Some results on unitary highest weight modules for minimal *W*-algebras

Paolo Papi

Sapienza Università di Roma

joint work with D. Adamović, V. Kac, P. Möseneder Frajria

arXiv:2302.05269

Paolo Papi (Sapienza Università di Roma)

Unitary minimal W-algebras

Plan of the talk

- Introduction
- Ø Minimal W-algebras
- Onitarity for minimal W-algebras
- Main results
- Some details on proofs and techniques

W-algebras

- Kac and Wakimoto used quantum Hamiltonian reduction to build up a vertex algebra $W^k(\mathfrak{g}, x, f)$, associated to a datum (\mathfrak{g}, x, f) and $k \in \mathbb{C}$. Here
 - $\mathfrak{g} = \mathfrak{g}_{\bar{0}} \oplus \mathfrak{g}_{\bar{1}}$ is a basic Lie superalgebra, i.e. \mathfrak{g} is simple, its even part $\mathfrak{g}_{\bar{0}}$ is a reductive Lie algebra and \mathfrak{g} carries an even invariant non-degenerate supersymmetric bilinear form $(\cdot|\cdot)$,
 - x is an ad-diagonalizable element of g₀ with eigenvalues in ½Z,
 f ∈ g₀ is such that [x, f] = -f and the eigenvalues of ad x on the centralizer g^f of f in g are non-positive
 - $k \neq -h^{\vee}$, where h^{\vee} is the dual Coxeter number of \mathfrak{g} .

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

W-algebras

The most important examples are provided by x and f to be part of an sl_2 triple $\{e, x, f\}$, where [x, e] = e, [x, f] = -f, [e, f] = x. In this case (\mathfrak{g}, x, f) is called a *Dynkin datum*.

We recently proved that if ϕ is a conjugate linear involution of $\mathfrak g$ such that

$$\phi(x) = x, \quad \phi(f) = f \text{ and } \overline{(\phi(a)|\phi(b))} = (a|b), a, b \in \mathfrak{g},$$
 (1.1)

then ϕ induces a conjugate linear involution of the vertex algebra $W^k(\mathfrak{g}, x, f)$.

< □ > < □ > < □ > < □ > < □ > < □ >

W-algebras

The most important examples are provided by x and f to be part of an sl_2 triple $\{e, x, f\}$, where [x, e] = e, [x, f] = -f, [e, f] = x. In this case (\mathfrak{g}, x, f) is called a *Dynkin datum*.

We recently proved that if ϕ is a conjugate linear involution of $\mathfrak g$ such that

$$\phi(x) = x, \quad \phi(f) = f \text{ and } \overline{(\phi(a)|\phi(b))} = (a|b), a, b \in \mathfrak{g},$$
 (1.1)

then ϕ induces a conjugate linear involution of the vertex algebra $W^k(\mathfrak{g}, x, f)$.

Moreover, if ϕ is a conjugate linear involution of $W^k(\mathfrak{g}, x, f)$, this vertex algebra carries a non-zero ϕ -invariant Hermitian form $H(\cdot, \cdot)$ for all $k \neq -h^{\vee}$ if and only if (\mathfrak{g}, x, f) is a Dynkin datum; such an H is unique, up to a real constant factor, and we normalize it by the condition $H(\mathbf{1}, \mathbf{1}) = 1$.

Unitarity

Definition

A module M over a conformal vertex algebra V is called *unitary* if there is a conjugate linear involution ϕ of V such that there is a positive definite ϕ -invariant Hermitian form on M. A simple vertex algebra V is called unitary if the adjoint module is.

< ロ > < 同 > < 回 > < 回 >

Unitarity

Definition

A module M over a conformal vertex algebra V is called *unitary* if there is a conjugate linear involution ϕ of V such that there is a positive definite ϕ -invariant Hermitian form on M. A simple vertex algebra V is called unitary if the adjoint module is.

Denote by $W_{\min}^{k}(\mathfrak{g})$ the vertex algebra $W^{k}(\mathfrak{g}, x, f)$ when f is a minimal nilpotent element. In collaboration with Kac and Möseneder Frajria we have recently classified the pairs (\mathfrak{g}, k) such that the simple quotient $W_{k}^{\min}(\mathfrak{g})$ of $W_{\min}^{k}(\mathfrak{g})$ is unitary. For each \mathfrak{g} the corresponding set of values of k is called the *unitary range*.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Goals of the talk

- Detect necessary and sufficient conditions, in the unitary range, in order that a irreducible highest weight W^k_{min}(g)-module descends to W^{min}_k(g).
- Classify irreducible positive energy representations of W_k^{min}(g) in the unitary range.

A B b A B b

Goals of the talk

- Detect necessary and sufficient conditions, in the unitary range, in order that a irreducible highest weight W^k_{min}(g)-module descends to W^{min}_k(g).
- Classify irreducible positive energy representations of W^{min}_k(g) in the unitary range.
- Important note: the solution of problem 2 is related to the following problem, which we are able to solve

Classify the irreducible highest weight $V_k(\mathfrak{g})$ -modules in the unitary range

- 本間下 本臣下 本臣下 三臣

Minimal W-algebras

Let \mathfrak{g}^{\natural} be the centralizer of the sl_2 subalgebra $\mathfrak{s} = span \{e, x, f\}$ in $\mathfrak{g}_{\bar{0}}$; it is a reductive subalgebra; we let $\mathfrak{g}^{\natural} = \bigoplus_{i \in S} \mathfrak{g}_i^{\natural}$ denote its irreducible decomposition.

4 3 5 4 3 5 5

Minimal W-algebras

Let \mathfrak{g}^{\natural} be the centralizer of the sl_2 subalgebra $\mathfrak{s} = span \{e, x, f\}$ in $\mathfrak{g}_{\bar{0}}$; it is a reductive subalgebra; we let $\mathfrak{g}^{\natural} = \bigoplus_{i \in S} \mathfrak{g}_i^{\natural}$ denote its irreducible decomposition.

Definition: minimal W-algebra

We ask that for the ad x-gradation $\mathfrak{g} = \bigoplus_{j \in \frac{1}{2}\mathbb{Z}} \mathfrak{g}_j$ one has

$$\mathfrak{g}_j = 0$$
 if $|j| > 1$, and $\mathfrak{g}_{-1} = \mathbb{C}f$. (2.1)

In this case (\mathfrak{g}, x, f) is automatically a Dynkin datum. The corresponding *W*-algebra is called *minimal*, and denoted by $W_{\min}^{k}(\mathfrak{g})$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Recall that $\mathfrak{g} = \mathfrak{g}_{-1} \oplus \mathfrak{g}_{-1/2} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_{1/2} \oplus \mathfrak{g}_1, \mathfrak{g}_0 = \mathfrak{g}^{\natural} \oplus \mathbb{C}x.$

- 3

イロト イボト イヨト イヨト

Recall that $\mathfrak{g} = \mathfrak{g}_{-1} \oplus \mathfrak{g}_{-1/2} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_{1/2} \oplus \mathfrak{g}_1, \mathfrak{g}_0 = \mathfrak{g}^{\natural} \oplus \mathbb{C}x.$

Theorem (KRW)

(a) The vertex algebra $W_{\min}^{k}(\mathfrak{g})$ is strongly and freely generated by elements $J^{\{a\}}$, where a runs over a basis of \mathfrak{g}^{\natural} , $G^{\{v\}}$, where v runs over a basis of $\mathfrak{g}_{-1/2}$, and the Virasoro vector L.

Theorem (KRW)

(a) The vertex algebra $W_{\min}^{k}(\mathfrak{g})$ is strongly and freely generated by elements $J^{\{a\}}$, where a runs over a basis of \mathfrak{g}^{\natural} , $G^{\{v\}}$, where v runs over a basis of $\mathfrak{g}_{-1/2}$, and the Virasoro vector L. (b) The elements $J^{\{a\}}$, $G^{\{v\}}$ are primary of conformal weight 1 and 3/2, respectively, with respect to L.

< 3 >

Theorem (KRW)

(a) The vertex algebra W^k_{min}(g) is strongly and freely generated by elements J^{a}, where a runs over a basis of g<sup>\$, G^{v}, where v runs over a basis of g_{-1/2}, and the Virasoro vector L.
(b) The elements J^{a}, G^{v} are primary of conformal weight 1 and 3/2, respectively, with respect to L.
(c) The following λ-brackets hold:
</sup>

$$[J^{\{a\}}{}_{\lambda}J^{\{b\}}] = J^{\{[a,b]\}} + \lambda \underbrace{\left((k+h^{\vee}/2)(a|b) - \frac{1}{4}\kappa_0(a,b)\right)}_{\beta_k(a,b)}, \ a, b \in \mathfrak{g}^{\natural},$$

$$[J^{\{a\}}_{\lambda}G^{\{u\}}] = G^{\{[a,u]\}}, \ a \in \mathfrak{g}^{\natural}, \ u \in \mathfrak{g}_{-1/2}.$$

(d) There are explicit formulas yielding $[G^{\{u\}}{}_{\lambda}G^{\{v\}}]$ for $u, v \in \mathfrak{g}_{-1/2}$.

Presentation of $W_{\min}^k(\mathfrak{g})$

Proposition (AKMPP, J-alg)

Let $u, v \in \mathfrak{g}_{-1/2}$. Then

$$G^{\{u\}}_{(2)}G^{\{v\}} = 4(e_{\theta}|[u,v])p(k)\mathbf{1}.$$

Moreover, the linear polynomial $k_i(k)$, $i \in S$, defined by $k_i(k) = k + \frac{1}{2}(h^{\vee} - h_i^{\vee})$, divides p(k) and

$$G^{\{u\}}{}_{(1)}G^{\{v\}} = 4\sum_{i\in S}\frac{p(k)}{k_i(k)}J^{\{([[e_{\theta},u],v])_i^{\natural}\}}$$

where $(a)_i^{\sharp}$ denotes the orthogonal projection of $a \in \mathfrak{g}_0$ onto \mathfrak{g}_i^{\sharp} and p(k) is an explicit monic quadratic polynomial.

Collapsing levels

Definition

We say that a level k is *collapsing* if

$$W^{\min}_k(\mathfrak{g}) = V_{eta_k}(\mathfrak{g}^{\natural}).$$

Here $V_{\beta_k}(\mathfrak{g}^{\natural})$ denotes the simple affine vertex algebra relative to the cocycle

$$eta_k(a,b) = \left((k+h^ee/2)(a|b) - rac{1}{4}\kappa_0(a,b)
ight), \hspace{1em} a,b\in \mathfrak{g}^{lat}$$

Theorem (AKMPP)

Let $\mathfrak{g}^{\natural} = \bigoplus_{i \in S} \mathfrak{g}_i^{\natural}$. Then k is a collapsing level if and only if p(k) = 0, and

$$W_k^{\min}(\mathfrak{g}) = \bigotimes_{i \in S: k_i \neq 0} V_{k_i}(\mathfrak{g}_i^{\natural}).$$
 (3.1)

Unitarity: basic definitions

Let $W = \bigoplus_{n \in \frac{1}{2}\mathbb{Z}_+} W(n)$, be a conformal vertex algebra and let ϕ is a conjugate linear involution of W such that $\phi(L) = L$. Set

$$g(z)=e^{-\pi\sqrt{-1}(rac{1}{2}p(a)+\Delta_a)}\phi(a), \quad a\in W(\Delta_a).$$

Definition

A Hermitian form (\cdot, \cdot) on W is said to be ϕ -invariant if, for all $a \in W$,

$$(v, Y(a,z)u) = (Y(A(z)a, z^{-1})v, u), \quad u, v \in W.$$

where

$$A(z)=e^{zL_1}z^{-2L_0}g.$$

Restrictions on \mathfrak{g} for unitarity

Proposition (KMP, CCM2022)

If $W_k^{\min}(\mathfrak{g})$ is unitary and k is not a collapsing level, then either $\mathfrak{g} = \mathfrak{sl}_2$ or \mathfrak{g} is not a Lie algebra and \mathfrak{g}^{\natural} is a Lie algebra. In particular, the parity of \mathfrak{g} is compatible with the ad x-gradation, i.e.

Restrictions on \mathfrak{g} for unitarity

Proposition (KMP, CCM2022)

If $W_k^{\min}(\mathfrak{g})$ is unitary and k is not a collapsing level, then either $\mathfrak{g} = sl_2$ or \mathfrak{g} is not a Lie algebra and \mathfrak{g}^{\natural} is a Lie algebra. In particular, the parity of \mathfrak{g} is compatible with the ad x-gradation, i.e.

$$\mathfrak{g} = \underbrace{\mathfrak{g}_{-1}}_{even} \oplus \underbrace{\mathfrak{g}_{-1/2}}_{odd} \oplus \underbrace{\mathfrak{g}_{0}}_{even} \oplus \underbrace{\mathfrak{g}_{1/2}}_{odd} \oplus \underbrace{\mathfrak{g}_{1}}_{even} \qquad (\clubsuit)$$

Corollary

The complete list of the \mathfrak{g} for which (\clubsuit) holds is

$$sl(2|m) \text{ for } m \ge 3, \quad psl(2|2), \quad spo(2|m) \text{ for } m \ge 0,$$

 $osp(4|m) \text{ for } m > 2 \text{ even}, \quad D(2,1;a) \text{ for } a \in \mathbb{C}, \quad F(4), \quad G(3).$

э

- 4 回 ト - 4 三 ト

Unitarity

In these cases

$$\mathfrak{g}_{\bar{0}} = \mathfrak{g}^{\natural} \oplus \mathfrak{s}, \quad \mathfrak{s} \cong \mathit{sl}_2.$$

with \mathfrak{g}^{\natural} a reductive Lie algebra.

æ

A D N A B N A B N A B N

Unitarity

In these cases

$$\mathfrak{g}_{\bar{0}} = \mathfrak{g}^{\natural} \oplus \mathfrak{s}, \quad \mathfrak{s} \cong \mathit{sl}_2.$$

with \mathfrak{g}^{\natural} a reductive Lie algebra.

- We proved that the conjugate linear involutions of W_k^{min}(g) that fix the Virasoro vector L are in one-to-one correspondence with the conjugate linear involutions φ of g that fix pointwise the triple {e, x, f}.
- It is easy to see that, in order to have $W_k^{\min}(\mathfrak{g})$ unitary, $\phi_{|\mathfrak{g}|}$ must be the conjugation corresponding to a compact real form. Such a conjugate linear involution is called an *almost compact involution*.
- An almost compact involution ϕ_{ac} exists in all the cases listed above

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Representations

W-algebras have a highest weight module theory. Let $L^{W}(\nu, \ell_{0})$, the simple highest weight $W_{\min}^{k}(\mathfrak{g})$ -module with highest weight (ν, ℓ_{0}) , where

- ν is a weight of \mathfrak{g}^{\natural} ;
- ℓ_0 is the eigenvalue of L_0 .

Fact

We prove that $L^{W}(\nu, \ell_0)$ admits a ϕ -invariant nondegenerate Hermitian form (unique up to normalization).

Conditions for unitarity: rough statement

Basic remark

Unitarity of $L^{W}(\nu, \ell_{0})$ implies that

- the levels M_i(k) of the affine Lie algebras g^{¹/_i} in W^k_{min}(g) (they are explicit linear polynomials in k, related to p(k)), where g^{¹/_i} are the simple components of g^{¹/_i}, are non-negative integers;
- ν is a dominant integral weight of level $M_i(k)$;
- a certain inequality (*) holds. Moreover, (*) must be an equality when ν is an "extremal" weight.

Classification: preparation

Notation

Recall that

$$\mathfrak{g} = \mathfrak{g}_{-1} \oplus \mathfrak{g}_{-1/2} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_{1/2} \oplus \mathfrak{g}_1.$$

- Let θ[∨]_i be the coroots of the maximal roots θ_i of the simple components g^β_i of g^β = ⊕_i g^β_i.
- Let 2ρ^β be the sum of positive roots of g^β,
- Let ξ be a highest weight of the g^β-module g_{-1/2} (this module is irreducible, except for g = psl(2|2) when it is C² ⊕ C²).
- Let ν be a dominant integral weight for \mathfrak{g}^{\natural} and $\ell_0 \in \mathbb{R}$.

Classification

Theorem (KMP)

Let $L^{W}(\nu, \ell_{0})$ be a simple highest weight $W_{\min}^{k}(\mathfrak{g})$ -module over $\mathfrak{g} = psl(2|2)$, spo(2|m) with $m \geq 3$, D(2, 1; a), F(4) or G(3).

• This module can be unitary only if the following conditions hold:

$$\ell_0 \geq rac{(
u|
u+2
ho^{
atural})}{2(k+h^{
u})} + rac{(\xi|
u)}{k+h^{
u}}((\xi|
u)-k-1) =: A(k,
u), \qquad (*)$$

and equality holds in (*) if $\nu(\theta_i^{\vee}) > M_i(k) + \chi_i$ for i = 1 or 2.

2 This module is unitary if the following conditions hold:

$$\quad \textbf{M}_i(k) + \chi_i \in \mathbb{Z}_+ \text{ for all } i$$

- $\nu(\theta_i^{\vee}) \leq M_i(k) + \chi_i$ for all *i* (*i.e.* ν is not extremal),
- inequality (*) holds.

Summary

For the module $L^{W}(0,0) = W_{k}^{\min}(\mathfrak{g})$, both (1) and (2) hold, so one can determine the unitary range, displayed in the second row of the following table

psl(2 2)	spo(2 3)	spo(2 m), m > 4	$D(2,1;\frac{m}{n}), m, n \in \mathbb{N}$	F(4)	G(3)
$-(\mathbb{N}+1)$	$-\frac{1}{4}(\mathbb{N}+2)$	$-rac{1}{2}(\mathbb{N}+1)$	$-\frac{mn}{m+n}\mathbb{N}, \ (m,n)=1$	$-\frac{2}{3}(\mathbb{N}+1)$	$-rac{3}{4}(\mathbb{N}+1)$
<i>sl</i> (2)	<i>sl</i> (2)	so(m)	$sl(2)\oplus sl(2)$	so(7)	G ₂
k+1	4k + 2	2k + 1	$\frac{m+n}{n}k+1, \frac{m+n}{m}k+1$	$\frac{3}{2}k + 1$	$\frac{4}{3}k + 1$
0	$\frac{1}{2}$	$2 - \frac{1}{2}m$	0	-2	$-\frac{3}{2}$

Table: Unitarity range, \mathfrak{g}^{\natural} , $-M_i(k)$, and h^{\lor}

< □ > < □ > < □ > < □ > < □ > < □ >

Conjecture

Conjecture The modules $L^{W}(\nu, \ell_0)$ are unitary if ν is extremal and $l_0 = R.H.S.$ of (*). In other words, the necessary conditions of the above Theorem are sufficient.

We are able to prove this conjecture only for $\mathfrak{g} = psl(2|2)$ and spo(2|3), obtaining thereby a complete classification of unitary simple highest weight $W_{\min}^{k}(\mathfrak{g})$ -modules in these two cases.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Conjecture

Conjecture The modules $L^{W}(\nu, \ell_0)$ are unitary if ν is extremal and $l_0 = R.H.S.$ of (*). In other words, the necessary conditions of the above Theorem are sufficient.

We are able to prove this conjecture only for $\mathfrak{g} = psl(2|2)$ and spo(2|3), obtaining thereby a complete classification of unitary simple highest weight $W_{\min}^{k}(\mathfrak{g})$ -modules in these two cases.

The proof is a nice application of the theory of collapsing levels, and uses the fact that superconformal algebras are linearizable, i.e. up to adding some extra fields the modes of the fields form a Lie superalgebra, hence we can tensor their modules.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Example: N = 3, beginning of proof

We have $M_1(k) = -4k - 2 \in \mathbb{N}$. The extremal modules are

$$L^W(\frac{M_1-1}{2}\alpha,\frac{M_1-1}{4}), \quad L^W(\frac{M_1}{2}\alpha,\frac{M_1}{4})$$

Proceed by induction on M_1 . If $M_1 = 1$ then k = -3/4, which is collapsing

$$W_{-3/4}^{\min}(spo(2|3)) = V_1(sl_2).$$

Now $V_1(sl_2)$ has two irreducible modules, both unitary with highest weights $0, \alpha/2$. To conclude use induction, the relationship between $W_{-3/4}^{\min}(spo(2|3))$ and the N = 3 superconformal algebra $\mathcal{W}_{N=3}^k$, and the fact that tensor product of unitary modules for $\mathcal{W}_{N=3}^k$ is unitary.

Main results (Adamović, Kac, Möseneder, P.)

Theorem

Let k be in the unitary range. Then all irreducible highest weight $W_{\min}^{k}(\mathfrak{g})$ -modules $L^{W}(\nu, \ell_{0})$ with $\ell_{0} \in \mathbb{C}$ when $\nu \in P_{k}^{+}$ is not extremal, and $\ell_{0} = A(k, \nu)$ otherwise, descend to $W_{k}^{\min}(\mathfrak{g})$.

Corollary

Any unitary $W_{\min}^{k}(\mathfrak{g})$ -module $L^{W}(\nu, \ell_{0})$ descends to $W_{k}^{\min}(\mathfrak{g})$. Hence Conjecture 4 from [KMP23] holds.

Theorem

The modules appearing above form the complete list of inequivalent irreducible positive energy representations of $W_k^{\min}(\mathfrak{g})$ in the unitary range.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Some details on AKMP results

Let $P^+ \subset (\mathfrak{h}^{\natural})^*$ be the set of dominant integral weights for \mathfrak{g}^{\natural} and let

$$\mathcal{P}_k^+ = \left\{ \nu \in \mathcal{P}^+ \mid \nu(\theta_i^{\vee}) \le M_i(k) \text{ for all } i \ge 1 \right\}.$$

$$(8.1)$$

- 2

イロト イポト イヨト イヨト

Some details on AKMP results

Let $P^+ \subset (\mathfrak{h}^{\natural})^*$ be the set of dominant integral weights for \mathfrak{g}^{\natural} and let

$$\mathcal{P}_k^+ = \left\{ \nu \in \mathcal{P}^+ \mid \nu(\theta_i^{\vee}) \le M_i(k) \text{ for all } i \ge 1 \right\}.$$

$$(8.1)$$

Recall that $\nu \in P_k^+$ an extremal weight if $\nu + \xi$ doesn't lie in P_k^+ . Denote by $L(\lambda)$ the irreducible highest weight $V^k(\mathfrak{g})$ -module of highest weight λ . For $h \in \mathbb{C}$ and $\nu \in (\mathfrak{h}^{\natural})^*$, set

$$\widehat{\nu}_h = k\Lambda_0 + h\theta + \nu. \tag{8.2}$$

Note that every highest weight module for $V^k(\mathfrak{g})$ has highest weight $\hat{\nu}_h$ for some $\nu \in (\mathfrak{h}^{\natural})^*$ and $h \in \mathbb{C}$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ □ ■ ● ● ● ●

Some details on AKMP results

Theorem (T1)

Let k be in the unitary range. Then, up to isomorphism, the irreducible highest weight $V_k(\mathfrak{g})$ -modules are as follows:

- $L(\hat{\nu}_h)$ with $\nu \in P_k^+$ non-extremal and $h \in \mathbb{C}$ arbitrary;
- 2 $L(\hat{\nu}_h)$ with ν extremal and h from the set

$$E_{k,\nu} = \{(\xi|\nu), k+1-(\xi|\nu)\}.$$

Paolo Papi (Sapienza Università di Roma)

通 ト イ ヨ ト イ ヨ ト

Idea of proof

Gorelik-Kac computed the characters of highest weight $\hat{\mathfrak{g}}$ -modules with highest weight $k\Lambda_0$ using only their integrability with respect to $\hat{\mathfrak{g}}^{\natural}$, which implies that such modules are irreducible. Gorelik-Serganova deduced from this that, if $V_k(\mathfrak{g})$ is integrable as a $\hat{\mathfrak{g}}^{\natural}$ -module, then the $V^k(\mathfrak{g})$ -modules, which are integrable over $\hat{\mathfrak{g}}^{\natural}$, descend to $V_k(\mathfrak{g})$.

イロト イポト イヨト イヨト 二日

Idea of proof

Gorelik-Kac computed the characters of highest weight $\hat{\mathfrak{g}}$ -modules with highest weight $k\Lambda_0$ using only their integrability with respect to $\hat{\mathfrak{g}}^{\natural}$, which implies that such modules are irreducible. Gorelik-Serganova deduced from this that, if $V_k(\mathfrak{g})$ is integrable as a $\hat{\mathfrak{g}}^{\natural}$ -module, then the $V^k(\mathfrak{g})$ -modules, which are integrable over $\hat{\mathfrak{g}}^{\natural}$, descend to $V_k(\mathfrak{g})$.

• One first shows that $V_k(\mathfrak{g})$ is integrable for $\hat{\mathfrak{g}}^{\natural}$, by checking that $(x_{\theta_i})_{(-1)}^N \mathbf{1} = 0$ for $N \gg 0$. This is done by the *method of odd* reflections.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Idea of proof

Gorelik-Kac computed the characters of highest weight $\hat{\mathfrak{g}}$ -modules with highest weight $k\Lambda_0$ using only their integrability with respect to $\hat{\mathfrak{g}}^{\natural}$, which implies that such modules are irreducible. Gorelik-Serganova deduced from this that, if $V_k(\mathfrak{g})$ is integrable as a $\hat{\mathfrak{g}}^{\natural}$ -module, then the $V^k(\mathfrak{g})$ -modules, which are integrable over $\hat{\mathfrak{g}}^{\natural}$, descend to $V_k(\mathfrak{g})$.

- One first shows that $V_k(\mathfrak{g})$ is integrable for $\widehat{\mathfrak{g}}^{\natural}$, by checking that $(x_{\theta_i})_{(-1)}^N \mathbf{1} = 0$ for $N \gg 0$. This is done by the *method of odd* reflections.
- Then we prove that the modules listed in (1), (2) are $\widehat{\mathfrak{g}}^{\natural}\text{-integrable}.$ This part is technical.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Idea of proof

Gorelik-Kac computed the characters of highest weight $\hat{\mathfrak{g}}$ -modules with highest weight $k\Lambda_0$ using only their integrability with respect to $\hat{\mathfrak{g}}^{\natural}$, which implies that such modules are irreducible. Gorelik-Serganova deduced from this that, if $V_k(\mathfrak{g})$ is integrable as a $\hat{\mathfrak{g}}^{\natural}$ -module, then the $V^k(\mathfrak{g})$ -modules, which are integrable over $\hat{\mathfrak{g}}^{\natural}$, descend to $V_k(\mathfrak{g})$.

- One first shows that $V_k(\mathfrak{g})$ is integrable for $\widehat{\mathfrak{g}}^{\natural}$, by checking that $(x_{\theta_i})_{(-1)}^N \mathbf{1} = 0$ for $N \gg 0$. This is done by the *method of odd* reflections.
- Then we prove that the modules listed in (1), (2) are $\widehat{\mathfrak{g}}^{\natural}\text{-integrable}.$ This part is technical.
- We are left with proving that any irreducible highest weight module for V_k(g) is of the form (1) or (2). Let L(ν̂_h) be an irreducible highest weight V_k(g)-module with h.w. vector v. We prove that, necessarily, ν ∈ P⁺_k. Indeed, the action of g^β on v should be locally finite, so that ν ∈ P⁺.

Idea of proof

If $h \notin E_{k,\nu}$ then $(\hat{\nu}_h | \alpha_1) \neq 0$ and $(\hat{\nu}_h - \alpha_1 | \alpha_0 + \alpha_1) \neq 0$. It follows that $(x_{\theta - \alpha_1})_{(-1)}(x_{-\alpha_1})_{(0)}\nu$ is a highest weight vector with respect to the set of simple roots $r_{\alpha_0 + \alpha_1}r_{\alpha_1}(\widehat{\Pi})$ of highest weight $\Lambda' = \hat{\nu}_h - \alpha_0 - 2\alpha_1$. If $L(\hat{\nu}_h)$ is integrable with respect to $\hat{\mathfrak{g}}^{\natural}$, then a direct computation shows that

$$m_i = ((\delta - heta_i)^{ee} | \Lambda') = M_i(k) + \chi_i - (
u | heta_i^{ee}) \in \mathbb{Z}_+,$$

hence

$$(\nu|\theta_i^{\vee}) \leq M_i(k) + \chi_i \leq M_i(k).$$

It follows that $\nu \in P_k^+$ and it is not extremal, i.e. $L(\hat{\nu}_h)$ is of type (1). If $h = (\xi|\nu)$ (resp. $h = k + 1 - (\xi|\nu)$), then $(\hat{\nu}_h|\alpha_1) = 0$ (resp. $(\hat{\nu}_h|\alpha_0 + \alpha_1) = 0$) and in turn we get that $\nu \in P_k^+$. In particular, $L(\hat{\nu}_h)$ is of type (1) if ν is not extremal and of type (2) if ν is extremal.

Explicit description of the maximal ideal of $W_{\min}^k(\mathfrak{g})$

Let I^k be the maximal ideal of $W^k_{\min}(\mathfrak{g})$. Set

$$v_i = (J_{(-1)}^{\{x_{\theta_i}\}})^{M_i(k)+1} \mathbf{1}.$$

If an irreducible highest weight $W_{\min}^k(\mathfrak{g})$ -module $L^W(\nu, \ell_0)$ is unitary, then, restricted to the affine subalgebra $V^{\beta_k}(\mathfrak{g}^{\natural})$ it is unitary, hence a direct sum of irreducible integrable highest weight $\hat{\mathfrak{g}}_i^{\natural}$ -modules of levels $M_i(k)$. But it is well-known that all these modules descend to the simple affine vertex algebra $V_{\beta_k}(\mathfrak{g}^{\natural})$, and are annihilated by the elements v_i . In particular, $v_i \in I^k$.

Theorem

The maximal ideal I^k is generated by the singular vectors

$$\widetilde{v}_{i} = \begin{cases} (J_{(-1)}^{\{x_{\theta_{1}}\}})^{M_{1}(k)-1}G_{(-3/2)}^{\{x_{-\alpha_{1}}\}}\mathbf{1}, & \text{if } \mathfrak{g} = spo(2|3), \\ v_{i}, \ i \in S & \text{otherwise.} \end{cases}$$

Idea of proof (assume |S| = 1)

- We explicitly provide a singular vector in the universal affine vertex algebra V^k(g) which generates the maximal ideal J^k of V^k(g).
- **②** From (1) and exactness of the quantum Hamiltonian reduction functor H_0 , we deduce that $I^k = H_0(J^k)$ is a highest weight module.
- The highest weight of I^k is $((M_1(k) + 1)\theta_1, M_1(k) + 1)$.
- But also v_1 has weight I^k is $((M_1(k) + 1)\theta_1, M_1(k) + 1)$, hence it is singular and generates I^k .

- 4 目 ト 4 日 ト

Classification

Theorem (T2)

Let k be in the unitary range. Then all irreducible highest weight $W_{\min}^{k}(\mathfrak{g})$ -modules $L^{W}(\nu, \ell_{0})$ with $\ell_{0} \in \mathbb{C}$ when $\nu \in P_{k}^{+}$ is not extremal, and $\ell_{0} = A(k, \nu)$ otherwise, descend to $W_{k}^{\min}(\mathfrak{g})$.

Proof.

By Arakawa's theorem, $H_0(L(\hat{\nu}_h)) = 0$ if $\hat{\nu}_h(\alpha_0^{\vee}) = k - 2h \in \mathbb{Z}_{\geq 0}$, and $H_0(L(\hat{\nu}_h) = L^W(\nu, \ell_0(h))$ otherwise. Here $\ell_0(h) = \frac{(\hat{\nu}_h|\hat{\nu}_h + 2\hat{\rho})}{2(k+h^{\vee})} - h$. If $k - 2h \in \mathbb{Z}_{\geq 0}$, then for h' = k + 1 - h we have $\ell_0 := \ell_0(h) = \ell_0(h')$. Since $k - 2h' \notin \mathbb{Z}_+$, $H_0(L(\hat{\nu}_{h'})) = L^W(\nu, \ell_0)$. So for each ℓ_0 there is $\tilde{h} \in \mathbb{C}$ such that $L^W(\nu, \ell_0) = H_0(L(\hat{\nu}_{\tilde{h}}))$. By T1, if ν is not extremal, then $L(\hat{\nu}_{\tilde{h}})$ is a $V_k(\mathfrak{g})$ -module, hence $L^W(\nu, \ell_0(\tilde{h}))$ is a $W_k^{\min}(\mathfrak{g})$ -module. But $h \in E_{k,\nu}$ if and only if $\ell_0(h) = A(k,\nu)$. T1 implies that, if ν is extremal, then $L(\hat{\nu}_{\tilde{h}})$ is a $V_k(\mathfrak{g})$ -module, hence $L^W(\nu, A(k,\nu))$ is a $W_k^{\min}(\mathfrak{g})$ -module.

Preparation

Recall that a module M over a vertex operator superalgebra is called *positive energy* if admits an \mathbb{R} -grading :

$$M = \bigoplus_{j \ge 0} M_j$$

with $a_n^M M_j \subset M_{j-n}$. The subspace M_0 is called the *top component* of M. Recall that there is one-to-one correspondence between irreducible positive energy V-modules and irreducible modules for the Zhu algebra Zhu(V), which associates to a V-module M the Zhu(V)-module M_0 . Namely, to $Y^M(a, z) = \sum_j a_j^M z^{-j-\deg a}$ one associates $a_0^M|_{M_0}$. We have

$$Zhu(W_{\min}^k(\mathfrak{g}))\simeq \mathbb{C}[L]\otimes U(\mathfrak{g}^{\natural}).$$

Indeed $Zhu(W_{\min}^{k}(\mathfrak{g}))$ is generated by the image of the strong generators of $W_{\min}^{k}(\mathfrak{g})$. But *G*-generators of conformal weight $\frac{3}{2}$ are zero in $Zhu(W_{\min}^{k}(\mathfrak{g}))$. Thus, $Zhu(W_{\min}^{k}(\mathfrak{g}))$ is generated only by generators of conformal weights 1 and 2.

Paolo Papi (Sapienza Università di Roma)

Theorem

Theorem (T3)

The modules appearing in Theorem T2 form the complete list of inequivalent irreducible highest weight representations of $W_k^{\min}(\mathfrak{g})$. Moreover they are exactly all the irreducible positive energy representations of $W_k^{\min}(\mathfrak{g})$.

We present a sketch of proof of the first statement for $\mathfrak{g} = spo(2|3)$. Let $k = -\frac{m}{4}$, where $m \in \mathbb{Z}_{\geq 3}$, so that $M_1(k) = m - 2$. Set $\mathcal{W}^k = W_{\min}^k(spo(2|3)), \mathcal{W}_k = W_k^{\min}(spo(2|3))$, and note that \mathcal{W}^k is generated by $L, G^+, G^-, G^0, J^+, J^-, J^0$ with conformal weights 2,3/2,1.

Let $L_k[j, q]$ be the irreducible highest weight W_k -module of level k:

$$L_{n}v_{j,q} = q\delta_{n,0}v_{j,q}, \quad G_{(n+1/2)}^{+}v_{j,q} = G_{(n+1/2)}^{-}v_{j,q} = G_{(n+1/2)}^{0}v_{j,q} = 0$$

$$J_{(n)}^{0}v_{j,q} = j\delta_{n,0}v_{j,q}, \quad J_{(n)}^{+}v_{j,q} = J_{(n+1)}^{-}v_{j,q} = 0 \quad (n \ge 0)$$

Paolo Papi (Sapienza Università di Roma)

30 / 34

proof

Under the Zhu correspondence, the module $L^{W}(\nu, h)$ goes to the irreducible highest weight \mathfrak{g}^{\natural} -module with highest weight ν on which L acts by the scalar h, which we denote by $V(\nu, h)$. We have

$$Zhu(W_k^{\min}(\mathfrak{g}))\simeq \left(\mathbb{C}[L]\otimes U(\mathfrak{g}^{\natural})\right)/J(\mathfrak{g}),$$

for a certain 2-sided ideal $J(\mathfrak{g})$. So any non-zero element in $J(\mathfrak{g})$ imposes a condition on the highest weight (ν, h) of $V(\nu, h)$. Using the explicit expression of \tilde{v}_1 one proves

Lemma

Denote by [a] the class of a in the Zhu algebra. Set

$$\Omega = -\frac{m-2}{4}([L] + \frac{[J^0]}{4}) + \frac{1}{8}[J^+] * [J^-].$$

Then

$$\Omega * [J^-]^{m-3} \in J(\mathfrak{g}).$$

Paolo Papi (Sapienza Università di Roma)

Unitary minimal W-algebras

31 / 34

proof

Proposition (first claim of T3 for g = spo(2|3))

Let $L_k[j, q]$ be an irreducible highest weight W_k -module. Then it is isomorphic to exactly one of the following modules:

•
$$L_k[j,q]$$
 with $0 \le j \le m-4$ and $q \in \mathbb{C}$;

- $L_k[m-3, \frac{m-3}{4}];$
- $L_k[m-2,\frac{m-2}{4}].$

Note that $L_k[j,q]_{top} = \mathbb{C}_q \otimes V(j\omega_1) = V(j\omega_1,q)$. If j = m-3, m-2, then $(J^-)_{(0)}^{m-3}$ acts non-trivially on $L_k[j,q]_{top}$. Hence there exists $w \in L_k[j,q]_{top}$ such that $w' = (J^-)_{(0)}^{m-3}w$ is a lowest weight vector for sl(2), i.e. $(J^0)_{(0)}w' = -jw'$, $(J^-)_{(0)}w' = 0$.

32 / 34

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

End of the proof

By the Lemma :

$$\begin{aligned} 0 &= (\Omega * [J^{-}]^{m-3})w \\ &= \left(-\frac{m-2}{4}(L_{0} + \frac{1}{4}(J^{0})_{(0)}) + \frac{1}{8}(J^{+})_{(0)}(J^{-})_{(0)}\right)(J^{-})_{(0)}^{m-3}w \\ &= \left(-\frac{m-2}{4}(L_{0} + \frac{1}{4}(J^{0})_{(0)}) + \frac{1}{8}(J^{+})_{(0)}(J^{-})_{(0)}\right)w' \\ &= -\frac{m-2}{4}(q - \frac{j}{4})w'. \end{aligned}$$

This implies that for $m-3 \le j \le m-2$, we need to have $q = \frac{j}{4}$.

Paolo Papi (Sapienza Università di Roma)

3

イロト イボト イヨト イヨト

Irreducible highest weight / Positive Energy

Let *M* be an irreducible positive energy $W_k^{\min}(\mathfrak{g})$ -module.

- M_{top} is an irreducible $Zhu(W_k^{\min}(\mathfrak{g}))$ -module.
- By using the embedding $\mathcal{V}_k(\mathfrak{g}^{\natural}) = \bigotimes_{i \in S} V_{M_i(k)}(\mathfrak{g}_i^{\natural}) \to W_k^{\min}(\mathfrak{g})$, we see that M_{top} is also a $Zhu(\mathcal{V}_k(\mathfrak{g}^{\natural}))$ -module.
- Since [L] is central element in Zhu(W_k^{min}(g)) it doesn't affect irreducibility.
- Since $Zhu(W_{\min}^{k}(\mathfrak{g})) \simeq \mathbb{C}[L] \otimes U(\mathfrak{g}^{\natural})$, M_{top} is an irreducible $U(\mathfrak{g}^{\natural})$ -module, and therefore an irreducible $Zhu(\mathcal{V}_{k}(\mathfrak{g}^{\natural}))$ -module.
- Since the V_{M_i(k)}(g^{\beta}_i) are rational, Zhu(V_k(g^{\beta})) is a semi-simple f.d. associative algebra, hence M_{top} is finite-dimensional.
- Hence M_{top} contains a highest weight $\mathcal{V}_k(\mathfrak{g}^{\natural})$ -vector w, which is then a highest weight vector for the action of $W_k^{\min}(\mathfrak{g})$.
- Therefore $W_k^{\min}(\mathfrak{g})w$ is a highest weight submodule of M.
- Irreducibility of M implies that $M = W_k^{\min}(\mathfrak{g})w$ is a highest weight $W_k^{\min}(\mathfrak{g})$ -module.