University Press, 2004. (Chapter 3)7. Primjena diofantskih aproksimacija na problem ruksaka (Tanja Vojković, 11.12.2014.)A. Baker, Transcendental Number Theory, Cambridge University Press, 1990. (Chapter 8)
A. M. Odlyzko, The rise and fall of knapsack cryptosystems, in: Cryptology and Computational Number Theory, Proceedings of Symposia in Applied Mathematics, Vol. 42, American Mathematical Society, Providence, 1990, 75–88.8. NTRU kriptosustav i rešetke (Ana Grozdanić, 9.7.2012.)J. C. Lagarias, Knapsack public key cryptosystems and Diophantine approximation, in: Advances in Cryptology, Proceedings of Crypto-83, Plenum, New York, 1984, 3–23.
N. P. Smart, The Algorithmic Resolution of Diophantine Equations, Cambridge University Press, 1998. (Section IV.2)
J. Hoffstein, N. Howgrave-Graham, J. Pipher, W. Whyte, Practical Lattice-Based Cryptography: NTRUEncrypt and NTRUSign, in: P. Q. Nguyen, B. Vallee (Eds.): The LLL Algorithm. Survey and Applications, Springer, Berlin, 2010. (Chapter 11)9. LLL algoritam i faktorizacija polinoma (Sanja Vranić)J. Hoffstein, J. Pipher, J. H. Silverman: An Introduction to Mathematical Cryptography, Springer, 2008. (Sections 6.10, 6.11)
J. Hoffstein, J. Pipher, J.H. Silverman, NTRU: A ring-based public key cryptosystem, Algoritmic Number Theory - ANTS III, LNCS 1423, Springer-Verlag, 1998, pp. 267-288.
D. Coppersmith, A. Shamir, Lattice attacks on NTRU, Advances in Cryptology - EUROCRYPT '97, LNCS 1233, Springer-Verlag, 1997, pp. 52-61.
J. Klüners, The van Hoeij Algorithm for Factoring Polynomials, in: P. Q. Nguyen, B. Vallee (Eds.): The LLL Algorithm. Survey and Applications, Springer, Berlin, 2010. (Chapter 8)10. Višeparametarske familije Thueovih jednadžbi i Tzanakisova metodaA. K. Lenstra, H. W. Lenstra, L. Lovász, Factoring polynomials with rational coefficients, Annals of Mathematics 261 (1982), 515-534.
M. van Hoeij, Factoring polynomials and the knapsack problem, Journal of Number Theory 95 (2002), 167-189.
V. Ziegler, On a certain family of quartic Thue equations with three parameters, Glasnik matematički 41 (2006), 9-30.11. Separacija korijena cjelobrojnih kubnih polinomaB. Jadrijević, A system of Pellian equations and related two-parametric family of quartic Thue equations, Rocky Mountain J. Math. 35 (2005), 547-572.
B. Jadrijević, On two-parametric family of quartic Thue equations, J. Théor. Nombres Bordeaux 17 (2005), 171-177.
Y. Bugeaud, M. Mignotte, Polynomial root separation, Intern. J. Number Theory 6 (2010), 587-602.A. Schönhage, Polynomial root separation examples, J. Symbolic Comput. 41 (2006), 1080-1090.