Duality structures on tensor categories coming from vertex operator algebras

Simon Wood Cardiff University and Hamburg University

Joint work with Robert Allen, Jürgen Fuchs, Simon Lentner, Christoph Schweigert arXiv:2107.05718, 2306.XXXX

Representation Theory XVIII (Vertex Algebras), Dubrovnik 2023

Overview of HLZ tensor structure [Huang-Lepowsky-Zhang]

Definition: Fusion product (vertex algebra tensor product)

Let *V* be a vertex operator algebra and let *M*, *N* be *V*-modules. The fusion product of *M* and *N* is a *V*-module $M \boxtimes N$ together with an intertwiner $\mathcal{Y}^{M \boxtimes N} \in \binom{M \boxtimes N}{M, N}$ satisfying the following universal property: For any module *X* and any intertwining operator $\mathcal{I} \in \binom{X}{M, N}$, there exists a unique $f \in \operatorname{Hom}_V(M \boxtimes N, X)$

Due to being characterised by a universal property, tensor products are unique, if they exist. The construction (existence) of tensor products is hard because vertex operator algebras do not admit free modules.

Overview of HLZ tensor structure [Huang-Lepowsky-Zhang]

Definition: Fusion product (vertex algebra tensor product)

Let *V* be a vertex operator algebra and let *M*, *N* be *V*-modules. The fusion product of *M* and *N* is a *V*-module $M \boxtimes N$ together with an intertwiner $\mathcal{Y}^{M \boxtimes N} \in \binom{M \boxtimes N}{M, N}$ satisfying the following universal property: For any module *X* and any intertwining operator $\mathcal{I} \in \binom{X}{M, N}$, there exists a unique $f \in \operatorname{Hom}_V(M \boxtimes N, X)$

Due to being characterised by a universal property, tensor products are unique, if they exist. The construction (existence) of tensor products is hard because vertex operator algebras do not admit free modules.

Overview of HLZ tensor structure [Huang-Lepowsky-Zhang]

Let *V* be a vertex operator algebra and let C be a category of *V*-modules to which HLZ theory applies.

- For module homomorphimsms $f : M \to U, g : N \to W$, the morphism $f \boxtimes g$ is uniquely characterised by $(f \boxtimes g) \circ \mathcal{Y}^{M \boxtimes N} = \mathcal{Y}^{U \boxtimes W} \circ (f \otimes g)$
- *V* is the tensor identity and the unit isomorphisms are uniquely characterised by

$$\ell_M \left(\mathcal{Y}^{V,M}(a,z)m
ight) = Y^M(a,z)m$$
 and
 $r_M \left(\mathcal{Y}^{M,V}(m,z)a
ight) = e^{zL_{-1}}Y^M(a,-z)m$

- associativity isomorphisms (hardest part!) $A_{M,N,R}\left(\mathcal{Y}^{M,N\boxtimes R}(m,x_1)\mathcal{Y}^{N,R}(n,x_2)r\right) = \mathcal{Y}^{M\boxtimes N,R}\left(\mathcal{Y}^{M,N}(m,x_1-x_2)n,x_2)r\right)$ All analytic details hidden.
- Braiding isomorphisms uniquely characterised by $c_{M,N}(\mathcal{Y}^{M,N}(m,x)n) = e^{xL_{-1}}\mathcal{Y}^{N,M}(n,e^{i\pi}x)m$

A category of modules over a vertex operator algebra need not

- be semisimple,
- be finite,
- have a self-contragredient tensor unit (the vertex operator algebra),
- have a simple tensor unit,
- have a left exact tensor product (right exactness is automatic),
- be rigid.

A category of modules over a vertex operator algebra need not

- be semisimple,
- be finite,
- have a self-contragredient tensor unit (the vertex operator algebra),
- have a simple tensor unit,
- have a left exact tensor product (right exactness is automatic),
- be rigid.

Example: rational vertex operator algebras

A category of modules over a vertex operator algebra need not

- be semisimple,
- be finite,
- have a self-contragredient tensor unit (the vertex operator algebra),
- have a simple tensor unit,
- have a left exact tensor product (right exactness is automatic),
- be rigid.

Example: Heisenberg algebra (no lattice)

A category of modules over a vertex operator algebra need not

- be semisimple,
- be finite,
- have a self-contragredient tensor unit (the vertex operator algebra),
- have a simple tensor unit,
- have a left exact tensor product (right exactness is automatic),

• be rigid.

Example: bosonic ghosts or affine algebras at admissible non-integral levels

A category of modules over a vertex operator algebra need not

- be semisimple,
- be finite,
- have a self-contragredient tensor unit (the vertex operator algebra),
- have a simple tensor unit,
- have a left exact tensor product (right exactness is automatic),
- be rigid.
- Example: (1, p)-triplet, $p \ge 2$

A category of modules over a vertex operator algebra need not

- be semisimple,
- be finite,
- have a self-contragredient tensor unit (the vertex operator algebra),
- have a simple tensor unit,
- have a left exact tensor product (right exactness is automatic),
- be rigid.

Example: (p,q)-triplet, $p,q \ge 2$

Rigidity

Since rigidity is a property (unique, if it exists) it is in practice very hard to verify and there are only a few families of non-rational examples for which this has been done.

- (1, *p*)-triplet [Tsuchiya-SW]
- Bosonic ghosts [Allen-SW]
- Virasoro at generic central charges [Creutzig-Jiang-Orosz Hunziker-Ridout-Yang]
- (1, p)-singlet [Creutzig-McRae-Yang]
- B_p and related algebras [Creutzig-McRae-Yang]
- $\mathfrak{gl}(1|1)$ [Creutzig-McRae-Yang]

It would be helpful to have a weaker notion of duality that is a structure rather than a property.

Grothendieck-Verdier or *-autonomous categories

Definition: Grothendieck-Verdier (GV) category

Let C be a monoidal category. An object $K \in C$ is called *dualising* if

1 The functor $Y \mapsto \operatorname{Hom}_{\mathcal{C}}(-\otimes Y, K)$ is representable, that is, $\exists GY \in \mathcal{C}$ such that

 $\varpi_{X,Y}: \operatorname{Hom}_{\mathcal{C}}(X \otimes Y, K) \stackrel{\cong}{\longrightarrow} \operatorname{Hom}_{\mathcal{C}}(X, GY).$

Note this defines a contravariant functor $G: Y \mapsto GY$.

2 The functor characterised above is an anti-equivalence. Let be G^{-1} be a choice of quasi-inverse.

(Ribbon) Grothendieck-Verdier structure on categories of vertex operator algebra modules

Theorem

Let *V* be a vertex operator and let C be a category of *V*-modules to which HLZ theory applies (in particular $V \in C$, C is closed under contragredients and taking contragredients is involutive). Then

- **1** V^* is a dualising object with $X \to X^*$ as dualising functor.
- **2** (*C*, *K*) is ribbon Grothendieck-Verdier. (The *V*-module braiding *c* and twist θ satisfy $\theta_X = G^{-1}(\theta_{GX})$ and $\theta_{X \otimes Y} = c_{Y,X} \circ c_{X,Y} \circ (\theta_X \otimes \theta_Y)$.)

(Ribbon) Grothendieck-Verdier structure on categories of vertex operator algebra modules

Proof

Recall the natural isomorphism

$$\begin{split} \operatorname{Hom}_{V}(X\boxtimes Y,Z) &\cong \begin{pmatrix} Z \\ X, \ Y \end{pmatrix} \to \begin{pmatrix} Y^{*} \\ X, \ Z^{*} \end{pmatrix} \cong \operatorname{Hom}_{V}(X\boxtimes Z^{*},Y^{*}). \\ \mathcal{Y} &\mapsto \ ``x \otimes \zeta \mapsto \zeta(\mathcal{Y}(e^{zL_{1}}(-z^{-2})^{L_{0}}x,z^{-1})-)" \end{split}$$

Set $Z = V^*$, then

 $\operatorname{Hom}_{V}(X\boxtimes Y,V^{*})\cong\operatorname{Hom}_{V}(X\boxtimes V^{**},Y^{*})\cong\operatorname{Hom}_{V}(X,Y^{*}).$

Heisenberg example

Let

- $F_0^{\rho}, \rho \in \mathbb{R}$ be the rank 1 Heisenberg vertex algebra, with conformal vector $(\frac{1}{2}a_{-1}^2 + \rho a_{-2}) |0\rangle, \rho \in \mathbb{R}$ and central charge $c = 1 12\rho^2$.
- Choose $\mathcal{C} = F_0 \text{mod}$ to be (semisimply) generated by $F_{\mu}, \mu \in \mathbb{R}$.

Then

- $F_{\mu} \boxtimes F_{\nu} \cong F_{\mu+\nu}, \, \mu, \nu \in \mathbb{R}.$
- $c_{\mu,\nu} = \mathbf{e}^{\mathbf{i}\pi\mu\nu}.$
- $\theta_{\mu} = \mathbf{e}^{\mathbf{i}\pi\mu(\mu-2\rho)}.$
- $F^*_{\mu} \cong F_{2\rho-\mu}$.

Heisenberg example

Let

- $F_0^{\rho}, \rho \in \mathbb{R}$ be the rank 1 Heisenberg vertex algebra, with conformal vector $(\frac{1}{2}a_{-1}^2 + \rho a_{-2})|0\rangle, \rho \in \mathbb{R}$ and central charge $c = 1 12\rho^2$.
- Choose $\mathcal{C} = F_0 \text{mod}$ to be (semisimply) generated by F_{μ} , $\mu \in \mathbb{R}$.

Then

- $F_{\mu} \boxtimes F_{\nu} \cong F_{\mu+\nu}, \, \mu, \nu \in \mathbb{R}.$
- $c_{\mu,\nu} = \mathbf{e}^{\mathrm{i}\pi\mu\nu}$.
- $\theta_{\mu} = e^{i\pi\mu(\mu-2\rho)}$. Depends on choice of conformal structure.
- $F^*_{\mu} \cong F_{2\rho-\mu}$. Depends on choice of conformal structure.

Bimodule example

Let *A* be a finite dimensional algebra and (A, A)-mod the category of finite dimensional (A, A)-bimodules. Then

• (*A*, *A*)-mod is monoidal with the tensor product characterised by the coequaliser

$$M \otimes_{\mathbb{C}} A \otimes_{\mathbb{C}} N \longrightarrow M \otimes_{\mathbb{C}} N \xrightarrow{\lambda} M \otimes_A N \longrightarrow 0.$$

A^{*} = Hom_ℂ(A, ℂ) is a dualising object for (A, A)-mod, with the vector space dual as dualising functor.

Known features of Grothendieck-Verdier categories

Proposition: [Boyarchenko-Drinfeld, Barr]

- Let (\mathcal{C}, \otimes) be monoidal.
 - 1 The full subcategory of dualising objects is a torsor over the invertible objects.
 - 2 Dualising functors need not be monoidal, but their squares are.
 - **③** For any *X*, *Y* ∈ C, *X* ⊗ − and − ⊗ *Y* admit right adjoints (internal homs): $\operatorname{Hom}_{\mathcal{C}}(Y, \operatorname{Hom}^{1}(X, Z)) \cong \operatorname{Hom}_{\mathcal{C}}(X \otimes Y, Z) \cong \operatorname{Hom}_{\mathcal{C}}(X, \operatorname{Hom}^{r}(Y, Z)),$ $\operatorname{Hom}^{1}(X, Z) = G^{-1}(GZ \otimes X), \qquad \operatorname{Hom}^{r}(Y, Z) = G(Y \otimes G^{-1}Z).$

④ *C* admits a second monoidal product *X* • *Y* = *G*(*G*⁻¹*Y* ⊗ *G*⁻¹*X*), which admits left adjoints and internal cohoms $\operatorname{Hom}_{\mathcal{C}}(\operatorname{coHom}^{1}(Y,X),Z)) \cong \operatorname{Hom}_{\mathcal{C}}(X, Y \bullet Z)$

 $\cong \operatorname{Hom}_{\mathcal{C}}(\operatorname{\underline{coHom}}^{\mathrm{r}}(X,Z),Y),$

 $\underline{\operatorname{coHom}}^{\operatorname{l}}(X,Z) = GX \otimes Z, \qquad \underline{\operatorname{coHom}}^{\operatorname{r}}(Y,Z) = Z \otimes G^{-1}Y.$

Known features of Grothendieck-Verdier categories

Proposition: [Boyarchenko-Drinfeld, Barr]

- Let (\mathcal{C}, \otimes) be monoidal.
 - 1 The full subcategory of dualising objects is a torsor over the invertible objects.
 - 2 Dualising functors need not be monoidal, but their squares are.
 - **③** For any $X, Y \in C$, $X \otimes -$ and $\otimes Y$ admit right adjoints (internal homs): Hom_C(Y, Hom¹(X, Z)) ≅ Hom_C(X ⊗ Y, Z) ≅ Hom_C(X, Hom^r(Y, Z)), Hom¹(X, Z) = $G^{-1}X \bullet Z$, Hom^r(Y, Z) = $Z \bullet GY$.

④ *C* admits a second monoidal product *X* • *Y* = *G*(*G*⁻¹*Y* ⊗ *G*⁻¹*X*), which admits left adjoints and internal cohoms $\operatorname{Hom}_{\mathcal{C}}(\operatorname{coHom}^{1}(Y,X),Z)) \cong \operatorname{Hom}_{\mathcal{C}}(X, Y \bullet Z)$ $\cong \operatorname{Hom}_{\mathcal{C}}(\operatorname{coHom}^{r}(X,Z),Y),$

 $\underline{\operatorname{coHom}}^{\mathrm{l}}(X,Z) = GX \otimes Z, \qquad \underline{\operatorname{coHom}}^{\mathrm{r}}(Y,Z) = Z \otimes G^{-1}Y.$

The second tensor product for bimodules

Recall the (A, A)-bimodule tensor product characterised by the coequaliser

$$M \otimes_{\mathbb{C}} A \otimes_{\mathbb{C}} N \longrightarrow M \otimes_{\mathbb{C}} N \xrightarrow{\lambda} M \otimes_A N \longrightarrow 0.$$

Set $M = Y^*$, $N = X^*$ and take the dual of the sequence above (and identify $(C \otimes_{\mathbb{C}} D)^* \cong D^* \otimes_{\mathbb{C}} C^*$. This is the equaliser

$$X\otimes_{\mathbb{C}} A^*\otimes_{\mathbb{C}} Y \longleftarrow X\otimes_{\mathbb{C}} Y \xleftarrow{\rho^t} X\otimes^A Y \longleftarrow 0.$$

That is, $X \otimes^A Y \cong (Y^* \otimes_A X^*)^*$ is the second GV tensor product. It is also the cotensor product of (A, A)-bicomodules.

In [Gaberdiel-Runkel-SW '09,'10, '12] bulk CFT constructions were studied for the triplet algebra W = W(2, 3) at c = 0.

- W is C₂-cofinite, 13 simple modules. [Adamovic-Milas]
- *W* admits the non-split exact sequence [Feigin-Gainutdinov-Semikhatov-Tipunin]

 $0 \longrightarrow S(2) \longrightarrow W \longrightarrow S(0) \longrightarrow 0.$

In particular, $W^* \cong W$.

- S(0) is not flat [Gaberdiel-Runkel-SW '09].
- The projective cover of S(0) is not rigid [Gaberdiel-Runkel-SW '10].
- Boundary CFT requires associative boundary algebras with non-degenerate evaluations, injective coevaluations. This distinguishes a subcategory *B* of objects satisfying ∀*X*, *Y* ∈ *B*, *X* ⊗ *Y*^{*} ≅ *X* ● *Y*^{*}. [Gaberdiel-Runkel-SW '09]

In [Gaberdiel-Runkel-SW '09,'10, '12] bulk CFT constructions were studied for the triplet algebra W = W(2, 3) at c = 0.

- W is C₂-cofinite, 13 simple modules. [Adamovic-Milas]
- *W* admits the non-split exact sequence [Feigin-Gainutdinov-Semikhatov-Tipunin]

$$0 \longrightarrow S(2) \longrightarrow W \longrightarrow S(0) \longrightarrow 0.$$

In particular, $W^* \ncong W$.

- S(0) is not flat [Gaberdiel-Runkel-SW '09].
- The projective cover of S(0) is not rigid [Gaberdiel-Runkel-SW '10].
- Boundary CFT requires associative boundary algebras with non-degenerate evaluations, injective coevaluations. This distinguishes a subcategory \mathcal{B} of objects satisfying $\forall X, Y \in B, X \otimes Y^* \cong X \bullet Y^*$. [Gaberdiel-Runkel-SW '09]

In [Gaberdiel-Runkel-SW '09,'10, '12] bulk CFT constructions were studied for the triplet algebra W = W(2, 3) at c = 0.

- W is C₂-cofinite, 13 simple modules. [Adamovic-Milas]
- *W* admits the non-split exact sequence [Feigin-Gainutdinov-Semikhatov-Tipunin]

$$0 \longrightarrow S(2) \longrightarrow W \longrightarrow S(0) \longrightarrow 0.$$

In particular, $W^* \ncong W$.

- S(0) is not flat [Gaberdiel-Runkel-SW '09].
- The projective cover of S(0) is not rigid [Gaberdiel-Runkel-SW '10].
- Boundary CFT requires associative boundary algebras with non-degenerate evaluations, injective coevaluations. This distinguishes a subcategory \mathcal{B} of objects satisfying $\forall X, Y \in B, X \otimes Y^* \cong X \bullet Y^*$. [Gaberdiel-Runkel-SW '09]

In [Gaberdiel-Runkel-SW '09,'10, '12] bulk CFT constructions were studied for the triplet algebra W = W(2, 3) at c = 0.

- W is C₂-cofinite, 13 simple modules. [Adamovic-Milas]
- *W* admits the non-split exact sequence [Feigin-Gainutdinov-Semikhatov-Tipunin]

$$0 \longrightarrow S(2) \longrightarrow W \longrightarrow S(0) \longrightarrow 0.$$

In particular, $W^* \ncong W$.

- S(0) is not flat [Gaberdiel-Runkel-SW '09].
- The projective cover of S(0) is not rigid [Gaberdiel-Runkel-SW '10].

• Boundary CFT requires associative boundary algebras with non-degenerate evaluations, injective coevaluations. This distinguishes a subcategory \mathcal{B} of objects satisfying $\forall X, Y \in B, X \otimes Y^* \cong X \bullet Y^*$. [Gaberdiel-Runkel-SW '09]

In [Gaberdiel-Runkel-SW '09,'10, '12] bulk CFT constructions were studied for the triplet algebra W = W(2, 3) at c = 0.

- W is C₂-cofinite, 13 simple modules. [Adamovic-Milas]
- *W* admits the non-split exact sequence [Feigin-Gainutdinov-Semikhatov-Tipunin]

$$0 \longrightarrow S(2) \longrightarrow W \longrightarrow S(0) \longrightarrow 0.$$

In particular, $W^* \ncong W$.

- S(0) is not flat [Gaberdiel-Runkel-SW '09].
- The projective cover of S(0) is not rigid [Gaberdiel-Runkel-SW '10].
- Boundary CFT requires associative boundary algebras with non-degenerate evaluations, injective coevaluations. This distinguishes a subcategory B of objects satisfying
 ∀X, Y ∈ B, X ⊗ Y* ≅ X • Y*. [Gaberdiel-Runkel-SW '09]

Distributors

- It is claimed in the literature that GV categories are the same as linear distributive categories with a negation.
- Unfortunately, the literature on this is sparse and poorly codified.
- Linear distributive categories with a negation admit distributors ∂^l: X ⊗ (Y • Z) → (X ⊗ Y) • Z and ∂^r: (X • Y) ⊗ Z → X • (Y ⊗ Z). These have interesting properties such as mixed associator pentagons.

Distributors

Lemma [Shimizu]

Let C be linear monoidal with left module categories $(\mathcal{M}, \triangleright)$, $(\mathcal{N}, \triangleright)$ and let $F : \mathcal{M} \to \mathcal{N}$ be a linear functor with right adjoint $G : \mathcal{N} \to \mathcal{M}$. Then the oplax C-module structures on F are in bijection with lax C-module structures on G. That is

 $\{\mathsf{lax}: \ X \triangleright G(Y) \to G(X \triangleright Y)\} \leftrightarrow \{\mathsf{oplax}: F(X \triangleright Y) \to X \triangleright F(Y)\}$

Definition

Let (\mathcal{C}, K) be GV and consider the adjoint pair of \mathcal{C} -module functors $R_U(-) = - \otimes U : \mathcal{C} \to \mathcal{C}$ and $\operatorname{Hom}^r(U, -) : \mathcal{C} \to \mathcal{C}$. The associator of \mathcal{C} is a strong module functor structure on R_U . Let ${}^{r}\delta^{U}_{X,Y} : X \otimes \operatorname{Hom}^r(U, Y) \to \operatorname{Hom}^r(U, X \otimes Y)$ be the corresponding lax \mathcal{C} -module structure on $\operatorname{Hom}^r(U, -)$. The lax \mathcal{C} -module structure ${}^{l}\delta^{U}$ on $\operatorname{Hom}^{l}(U, -)$ is characterised similarly.

Distributors

Definition

Let (\mathcal{C}, K) be GV and consider the adjoint pair of \mathcal{C} -module functors $R_U(-) = - \otimes U : \mathcal{C} \to \mathcal{C}$ and $\operatorname{Hom}^r(U, -) : \mathcal{C} \to \mathcal{C}$. The associator of \mathcal{C} is a strong module functor structure on R_U . Let ${}^{r}\delta^U_{X,Y} : X \otimes \operatorname{Hom}^r(U, Y) \to \operatorname{Hom}^r(U, X \otimes Y)$ be the corresponding lax \mathcal{C} -module structure on $\operatorname{Hom}^r(U, -)$. The lax \mathcal{C} -module structure ${}^{l}\delta^U$ on $\operatorname{Hom}^1(U, -)$ is characterised similarly.

Theorem [Fuch-Schaumann-Schweigert-SW]

The lax module structures on internal homs are distributors, that is,

$$\partial_{X,Y,Z}^r = {}^l \delta_{Y,Z}^{X^*}, \qquad \partial_{X,Y,Z}^l = {}^r \delta_{X,Y}^{Z^*}.$$

Distinguishing certain monoidal subcategories

Proposition [Fuch-Schaumann-Schweigert-SW]

Let (\mathcal{C}, K) be GV and let $X \in \mathcal{C}$. Then

- **1** The lax module functor $\underline{\text{Hom}}^{r}(X, -)$ is strong if and only if *X* has a right ⊗-dual *X*[∨]. In this case then $X^{\vee} = \underline{\text{Hom}}^{r}(X, 1)$ and $\underline{\text{Hom}}^{r}(X, -) \cong \otimes X^{\vee}$ as module functors.
- **2** The lax module functor $\underline{\operatorname{Hom}}^{l}(X, -)$ is strong if and only if *X* has a left \otimes -dual $^{\vee}X$. In this case then $^{\vee}X = \underline{\operatorname{Hom}}^{l}(X, 1)$ and $\underline{\operatorname{Hom}}^{l}(X, -) \cong {}^{\vee}X \otimes -$ as module functors.
- **(3)** The oplax module functor $\underline{\operatorname{coHom}}^{r}(X, -)$ is strong if and only if X has a right \bullet -dual X^{\triangledown} . In this case then $X^{\triangledown} = \underline{\operatorname{coHom}}^{r}(X, 1)$ and $\underline{\operatorname{coHom}}^{r}(X, -) \cong \bullet X^{\triangledown}$ as module functors.
- **④** The lax module functor $\underline{\operatorname{coHom}}^{l}(X, -)$ is strong if and only if *X* has a left •-dual [♥]*X*. In this case then [♥]*X* = $\underline{\operatorname{coHom}}^{l}(X, 1)$ and $\underline{\operatorname{coHom}}^{l}(X, -) \cong ^{♥}X \otimes -$ as module functors.

Distinguishing certain monoidal subcategories

Proposition [Fuch-Schaumann-Schweigert-SW]

Let (\mathcal{C}, K) be GV and let $X \in \mathcal{C}$. Then

- **1** The lax module functor $\underline{\text{Hom}}^{r}(X, -)$ is strong if and only if *X* has a right \otimes -dual X^{\vee} . In this case then $X^{\vee} = \underline{\text{Hom}}^{r}(X, 1)$ and $\underline{\text{Hom}}^{r}(X, -) \cong \otimes X^{\vee}$ as module functors.
- **2** The lax module functor $\underline{\text{Hom}}^{l}(X, -)$ is strong if and only if *X* has a left \otimes -dual $^{\vee}X$. In this case then $^{\vee}X = \underline{\text{Hom}}^{l}(X, 1)$ and $\underline{\text{Hom}}^{l}(X, -) \cong {}^{\vee}X \otimes -$ as module functors.
- **3** The oplax module functor $\underline{\operatorname{coHom}}^{r}(X, -)$ is strong if and only if X has a right \bullet -dual X^{\blacktriangledown} . In this case then $X^{\blacktriangledown} = \underline{\operatorname{coHom}}^{r}(X, 1)$ and $\underline{\operatorname{coHom}}^{r}(X, -) \cong \bullet X^{\blacktriangledown}$ as module functors.
- **4** The lax module functor $\underline{\operatorname{coHom}}^{l}(X, -)$ is strong if and only if *X* has a left •-dual [▼]*X*. In this case then [▼]*X* = $\underline{\operatorname{coHom}}^{l}(X, 1)$ and $\underline{\operatorname{coHom}}^{l}(X, -) \cong ^{▼}X \otimes -$ as module functors.

Consequences for bimodules

Proposition

Let A be a finite dimensional algebra and M a finite dimensional bimodule. The following are equivalent.

- 1 $\underline{\text{Hom}}^{r}(M, -)$ is a strong module functor.
- **2** *M* has a right- \otimes_A dual.
- **3** M is projective as a right A-module.
- 4 M^* is injective as a left A-module.
- **5** For all bimodules X, Y, the distributor

 $X \otimes_A (Y \otimes^A M^*) \to (X \otimes_A Y) \otimes^A M^*$

is an isomorphism.

Likewise for the left versions of the above statements.

Zig Zag relations Let $Z \in C$ and let η^Z , ε^Z be the unit and counit of the adjunction $- \otimes Z \dashv \operatorname{Hom}^{r}(Z, -)$. Consider the components

C

$$\operatorname{voev}_{Z} = \eta_{1}^{Z} : 1 \to \underbrace{\operatorname{Hom}^{r}(Z, 1 \otimes Z)}_{Z \bullet GZ},$$
$$\operatorname{ev}_{Z} = \varepsilon_{K}^{Z} : \underbrace{\operatorname{Hom}^{r}(Z, K) \otimes Z}_{GZ \otimes Z} \to K.$$

(Simon Wood)

Zig Zag relations Let $Z \in C$ and let η^Z , ε^Z be the unit and counit of the adjunction $- \otimes Z \dashv \operatorname{Hom}^{r}(Z, -)$. Consider the components

C

$$\operatorname{voev}_{Z} = \eta_{1}^{Z} : 1 \to \underbrace{\operatorname{Hom}^{r}(Z, 1 \otimes Z)}_{Z \bullet GZ},$$
$$\operatorname{ev}_{Z} = \varepsilon_{K}^{Z} : \underbrace{\operatorname{Hom}^{r}(Z, K) \otimes Z}_{GZ \otimes Z} \to K.$$

Thank you!