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Affine Lie algebra

Let g be a finite-dimensional simple Lie algebra over C and let (·, ·) be a
non-degenerate, symmetric bilinear form on g.
The affine Lie algebra ĝ associated with g is defined as

ĝ = g⊗ C[t, t−1]⊕ CK,

where K is central element and Lie algebra structure is given by

[x(m), y(n)] = [x, y](m+ n) +mδm,−n(x, y)K,

where x(m) denotes x⊗ tm ∈ g⊗ C[t, t−1].

We say that M is a ĝ–module of level k ∈ C if the central element K acts
on M as a multiplication with k.
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Affine vertex operator algebra

V k(g) universal affine vertex operator algebra of level k, k ̸= −h∨

As ĝ–module, we have

V k(g) = U(ĝ)⊗U(g⊗C[t]+CK) C1.

Lk(g) simple quotient of V k(g).

Let V k(λ) be the generalized Verma module for ĝ induced from the
irreducible highest-weight g–module V (λ) with highest weight λ.

Let Lk(λ) be its simple quotient.
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Summary of previous results

Non-negative integers levels: Frenkel-Zhu, Li

The category of Z≥0–graded Lk(g)–modules is semi-simple.

Admissible levels: Adamović-Milas, Dong-Li-Mason, Arakawa, Peřse

The category of Lk(g)–modules which are in the category O as
ĝ–modules is semi-simple.

Negative integer levels which appear in:

free-field realizations of certain simple affine vertex algebras
(Adamović-Peřse),

in the context of affine vertex algebras associated to the Deligne
exceptional series (Arakawa-Moreau),

in the context of collapsing levels for minimal affine W–algebras
(Adamović-Kac-Moseneder Frajria-Papi-Peřse).
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The category KLk(g)

KLk(g) is semi-simple for generic levels k.

Arakawa’s result implies that KLk(g) is semi-simple for k admissible.

KLk(g) is a braided tensor category for k admissible [CHY ’18] and
in most cases rigity is proven.

KLk(g) is semi-simple when k is a collapsing level for minimal
W–algebra or when the minimal affine W -algebra Wk(g, θ) is rational
[AKMPP ’20].

At these levels, vertex tensor category is constructed [CY ’21].

There is a notion of collapsing level for non-minimal W-algebras.
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Admissible and almost admissible levels

For g = sl(n) level k is admissible if

k + n =
p

q
, p, q ∈ N, (p, q) = 1, p ≥ n.

We are interested in levels which are almost admissible, i.e.

k = −n+
n− 1

q
, q ∈ N, (n− 1, q) = 1.

First such example is V −1(sl(n)), n ≥ 3.

For q = 2, we have Lk(sl(n)), k = −n+1
2 , for n even.
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On the vertex algebra L−1(sl(4))

D. Adamović and O. Peřse determined an explicit formula for the
singular vector in V −1(sl(4)) and classified irreducible
L−1(sl(4))–modules in the category O.

Category O for L−1(sl(4)) is not semi-simple unlike the admissible
case.

Description of the maximal ideal in V −1(sl(4)) was obtained using
minimal QHR functor Hθ (Arakawa-Moreau).

Level k = −1 is collapsing for W k(sl(4), θ) and W−1(sl(4), θ) = H.

Category KL−1 is semi-simple [AKMPP’20].

Category KL−1 is a rigid braided tensor category [Creutzig-Yang’21].
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The vertex algebra L−5/2(sl(4))

New example of non-admissible, half-integer level.

It appears in conformal embedding [AKMPP ’16]

Lk(sl(n))⊗H ↪→ Lk(sl(n+ 1)), k = −n+ 1

2
, n ≥ 4

where H denotes the Heisenberg vertex algebra associated to abelian
Lie algebra of rank one.

The level k = −n+1
2 is admissible for ̂sl(n+ 1), for n even.
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The singular vector in V −5/2(sl(4))

Theorem

Let g = sl(4). The following vector v is a singular vector of weight
−5

2Λ0 − 4δ + 2ω2 in V −5/2(g):

v = eε1−ε3 (−1)eε2−ε4 (−3)1+ eε1−ε3 (−3)eε2−ε4 (−1)1+
1

2
eε1−ε3 (−2)eε2−ε4 (−2)1

− eε1−ε4 (−1)eε2−ε3 (−3)1− eε1−ε4 (−3)eε2−ε3 (−1)1−
1

2
eε1−ε4 (−2)eε2−ε3 (−2)1

+ eε2−ε4 (−1)eε2−ε3 (−2)eε1−ε2 (−1)1− eε2−ε4 (−2)eε2−ε3 (−1)eε1−ε2 (−1)1

− eε1−ε3 (−1)eε2−ε3 (−2)eε3−ε4 (−1)1− 3eε1−ε3 (−2)eε2−ε3 (−1)eε3−ε4 (−1)1

+ 2eε1−ε2 (−1)eε2−ε3 (−1)2eε3−ε4 (−1)1−
2

3
eε1−ε3 (−1)eε2−ε4 (−1)h2(−2)1+ · · ·

The remaining terms can be found in the referenced paper.

Let us denote
L̃−5/2(g) = V −5/2(g)/⟨v⟩.
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L̃−5/2(sl(4))–modules

Theorem
The complete list of irreducible L̃−5/2 (sl(4))–modules in the category O
is given by {

L−5/2(µi(t)) | i = 1, . . . , 16, t ∈ C
}
,

where:
µ1(t) = tω1, µ9(t) = −3

2ω1 + tω3,

µ2(t) = tω3, µ10(t) = tω1 − 3
2ω3,

µ3(t) = tω1 + (−t− 5
2)ω2, µ11(t) = −3

2ω1 + tω2 + (−t− 1)ω3,

µ4(t) = tω2 + (−t− 5
2)ω3, µ12(t) = (−t− 1)ω1 + tω2 − 3

2ω3,

µ5(t) = tω1 − 3
2ω2, µ13(t) = −1

2ω1 − 1
2ω2 + tω3,

µ6(t) = −3
2ω2 + tω3, µ14(t) = −1

2ω1 + tω2 + (−t− 3
2)ω3,

µ7(t) = tω1 + (−t− 1)ω2, µ15(t) = tω1 − 1
2ω2 − 1

2ω3,

µ8(t) = tω2 + (−t− 1)ω3, µ16(t) = (−t− 3
2)ω1 + tω2 − 1

2ω3.
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L̃−5/2(sl(4))–modules

Corollary

The complete list of irreducible L̃−5/2 (sl(4))–modules in the category
KL−5/2 is given by{

L−5/2(tω1) | t ∈ Z≥0

}
∪
{
L−5/2(tω3) | t ∈ Z≥0

}
.

Next goal: Prove the simplicity of L̃−5/2(sl(4)).

It turns out that in this case we can not use W–algebra W k(sl(4), θ)
as in the case k = −1.
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W–algebra W−5/2(sl(4), fsubreg)

We use subregular nilpotent element

f = fsubreg = fε2−ε3 + fε3−ε4 .

Let
x = ω2 + ω3

be a semisimple element of sl(4) which defines a good grading with
respect to f .

Vertex algebra W−5/2(sl(4), f) is strongly generated by five elements;
J, L̄ = L+ ∂J,W,G+, G− having conformal weights 1,2,3,1,3,
respectively.

The OPE formulas are presented by T. Creutzig and A. Linshaw.
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W–algebra W−5/2(sl(4), fsubreg)

Let us denote g = sl(4).

Theorem

Level k = −5/2 is a collapsing level for W k(g, fsubreg) and

W−5/2(g, fsubreg) ∼= MJ(1),

where MJ(1) is the Heisenberg vertex algebra generated by J .

Lemma

The image of singular vector v in W−5/2(g, fsubreg) coincides (up to a
non-zero scalar) with the vector G+.
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QHR functor Hfsubreg(·)

Problem: The properties of the QHR functor Hfsubreg(·) are not presented
so explicitly as in the case of the minimal reduction.

Hθ(Lk(λ)) ̸= 0 iff (kΛ0 + λ)(α∨
0 ) /∈ Z≥0 [Ar’05]

In the case k = −1 we have Hθ(L−1(nωi)) ̸= 0, i = 1, 3.

Ivana Vukorepa New semi-simple categories on affine vertex algebras at non-admissible levels 17 / 29



Main properties of the QHR functor Hfsubreg(·)

Theorem

For any n ∈ Z>0 we have:
(P) Hfsubreg(L−5/2(nω3)) ̸= {0} and Hfsubreg(M) = {0} for any highest

weight L̃−5/2(g)–module M in KL−5/2 of g–weight nω1.

The proof is based on a construction of singular vectors in generalized
Verma modules V −5/2(nωi), i = 1, 3, and the description of their
submodules ⟨v⟩ · V −5/2(nωi).
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Simplicity of L̃−5/2(g) and semi-simplicity of KL−5/2

Theorem

We have:

(i) ⟨v⟩ is the maximal ideal in V −5/2(sl(4)), i.e.
L−5/2 (sl(4)) ∼= V −5/2(sl(4))/⟨v⟩.

(ii) The category KL−5/2 is semi-simple.

The main idea in the case k = −5/2 is to use property (P) and the
automorphism σ which interchanges the weights nω1 and nω3.

Using the similar arguments and exactness of Hfsubreg(·) in the category
KL−5/2 we prove that any highest weight module in KL−5/2 is irreducible.
Then the result of [AKMPP’20] implies that KL−5/2 is semi-simple.
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Conformal embedding gl(2n) ↪→ sl(2n+ 1) at k = −2n+1
2

Proposition (AKMPP ’16)

There is a conformal embedding

Lk(sl(m))⊗H ↪→ Lk(sl(m+ 1)), k = −m+ 1

2
,

and we have the following decomposition of Lk(sl(m+ 1)) as an
Lk(sl(m))⊗H–module:

Lk(sl(m+ 1)) =

∞⊕
i=0

Lk(iω1)⊗Fi ⊕
∞⊕
i=1

Lk(iωm−1)⊗F−i.

We introduce the following notation for the irreducible
Lk(sl(2n))–modules in the category KLk(sl(2n)):

U
(n)
i = Lk(iω1), U

(n)
−i = Lk(iω2n−1), i ∈ Z≥0.
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Fusion rules between irreducible modules in KL−5/2

Proposition

The modules U
(2)
i are simple currents with the following fusion rules:

U
(2)
i × U

(2)
j = U

(2)
i+j , i, j ∈ Z.

This means that for i, j, k ∈ Z:

dim I

(
U

(2)
k

U
(2)
i U

(2)
j

)
= δi+j,k.

Corollary

KL−5/2 is a semi-simple rigid braided tensor category with the fusion rules

U
(2)
i ⊠ U

(2)
j = U

(2)
i+j i, j ∈ Z.
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Tensor categories and conformal embeddings

In the case L−5/2(sl(4)) we used very complicated formulas for

singular vectors in V −5/2(sl(4)) and V −5/2(nωi), i = 1, 3, and OPEs
in subregular W -algebra.

=⇒ For KLk(sl(2n)), k = −2n+1
2 , n ≥ 2 we need a different approach.

The level k = −n+1
2 is admissible for ̂sl(n+ 1) if and only if n is even.

Only for even n one expects to get similar vertex tensor category
structure as in the case n = 4.

The cases when n is odd are more complicated and not all modules in
KLk(sl(n)) appear in the decomposition of above conformal
embedding.

Levels k = −n+1
2 are collapsing for W -algebras of certain hook type

[AMP’22].
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Main theorem

Goal: Using tensor category approach, generalize the results on
KL−5/2(sl(4)) to KLk(sl(2n)), k = −2n+1

2 .

Main theorem KLk(sl(m)) is a semi-simple, rigid braided tensor
category for all even m ≥ 4 and k = −m+1

2 . Modules in KLk(sl(m)) are
simple currents, and all of them appear in the decomposition of conformal
embedding.

The argument for the proof is an induction for m = 2n.
A base case is L−5/2(sl(4)).
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Singlet M(2)

Results on singlet M(2) [A’03] [AM’17], [CMY’21]:

The category of all C1–cofinite M(2)–modules OM(2) is a rigid
braided tensor category.

Let Mi, i ∈ Z be all atypical M(2)–modules.

Modules Mi, i ∈ Z are simple currents in OM(2) with the following
fusion rules

Mi ×Mj = Mi+j , i, j ∈ Z.

The conformal weight ∆ of the top level of Mi is

∆(Mi) =
|i|(|i|+ 1)

2
.
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Structure of Wk−1(sl(m+ 2), θ)

Using that KLk(sl(m)) is a braided tensor category and above results on
singlet, we obtain:

Wk−1(sl(m+ 2), θ) is a simple current extension of
Lk(sl(m))⊗H⊗M(2), where H denotes the rank one Heisenberg
vertex algebra generated by h.

For l = − m
m+2 , we have the following decomposition

Wk−1(sl(m+ 2), θ) =
⊕
i∈Z

U
(m
2
)

i ⊗F l
i ⊗Mi,

where F l
i denotes Fock H–module generated by highest weight vector

vi such that
h(n)vi = δn,0ivi (n ≥ 0).
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The category KLk−1(sl(m+ 2)) and ordinary
Wk−1(sl(m+ 2), θ)–modules

We use the theory of vertex algebra extensions to study ordinary modules
for this minimal W–algebra.

Key fact: Let Hθ(Lk−1(λ)) be the QHR of a simple module in
KLk−1(sl(m+ 2)). Then:

Hθ(Lk−1(λ)) ∼= Aa,b =
⊕
i∈Z

U
(m
2
)

i ⊗F l
a+i ⊗Mb+i,

for b = m+2
m a ∈ Z.
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Tensor category KLk(sl(2n)), for k = −2n+1
2

, n ≥ 2

Theorem

(1) Set {U (n)
i | i ∈ Z} provides all irreducible modules in KLk(sl(2n))

and we have the following fusion rules:

U
(n)
i × U

(n)
j = U

(n)
i+j , i, j ∈ Z.

(2) KLk(sl(2n)) is a semi-simple rigid braided tensor category.

(3) For n ≥ 2, Wk−1(sl(2n+ 2), θ) is a simple current extension of
Lk(sl(2n))⊗H⊗M(2), and we have the following decomposition

Wk−1(sl(2n+ 2), θ) =
⊕
i∈Z

U
(n)
i ⊗Fi ⊗Mi.

This theorem gives a whole family of new examples of semi-simple KLk(g)
at collapsing levels for non-minimal W -algebras.
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Second approach to Wk−1(sl(m+ 2), θ), k = −m+1
2

Let S be the βγ vertex algebra (Weyl vertex algebra).

Theorem

Let m ∈ Z≥0, m ≥ 4. Then

Wk−1(sl(m+ 2), θ) ∼= Com(H1, Lk(sl(m+ 1))⊗ S),

where H1 is a certain Heinseberg vertex algebra of rank one, and we have
the following decomposition

Wk−1(sl(m+ 2), θ) =
⊕
i∈Z

U
(m
2
)

i ⊗F l
i ⊗Mi

with l = − m
m+2 .
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Thank you!
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