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Overview of HLZ tensor structure [Huang-Lepowsky-Zhang]

Definition: Fusion product (vertex algebra tensor product)
Let V be a vertex operator algebra and let M, N be V-modules. The
fusion product of M and N is a V-module M � N together with an
intertwiner YM�N ∈

(M�N
M, N

)
satisfying the following universal property:

For any module X and any intertwining operator I ∈
( X

M, N

)
, there exists

a unique f ∈ HomV(M � N,X)

M ⊗C N M � N{z}

X{z}

YM,N

I ∃!f

Due to being characterised by a universal property, tensor products are
unique, if they exist. The construction (existence) of tensor products is
hard because vertex operator algebras do not admit free modules.
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Overview of HLZ tensor structure [Huang-Lepowsky-Zhang]

Let V be a vertex operator algebra and let C be a category of
V-modules to which HLZ theory applies.
• For module homomorphimsms f : M → U, g : N → W, the

morphism f � g is uniquely characterised by
(f � g) ◦ YM�N = YU�W ◦ (f ⊗ g)
• V is the tensor identity and the unit isomorphisms are uniquely

characterised by
`M
(
YV,M(a, z)m

)
= YM(a, z)m and

rM
(
YM,V(m, z)a

)
= ezL−1YM(a,−z)m.

• associativity isomorphisms (hardest part!)
AM,N,R

(
YM,N�R(m, x1)YN,R(n, x2)r

)
= YM�N,R(YM,N(m, x1− x2)n, x2)r

All analytic details hidden.
• Braiding isomorphisms uniquely characterised by

cM,N
(
YM,N(m, x)n

)
= exL−1YN,M(n, eiπx)m
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Features of tensor categories from vertex algebra
modules

A category of modules over a vertex operator algebra need not
• be semisimple,
• be finite,
• have a self-contragredient tensor unit (the vertex operator

algebra),
• have a simple tensor unit,
• have a left exact tensor product (right exactness is automatic),
• be rigid.
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A category of modules over a vertex operator algebra need not
• be semisimple,
• be finite,
• have a self-contragredient tensor unit (the vertex operator

algebra),
• have a simple tensor unit,
• have a left exact tensor product (right exactness is automatic),
• be rigid.

Example: rational vertex operator algebras

(Simon Wood) Duality from VOAs Rep Thy XVII, VAs 4 / 18



Features of tensor categories from vertex algebra
modules

A category of modules over a vertex operator algebra need not
• be semisimple,
• be finite,
• have a self-contragredient tensor unit (the vertex operator

algebra),
• have a simple tensor unit,
• have a left exact tensor product (right exactness is automatic),
• be rigid.

Example: Heisenberg algebra (no lattice)
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Features of tensor categories from vertex algebra
modules

A category of modules over a vertex operator algebra need not
• be semisimple,
• be finite,
• have a self-contragredient tensor unit (the vertex operator

algebra),
• have a simple tensor unit,
• have a left exact tensor product (right exactness is automatic),
• be rigid.

Example: bosonic ghosts or affine algebras at admissible non-integral
levels
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• be rigid.

Example: (1, p)-triplet, p ≥ 2
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Rigidity

Since rigidity is a property (unique, if it exists) it is in practice very hard
to verify and there are only a few families of non-rational examples for
which this has been done.
• (1, p)-triplet [Tsuchiya-SW]

• Bosonic ghosts [Allen-SW]

• Virasoro at generic central charges [Creutzig-Jiang-Orosz
Hunziker-Ridout-Yang]

• (1, p)-singlet [Creutzig-McRae-Yang]

• Bp and related algebras [Creutzig-McRae-Yang]

• gl(1|1) [Creutzig-McRae-Yang]

It would be helpful to have a weaker notion of duality that is a structure
rather than a property.
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Grothendieck-Verdier or ∗-autonomous categories

Definition: Grothendieck-Verdier (GV) category
Let C be a monoidal category. An object K ∈ C is called dualising if

1 The functor Y 7→ HomC(−⊗ Y,K) is representable, that is,
∃GY ∈ C such that

$X,Y : HomC(X ⊗ Y,K)
∼=−→ HomC(X,GY).

Note this defines a contravariant functor G : Y 7→ GY.
2 The functor characterised above is an anti-equivalence.

Let be G−1 be a choice of quasi-inverse.
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(Ribbon) Grothendieck-Verdier structure on categories
of vertex operator algebra modules

Theorem
Let V be a vertex operator and let C be a category of V-modules to
which HLZ theory applies (in particular V ∈ C, C is closed under
contragredients and taking contragredients is involutive). Then

1 V∗ is a dualising object with X → X∗ as dualising functor.
2 (C,K) is ribbon Grothendieck-Verdier. (The V-module braiding c

and twist θ satisfy θX = G−1(θGX) and θX⊗Y = cY,X ◦ cX,Y ◦ (θX⊗ θY).)
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(Ribbon) Grothendieck-Verdier structure on categories
of vertex operator algebra modules

Proof
Recall the natural isomorphism

HomV(X � Y,Z) ∼=
(

Z
X, Y

)
→
(

Y∗

X, Z∗

)
∼= HomV(X � Z∗,Y∗).

Y 7→ “x⊗ ζ 7→ ζ(Y(ezL1(−z−2)L0x, z−1)−)”

Set Z = V∗, then

HomV(X � Y,V∗) ∼= HomV(X � V∗∗,Y∗) ∼= HomV(X,Y∗).
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Heisenberg example

Let
• Fρ0 , ρ ∈ R be the rank 1 Heisenberg vertex algebra, with conformal

vector (1
2 a2
−1 + ρa−2) |0〉 , ρ ∈ R and central charge c = 1− 12ρ2.

• Choose C = F0 −mod to be (semisimply) generated by Fµ, µ ∈ R.
Then
• Fµ � Fν ∼= Fµ+ν , µ, ν ∈ R.
• cµ,ν = eiπµν .
• θµ = eiπµ(µ−2ρ).
• F∗µ ∼= F2ρ−µ.
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Bimodule example

Let A be a finite dimensional algebra and (A,A)-mod the category of
finite dimensional (A,A)-bimodules. Then
• (A,A)-mod is monoidal with the tensor product characterised by

the coequaliser

M ⊗C A⊗C N M ⊗C N M ⊗A N 0.
λ

ρ

• A∗ = HomC(A,C) is a dualising object for (A,A)-mod, with the
vector space dual as dualising functor.
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Known features of Grothendieck-Verdier categories
Proposition: [Boyarchenko-Drinfeld, Barr]

Let (C,⊗) be monoidal.
1 The full subcategory of dualising objects is a torsor over the

invertible objects.
2 Dualising functors need not be monoidal, but their squares are.
3 For any X,Y ∈ C, X ⊗− and −⊗ Y admit right adjoints (internal

homs):
HomC(Y,Homl(X,Z)) ∼= HomC(X ⊗ Y,Z) ∼= HomC(X,Homr(Y,Z)),

Homl(X,Z) = G−1(GZ ⊗ X), Homr(Y,Z) = G(Y ⊗ G−1Z).

4 C admits a second monoidal product X • Y = G(G−1Y ⊗ G−1X),
which admits left adjoints and internal cohoms

HomC(coHom
l(Y,X),Z)) ∼= HomC(X,Y • Z)

∼= HomC(coHom
r(X,Z),Y),

coHoml(X,Z) = GX ⊗ Z, coHomr(Y,Z) = Z ⊗ G−1Y.
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The second tensor product for bimodules

Recall the (A,A)-bimodule tensor product characterised by the
coequaliser

M ⊗C A⊗C N M ⊗C N M ⊗A N 0.
λ

ρ

Set M = Y∗, N = X∗ and take the dual of the sequence above (and
identify (C ⊗C D)∗ ∼= D∗ ⊗C C∗. This is the equaliser

X ⊗C A∗ ⊗C Y X ⊗C Y X ⊗A Y 0.
λt

ρt

That is, X ⊗A Y ∼= (Y∗ ⊗A X∗)∗ is the second GV tensor product. It is
also the cotensor product of (A,A)-bicomodules.
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Motivations from the triplet algebra
In [Gaberdiel-Runkel-SW ’09,’10, ’12] bulk CFT constructions were studied
for the triplet algebra W = W(2, 3) at c = 0.
• W is C2-cofinite, 13 simple modules. [Adamovic-Milas]

• W admits the non-split exact sequence
[Feigin-Gainutdinov-Semikhatov-Tipunin]

0 −→ S(2) −→ W −→ S(0) −→ 0.

In particular, W∗ � W.
• S(0) is not flat [Gaberdiel-Runkel-SW ’09].
• The projective cover of S(0) is not rigid [Gaberdiel-Runkel-SW ’10].
• Boundary CFT requires associative boundary algebras with

non-degenerate evaluations, injective coevaluations. This
distinguishes a subcategory B of objects satisfying
∀X,Y ∈ B, X ⊗ Y∗ ∼= X • Y∗. [Gaberdiel-Runkel-SW ’09]
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Distributors
• It is claimed in the literature that GV categories are the same as

linear distributive categories with a negation.
• Unfortunately, the literature on this is sparse and poorly codified.
• Linear distributive categories with a negation admit distributors
∂l : X ⊗ (Y • Z)→ (X ⊗ Y) • Z and ∂r : (X • Y)⊗ Z → X • (Y ⊗ Z).
These have interesting properties such as mixed associator
pentagons.

(V ⊗ X)⊗ (Y • Z)

((V ⊗ X)⊗ Y) • Z V ⊗ (X ⊗ (Y • Z))

(V ⊗ (X ⊗ Y)) • Z V ⊗ ((X ⊗ Y) • Z)

α∂l

α ∂l

∂l
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Distributors
Lemma [Shimizu]

Let C be linear monoidal with left module categories (M, .), (N , .) and
let F :M→N be a linear functor with right adjoint G : N →M. Then
the oplax C-module structures on F are in bijection with lax C-module
structures on G. That is

{lax : X . G(Y)→ G(X . Y)} ↔ {oplax : F(X . Y)→ X . F(Y)}

Definition
Let (C,K) be GV and consider the adjoint pair of C-module functors
RU(−) = −⊗ U : C → C and Homr(U,−) : C → C. The associator of C
is a strong module functor structure on RU.
Let δr U

X,Y : X ⊗Homr(U,Y)→ Homr(U,X ⊗ Y) be the corresponding lax
C-module structure on Homr(U,−). The lax C-module structure δl U on
Homl(U,−) is characterised similarly.
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is a strong module functor structure on RU.
Let δr U

X,Y : X ⊗Homr(U,Y)→ Homr(U,X ⊗ Y) be the corresponding lax
C-module structure on Homr(U,−). The lax C-module structure δl U on
Homl(U,−) is characterised similarly.

Theorem [Fuch-Schaumann-Schweigert-SW]

The lax module structures on internal homs are distributors, that is,

∂r
X,Y,Z = δl X∗

Y,Z, ∂l
X,Y,Z = δr Z∗

X,Y .
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Distinguishing certain monoidal subcategories

Proposition [Fuch-Schaumann-Schweigert-SW]

Let (C,K) be GV and let X ∈ C. Then
1 The lax module functor Homr(X,−) is strong if and only if X has a

right ⊗-dual X∨. In this case then X∨ = Homr(X, 1) and
Homr(X,−) ∼= −⊗ X∨ as module functors.

2 The lax module functor Homl(X,−) is strong if and only if X has a
left ⊗-dual X∨ . In this case then X∨ = Homl(X, 1) and
Homl(X,−) ∼= X∨ ⊗− as module functors.

3 The oplax module functor coHomr(X,−) is strong if and only if X
has a right •-dual XH. In this case then XH = coHomr(X, 1) and
coHomr(X,−) ∼= − • XH as module functors.

4 The lax module functor coHoml(X,−) is strong if and only if X has
a left •-dual XH . In this case then XH = coHoml(X, 1) and
coHoml(X,−) ∼= XH ⊗− as module functors.
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Consequences for bimodules

Proposition
Let A be a finite dimensional algebra and M a finite dimensional
bimodule. The following are equivalent.

1 Homr(M,−) is a strong module functor.
2 M has a right-⊗A dual.
3 M is projective as a right A-module.
4 M∗ is injective as a left A-module.
5 For all bimodules X,Y, the distributor

X ⊗A (Y ⊗A M∗)→ (X ⊗A Y)⊗A M∗

is an isomorphism.
Likewise for the left versions of the above statements.
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Zig Zag relations
Let Z ∈ C and let ηZ, εZ be the unit and counit of the adjunction
−⊗ Z a Homr(Z,−). Consider the components

coevZ = ηZ
1 : 1→ Homr(Z, 1⊗ Z)︸ ︷︷ ︸

Z•GZ

,

evZ = εZ
K : Homr(Z,K)⊗ Z︸ ︷︷ ︸

GZ⊗Z

→ K.

1 Z

KZ

Z

Z

⊗

•

=
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Thank you!
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