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1. Introduction

Orbifold theory

V is a vertex algebra

G is a finite automorphism group of V

Orbifold theory: Study the V G-modules

Twisted modules

Main feature: Appearance of g-twisted V -module: A g-
twisted V -module is not a V -module but restricts to a
V G-module

Problem: Do not know how to construct twisted modules
in mathematics. This poses a great challenge in studying
orbifold theory
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History

(Frenkel-Lepowsky-Measman 1988) The first obiforld con-
struction is moonshine vertex operator algebra

(Dijkgraff-Vafa-Verlinde-Verlinde 1989 ) General orbifold
theory (physics point of view)

(Dijkgraaf-Pasquier-Roche 1990) Connnection between
holomorphic orbifold theory and twisted Drinfeld dou-
bles

(Dong-Mason, Dong-Li-Mason 1996-1997) Orbifold the-
ory for a vertex operator algebra, Schur-Weyl duality for
G and V G on V

(Dong-Mason 1997, Hanaki-Miyamoto-Tambara 1999, Dong-
Jiao-Xu 2013) Quantum Galois theory
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(Dong-Yamskulna 2002) Duality results on modules

(Miyamoto-Tanabe 2004) Algebeas AG,n(V ) and duality

(Carnahan-Miyamoto 2017) If V is rational and C2-cofinite
and G is a solvable automorphism group of V then V G

is rational and C2-cofinite

(Dong-R-Xu 2017) Classification of irreducible V G-modules

(Kirillov 2002, Dong-Ng-R 2021) Orbifold theory and
minimal modular extensions (Dijkgraaf-Pasquier-Roche
Conjecture)

Study of general orbifold construction for vertex algebra
is very limited
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Our work

Assumptions

V is a simple vertex algebra of countable dimension such that

G is a finite automorphism group of V and σ ∈ G is a
central element

S is a finite set of inequivalent irreducible σ-twisted V -
modules such that S is invariant under the action of G

M =
⊕

M∈S M

The assumption is always valid in this talk
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Main results

1 The actions of finite dimensional semisimple associative al-
gebra Aα(G,S) and V G on M commute
2 Every irreducible Aα(G,S)-module occurs in M
3 The multiplicity space of each irreducible Aα(G,S)-module
is an irreducible V G-module
4 The multiplicity spaces of different irreducible Aα(G,S)-
modules are inequivalent V G-modules
5 A Galois correspondence is established

Remark

Results 1-4 in the case that V is a vertex operator algebra
were obtained by Dong-Yamskulna in 2002
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2. Basics

V = (V, Y,1) a vertex algebra

g is an automorphism of V of order T , and o(g) = T

V =
⊕

r∈Z/TZ

V r

where V r = {v ∈ V | gv = e−2πir/T v}, r = 0, . . . , T − 1



Orbifold
Theory for

Vertex
Algebras

Chongying
Dong, Li
Ren, Chao

Yang

Content

Introduction

Basics

Associative
algebras

Duality I

Duality II

A g-twisted V -module M = (M,YM ):

YM : V → (EndM){z1/T , z−1/T }

v 7→ YM (v, z) =
∑

n∈ 1
T
Z

vnz
−n−1 (vn ∈ EndM)

+axioms

If g = 1, M is called a V -module

Remark

In the case that V is a vertex operator algebra, such g-
twisted V -module is called a weak g-twisted module in
the literature

If G is an automorphism group of V then for g ∈ G, a
g-twisted V -module is V G-module
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3.Associative algebras

V : a vertex algebra, t: an indeterminate

L(V ) = V ⊗C[t
1
T , t−

1
T ] tensor product of vertex algebras

g automorphism of V of order T : g(u⊗tm) = e−2πim(gu⊗
tm) defines an automorphism of L(V )

L(V, g) = ⊕T−1
r=0 V

r⊗tr/TC[t, t−1]: fixed point vertex sub-
algebra

D is the endomorphism of V defined by D(v) = v−21
for v ∈ V , D = 1 ⊗ d

dt +D ⊗ 1 is the endomorphism of
L(V, g)
V [g] = L(V, g)/DL(V, g) is a Lie algebra (Borcherds)

U(V [g]) is the universal enveloping algebra of the Lie
algebra V [g]. (This associative algebra will be used when
we need Jacobson density theorem)
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Lemma

Let M be a g-twisted V -module. Let X be a finite dimen-
sional subspace of M . Let u1, . . . , uk ∈ V and n1, . . . , nk ∈
1
T Z. Then there exist a1, . . . , at ∈ V and m1, . . . ,mt ∈ 1

T Z
such that

u1n1
· · ·uknk

(w) = a1m1
w + · · ·+ atmt

w

for any w ∈ X

Remark

This result essentially follows from the associativity of twisted
vertex operators on M
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Jacobson’s density theorem

Let A be an associative algebra over C. Let M be an sim-
ple A-module of countable dimension. Then for any finite
dimensional subspace X of M and any f ∈ HomC(X,M),
there exists an element a ∈ A such that f(x) = ax for any
x ∈ X

Remark

In the case that V is a vertex operator algebra, the main tool
is the associative algebras Ag,n(V ) introduced and studied by
Don-Li-Mason in 1998. The algebras Ag,n(V ) only work for
vertex operator algebras and not for vertex algebras which
are not graded in general. The Jacobson’s density theorem
will be used in the proof for vertex algebra
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4. Duality I

V : simple vertex algebra of countable dimension

H : finite automorphism group of V .

V [[z±1
1 , · · · , z±1

n ]] : an H-module such that H acts on V

Let n ≥ 0. Define a linear mapping

φn : V ⊗(n+1) → V [[z±1
1 , · · · , z±1

n ]]

by

φn(v
n ⊗ · · · ⊗ v1 ⊗ v0) = Y (vn, zn) · · ·Y (v1, z1)v

0.

Note that φ0 = IdV .

Lemma

The mapping φn is an injective H-homomorphism
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Corollary

Every irreducible H-modules appears in V

Remark

The proof of Corollary follows from a well-known result
that if W is a faithful H-module then any irreducible
H-module appears in W⊗n for some n ≥ 0

If V is a vertex operator algebra, this result was proved
by Dong-Li-Mason in 1996
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Definition

Let A be an associative algebra and let V be a vertex algebra.
If M is both an A-module and a V -module such that the
actions of A and the actions of V on M commute with each
other, M is called an A⊗ V -module

Some basics notations:

A : a finite dimensional semisimple associative algebra

M : an A⊗ V -module

Λ : set of all irreducible characters of A

Wλ : simple A-module associated to λ ∈ Λ

Mλ = HomA(Wλ,M) is a V -module such that (vnf)(w) =
vnf(w) for v ∈ V, n ∈ Z, f ∈ Mλ, w ∈ Wλ
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As A⊗ V -module, M has the following decomposition:

M =
⊕
λ∈Λ

Wλ ⊗Mλ.

Key Lemma

Assume dimA < ∞. Let M be an A ⊗ V -module such that
for any finite dimensional A-submodule X of M and f ∈
HomA(X,M), there exist v1, . . . , vn ∈ V and i1, . . . , in ∈ Z
such that

f = v1i1 + · · ·+ vnin

Then

(1) Mλ is an irreducible V -module if Mλ ̸= 0,

(2) Mλ
∼= Mµ if and only if λ = µ
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Remark

In the case V is a vertex operator algebra, A is the group
algebra CαM [GM ], the proofs of 1○ and 2○ need associa-
tive algebras Aσ,n(V ) or AG,n(V ) which was defined and
studied by Miyamoto-Tanabe

The key Lemma is a replacement of using associative
algebras Aσ,n(V ) or AG,n(V )
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Some basics notations:

M is an irreducible σ-twisted V -module

Define a new σ-twisted V -module M ◦ h: M ◦ h ∼= M as
vector spaces, YM◦h(v, z) = YM (hv, z) for h ∈ G, v ∈ V

GM = {h ∈ G|M ◦ h ∼= M} acts on M projectively: for
h ∈ GM there exists ϕ(h) ∈ GL(M) such that

ϕ(h)YM (v, z)ϕ(h)−1 = YM (hv, z)

for all v ∈ V and

ϕ(h)ϕ(k) = αM (h, k)ϕ(hk)

for h, k ∈ GM and some αM ∈ H2(GM ,C∗)
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CαM [GM ] = ⊕h∈GM
Cĥ is the twisted group algebra:

ĥk̂ = αM (h, k)ĥk

M is a CαM [GM ]-module such that ĥ acts as ϕ(h)

ΛM is the set of all irreducible characters of CαM [GM ]

Wλ is the corresponding irreducible module for λ ∈ ΛM

Mλ = HomCαM [GM ](Wλ,M) is V GM -module

M is CαM [GM ]⊗ V GM -module
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Theorem

Assume that GM = G.

1 We have decomposition

M = ⊕λ∈ΛM
Wλ ⊗Mλ

and each simple CαM [G]-module appears in M

2 Mλ is an irreducible V G-module. In particular, Mλ is
nonzero for any λ ∈ ΛM

3 Mλ and Mγ are equivalent V G-modules iff λ = γ

The main idea in the proof is using the Key Lemma

In the case that V is a vertex operator algebra, this result
was due to Dong-Yamskulna
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Galois correspondence

Theorem

The map H → V H gives a bijection between the set of sub-
groups of G and the set of subalgebras of V containing V G

If V is a vertex operator algebra, the theorem were ob-
tained by Dong-Mason(injective, 1997), Hanaki-Miyamoto-
Tambara (surjective, 1999)

A full Galois correspondence was given by Dong-Jiao-
Xu by using the quantum dimension (including o(G) =
qdimV GV and Galois extensions, 2013)

A full Galois correspondence for vertex operator super-
algebra was obtained by Dong-R-Yang (2022)



Orbifold
Theory for

Vertex
Algebras

Chongying
Dong, Li
Ren, Chao

Yang

Content

Introduction

Basics

Associative
algebras

Duality I

Duality II

5. Duality II

Some notations

S is a finite set of inequivalent irreducible σ-twisted V -
modules which is G-invariant

S is G-invariant: for any M ∈ S and h ∈ G, there exists
N ∈ S such that N ∼= M ◦ h
Aα(G,S) = C[G] ⊗ CS =

⊕
g∈G,M∈S C(g ⊗ e(M)) is an

associative algebra:

g ⊗ e(M) · h⊗ e(N) = αN (g, h)gh⊗ e(M ◦ h)e(N)

M =
⊕

M∈S M

M is Aα(G,S)-module such that

(g ⊗ e(M))w = δM,NϕN (g)w

for M,N ∈ S, w ∈ N, g ∈ G, where ϕN (g) : N →
N ◦ g−1
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S = ∪j∈JOj , and Oj = M j ◦G
G = ∪k

j=1GMgj is a right coset decomposition

S(M) = Span{g ⊗ e(M) | g ∈ GM}
D(M) = Span{g ⊗ e(M) | g ∈ G}
D(Oj) = Span{g ⊗ e(M j ◦ gi) | i = 1, . . . , k, g ∈ G}
Aα(G,S) =

⊕
j∈J D(Oj)
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Theorem (Dong-Yamskulna 2002)

1 S(M) ∼= CαM [GM ] is a semisimple associative algebra

2 The functors W 7→ Ind
D(M)
S(M)W gives an equivalence be-

tween the category of CαM [GM ]-modules and the cate-
gory of D(OM )-modules.

3 Aα(G,S) is a semisimple associative algebra

{IndD(Mj)

S(Mj)
W | W is irreducible Cα

Mj [GMj ]−module, j ∈
J} gives a complete list of irreducible Aα(G,S)-modules
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Recall:

S = ∪j∈JOj and M j is a representative of Oj

Cα
Mj [GMj ] is the twisted group algebra

Λj is the set of irreducible characters of Cα
Mj [GMj ]

For any λ ∈ Λj , Wj,λ the corresponding irreducible mod-
ule

M j =
⊕

λ∈Λj
Wj,λ ⊗M j

λ as Cα
Mj [GMj ]⊗ V G

Mj -module

W j
λ = Ind

D(Mj)

S(Mj)
Wj,λ
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Theorem

1 As Aα(G,S)⊗ V G-module, we have the decomposition

M =
⊕

j∈J,λ∈Λj

W j
λ ⊗M j

λ

and M j
λ is an irreducible V G-module. In particular M j

λ

is nonzero for any j ∈ J and λ ∈ Λj

2 M j1
λ1

and M j2
λ2

are isomorphic V G-modules if and only if
j1 = j2 and λ1 = λ2

3 In particular, any irreducible σ-twisted module is com-
pletely reducible V G-module

The main idea is to use Key Lemma instead of algebras
Aσ,n(V )



Orbifold
Theory for

Vertex
Algebras

Chongying
Dong, Li
Ren, Chao

Yang

Content

Introduction

Basics

Associative
algebras

Duality I

Duality II

Corollary (Adamović-Lam-Pedicć-Yu 2022)

Let M be an irreducible σ-twisted V -module. Then M is an
irreducible V G-module if and only if GM = {1}
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Remark

Miyamoto-Tanabe(2004) defined associative algebras
AG,n(V ) for a vertex operator algebra V and n ∈ 1

o(G)Z
which are isomorphic to direct sum of Ag,n(V ) for g ∈ G.
These algebras are good enough to study any finite set
(of twisted modules) which isG-invariant, and are impor-
tant to classify irreducible V G-modules if V G is rational
and C2-cofinite (Dong-R-Xu 2017). But these algebras
do not work for vertex algebra

Tanabe (very recently) defines a notion of weak (V, T )-
module for any vertex algebra V and positive integer
T. It turns out that any g-twisted V -module is a (V, T )
module with T = o(G). Using our proof and his new
modules, he can take S in our discussion be any twisted
modules to obtain similar results
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