Reflective forms on orthogonal groups and their expansions at 1-dimensional cusps

Janik Wilhelm jt. with N. Scheithauer and T. Driscoll-Spittler

Technische Universität Darmstadt

Representation Theory XVIII, Dubrovnik 27 June 2023

The modular discriminant

0

$$\Delta(\tau) = q \prod_{n=1}^{\infty} (1 - q^n)^{24} = \eta(\tau)^{24} \quad \text{is a}$$

$$\circ \text{ modular form for } \begin{cases} \mathsf{SL}_2(\mathbb{Z}).\\ \text{an integral subgroup } \Gamma \subset \mathsf{O}_{1,2}(\mathbb{R}). \end{cases}$$

$$\circ \text{ global section of a line bundle on } \begin{cases} \mathsf{SL}_2(\mathbb{Z}) \setminus \mathbb{H}.\\ \Gamma \setminus \mathcal{H}. \end{cases}$$

We study a **generalisation to** $O_{n,2}(\mathbb{R})$ of modular forms regarding

- classification results for reflective forms,
- **the geometry** of the complex space $\Gamma \setminus \mathcal{H}$.

A **lattice** L is a free \mathbb{Z} -module of finite rank together with a non-degenerate bilinear form (\cdot, \cdot) with values in \mathbb{Q} .

A lattice ...

has **signature** (n_+, n_-) , if n_+ (n_-) is max. dim. of a positive-definite (negative-...) subspace of $L \otimes_{\mathbb{Z}} \mathbb{Q}$. has **dual lattice** $L' := \{x \in L \otimes_{\mathbb{Z}} \mathbb{Q} : (x, y) \in \mathbb{Z} \text{ for all } y \in L\}$. is called **even**, if (x, x) is even for all $x \in L$.

<u>Note</u>: If *L* even, then $L \subset L'$.

・ 同 ト ・ 三 ト ・ 三 ト

Let $(L, (\cdot, \cdot))$ be an even lattice. Then D = L'/L together with $q(x+L) := (x, x)/2 \mod \mathbb{Z}$ is the **discriminant form** of *L*.

An even lattice L has ...

level $N \in \mathbb{Z}_{>0}$ if N is minimal s.t. Nq = 0. genus $II_{n_+,n_-}(D)$ if it has signature (n_+, n_-) and $L'/L \cong D$.

Example:

Lattice $A_1 := \mathbb{Z}v$, (v, v) = 2, is even lattice with genus $I_{1,0}(2_1^{+1})$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Lattices Automorphic Forms

Setting:

- \circ an even lattice L of signature (n, 2),
- the vector space $V := L \otimes_{\mathbb{Z}} \mathbb{Q}$ and its complexification $V(\mathbb{C})$,
- the projective domain

 $\mathcal{H} := \{ [z] \in P(V(\mathbb{C})) \mid (z, z) = 0, (z, \overline{z}) < 0 \}^+,$

- $\circ\,$ the affine cone $\tilde{\mathcal{H}}\subset \mathit{V}(\mathbb{C})$ lying above $\mathcal{H},$
- a finite-index subgroup $\Gamma \subset O(L)^+$.

An automorphic form of weight k and character χ for Γ is a meromorphic function $\Psi : \tilde{\mathcal{H}} \to \mathbb{C}$ s.t.

$$\circ \ \Psi(\mathit{tz}) = \mathit{t}^{-k} \Psi(\mathit{z})$$
 for all $\mathit{t} \in \mathbb{C}^*$ and

$$\circ \ \Psi(\varphi z) = \chi(\varphi) \Psi(z) \text{ for all } \varphi \in \Gamma.$$

Lattices Automorphic Forms

How can we construct an automorphic form?

Singular theta lift due to Richard Borcherds.

 $\frac{\text{Ingredients:}}{\text{a function } F = \sum_{\gamma \in D} F_{\gamma} e^{\gamma} : \mathbb{H} \to \mathbb{C}[D] \text{ s.t.}}$

- F is holomorphic,
- *F* is a modular form for the Weil rep. of weight 1 − *n*/2, ◦ [*F*_γ](−*m*) ∈ \mathbb{Z} for *m* ∈ $\mathbb{Q}_{>0}$.

Output: the automorphic product Ψ_F .

Example: Δ is lift of $12\Theta_{A_1}$ on $L = A_1(-1) \oplus II_{1,1}$.

Statement Uniqueness Existence

Theorem

There are exactly 11 regular even lattices of signature (n, 2), n > 2 and even, splitting $II_{1,1} \oplus II_{1,1}$ which carry a reflective automorphic product Ψ_F of singular weight.

< ロ > < 同 > < 三 > < 三 >

Statement Uniqueness Existence

Theorem

There are exactly 11 **regular** even lattices of signature (n, 2), n > 2 and even, splitting $II_{1,1} \oplus II_{1,1}$ which carry a reflective automorphic product Ψ_F of singular weight.

regular

Sufficient isotropic elements in L'/L.

< ロ > < 同 > < 三 > < 三 >

Statement Uniqueness Existence

Theorem

There are exactly 11 regular even lattices of signature (n, 2), n > 2and even, **splitting** $II_{1,1} \oplus II_{1,1}$ which carry a reflective automorphic product Ψ_F of singular weight.

regularSufficient isotropic elements in L'/L.splitting $I_{1,1} \oplus I_{1,1}$ A decomposition $L = K \oplus I_{1,1} \oplus I_{1,1}$ exists.

Statement Uniqueness Existence

Theorem

There are exactly 11 regular even lattices of signature (n, 2), n > 2and even, splitting $II_{1,1} \oplus II_{1,1}$ which carry a reflective automorphic product Ψ_F of singular weight.

regularSufficient isotropic elements in L'/L.splitting $II_{1,1} \oplus II_{1,1}$ A decomposition $L = K \oplus II_{1,1} \oplus II_{1,1}$ exists.reflectiveCondition on coefficients of F.
Morally: The zeros of Ψ_F lie on hyperplanes
defining reflections of L.

< ロ > < 同 > < 三 > < 三 >

Statement Uniqueness Existence

Theorem

There are exactly 11 regular even lattices of signature (n, 2), n > 2 and even, splitting $II_{1,1} \oplus II_{1,1}$ which carry a reflective automorphic product Ψ_F of singular weight.

regular	Sufficient isotropic elements in L'/L .		
splitting II $_{1,1} \oplus$ II $_{1,1}$	A decomposition $L = K \oplus II_{1,1} \oplus II_{1,1}$ exists.		
reflective	Condition on coefficients of F . Morally: The zeros of Ψ_{Γ} lie on hyperplanes		
	defining reflections of <i>L</i> .		
singular weight	Smallest non-trivial weight.		

< ロ > < 同 > < 三 > < 三 >

Statement Uniqueness Existence

Theorem (continued)

These 11 lattices are

The corresponding automorphic product is **unique up to** $O(L)^+$.

イロト イボト イヨト イヨト

æ

Statement Uniqueness Existence

Why at most 11 <u>lattices</u>?

Starting point: infinite number of lattices.

п	Ν	N _H	N _E	cusp forms	candidate
÷	:	:	:	:	÷
14	2	5	—	_	_
	3	5	2	$\eta_{1^6 3^6} \theta_{A_2}^2$	$II_{14,2}(3^{-8})$
	4	35	20	$\eta_{1^8 2^8}$	$H_{14,2}(2_{II}^{-10}4_{II}^{-2})$
÷	÷	:	:	:	÷

Endpoint: 11 candidates.

イロト イボト イヨト イヨト

э

Statement **Uniqueness** Existence

n	Ν	N _H	NE	cusp forms	candidate
		:	:		÷
14	2	5	-	-	-
	3	5	2	$\eta_{1^{6}3^{6}}\theta_{A_{2}}^{2}$	II _{14,2} (3 ⁻⁸)
	4	35	20	$\eta_{1^8 2^8}$	$II_{14,2}(2_{II}^{-10}4_{II}^{-2})$
		:	:	:	:

<u>Aim</u>: Establish **dependency of level** *N* **on** *n*. Strategy:

i) Note $\sum_{a \in (\mathbb{Z}/N\mathbb{Z})^*} F_{a\gamma}$ is modular form for $\Gamma_0(N)$ if γ isotropic.

ii) Since L regular, exists such modular form $g \neq 0$.

iii) Show the pole orders of g are small.

iv) Apply valence formula to g.

Outcome (simplified):

$$\frac{n-2}{24}\left(\prod_{p|N}p^{\nu_p(N)-1}\right)\left(\prod_{p||N}\frac{p}{2}\right)\leq 1.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

<u>Aim</u>: List for admissible (n, N) the **lattices** L **splitting** $I_{1,1} \oplus I_{1,1}$. Strategy:

- i) Observe *L* is uniquely determined by its genus $II_{n,2}(D)$.
- ii) Since $L = K \oplus II_{1,1} \oplus II_{1,1}$, consider genera of type $II_{n-2,0}(D)$.
- iii) List such genera.
- iv) Eliminate genera of non-regular lattices.

Outcome: 474 lattices.

- 4 周 ト 4 ヨ ト 4 ヨ ト

Statement **Uniqueness** Existence

n	N	N _H	N _E	cusp forms	candidate
÷	÷	÷		:	:
14	2	5	_	-	-
	3	5	2	$\eta_{1^{6}3^{6}}\theta_{A_{2}}^{2}$	II _{14,2} (3 ⁻⁸)
	4	35	20	$\eta_{1^8 2^8}$	$H_{14,2}(2_{II}^{-10}4_{II}^{-2})$
:	:	:		:	:

<u>Aim</u>: Filter list by **pairing with Eisenstein series**. Strategy:

- i) Reflectivity: F_{γ} has pole at $\infty \implies q(\gamma) = 1/d$ and $d\gamma = 0$.
- ii) Define the singular sets

$$M_d := \{ \gamma \in D_{d,1/d} : F_\gamma \text{ has pole at } \infty \}.$$

iii) Choose Eisenstein series E such that (F, \overline{E}) has weight 2. iv) Evaluate condition (simplified): $\sum_{d|N} e_d |M_d| = 2 - n$. <u>Outcome</u>: 132 lattices.

Statement Uniqueness Existence

п	N	N _H	NE	cusp forms	candidate
÷	÷	:	:		
14	2	5	-	-	_
	3	5	2	$\eta_{1^6 3^6} \theta_{A_2}^2$	$II_{14,2}(3^{-8})$
	4	35	20	$\eta_{1^8 2^8}$	$II_{14,2}(2_{II}^{-10}4_{II}^{-2})$
÷	:	÷	÷		

<u>Aim</u>: Filter list by **pairing with cusp forms**. Strategy:

- i) Construct classical cusp forms of weight 1 + n/2.
- ii) Lift to symmetric modular forms G for dual Weil rep.
- iii) Repeat previous step with G instead of E.

Outcome: The 11 lattices.

Statement Uniqueness Existence

Why at most 11 reflective forms?

Recall the singular sets $M_d = \{\gamma \in D_{d,1/d} : F_{\gamma} \text{ has pole at } \infty\}.$

If N squarefree, then we observe $|M_d| = |D_{d,1/d}|$. Done! If not, situation is more complicated.

Case $II_{14,2}(2_{II}^{-10}4_{II}^{-2})$:

i) Observe
$$|M_1| = |D_{1,1}|$$
 and $|M_4| = |D_{4,1/4}|$ but $|M_2| < |D_{2,1/2}|$.

ii) Lift cusp forms to non-symmetric modular forms.

iii) Exploit conditions on M_2 to prove its uniqueness mod O(L).

Statement Uniqueness Existence

How to construct these 11 reflective forms

$$\begin{array}{c|c} II_{14,2}(3^{-8}) & F_{1/\eta_{1636},0} \\ \hline II_{14,2}(2_{II}^{-10} d_{II}^{-2}) & F_{\theta_{0_0}/\Delta,0} - F_{\theta_{0_B}/\Delta,0} + \frac{1}{12} \sum_{\gamma \in M_2} F_{h,\gamma} \end{array}$$

<u>Observation</u>: 11 lattices all related to **Leech lattice** Λ . Namely, if *L* is such a lattice, there is $g \in O(\Lambda)$ of order *n* s.t.

$$L = \Lambda_N^g \oplus II_{1,1} \oplus II_{1,1}(n^2/N), \quad \Lambda_N^g \subset \Lambda^g.$$

Approach: Lift modular forms coming from the Leech lattice. If N is squarefree and g has cycle shape $\prod_{d|N} d^{b_d}$:

$$f(au) = \prod_{d \mid N} 1/\eta (d au)^{b_d} \quad \mapsto \quad F_{f,0} \quad \mapsto \quad \Psi.$$

If not, ...

・ 同 ト ・ ヨ ト ・ ヨ ト

Framework Classification of reflective forms Cusps tolomorphic VOAs of central charge 24	Statement Uniqueness Existence
Iolomorphic VOAs of central charge 24	

$$\begin{array}{c|c} I_{14,2}(3^{-8}) & F_{1/\eta_{16_{36}},0} \\ \hline II_{14,2}(2_{II}^{-10}4_{II}^{-2}) & F_{\theta_{0_0}/\Delta,0} - F_{\theta_{0_B}/\Delta,0} + \frac{1}{12}\sum_{\gamma \in M_2} F_{h,\gamma} \end{array}$$

Expectations: We want the Borcherds input F to

 $\circ~$ be reflective and satisfy the constraints on the $M_d.$

$$\circ$$
 satisfy $F_0 = \sum_{k \mid N} \sum_{d \mid k} \frac{\mu(k/d)}{k} \frac{\theta_{\Lambda^g,d}}{\eta_{g^d}}$

• have integral principal part.

<u>Procedure</u>: Set F = 0 and

- i) search for f with useful in sense above Fourier expansions.
- ii) replace F with $F + sF_{f,\gamma}$.
- iii) check whether F is reflective. If not, continue with i).

What are the cusps for automorphic forms?

Setting (reminder):

- \circ an even lattice L of signature (n, 2), n > 2 and even,
- \circ the vector space $V := L \otimes_{\mathbb{Z}} \mathbb{Q}$ and its complexification $V(\mathbb{C})$,
- $\circ\,$ the projective domain $\mathcal{H}\subset \textit{P}(\textit{V}(\mathbb{C})),$
- \circ a finite-index subgroup $\Gamma \subset O(L)^+$.

The quotient space $\Gamma \setminus \mathcal{H}$ can be compactified through the **Baily-Borel compactification** by adding rational cusps.

dim. of cusp ${\mathcal C}$	rep. $U \subset V$	relationship
0-dim.	isotropic, 1-dim.	$\mathcal{C} = P(U(\mathbb{C}))$
1-dim.	isotropic, 2-dim.	$\mathcal{C} = P(U(\mathbb{C})) \setminus (0\text{-dim. cusps})$

- 4 周 ト 4 戸 ト 4 戸 ト

<u>Aim</u>: Identify **invariants** of cusps useful for classification.

<u>Observation</u>: Let C be cusp of $\Gamma \setminus \mathcal{H}$ represented by $U \subset V$.

 $\circ~$ The subgroup

$$H:=(U\cap L')/(U\cap L)$$

is an invariant up to $\boldsymbol{\Gamma}.$

 $\circ~$ The lattice

$$K := (U^{\perp} \cap L^{H})/(U \cap L^{H}), \quad L^{H} \supset L$$

is an invariant up to isomorphism.

<u>Definition</u>: Say that cusp C has **type** H and **orbit lattice** K.

<u>Aim</u>: List (k-1)-dimensional cusps of $\Gamma \setminus \mathcal{H}$ of type 0.

Follow the following **algorithm**.

i) Choose sublattice $K \subset L$ for each class in $II_{n-k,2-k}(D)$. For each such K,

ii) fix *k*-dim. isotropic subspace U_K of $K^{\perp} \otimes_{\mathbb{Z}} \mathbb{Q}$ and iii) representatives $\{\varphi_K^{(1)}, \varphi_K^{(2)}, \dots\}$ of quotient $\overline{\Gamma} \setminus O(D) / \overline{O(K)}$. Then collection $\{\varphi_K^{(i)}(U_K)\}$ represents the cusps of type 0.

Consequence: There is a unique 0-dimensional cusp of type 0.

Type Classification Reflective forms

<u>Aim</u>: Better understand the 1-dimensional cusps of type 0 of $O(L, F)^+ \setminus H$ for the 11 reflective automorphic forms.

<u>Strategy</u>: Calculate the **Fourier-Jacobi expansion at** C. <u>Result</u>: The first coefficient is

$$\kappa\eta(\tau)^{n-2}\prod_{\alpha\in R^+} \frac{\vartheta(-(\alpha,\omega),\tau)}{\eta(\tau)}.$$

< ロ > < 同 > < 三 > < 三 >

Framework Classification of reflective forms Classification of reflective forms Classifi Reflect

Type Classification Reflective forms

<u>Aim</u>: Better understand the 1-dimensional cusps of type 0 of $O(L, F)^+ \setminus H$ for the 11 reflective automorphic forms.

<u>Strategy</u>: Calculate the **Fourier-Jacobi expansion at** C. <u>Result</u>: The first coefficient is

$$\kappa\eta(\tau)^{n-2}\prod_{\alpha\in R^+}\frac{\vartheta(-(\alpha,\omega),\tau)}{\eta(\tau)}.$$

Theorem

The sets *R* only depend on their respective cusp and are **root systems**. They parametrise the 1-dimensional cusps of type 0 of the 11 spaces $O(L, F)^+ \setminus H$ and range exactly over the 69 **root systems in Schellekens' list** and the empty set.

Observation: Expansion above has constant term in one case:

- Lattice $L = II_{26,2}$.
- The unique cusp of type H = 0 with orbit lattice $K = \Lambda$.
- \circ Constant coefficient Δ .

<u>Aim</u>: Construct cusp with constant term for all reflective forms. Recall relationship of 11 lattices L with Leech lattice Λ :

$$L = \Lambda_N^g \oplus II_{1,1} \oplus II_{1,1}(n^2/N).$$

<u>Outcome</u>: A 1-dimensional cusp C

- of type $H \cong \mathbb{Z}/n\mathbb{Z}$ with orbit lattice $K = \Lambda^g$.
- \circ with constant coefficient η_g up to constant.

- 4 周 ト 4 ヨ ト 4 ヨ ト

The 1-dim. cusps of type 0 and the "special" cusp for $L = II_{12,2}(2_2^{+2}4_{II}^{+6})$.

イロト イボト イヨト イヨト

э

An Application: Holomorphic VOAs of central charge 24

<u>Aim</u>: Classify semisimple V_1 -spaces using automorphic products. Starting point: Holomorphic VOA V of central charge 24 with

$$V_1 = \mathfrak{g}_{1,k_1} \oplus \ldots \oplus \mathfrak{g}_{m,k_m}.$$

Strategy:

- i) Define $M = \bigoplus_{i=1}^{m} Q_i^{\vee}(k_i)$, where Q_i coroot lattice of \mathfrak{g}_i .
- ii) Observe $\chi_V = \operatorname{tr}_V e^{2\pi i z_0} q^{L_0 1}$ Jacobi form of lattice index *M*.
- iii) Note $\chi_V = \sum_{\gamma \in K'/K} F_{\gamma} \theta_{\gamma}$ for some $K \supset M$.
- iv) Show Lie algebra $\mathfrak{g}(V)$ is generalised Kac-Moody algebra.
- v) Deduce Ψ_F is reflective form of singular weight.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem

Let V be a holomorphic VOA of central charge 24 with semisimple V_1 -space. Assume V is unitary and has regular orbit lattice of even rank. Then the automorphic form Ψ_F is one of the **11 reflective automorphic products of singular weight** in our list.

Consequences: The VOA V

- $\circ\,$ belongs to one of 11 generalised Kac-Moody algebras.
- has one of the **69** affine structures in **Schellekens' list**.

A (1) > A (2) > A

イロト イボト イヨト イヨト

æ

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

э

Thank you for your attention.