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The modular discriminant

∆(τ) = q
∞∏

n=1
(1 − qn)24 = η(τ)24 is a

◦ modular form for
{

SL2(Z).
an integral subgroup Γ ⊂ O1,2(R).

◦ global section of a line bundle on
{

SL2(Z)\H.

Γ\H.

We study a generalisation to On,2(R) of modular forms regarding
◦ classification results for reflective forms,
◦ the geometry of the complex space Γ\H.
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Lattices
Automorphic Forms

A lattice L is a free Z-module of finite rank together with a
non-degenerate bilinear form (·, ·) with values in Q.

A lattice …
has signature (n+, n−), if n+ (n−) is max. dim. of a
positive-definite (negative-…) subspace of L ⊗Z Q.
has dual lattice L′ := {x ∈ L ⊗Z Q : (x, y) ∈ Z for all y ∈ L}.
is called even, if (x, x) is even for all x ∈ L.

Note: If L even, then L ⊂ L′.
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Lattices
Automorphic Forms

Let (L, (·, ·)) be an even lattice. Then D = L′/L together with
q(x + L) := (x, x)/2 mod Z is the discriminant form of L.

An even lattice L has …
level N ∈ Z>0 if N is minimal s.t. Nq = 0.
genus IIn+,n−(D) if it has signature (n+, n−) and L′/L ∼= D.

Example:
Lattice A1 := Zv, (v, v) = 2, is even lattice with genus II1,0(2+1

1 ).
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Lattices
Automorphic Forms

Setting:
◦ an even lattice L of signature (n, 2),
◦ the vector space V := L ⊗Z Q and its complexification V(C),
◦ the projective domain

H := {[z] ∈ P(V(C)) | (z, z) = 0, (z, z) < 0}+ ,

◦ the affine cone H̃ ⊂ V(C) lying above H,
◦ a finite-index subgroup Γ ⊂ O(L)+.

An automorphic form of weight k and character χ for Γ is
a meromorphic function Ψ : H̃ → C s.t.

◦ Ψ(tz) = t−kΨ(z) for all t ∈ C∗ and
◦ Ψ(φz) = χ(φ)Ψ(z) for all φ ∈ Γ.
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Lattices
Automorphic Forms

How can we construct an automorphic form?

Singular theta lift due to Richard Borcherds.
Ingredients: an even lattice L of signature (n, 2) and

a function F =
∑

γ∈D Fγeγ : H → C[D] s.t.
◦ F is holomorphic,
◦ F is a modular form for the Weil rep. of weight 1 − n/2,
◦ [Fγ ](−m) ∈ Z for m ∈ Q>0.

Output: the automorphic product ΨF.

Example: ∆ is lift of 12ΘA1 on L = A1(−1)⊕ II1,1.

Janik Wilhelm Reflective forms and their expansions at cusps



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Framework
Classification of reflective forms

Cusps
Holomorphic VOAs of central charge 24

Statement
Uniqueness
Existence

Theorem
There are exactly 11 regular even lattices of signature (n, 2), n > 2
and even, splitting II1,1 ⊕ II1,1 which carry a reflective automorphic
product ΨF of singular weight.

regular Sufficient isotropic elements in L′/L.
splitting II1,1 ⊕ II1,1 A decomposition L = K ⊕ II1,1 ⊕ II1,1 exists.
reflective Condition on coefficients of F.

Morally: The zeros of ΨF lie on hyperplanes
defining reflections of L.

singular weight Smallest non-trivial weight.
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Statement
Uniqueness
Existence

Theorem
There are exactly 11 regular even lattices of signature (n, 2), n >
2 and even, splitting II1,1 ⊕ II1,1 which carry a reflective
automorphic product ΨF of singular weight.

regular Sufficient isotropic elements in L′/L.
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Statement
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Existence
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Statement
Uniqueness
Existence

Theorem
There are exactly 11 regular even lattices of signature (n, 2), n > 2
and even, splitting II1,1 ⊕ II1,1 which carry a reflective
automorphic product ΨF of singular weight.
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Statement
Uniqueness
Existence

Theorem
There are exactly 11 regular even lattices of signature (n, 2), n > 2
and even, splitting II1,1 ⊕ II1,1 which carry a reflective automorphic
product ΨF of singular weight.

regular Sufficient isotropic elements in L′/L.
splitting II1,1 ⊕ II1,1 A decomposition L = K ⊕ II1,1 ⊕ II1,1 exists.
reflective Condition on coefficients of F.

Morally: The zeros of ΨF lie on hyperplanes
defining reflections of L.

singular weight Smallest non-trivial weight.
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Statement
Uniqueness
Existence

Theorem (continued)
These 11 lattices are

n L
26 II26,2
18 II18,2(2+10

II )

14 II14,2(2−10
II 4−2

II ), II14,2(3−8)

12 II12,2(2+2
2 4+6

II )

10 II10,2(2+6
II 3−6), II10,2(5+6)

8 II8,2(2+4
II 4−2

II 3+5), II8,2(2+1
1 4+1

1 8+4
II ), II8,2(7−5)

6 II6,2(2−2
II 4−2

II 5+4)

The corresponding automorphic product is unique up to O(L)+.
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Statement
Uniqueness
Existence

Why at most 11 lattices?

Starting point: infinite number of lattices.

n N NH NE cusp forms candidate
... ... ... ... ... ...

14 2 5 − − −
3 5 2 η1636θ2

A2
II14,2(3−8)

4 35 20 η1828 II14,2(2−10
II 4−2

II )
... ... ... ... ... ...

Endpoint: 11 candidates.
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Statement
Uniqueness
Existence

n N NH NE cusp forms candidate
... ... ... ... ... ...

14 2 5 − − −
3 5 2 η1636θ2

A2
II14,2(3−8)

4 35 20 η1828 II14,2(2−10
II 4−2

II )
... ... ... ... ... ...

Aim: Establish dependency of level N on n.
Strategy:

i) Note
∑

a∈(Z/NZ)∗ Faγ is modular form for Γ0(N) if γ isotropic.
ii) Since L regular, exists such modular form g 6= 0.
iii) Show the pole orders of g are small.
iv) Apply valence formula to g.

Outcome (simplified):

n − 2
24

∏
p|N

pνp(N)−1

∏
p||N

p
2

 ≤ 1.
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Statement
Uniqueness
Existence

n N NH NE cusp forms candidate
... ... ... ... ... ...

14 2 5 − − −
3 5 2 η1636θ2

A2
II14,2(3−8)

4 35 20 η1828 II14,2(2−10
II 4−2

II )
... ... ... ... ... ...

Aim: List for admissible (n,N) the lattices L splitting II1,1 ⊕ II1,1.
Strategy:

i) Observe L is uniquely determined by its genus IIn,2(D).
ii) Since L = K ⊕ II1,1 ⊕ II1,1, consider genera of type IIn−2,0(D).
iii) List such genera.
iv) Eliminate genera of non-regular lattices.

Outcome: 474 lattices.
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Statement
Uniqueness
Existence

n N NH NE cusp forms candidate
... ... ... ... ... ...

14 2 5 − − −
3 5 2 η1636θ2

A2
II14,2(3−8)

4 35 20 η1828 II14,2(2−10
II 4−2

II )
... ... ... ... ... ...

Aim: Filter list by pairing with Eisenstein series.
Strategy:

i) Reflectivity: Fγ has pole at ∞ =⇒ q(γ) = 1/d and dγ = 0.
ii) Define the singular sets

Md := {γ ∈ Dd,1/d : Fγ has pole at ∞}.

iii) Choose Eisenstein series E such that (F,E) has weight 2.
iv) Evaluate condition (simplified):

∑
d|N ed |Md| = 2 − n.

Outcome: 132 lattices.
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Statement
Uniqueness
Existence

n N NH NE cusp forms candidate
... ... ... ... ... ...

14 2 5 − − −
3 5 2 η1636θ2

A2
II14,2(3−8)

4 35 20 η1828 II14,2(2−10
II 4−2

II )
... ... ... ... ... ...

Aim: Filter list by pairing with cusp forms.
Strategy:

i) Construct classical cusp forms of weight 1 + n/2.
ii) Lift to symmetric modular forms G for dual Weil rep.
iii) Repeat previous step with G instead of E.

Outcome: The 11 lattices.
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Statement
Uniqueness
Existence

Why at most 11 reflective forms?

Recall the singular sets Md = {γ ∈ Dd,1/d : Fγ has pole at ∞}.

If N squarefree, then we observe |Md| = |Dd,1/d|. Done!
If not, situation is more complicated.

Case II14,2(2−10
II 4−2

II ):
i) Observe |M1| = |D1,1| and |M4| = |D4,1/4| but

|M2| < |D2,1/2|.
ii) Lift cusp forms to non-symmetric modular forms.
iii) Exploit conditions on M2 to prove its uniqueness mod O(L).
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Statement
Uniqueness
Existence

How to construct these 11 reflective forms
II14,2(3−8) F1/η1636 ,0

II14,2(2−10
II 4−2

II ) Fθ00/∆,0 − Fθ0B/∆,0 +
1
12

∑
γ∈M2

Fh,γ

Observation: 11 lattices all related to Leech lattice Λ. Namely, if
L is such a lattice, there is g ∈ O(Λ) of order n s.t.

L = Λg
N ⊕ II1,1 ⊕ II1,1(n2/N), Λg

N ⊂ Λg.

Approach: Lift modular forms coming from the Leech lattice.
If N is squarefree and g has cycle shape

∏
d|N dbd :

f(τ) =
∏
d|N

1/η(dτ)bd 7→ Ff,0 7→ Ψ.

If not, …
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Statement
Uniqueness
Existence

II14,2(3−8) F1/η1636 ,0

II14,2(2−10
II 4−2

II ) Fθ00/∆,0 − Fθ0B/∆,0 +
1
12

∑
γ∈M2

Fh,γ

Expectations: We want the Borcherds input F to
◦ be reflective and satisfy the constraints on the Md.
◦ satisfy F0 =

∑
k|N

∑
d|k

µ(k/d)
k

θ
Λg,d
ηgd

.
◦ have integral principal part.

Procedure: Set F = 0 and
i) search for f with useful - in sense above - Fourier expansions.
ii) replace F with F + sFf,γ .
iii) check whether F is reflective. If not, continue with i).
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Type
Classification
Reflective forms

What are the cusps for automorphic forms?

Setting (reminder):
◦ an even lattice L of signature (n, 2), n > 2 and even,
◦ the vector space V := L ⊗Z Q and its complexification V(C),
◦ the projective domain H ⊂ P(V(C)),
◦ a finite-index subgroup Γ ⊂ O(L)+.

The quotient space Γ\H can be compactified through the
Baily-Borel compactification by adding rational cusps.

dim. of cusp C rep. U ⊂ V relationship
0-dim. isotropic, 1-dim. C = P(U(C))
1-dim. isotropic, 2-dim. C = P(U(C))\(0-dim. cusps)
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Type
Classification
Reflective forms

Aim: Identify invariants of cusps useful for classification.

Observation: Let C be cusp of Γ\H represented by U ⊂ V.
◦ The subgroup

H := (U ∩ L′)/(U ∩ L)

is an invariant up to Γ.
◦ The lattice

K := (U⊥ ∩ LH)/(U ∩ LH), LH ⊃ L

is an invariant up to isomorphism.
Definition: Say that cusp C has type H and orbit lattice K.
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Type
Classification
Reflective forms

Aim: List (k − 1)-dimensional cusps of Γ\H of type 0.

Follow the following algorithm.
i) Choose sublattice K ⊂ L for each class in IIn−k,2−k(D).

For each such K,
ii) fix k-dim. isotropic subspace UK of K⊥ ⊗Z Q and
iii) representatives {φ(1)

K , φ
(2)
K , . . . } of quotient Γ\O(D)/O(K).

Then collection {φ(i)
K (UK)} represents the cusps of type 0.

Consequence: There is a unique 0-dimensional cusp of type 0.
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Type
Classification
Reflective forms

Aim: Better understand the 1-dimensional cusps of type 0 of
O(L,F)+\H for the 11 reflective automorphic forms.
Strategy: Calculate the Fourier-Jacobi expansion at C.
Result: The first coefficient is

κη(τ)n−2
∏

α∈R+

ϑ(−(α, ω), τ)

η(τ)
.

Theorem
The sets R only depend on their respective cusp and are root
systems. They parametrise the 1-dimensional cusps of type 0 of
the 11 spaces O(L,F)+\H and range exactly over the 69 root
systems in Schellekens’ list and the empty set.
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Type
Classification
Reflective forms

Aim: Better understand the 1-dimensional cusps of type 0 of
O(L,F)+\H for the 11 reflective automorphic forms.
Strategy: Calculate the Fourier-Jacobi expansion at C.
Result: The first coefficient is

κη(τ)n−2
∏

α∈R+

ϑ(−(α, ω), τ)

η(τ)
.

Theorem
The sets R only depend on their respective cusp and are root
systems. They parametrise the 1-dimensional cusps of type 0 of
the 11 spaces O(L,F)+\H and range exactly over the 69 root
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Type
Classification
Reflective forms

Observation: Expansion above has constant term in one case:
◦ Lattice L = II26,2.
◦ The unique cusp of type H = 0 with orbit lattice K = Λ.
◦ Constant coefficient ∆.

Aim: Construct cusp with constant term for all reflective forms.
Recall relationship of 11 lattices L with Leech lattice Λ:

L = Λg
N ⊕ II1,1 ⊕ II1,1(n2/N).

Outcome: A 1-dimensional cusp C
◦ of type H ∼= Z/nZ with orbit lattice K = Λg.
◦ with constant coefficient ηg up to constant.
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Type
Classification
Reflective forms

A3,1C7,2

A2,1B2,1E6,4

A3
1,1A7,4 A2

1,1C3,2D5,4

A1,2A3
3,4

η142244

The 1-dim. cusps of type 0 and the ”special” cusp for L = II12,2(2+2
2 4+6

II ).
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An Application: Holomorphic VOAs of central charge 24

Aim: Classify semisimple V1-spaces using automorphic products.
Starting point: Holomorphic VOA V of central charge 24 with

V1 = g1,k1 ⊕ . . .⊕ gm,km .

Strategy:
i) Define M =

⊕m
i=1 Q∨

i (ki), where Qi coroot lattice of gi.
ii) Observe χV = trV e2πiz0 qL0−1 Jacobi form of lattice index M.
iii) Note χV =

∑
γ∈K′/K Fγθγ for some K ⊃ M.

iv) Show Lie algebra g(V) is generalised Kac-Moody algebra.
v) Deduce ΨF is reflective form of singular weight.
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Theorem
Let V be a holomorphic VOA of central charge 24 with semisimple
V1-space.
Assume V is unitary and has regular orbit lattice of even rank.
Then the automorphic form ΨF is one of the 11 reflective
automorphic products of singular weight in our list.

Consequences: The VOA V
◦ belongs to one of 11 generalised Kac-Moody algebras.
◦ has one of the 69 affine structures in Schellekens’ list.
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n L
26 II26,2
18 II18,2(2+10

II )

14 II14,2(2−10
II 4−2

II ), II14,2(3−8)

12 II12,2(2+2
2 4+6

II )

10 II10,2(2+6
II 3−6), II10,2(5+6)

8 II8,2(2+4
II 4−2

II 3+5), II8,2(2+1
1 4+1

1 8+4
II ), II8,2(7−5)

6 II6,2(2−2
II 4−2

II 5+4)

A3,1C7,2

A2,1B2,1E6,4

A3
1,1A7,4 A2

1,1C3,2D5,4

A1,2A3
3,4

η142244

Thank you for your attention.
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n L
26 II26,2
18 II18,2(2+10

II )

14 II14,2(2−10
II 4−2

II ), II14,2(3−8)

12 II12,2(2+2
2 4+6

II )

10 II10,2(2+6
II 3−6), II10,2(5+6)

8 II8,2(2+4
II 4−2

II 3+5), II8,2(2+1
1 4+1

1 8+4
II ), II8,2(7−5)

6 II6,2(2−2
II 4−2

II 5+4)

A3,1C7,2

A2,1B2,1E6,4

A3
1,1A7,4 A2

1,1C3,2D5,4

A1,2A3
3,4

η142244

Thank you for your attention.
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