Orbifo	Id
Theory	
Verte	
Algebr	

Chongying Dong, Li Ren, Chao Yang

Content

Introduction

Basics

Associativo algebras

Duality 1

Duality II

Orbifold Theory for Vertex Algebras

Chongying Dong, Li Ren, Chao Yang

Dubrovnik

June 25-July 1, 2023

Content

Orbifold Theory for Vertex Algebras

Chongying Dong, Li Ren, Chao Yang

Content

Introduction

Basics

Associative algebras

Duality I

2 Basics

3 Associative algebras

4 Duality I

1. Introduction

Orbifold Theory for Vertex Algebras

Chongying Dong, Li Ren, Chao Yang

Content

Introduction

Basics

Associative algebras

Duality I

Duality II

Orbifold theory

- V is a vertex algebra
- G is a finite automorphism group of V
- Orbifold theory: Study the V^G -modules

Twisted modules

- Main feature: Appearance of g-twisted V-module: A g-twisted V-module is not a V-module but restricts to a V^G -module
- Problem: Do not know how to construct twisted modules in mathematics. This poses a great challenge in studying orbifold theory

History

Orbifold Theory for Vertex Algebras

Chongying Dong, Li Ren, Chao Yang

Content

Introduction

Basics

Associative algebras

Duality I

Duality II

- (Frenkel-Lepowsky-Measman 1988) The first obiforld construction is moonshine vertex operator algebra
- (Dijkgraff-Vafa-Verlinde-Verlinde 1989) General orbifold theory (physics point of view)
- (Dijkgraaf-Pasquier-Roche 1990) Connnection between holomorphic orbifold theory and twisted Drinfeld doubles
- (Dong-Mason, Dong-Li-Mason 1996-1997) Orbifold theory for a vertex operator algebra, Schur-Weyl duality for G and V^G on V
- (Dong-Mason 1997, Hanaki-Miyamoto-Tambara 1999, Dong Jiao-Xu 2013) Quantum Galois theory

Chongying Dong, Li Ren, Chao Yang

Content

Introduction

Basics

Associative algebras

Duality I

Duality II

- (Dong-Yamskulna 2002) Duality results on modules
- (Miyamoto-Tanabe 2004) Algebras $A_{G,n}(V)$ and duality
- (Carnahan-Miyamoto 2017) If V is rational and C_2 -cofinite and G is a solvable automorphism group of V then V^G is rational and C_2 -cofinite
- (Dong-R-Xu 2017) Classification of irreducible V^G -modules
- (Kirillov 2002, Dong-Ng-R 2021) Orbifold theory and minimal modular extensions (Dijkgraaf-Pasquier-Roche Conjecture)
- Study of general orbifold construction for vertex algebra is very limited

Our work

Orbifold Theory for Vertex Algebras

Chongying Dong, Li Ren, Chao Yang

Content

Introduction

Basics

Associative algebras

Duality I

Duality II

Assumptions

- ${\cal V}$ is a simple vertex algebra of countable dimension such that
 - G is a finite automorphism group of V and $\sigma \in G$ is a central element
 - S is a finite set of inequivalent irreducible σ-twisted Vmodules such that S is invariant under the action of G

•
$$\mathcal{M} = \bigoplus_{M \in \mathcal{S}} M$$

The assumption is always valid in this talk

Chongying Dong, Li Ren, Chao Yang

Content

Introduction

Basics

Associative algebras

Duality I

Duality II

Main results

1 The actions of finite dimensional semisimple associative algebra $\mathcal{A}_{\alpha}(G, \mathcal{S})$ and V^{G} on \mathcal{M} commute

2 Every irreducible $\mathcal{A}_{\alpha}(G, \mathcal{S})$ -module occurs in \mathcal{M}

3 The multiplicity space of each irreducible $\mathcal{A}_{\alpha}(G, \mathcal{S})$ -module is an irreducible V^{G} -module

4 The multiplicity spaces of different irreducible $\mathcal{A}_{\alpha}(G, \mathcal{S})$ modules are inequivalent V^{G} -modules

5 A Galois correspondence is established

Remark

Results 1-4 in the case that V is a vertex operator algebra were obtained by Dong-Yamskulna in 2002

2. Basics

Orbifold Theory for Vertex Algebras

Chongying Dong, Li Ren, Chao Yang

Content

Introduction

Basics

Associative algebras

Duality 1

Duality II

- $V = (V, Y, \mathbf{1})$ a vertex algebra
 - g is an automorphism of V of order T, and o(g) = T

$$V = \bigoplus_{r \in \mathbb{Z}/T\mathbb{Z}} V^r$$

where $V^r = \{v \in V \mid gv = e^{-2\pi i r/T}v\}, r = 0, ..., T - 1$

Chongying Dong, Li Ren, Chao Yang

Content

Introduction

Basics

Associativ algebras

Duality I

Duality II

• A g-twisted V-module $M = (M, Y_M)$:

$$Y_M : V \to (\operatorname{End} M) \{ z^{1/T}, z^{-1/T} \}$$
$$v \mapsto Y_M(v, z) = \sum_{n \in \frac{1}{T} \mathbb{Z}} v_n z^{-n-1} \quad (v_n \in \operatorname{End} M)$$

+axioms

• If g = 1, M is called a V-module

Remark

- In the case that V is a vertex operator algebra, such gtwisted V-module is called a weak g-twisted module in the literature
- If G is an automorphism group of V then for $g \in G$, a g-twisted V-module is V^G -module

3. Associative algebras

Orbifold Theory for Vertex Algebras

Chongying Dong, Li Ren, Chao Yang

Content

Introduction

Basics

Associative algebras

Duality I

Duality II

- $V{:}$ a vertex algebra, $t{:}$ an indeterminate
 - $\mathcal{L}(V) = V \otimes \mathbb{C}[t^{\frac{1}{T}}, t^{-\frac{1}{T}}]$ tensor product of vertex algebras
 - g automorphism of V of order T: $g(u \otimes t^m) = e^{-2\pi i m}(gu \otimes t^m)$ defines an automorphism of $\mathcal{L}(V)$
 - $\mathcal{L}(V,g) = \bigoplus_{r=0}^{T-1} V^r \otimes t^{r/T} \mathbb{C}[t,t^{-1}]$: fixed point vertex subalgebra
 - *D* is the endomorphism of *V* defined by $D(v) = v_{-2}\mathbf{1}$ for $v \in V$, $\mathcal{D} = 1 \otimes \frac{d}{dt} + D \otimes 1$ is the endomorphism of $\mathcal{L}(V,g)$
 - $V[g] = \mathcal{L}(V,g)/\mathcal{DL}(V,g)$ is a Lie algebra (Borcherds)
 - $\mathcal{U}(V[g])$ is the universal enveloping algebra of the Lie algebra V[g]. (This associative algebra will be used when we need Jacobson density theorem)

Chongying Dong, Li Ren, Chao Yang

Content

Introduction

Basics

Associative algebras

Duality I

Lemma

Let M be a g-twisted V-module. Let X be a finite dimensional subspace of M. Let $u^1, \ldots, u^k \in V$ and $n_1, \ldots, n_k \in \frac{1}{T}\mathbb{Z}$. Then there exist $a^1, \ldots, a^t \in V$ and $m_1, \ldots, m_t \in \frac{1}{T}\mathbb{Z}$ such that

$$u_{n_1}^1 \cdots u_{n_k}^k(w) = a_{m_1}^1 w + \dots + a_{m_t}^t w$$

for any $w \in X$

Remark

This result essentially follows from the associativity of twisted vertex operators on ${\cal M}$

Chongying Dong, Li Ren, Chao Yang

Content

Introduction

Basics

Associative algebras

Duality I Duality II

Jacobson's density theorem

Let A be an associative algebra over \mathbb{C} . Let M be an simple A-module of countable dimension. Then for any finite dimensional subspace X of M and any $f \in \operatorname{Hom}_{\mathbb{C}}(X, M)$, there exists an element $a \in A$ such that f(x) = ax for any $x \in X$

Remark

In the case that V is a vertex operator algebra, the main tool is the associative algebras $A_{g,n}(V)$ introduced and studied by Don-Li-Mason in 1998. The algebras $A_{g,n}(V)$ only work for vertex operator algebras and not for vertex algebras which are not graded in general. The Jacobson's density theorem will be used in the proof for vertex algebra

4. Duality I

Orbifold Theory for Vertex Algebras

Chongying Dong, Li Ren, Chao Yang

Content

Introduction

Basics

Associative algebras

Duality I Duality II

- V : simple vertex algebra of countable dimension
- H: finite automorphism group of V.
- $V[[z_1^{\pm 1}, \cdots, z_n^{\pm 1}]]$: an *H*-module such that *H* acts on *V*
- Let $n \ge 0$. Define a linear mapping

$$\varphi_n: V^{\otimes (n+1)} \to V[[z_1^{\pm 1}, \cdots, z_n^{\pm 1}]]$$

by

$$\varphi_n(v^n \otimes \cdots \otimes v^1 \otimes v^0) = Y(v^n, z_n) \cdots Y(v^1, z_1)v^0.$$

Note that $\varphi_0 = Id_V$.

Lemma

The mapping φ_n is an injective *H*-homomorphism

Chongying Dong, Li Ren, Chao Yang

Content

Introduction

Basics

Associative algebras

Duality I

Corollary

Every irreducible $H\operatorname{\!-modules}$ appears in V

Remark

- The proof of Corollary follows from a well-known result that if W is a faithful H-module then any irreducible H-module appears in $W^{\otimes n}$ for some $n \ge 0$
- If V is a vertex operator algebra, this result was proved by Dong-Li-Mason in 1996

Chongying Dong, Li Ren, Chao Yang

Content

Introduction

Basics

Associative algebras

Duality I Duality II

Definition

Let A be an associative algebra and let V be a vertex algebra. If M is both an A-module and a V-module such that the actions of A and the actions of V on M commute with each other, M is called an $A \otimes V$ -module

Some basics notations:

- A : a finite dimensional semisimple associative algebra
- M : an $A \otimes V$ -module
- Λ : set of all irreducible characters of A
- W_{λ} : simple A-module associated to $\lambda \in \Lambda$
- $M_{\lambda} = \operatorname{Hom}_{A}(W_{\lambda}, M)$ is a V-module such that $(v_{n}f)(w) = v_{n}f(w)$ for $v \in V, n \in \mathbb{Z}, f \in M_{\lambda}, w \in W_{\lambda}$

Chongying Dong, Li Ren, Chao Yang

Content

Introduction

Basics

Associative algebras

Duality I Duality II As $A \otimes V$ -module, M has the following decomposition:

$$M = \bigoplus_{\lambda \in \Lambda} W_{\lambda} \otimes M_{\lambda}.$$

Key Lemma

Assume dim $A < \infty$. Let M be an $A \otimes V$ -module such that for any finite dimensional A-submodule X of M and $f \in$ $\operatorname{Hom}_A(X, M)$, there exist $v^1, \ldots, v^n \in V$ and $i_1, \ldots, i_n \in \mathbb{Z}$ such that

$$f = v_{i_1}^1 + \dots + v_{i_n}^n$$

Then

- M_{λ} is an irreducible V-module if $M_{\lambda} \neq 0$,
- 2 $M_{\lambda} \cong M_{\mu}$ if and only if $\lambda = \mu$

Chongying Dong, Li Ren, Chao Yang

Content

Introduction

Basics

Associative algebras

Duality I Duality II

Remark

- In the case V is a vertex operator algebra, A is the group algebra $\mathbb{C}^{\alpha_M}[G_M]$, the proofs of (1) and (2) need associative algebras $A_{\sigma,n}(V)$ or $A_{G,n}(V)$ which was defined and studied by Miyamoto-Tanabe
- The key Lemma is a replacement of using associative algebras $A_{\sigma,n}(V)$ or $A_{G,n}(V)$

Chongying Dong, Li Ren, Chao Yang

Content

Introduction

Basics

Associative algebras

Duality I

Some basics notations:

- M is an irreducible σ -twisted V-module
- Define a new σ -twisted V-module $M \circ h$: $M \circ h \cong M$ as vector spaces, $Y_{M \circ h}(v, z) = Y_M(hv, z)$ for $h \in G, v \in V$
- $G_M = \{h \in G | M \circ h \cong M\}$ acts on M projectively: for $h \in G_M$ there exists $\phi(h) \in GL(M)$ such that

$$\phi(h)Y_M(v,z)\phi(h)^{-1} = Y_M(hv,z)$$

for all $v \in V$ and

$$\phi(h)\phi(k) = \alpha_M(h,k)\phi(hk)$$

for $h, k \in G_M$ and some $\alpha_M \in H^2(G_M, \mathbb{C}^*)$

Chongying Dong, Li Ren, Chao Yang

Content

Introduction

Basics

Associative algebras

Duality I

- $\mathbb{C}^{\alpha_M}[G_M] = \bigoplus_{h \in G_M} \mathbb{C}\hat{h}$ is the twisted group algebra: $\hat{h}\hat{k} = \alpha_M(h,k)\hat{h}\hat{k}$
- M is a $\mathbb{C}^{\alpha_M}[G_M]$ -module such that \hat{h} acts as $\phi(h)$
- Λ_M is the set of all irreducible characters of $\mathbb{C}^{\alpha_M}[G_M]$
- W_{λ} is the corresponding irreducible module for $\lambda \in \Lambda_M$
- $M_{\lambda} = \operatorname{Hom}_{\mathbb{C}^{\alpha_M}[G_M]}(W_{\lambda}, M)$ is V^{G_M} -module
- M is $\mathbb{C}^{\alpha_M}[G_M] \otimes V^{G_M}$ -module

Chongying Dong, Li Ren, Chao Yang

Content

Introduction

Basics

Associative algebras

Duality I Duality II

Theorem

Assume that $G_M = G$.

• We have decomposition

$$M = \oplus_{\lambda \in \Lambda_M} W_\lambda \otimes M_\lambda$$

and each simple $\mathbb{C}^{\alpha_M}[G]$ -module appears in M

- ② M_{λ} is an irreducible V^G-module. In particular, M_{λ} is nonzero for any $\lambda \in \Lambda_M$
- **3** M_{λ} and M_{γ} are equivalent V^{G} -modules iff $\lambda = \gamma$
- The main idea in the proof is using the Key Lemma
- In the case that V is a vertex operator algebra, this result was due to Dong-Yamskulna

Galois correspondence

Theorem

Orbifold Theory for Vertex Algebras

Chongying Dong, Li Ren, Chao Yang

 $\operatorname{Content}$

- Introduction
- Basics

Associative algebras

Duality I Duality II

The map $H \to V^H$ gives a bijection between the set of subgroups of G and the set of subalgebras of V containing V^G

• If V is a vertex operator algebra, the theorem were obtained by Dong-Mason(injective, 1997), Hanaki-Miyamoto-Tambara (surjective, 1999)

- A full Galois correspondence was given by Dong-Jiao-Xu by using the quantum dimension (including $o(G) = q \dim_{V^G} V$ and Galois extensions, 2013)
- A full Galois correspondence for vertex operator superalgebra was obtained by Dong-R-Yang (2022)

5. Duality II

Orbifold Theory for Vertex Algebras

Chongying Dong, Li Ren, Chao Yang

Content

Introduction

Basics

Associative algebras

Duality

Duality II

Some notations

- S is a finite set of inequivalent irreducible σ -twisted V-modules which is G-invariant
- S is G-invariant: for any $M \in S$ and $h \in G$, there exists $N \in S$ such that $N \cong M \circ h$
- $\mathcal{A}_{\alpha}(G, \mathcal{S}) = \mathbb{C}[G] \otimes \mathbb{C}\mathcal{S} = \bigoplus_{g \in G, M \in \mathcal{S}} \mathbb{C}(g \otimes e(M))$ is an associative algebra:

 $g \otimes e(M) \cdot h \otimes e(N) = \alpha_N(g,h)gh \otimes e(M \circ h)e(N)$

M = ⊕_{M∈S} *M M* is *A*_α(*G*, *S*)-module such that

 $(g \otimes e(M))w = \delta_{M,N}\phi_N(g)w$

for $M, N \in \mathcal{S}, w \in N, g \in G$, where $\phi_N(g) : N \to N \circ g^{-1}$

Chongying Dong, Li Ren, Chao Yang

Content

Introduction

Basics

Associative algebras

Duality 1

Duality II

- $\mathcal{S} = \bigcup_{j \in J} \mathcal{O}_j$, and $\mathcal{O}_j = M^j \circ G$
- $G = \bigcup_{j=1}^{k} G_M g_j$ is a right coset decomposition

•
$$S(M) = \operatorname{Span}\{g \otimes e(M) \mid g \in G_M\}$$

- $D(M) = \operatorname{Span}\{g \otimes e(M) \mid g \in G\}$
- $D(\mathcal{O}_j) = \operatorname{Span}\{g \otimes e(M^j \circ g_i) \mid i = 1, \dots, k, g \in G\}$

•
$$\mathcal{A}_{\alpha}(G, \mathcal{S}) = \bigoplus_{j \in J} D(\mathcal{O}_j)$$

Chongying Dong, Li Ren, Chao Yang

Conten

Introduction

Basics

Associative algebras

Duality 1

Duality II

Theorem (Dong-Yamskulna 2002)

- $S(M) \cong \mathbb{C}^{\alpha_M}[G_M]$ is a semisimple associative algebra
- [●] The functors $W \mapsto \operatorname{Ind}_{S(M)}^{D(M)} W$ gives an equivalence between the category of $\mathbb{C}^{\alpha_M}[G_M]$ -modules and the category of $D(\mathcal{O}_M)$ -modules.
- $\mathcal{A}_{\alpha}(G, \mathcal{S})$ is a semisimple associative algebra $\{\operatorname{Ind}_{S(M^{j})}^{D(M^{j})}W \mid W \text{ is irreducible } \mathbb{C}^{\alpha_{M^{j}}}[G_{M^{j}}] - \operatorname{module}, j \in J\}$ gives a complete list of irreducible $\mathcal{A}_{\alpha}(G, \mathcal{S})$ -modules

Chongying Dong, Li Ren, Chao Yang

Content

Introduction

Basics

Associative algebras

Duality 1

Duality II

Recall:

- $\mathcal{S} = \bigcup_{j \in J} \mathcal{O}_j$ and M^j is a representative of \mathcal{O}_j
- $\mathbb{C}^{\alpha_{M^{j}}}[G_{M^{j}}]$ is the twisted group algebra
- Λ_j is the set of irreducible characters of $\mathbb{C}^{\alpha_{M^j}}[G_{M^j}]$
- For any $\lambda \in \Lambda_j$, $W_{j,\lambda}$ the corresponding irreducible module
- $M^j = \bigoplus_{\lambda \in \Lambda_j} W_{j,\lambda} \otimes M^j_{\lambda}$ as $\mathbb{C}^{\alpha_{M^j}}[G_{M^j}] \otimes V^{G_{M^j}}$ -module

•
$$W^j_{\lambda} = \operatorname{Ind}_{S(M^j)}^{D(M^j)} W_{j,\lambda}$$

Chongying Dong, Li Ren, Chao Yang

Content

Introduction

Basics

Associative algebras

Duality 1

Duality II

Theorem

• As $\mathcal{A}_{\alpha}(G, \mathcal{S}) \otimes V^{G}$ -module, we have the decomposition

$$\mathcal{M} = \bigoplus_{j \in J, \lambda \in \Lambda_j} W^j_\lambda \otimes M^j_\lambda$$

and M_{λ}^{j} is an irreducible V^{G} -module. In particular M_{λ}^{j} is nonzero for any $j \in J$ and $\lambda \in \Lambda_{j}$

- M^{j1}_{λ1} and M^{j2}_{λ2} are isomorphic V^G-modules if and only if j₁ = j₂ and λ₁ = λ₂
- **③** In particular, any irreducible σ -twisted module is completely reducible V^G -module
 - The main idea is to use Key Lemma instead of algebras $A_{\sigma,n}(V)$

Chongying Dong, Li Ren, Chao Yang

Content

Introduction

Basics

Associative algebras

Duality 1

Duality II

Corollary (Adamović-Lam-Pedicć-Yu 2022)

Let M be an irreducible σ -twisted V-module. Then M is an irreducible V^G -module if and only if $G_M = \{1\}$

Chongying Dong, Li Ren, Chao Yang

Content

Introduction

Basics

Associative algebras

Duality I

Duality II

Remark

- Miyamoto-Tanabe(2004) defined associative algebras $A_{G,n}(V)$ for a vertex operator algebra V and $n \in \frac{1}{o(G)}\mathbb{Z}$ which are isomorphic to direct sum of $A_{g,n}(V)$ for $g \in G$. These algebras are good enough to study any finite set (of twisted modules) which is *G*-invariant, and are important to classify irreducible V^G -modules if V^G is rational and C_2 -cofinite (Dong-R-Xu 2017). But these algebras do not work for vertex algebra
- Tanabe (very recently) defines a notion of weak (V, T)module for any vertex algebra V and positive integer T. It turns out that any g-twisted V-module is a (V, T)module with T = o(G). Using our proof and his new modules, he can take S in our discussion be any twisted modules to obtain similar results

Orbifold					
Theory					
Verte					
Algebr					

Chongying Dong, Li Ren, Chao Yang

Introductior

Basics

Associativ algebras

Duality

Duality II

THANKS