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Affine Lie algebras

▶ Let g be a simple complex Lie algebra, h a Cartan subalgebra
of g and ⟨ , ⟩ a symmetric invariant bilinear form on g and we
assume that ⟨θ, θ⟩ = 2 for the maximal root θ

▶ Denote by ∆(= ∆+ ∪∆−) roots (positive and negative roots)

▶ Triangular decomposition g = N+ + h+N−

▶ Fix root vectors Xα

▶ ĝ = g⊗ C[t, t−1] + Cc , g̃ = ĝ+ Cd is the associated
untwisted affine Kac-Moody Lie algebra

▶ x(m) = x ⊗ tm for x ∈ g and i ∈ Z, c is the canonical central
element, and [d , x(m)] = mx(m)

▶ ĝ = ĝ<0 + (g+ Cc) + ĝ>0 , ĝ<0 =
∑

m<0 g(m)

Tomislav Šikić Combinatorial relations among relations



RT XVIII IUC 2023

Highest weight modules and VOA

▶ Λ highest weight, vΛ highest weight vector

▶ Verma modul M(Λ), L(Λ) irr. modul

▶ level of representation k = Λ(c) (for us k = 1, 2, · · · )
▶ we can form the induced g̃-module (a generalized Verma

modul)

N(kΛ0)(or V k(g)) = U(g̃)⊗U(g̃)≥0
CvkΛ0

▶ N(kΛ0) ∼= U(g̃)<0 (as vector space)
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Relations for level k standard (vacuum) ĝ-modules

Let R be the finite dimensional g-module generated by the singular
vector in N(kΛ0), i.e.

R = U(g) · xθ(−1)k+11 ∼= Lg((k + 1)θ),

where xθ is a root vector for the maximal root θ with respect to a
chosen Cartan decomposition of g. Then the coefficients r(m),
r ∈ R, m ∈ Z, of vertex operators

Y (r , z) =
∑
m∈Z

r(m)z−m−k−1

span a loop ĝ-module R̄. Since R̄N(kΛ0) ⊂ N(kΛ0) is the maximal
submodule of the generalized Verma module we have

L(kΛ0) = T HM = N(kΛ0)/R̄N(kΛ0) and R̄ |L(kΛ0) = 0, (1)

Tomislav Šikić Combinatorial relations among relations



RT XVIII IUC 2023

Annihilating fields

▶ L(kΛ0) = N(kΛ0)/N
1(kΛ0)

▶ N1(kΛ0) = R̄N(kΛ0) = U(g̃)R̄vΛ ⇝ R̄ Relations
▶ Field Y (xθ(−1)k+1, z) = xθ(z)

k+1 generates all annihilating
fields of L(kΛ0)

▶ xθ(z)
k+1 =

∑
m∈Z r(k+1)θ(m)z−m−k−1

=
∑
m∈Z

[
∑

i1+···+ik+1=m

xθ(i1) · · · xθ(ik+1)]z
−m−k−1

We can use the relations R̄ to construct a combinatorial bases of
L(kΛ0)—the basic idea is to reduce the PBW spanning set of
L(kΛ0) to a basis B by using relations r |L(kΛ0) = 0, and to
parameterize the monomial vectors

u(π)1 ∈ B ⊂ L(kΛ0) = U(ĝ)1

with monomials π in the symmetric algebra S(ĝ).
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Combinatorial and Gröbner bases

Problem:
Find a combinatorial basis of L(kΛ0) ⇔ Find a ”Gröbner basis” of
R̄N(kΛ0)

▶ solved for all s̃l2-modules L(Λ)
[Meurman - Primc: Annihilating Fields of Standard Modules
of s̃l2 and Combinatorial Identities; Memoirs of AMS 1999]

▶ solved for basic modules L(Λ0) for all affine symplectic Lie

algebras C
(1)
n

[Primc-Š: Combinatorial bases of basic modules for affine Lie

algebras C
(1)
n ;J. Math. Phys. 2016]

▶ conjectured for standard modules L(kΛ0) for affine symplectic

Lie algebras C
(1)
n

[Primc-Š: Leading terms of relations for standard modules of

affine Lie algebras C
(1)
n ; Ramanujan J. 2019]
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The methodology by steps

▶ Choose an (appropriately) totally ordered basis B of g and
extend the strict order ≺ on B to B̄ so that m < m′ implies
b(m) ≺ b′(m′). Since b(m)1 = 0 for m ≥ 0, in some
arguments it is enough to consider basis elements in

B̄<0 = {b(m) | b ∈ B,m < 0} = B̄ ∩ ĝ<0.

▶ Denote by P the set of monomials

π =
∏

b(j)∈B̄

b(j)nb(j) ∈ S(ĝ)

and by P<0 = P ∩ S(ĝ<0) and interpret as a colored
partition of length ℓ(π), degree |π| and support suppπ
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The methodology by steps

▶ Determine the set of leading terms ℓt (R̄) ⊂ P of relations
r(m) ∈ R̄ \{0}:

ρ = ℓt (r(m)) if r(m) = cρu(ρ) +
∑
ρ≺κ

cκu(κ), cρ ̸= 0.

Then we can parameterize a basis of the loop module R̄ by its
leading terms,

▶ By using relations r(ρ)|L(kΛ0) = 0 reduce the spanning set
{u(π)1 | π ∈ P<0} of L(kΛ0) to a basis

B = {u(π) · 1 | π ∈ P<0 \(ℓt (R̄))}.

Here π ∈ P<0 \(ℓt (R̄)) denotes monomials π which are not in
the ideal (R̄) generated by relations R̄.
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The methodology by steps

▶ By using relations r(ρ)|L(kΛ0) = 0 reduce the spanning set
{u(π)1 | π ∈ P<0} of L(kΛ0) to a basis

B = {u(π) · 1 | π ∈ P<0 \(ℓt (R̄))}.

▶ Remark: If we think of monomials π as colored partitions,
then the spanning set of monomial vectors B ⊂ L(kΛ0) is
parameterized by partitions which do not contain any
subpartition ρ ∈ ℓt (R̄)—this is some sort of combinatorial
“difference conditions” on parts of the partition π.
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Relation among relations

In order to describe a combinatorial basis of R̄N(kΛ0) for an
embedding ρ ⊂ π such that π = ρκ, ρ ∈ ℓt (R̄) we have
r(ρ)u(κ) = u(π) +

∑
π≺τ cτu(τ), and ℓt (u(ρ ⊂ π)) = π. With this

notation we can write the spanning set of R̄N(kΛ0) as

u(ρ ⊂ π)1, ρ ∈ ℓt (R̄), π ∈ (ℓt (R̄)) ∩ P<0. (2)

If for any two embeddings ρ1 ⊂ π and ρ2 ⊂ π we have a relation
among relations

u(ρ1 ⊂ π)1− u(ρ2 ⊂ π)1 =
∑

π≺π′, ρ′⊂π′

cρ′⊂π′ u(ρ′ ⊂ π′)1, (3)

then we can reduce the spanning set (2) by using (3), and for each
π we may take just one embedding ρ(π) ⊂ π, ρ(π) ∈ ℓt (R̄) and
the corresponding vector for the reduced spanning set of R̄N(kΛ0)

u(ρ(π) ⊂ π)1, π ∈ (ℓt (R̄)) ∩ P<0. (4)
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Remark

If π = ρ1ρ2κ, ρ1, ρ2 ∈ ℓt (R̄), then we have two embeddings ρ1 ⊂ π
and ρ2 ⊂ π and ℓ(π) ≥ 2k + 2 and (3) easily follows. Hence the
problem is to check (3) “only” for

k + 2 ≤ ℓ(π) ≤ 2k + 1.

For k = 1 we have k + 2 = 2k + 1 = 3, i.e. we have to check (3)
only for ℓ(π) = 3, and this was done in [PŠ; 2016].
On the other hand, for k = 2(= 3 = · · · ) we have to check (3) for
4 ≤ ℓ(π) ≤ 5 (5 ≤ ℓ(π) ≤ 7; · · · ). The main result are relations
among relations (3) for ℓ(π) = 4.
p.s.

▶ k + 2 maximal intersection of leading terms

▶ 2k + 1 minimal intersection of leading terms
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Maximal and minimal intersection k=1

k = 1 ⇒ k + 2 = 3 ⇝

xα

xβ

xγ

xα

xβ

xγ

and

xα

xβ

xγ
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Maximal intersection k=2

k = 2 ⇒ k + 2 = 4

xα

xβ

xγ

xδ

xα

xβ

xγ

xδ

and

xα

xβ

xγ

xδ
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Minimal intersection k=2

k = 2 ⇒ 2k + 1 = 5 ⇝

xα

xα

xβ

xγ

xδ

xα

xα

xβ

xγ

xδ

and

xα

xβ

xβ

xγ

xδ
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Ordered basis B and B̄

▶ let B be the ordered basis of g

▶ We fix the basis B̄ of ḡ = g⊗ C[t, t−1],

B̄ =
⋃
j∈Z

B ⊗ t j ,

▶ Let ⪯ be a linear order on B̄ such that

i < j implies b(i) ≺ b′(j).

▶ degree |b(i)| = i
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Ordered basis B and B̄

π =
ℓ∏

i=1

bi (ji ), bi (ji ) ∈ B̄,

▶ π is a colored partition of degree |π| =
∑ℓ

i=1 ji ∈ Z and
length ℓ(π) = ℓ, with parts bi (ji ) of degree ji and color bi

▶ we shall usually assume that parts of π are indexed so that

b1(j1) ⪯ b2(j2) ⪯ · · · ⪯ bℓ(jℓ).

▶ we associate with a colored partition π its shape shπ,

j1 ≤ j2 ≤ · · · ≤ jℓ (”plain” partition).

▶ the set of all colored partitions with parts bi (ji ) of degree
ji (ji < 0) is denoted as P(P<0)
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Colored partitions

▶ N(kΛ0) ∼= U(ĝ<0) ∼= S(g<0)
(Thx to PBW Thm ; like vec.space)

▶

(
∏
b∈B̄

bmult(b))·vkΛ0
∼=

∏
b∈B̄

bmult(b) ordered monomials as in P<0
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Colored partitions - example

Case: ŝl2 ; B = {x , h, y} ; y ≺ h ≺ x

ordered monomial u(π) = x(−4)h(−3)2y(−1)x(−1)vkΛ0

u(π) = x(−4)h(−3)2y(−1)x(−1)vkΛ0 ⇝

colored partitions

x

h

h

y

x

ℓ(π) =
∑
b∈B̄

mult(b) = 5 |π| =
ℓ∑

i=1

ji = 12
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Leading terms of the relation

On level k standard module L(Λ) we have vertex operator relations

xθ(z)
k+1 =

∑
m∈Z

r(k+1)θ(m)z−m−k−1 = 0

i.e. the coefficient (relations) of above annihilating fields are

r(k+1)θ(m) =
∑

j1+···+jk+1=m

xθ(j1) · · · xθ(jk+1) .

The smallest summand in this sum is proportional to

xθ(−j − 1)bxθ(−j)a

for a+ b = k + 1 and (−j − 1)b + (−j)a = m. Moreover, the
shape of every other term Φ which appears in the sum is greater
than the shape (−j − 1)b(−j)a, so we can write

r(k+1)θ(m) = c xθ(−j − 1)bxθ(−j)a +
∑

shΦ≻(−j−1)b(−j)a

cΦX (Φ)

for some c ̸= 0 and coefficients cΦ for Φ ∈ Pk+1(m).Tomislav Šikić Combinatorial relations among relations
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Leading terms of the relation - example

ℓt (r5θ(−12)) = xθ(−3)2xθ(−2)3 ⇝

xθ

xθ

xθ

xθ

xθ

Remark:
For a+ b = k + 1 and (−j − 1)b + (−j)a = m we have only one
possible shape. b = |m| − (k + 1)j i .e. b ≡ |m|(k + 1).

k = 4 , m = −12 ⇒ b = 2 ⇒ a = 3 ⇒ j = −2
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Leading terms of relation r(m)

The adjoint action of U(g) on r(k+1)θ(m), m ∈ Z, gives all other
relations in R̄. For u ∈ U(g) the relation r(m) = u · r(k+1)θ(m) can
be written as

r(m) =
∑

shΨ=(−j−1)b(−j)a

cΨX (Ψ) +
∑

shΨ≻(−j−1)b(−j)a

cΨX (Ψ) .

The actions of u ∈ U(g) in g-modules U and S are different, but

we have u
(
c xθ(−j − 1)bxθ(−j)a

)
=

∑
shΨ=(−j−1)b(−j)a cΨΨ

with the same coefficients cΨ as in the first summand in above
equation. The smallest Ψ ∈ Pk+1(m) which appears in the first
sum we call the leading term of relation r(m) and we denote it
as ℓt r(m). Hence we can rewrite above equation as

r(m) = cΦX (Φ) +
∑
Ψ≻Φ

cΨX (Ψ), Φ = ℓt r(m).
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Embeddings of leading terms

▶ k=4...ℓtR̄ = {ℓt r(m)} parametrize a basis {r(ρ) | ρ ∈ ℓtR̄} of
R̄

▶ for κ ∈ P, ρ ∈ ℓtR̄ and π = κρ we say that ρ is embedded in
π (we write ρ ⊂ π)

▶ u(ρ ⊂ π) = u(κ)r(ρ)
▶ ℓt(u(ρ ⊂ π)) = π

xθ(−3) r5θ(−12) xθ(−1) ⇝

xθ

xθ

xθ

xθ

xθ

xθ

xθ
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Relation among relations

For any π with two embeddings ρ1 ⊂ π and ρ2 ⊂ π we have a
relation among relations

u(ρ2 ⊂ π)1 = u(ρ1 ⊂ π)1+ higher terms???

= + higher terms
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Simple Lie algebra of type Cn (sp2n)

These vectors form a basis B of g which we shall write in a
triangular scheme, e.g. for n = 3 the basis B is

11
12 22
13 23 33
13 23 33 33
12 22 32 32 22
11 21 31 31 21 11
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Case C
(1)
n

For general rank we may visualize admissible pair of cascades
(=leading term) as figure below

(r,r)

B

A

Figure 1
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Case C
(1)
n

Theorem (Primc-Š 2019)

Let (−j − 1)b(−j)a, j ∈ Z, a+ b = k + 1, b ≥ 0, be a fixed
shape and let B and A be two cascades in degree −j − 1 and −j ,
with multiplicities (mβ,j+1, β ∈ B) and (mα,j , α ∈ A), such that∑

β∈B mβ,j+1 = b,
∑

α∈Amα,j = a. Let r ∈ {1, · · · , n, n, · · · , 1}.
If the points of cascade B lie in the upper triangle △r and the
points of cascade A lie in the lower triangle r△, then∏

β∈B
Xβ(−j − 1)mβ,j+1

∏
α∈A

Xα(−j)mβ,j

is the leading term of a relation for level k standard module for

affine Lie algebra of the type C
(1)
n .
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Conjecture

Let n ≥ 2 and k ≥ 2. We consider the standard module L(kΛ0) for

the aff LA of type C
(1)
n ({Xab(j) | ab ∈ B, j ∈ Z} ∪ {c , d} base).

We conjecture that the set of monomial vectors∏
ab∈B, j>0

Xab(−j)mab;j v0,

satisfying difference conditions
∑

ab∈B mab;j+1 +
∑

ab∈Amab;j ≤ k
for any admissible pair of cascades (B,A), is a basis of L(kΛ0).
The conjecture is true for

▶ n = 1 and all k ≥ 1 [Meurman-Primc]

▶ k = 1 for all n ≥ 2 [Primc-Š 2016]
[J. Dousse-I. Konan preprint][M. C. Russel preprint]
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Recent situation...

1 2 3 4 5 6 7 8 9 10 k

1

2

3

4

5

6

7

8

9

10

n

C
(1)
2
L(2Λ0)?
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New frontiers

▶ Case C
(1)
n for k = 2

▶ Case C
(1)
2 for k ≥ 2

▶ Case C
(1)
n for n ≥ 2 and k ≥ 2
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Main theorem [(arXiv:2301.11222)]

Theorem
For any two embeddings ρ1 ⊂ π and ρ2 ⊂ π in π ∈ P4(m), where

ρ1, ρ2 ∈ ℓt (R̄), we have a level 2 relation for C
(1)
n

u(ρ1 ⊂ π)− u(ρ2 ⊂ π) =
∑

π≺π′, ρ⊂π′

cρ⊂π′ u(ρ ⊂ π′). (5)
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Before the proof: a much more appropriate notation

We will reinterpret the term of cascade with two identical triangles
from Figure 1, but one is rotated and mirrored and then both are
rotated.

Figure 2

From Figure 2, it is already obvious that the pair of admissible
cascades has become a zig-zag line.
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A much more appropriate notation

g⊗ t−j−1

11 1, 2n

2n, 1
g⊗ t−j−2

2, 2n

2n + 1, 1 2n + 1, 2n

g⊗ t−j−3

1, 2n + 1 1, 4n

2n, 2n + 1

Figure 7
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Proof

To prove the theorem, for a fixed ordinary partition p of length 4
we need to count the number of two-embeddings for shπ = p∑

shπ=p, π∈P4(m)

N(π).

where is

N(π) = max{#E(π)− 1, 0} E(π) = {ρ ∈ ℓt (R̄) | ρ ⊂ π}.

It turns out it is enough, but much easier, to count for a trapezoid
T the number

NT =
∑

π, ℓ(π)=4, suppπ⊂T

N(π).
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Proof

By 14 technical Lemmas were proved for three successive triangles
that the number of two-embeddings for 16 admissible supports of 4
different types (Ar ,Br ,Cr ,Dr ) of π is

NT =
4∑

r=2

NT (Ar ) +
2∑

r=1

∑
δ= |, ||

(NT (Br δ) + NT (Cδ r ) + NT (D1 δ 1))

=
7(10n − 1)

4

(
2n + 6

7

)
.
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Case C
(1)
2 for k = 2 and n = 2

con

0 0

1 7

0 0

0 0

1 35

0 0

1 19

1 2

1 9

315

315 165

= 480

tent...
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Proof

By using the relation

xθ(z)
d
dz (xθ(z)

k+1) = (k + 1)xθ(z)
k+1 d

dz xθ(z)

for each n we can construct

dimL((k + 2)θ) + dimL((k + 2)θ − α∗) + dimL((k + 1)θ)

linearly independent relation among relations of length k + 2.

For level 2 C
(1)
n -standard modul above number of relations among

relation is equal∗ to

2n

(
2n + 6

7

)
.

∗ Weyl dimension formula
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Proof

Moreover, the following inequality holds

(⋆) 2n

(
2n + 2k + 2

2k + 3

)
≤

∑
|π|=m;ℓ(π)=k+2

N(π) where

N(π) = max{card(ε(π))− 1, 0}, ε(π) = {ρ ∈ ℓt (R̄) | ρ ⊂ π} .

If in (⋆) equality holds for all m than we have the proof of
theorem (for all π of lenght ℓ(π) = k + 2).
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Proof

List of Young tableaux for three successive triangles

m = −4 m = −5 m = −6 m = −7 m = −8 m = −8

m = −9 m = −10 m = −11 m = −12 · · ·
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Proof

For three successive triangles above number of relation among
relations can be replaced with the equivalent one for all 11 listed
Young diagrams

12∑
m=4

∑
π∈P4(m)

N(π) = 9× 2n

(
2n + 6

7

)
− 2× dim L(4θ) (6)

=
7(10n − 1)

4

(
2n + 6

7

)
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Standard C
(1)
n -modules of level 2,3,. . . ?

C_2 k=3 za članak
C_2 #TrapezSve4.py
In[1]:= n = 2

Out[1]= 2

In[2]:= SigmaTA5 = 

i1=5

2 n+1



j1=1

4 n+1-i1



i2=4

i1-1



j2=j1

i1+j1-i2



i3=3

i2-1



j3=j2

i2+j2-i3



i4=1

i3-1



j4=j3

i3+j3-i4



i5=1

i4-1



j5=j4

i4+j4-i5

1

Out[2]= 64

In[3]:= SigmaTA4 = 

i1=4

2 n+1



j1=1

4 n+1-i1



i2=3

i1-1



j2=j1

i1+j1-i2



i3=2

i2-1



j3=j2

i2+j2-i3



i4=1

i3-1



j4=j3

i3+j3-i4

1

Out[3]= 216

In[4]:= SigmaTA3 = 

i1=3

2 n+1



j1=1

4 n+1-i1



i2=2

i1-1



j2=j1

i1+j1-i2



i3=1

i2-1



j3=j2

i2+j2-i3

1

Out[4]= 268

In[5]:= SigmaTA2 = 

i1=2

2 n+1



j1=1

4 n+1-i1



i2=1

i1-1



j2=j1

j1+i1-i2

1

Out[5]= 145

In[6]:= SigmaTB3i =



d=1

2 n+1-3



l=1

2 n+2-d-3



i1=l+d+3-1

2 n+1



i2=l+d+3-2

i1-1



i3=l+d

i2-1

4 n + 1 - i1 i1 - i2 + 1 i2 - i3 + 1 i3 - l - d + 1

Out[6]= 132

In[7]:= SigmaTB2i = 

d=1

2 n+1-2



l=1

2 n+2-d-2



i1=l+d+2-1

2 n+1



i2=l+d+2-2

i1-1

4 n + 1 - i1 i1 - i2 + 1 i2 - l - d + 1

Out[7]= 211

In[8]:= SigmaTB1i = 

d=1

2 n+1-1



l=1

2 n+2-d-1



i1=l+d+1-1

2 n+1

4 n + 1 - i1 i1 - l - d + 1

Out[8]= 161

In[9]:= SigmaTB3ii =

2 * 

d=1

2 n-3



h=1

2 n-d-2



l=h+1

2 n-d-1



i1=l+d+2

2 n+1



i2=l+d+1

i1-1



i3=l+d

i2-1

4 n + 1 - i1 i1 - i2 + 1 i2 - i3 + 1 i3 - l - d + 1

Out[9]= 32

In[10]:= SigmaTB2ii = 2 * 

d=1

2 n-2



h=1

2 n-d-1



l=h+1

2 n+2-d-2



i1=l+d+2-1

2 n+1



i2=l+d

i1-1

4 n + 1 - i1 i1 - i2 + 1 i2 - l - d + 1

Out[10]= 124
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THE END

THANK YOU!
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Case C
(1)
2 for k = 2

(⋆) 2n

(
2n + 2k + 2

2k + 3

)
=? =

∑
|π|=m;ℓ(π)=k+2

N(π) where

2n

(
2n + 2k + 2

2k + 3

)
= 4

(
10

7

)
= 480
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Case C
(1)
n for k = 2 The proof of the main result

The Weyl dimension formula in the case of symplectic Lie algebra
g = sp2n
(with the corresponding ρ = nε1 + (n − 1)ε2 + · · ·+ 2εn−1 + εn)
gives

dim L(sθ) =

(
2n + 2s − 1

2s

)
, (7)

dim L(4θ − α⋆) =
(2n + 7)(n − 1)

4

(
2n + 5

6

)
. (8)

Hence from (14) and (15) we have

dimQ4(m) = dim L(3θ)+dim L(4θ)+dim L(4θ−α⋆) = 2n

(
2n + 6

7

)
(9)
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Case C
(1)
n for k = 2

Let ℓ(π) = k + 2 and assume that π allows two embeddings of
leading terms of relations for level k standard modules. Then
suppπ is one of the following types (for r , s ∈ N and δ in the set of
two symbols | and ||):
(Ar ) suppπ = {a1, . . . , ar}, r ≥ 2, a1 ▷ · · · ▷ ar .

(Br δ) suppπ = {a1, . . . , ar , b, c}, r ≥ 1, a1 ▷ · · · ▷ ar , ar ▷ b,
ar ▷ c and b and c are not comparable. We set δ to be | if b
and c are in the same row, and || otherwise.

(Cδ r ) suppπ = {b, c , a1, . . . , ar}, r ≥ 1, a1 ▷ · · · ▷ ar , b ▷ a1,
c ▷ a1 and b and c are not comparable. We set δ to be | if b
and c are in the same row, and || otherwise.

(Drδ s) suppπ = {a1, . . . , ar , b, c , d1, . . . , ds}, r , s ≥ 1, a1 ▷ · · · ▷ ar ,
ar ▷ b ▷ d1, ar ▷ c ▷ d1, d1 ▷ · · · ▷ ds , and b and c are not
comparable. We set δ to be | if b and c are in the same row,
and || otherwise.
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Case C
(1)
n for k = 2

1. NT (Ar ) = (r − 1)
(k+1
r−1

)
ΣT (Ar ),

2. NT (Br δ) =
(k−1
r−1

)
ΣT (Br δ),

3. NT (Cδ r ) =
(k−1
r−1

)
ΣT (Cδ r ),

4. NT (Dr δ s) =
( k−1
s+r−1

)
ΣT (Dr δ s).
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Case C
(1)
n for k = 2 The main result

Theorem
For any two embeddings ρ1 ⊂ π and ρ2 ⊂ π in π ∈ P4(m), where

ρ1, ρ2 ∈ ℓt (R̄), we have a level 2 relation for C
(1)
n

u(ρ1 ⊂ π)− u(ρ2 ⊂ π) =
∑

π≺π′, ρ⊂π′

cρ⊂π′ u(ρ ⊂ π′). (10)
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Case C
(1)
n for k = 2 The proof of the main result

The Weyl dimension formula in the case of symplectic Lie algebra
g = sp2n
(with the corresponding ρ = nε1 + (n − 1)ε2 + · · ·+ 2εn−1 + εn)
gives

dim L(sθ) =

(
2n + 2s − 1

2s

)
, (11)

dim L(4θ − α⋆) =
(2n + 7)(n − 1)

4

(
2n + 5

6

)
. (12)

Hence from (14) and (15) we have

dimQ4(m) = dim L(3θ)+dim L(4θ)+dim L(4θ−α⋆) = 2n

(
2n + 6

7

)
(13)
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Case C
(1)
n for k = 2 The proof of the main result

The Weyl dimension formula in the case of symplectic Lie algebra
g = sp2n
(with the corresponding ρ = nε1 + (n − 1)ε2 + · · ·+ 2εn−1 + εn)
gives

dim L(sθ) =

(
2n + 2s − 1

2s

)
, (14)

dim L(4θ − α⋆) =
(2n + 7)(n − 1)

4

(
2n + 5

6

)
. (15)

Hence from (14) and (15) we have

dimQ4(m) = dim L(3θ)+dim L(4θ)+dim L(4θ−α⋆) = 2n

(
2n + 6

7

)
(16)
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