POLITECNICO MILANO 1863

Collapsing chains

Pierluigi Möseneder Frajria joint works with D. Adamovic, V. Kac, P. Papi, and O. Perse

- D. ADAMOVIĆ, V. G. KAC, P. MÖSENEDER FRAJRIA, P. PAPI, AND O. PERŠE, An application of collapsing levels to the representation theory of affine vertex algebras, Int. Math. Res. Not. IMRN, (2020), pp. 4103–4143.
- D. ADAMOVIĆ, P. MÖSENEDER FRAJRIA, AND P. PAPI, On the semisimplicity of the category KL_k for affine Lie superalgebras, Adv. Math., 405 (2022), pp. Paper No. 108493, 35.

Minimal W-algebras

Let \mathfrak{g} be a simple Lie superalgebra such that $\mathfrak{g}_{\overline{0}}$ is reductive and \mathfrak{g} admits a nondegenerate even supersymmetric invariant form $(\cdot|\cdot)$.

- Choose a Cartan subalgebra h of g₀ and a positive set of roots for Δ⁺ in the set Δ of roots for (g, h) such that the highest root θ is even.
- Choose f to be a root vector $e_{-\theta}$.
- The invariant bilinear form (. | .) is normalized so that $(\theta | \theta) = 2$.
- Choose the root vector $e = e_{\theta} \in \mathfrak{g}_{\theta}$ in such a way that $(e_{\theta}|e_{-\theta}) = \frac{1}{2}$. Set $x = [e_{\theta}, e_{-\theta}]$.

The minimal gradation

The gradation induced by adx is

$$\mathfrak{g}=\mathbb{C}f\oplus\mathfrak{g}_{-1/2}\oplus\mathfrak{g}_0\oplus\mathfrak{g}_{1/2}\oplus\mathbb{C}e$$

Moreover

$$\mathfrak{g}_0 = \mathbb{C} x \oplus \mathfrak{g}^{lat}$$

with $\mathfrak{g}^{\natural} = \mathfrak{g}_0^f$. Moreover

$$\mathfrak{g}^{\natural} = \oplus_i \mathfrak{g}_i^{\natural}$$

with $\mathfrak{g}_i^{\natural}$ simple or abelian.

The minimal
$$W$$
-algebra $W^k(\mathfrak{g}, heta)$

The minimal W-algebra $W^k(\mathfrak{g}, \theta)$ is the VOA freely generated by fields

$$J^{\{a^i\}}$$
 $(\{a^i\}$ a basis of $\mathfrak{g}^{
atural}), G^{\{u^i\}}$ $(\{u^i\}$ a basis of $\mathfrak{g}_{-1/2}), \; L$

λ -bracket

L is a conformal vector with central charge

$$\frac{k \dim \mathfrak{g}}{k+h^{\vee}} - 6k + h^{\vee} - 4$$

 J^{a}, a ∈ g^β are primary of conformal weight Δ = 1 and generate an affine vertex algebra V^{βk}(g^β), where

$$eta_k(a,b)=\delta_{ij}(k+rac{h^ee-h_i^ee}{2})(a|b),\,\,a\in \mathfrak{g}_i^{lat},\,\,b\in \mathfrak{g}_j^{lat}.$$

h_i[∨] is half the eigenvalue of the Casimir of g^β acting on g_i^β relative to (·|·)_{|g^β×g^β}
[J^{a}_λG^{v}] = G^{[a,v]} for v ∈ g_{-1/2}, a ∈ g^β;

λ -bracket

- - $G^{\{\nu\}}$, $\nu \in \mathfrak{g}_{-1/2}$ are primary of conformal weight $\Delta = \frac{3}{2}$;
 - Set $\langle u, v \rangle = (e|[u, v])$ for $u, v \in \mathfrak{g}_{-1/2}$. In all cases $\mathfrak{g}^{\natural} = \bigoplus_i \mathfrak{g}_i^{\natural}$ with $\mathfrak{g}_i^{\natural}$ simple or abelian ideal. Let a^{\natural} (resp. a_i^{\natural}) denote the projection of $a \in \mathfrak{g}_0$ on \mathfrak{g}^{\natural} (resp. $\mathfrak{g}_i^{\natural}$) w.r.t. $\mathfrak{g}_0 = \bigoplus \mathfrak{g}_i^{\natural} \oplus \mathbb{C}x$. Then

$$[G^{\{u\}}{}_{\lambda}G^{\{v\}}] = -2(k+h^{\vee})\langle u,v\rangle L + \langle u,v\rangle \sum_{\alpha=1}^{\dim \mathfrak{g}^{\natural}} : J^{\{u^{\alpha}\}}J^{\{u_{\alpha}\}}:$$

$$+2\sum_{\alpha,\beta}\langle [u_{\alpha},u],[v,u^{\beta}]\rangle:J^{\{u^{\alpha}\}}J^{\{u_{\beta}\}}:+2(k+1)(\partial+2\lambda)J^{\{[[e,u],v]^{\natural}\}}$$

$$+2\lambda\sum_{\alpha,\beta}\langle [u_{\alpha},u],[v,u^{\beta}]\rangle J^{\{[u^{\alpha},u_{\beta}]\}}+2\lambda^{2}\langle u,v\rangle p(k)|0\rangle$$

Pierluigi Möseneder Frajria

Table for p(k) in the classical cases 7/34

Pierluigi Möseneder Frajria

Table for p(k): exceptional cases

Pierluigi Möseneder Frajria

POLITECNICO MILANO 1863

8/34

The minimal simple *W*-algebra $W_k(\mathfrak{g}, heta)_{_{9/34}}$

If $k \neq -h^{\vee}$ then $W^k(\mathfrak{g}, \theta)$ admits a unique simple quotient denoted by $W_k(\mathfrak{g}, \theta)$.

Pierluigi Möseneder Frajria

Quantum reduction functor

The quantum reduction functor is a functor from categories of $V^k(\mathfrak{g})$ -modules to the category of $W^k(\mathfrak{g}, \theta)$ -modules such that

$$\mathcal{H}(V^k(\mathfrak{g})) = W^k(\mathfrak{g}, \theta)$$

and, if $k \notin \mathbb{Z}_+$,

$$\mathcal{H}(V_k(\mathfrak{g})) = W_k(\mathfrak{g}, \theta).$$

In particular \mathcal{H} maps $V_k(\mathfrak{g})$ -modules to $W_k(\mathfrak{g}, \theta)$ -modules.

Pierluigi Möseneder Frajria

Highest weight modules

Let \mathfrak{h}^{\natural} be the Cartan subalgebra of $\mathfrak{g}^{\natural},$ and let

$$\mathfrak{g}^{\natural} = \mathfrak{n}_{-}^{\natural} \oplus \mathfrak{h}^{\natural} \oplus \mathfrak{n}_{+}^{\natural}$$

be the triangular decomposition corresponding to a choice of the set of positive roots. For $\nu \in (\mathfrak{h}^{\natural})^*$ and $\ell_0 \in \mathbb{C}$, a highest weight module for $W^k(\mathfrak{g}, \theta)$ of highest weight (ν, ℓ_0) is a module generated by a vector v_{ν,ℓ_0} (the highest vector) such that

1.
$$J_0^{\{h\}} v_{\nu,\ell_0} = \nu(h) v_{\nu,\ell_0}$$
 for $h \in \mathfrak{h}^{\natural}$
2. $L_0 v_{\nu,\ell_0} = \ell_0 v_{\nu,\ell_0}$
3. $J_n^{\{u\}} v_{\nu,\ell_0} = G_n^{\{\nu\}} v_{\nu,\ell_0} = L_n v_{\nu,\ell_0} = 0$ for $n > 0, \ u \in \mathfrak{g}^{\natural}, \ v \in \mathfrak{g}_{-1/2}$
4. $J_0^{\{u\}} v_{\nu,\ell_0} = 0$ for $u \in \mathfrak{n}_+^{\natural}$.

Pierluigi Möseneder Frajria

Verma and irreducible modules

Fix a basis $\{v_i \mid i \in I\}$ of $\mathfrak{g}_{-1/2}$ and a basis $\{u_i \mid i \in J\}$ of $\mathfrak{n}_{-}^{\natural}$. Set $A^{\{i\}} = J^{\{u_i\}}$ if $i \in J$, $A^{\{i\}} = G^{\{v_i\}}$ if $i \in I$, and $A^{\{0\}} = L$.

A highest weight module M of highest weight (ν, ℓ_0) is called a Verma module if

$$\mathcal{B} = \left\{ \left(A_{-m_1}^{\{1\}} \right)^{b_1} \cdots \left(A_{-m_s}^{\{s\}} \right)^{b_s} \mathsf{v}_{\nu,\ell_0} \right\}$$

where $b_i \in \mathbb{Z}_+$, $b_i \leqslant 1$ if $i \in I$, $m_i \ge 0$ is a basis of M.

The Verma module of highest weight (ν, ℓ_0) exists, is unique up to isomorphism, and is denoted by $M^W(\nu, \ell_0)$.

If *M* is a highest weight module of highest weight (ν, ℓ_0) then *M* is a quotient of $M^W(\nu, \ell_0)$. The unique irreducible quotient is denoted by $L^W(\nu, \ell_0)$.

Pierluigi Möseneder Frajria

Reduction of highest weight modules

 If M is a highest weight module for V^k(g) of highest weight Λ, then H(M) is either zero or a highest weight module over W^k(g, θ) of highest weight (ν, ℓ) with

$$u = \Lambda_{|\mathfrak{h}^{\natural}}, \quad \ell = rac{(\Lambda|\Lambda+2
ho)}{2(k+h^{ee})} - \Lambda(x).$$

- The functor $\mathcal H$ maps Verma modules to Verma modules.
- Let λ ∈ β^{*}_k. If (λ|δ − θ) ∈ {0, 1, 2, ...}, then H(L(λ)) = {0}.
 Otherwise, H(L(λ)) is an irreducible highest weight W^k(g, θ)-module.

Collapsing levels

The roots of p(k) are called collapsing levels.

If k is a collapsing level then $W_k(\mathfrak{g}, \theta)$ "collapses" to the image of $V^{\beta_k}(\mathfrak{g}^{\natural})$ in $W_k(\mathfrak{g}, \theta)$:

 $W_k(\mathfrak{g}, heta)=V_{eta_k}(\mathfrak{g}^{\natural})$

Remark

In this case the reduction functor provides a functor from $V_k(\mathfrak{g})$ -modules to $V_{\beta_k}(\mathfrak{g}^{\natural})$ -modules.

Pierluigi Möseneder Frajria

$$\mathfrak{g} = D(2,1;n), \ n \in \mathbb{N}, \ k = -\frac{n}{n+1}, W_k(\mathfrak{g},\theta) = V_{n-1}(sl(2)).$$

A highest weight module $L(\Lambda)$ can be a $V_k(\mathfrak{g})$ -module only if

$$\Lambda = \ell\theta + \frac{r}{2}\alpha$$

where α is the positive root of sl(2), $r = 0, 1, 2, \dots, n-1$ and

$$\ell = -rac{r}{2(n+1)}, \ \ell = rac{r+2}{2(n+1)}, \ \ell = -rac{n}{2(n+1)} - rac{m}{2}, m \in \mathbb{Z}_+$$

Pierluigi Möseneder Frajria

For many collapsing levels the collapsed algebra

$$W_k(\mathfrak{g}, heta)=V_{k'}(\mathfrak{g}_i^{\natural})$$

with k' collapsing again.

Take g = so(m) and k = 2 - m/2. Then

$$W_k(\mathfrak{g},\theta) = V_{4-m/2}(so(m-4)).$$

In such a case one has a collapsing chain:

 $V_k(\mathfrak{g}), \mathcal{H}(V_k(\mathfrak{g})), \mathcal{H}^2(V_k(\mathfrak{g})), \ldots,$

Pierluigi Möseneder Frajria

Collapsing chains

Definition

We say that a sequence $(\mathfrak{g}_0, k_0), (\mathfrak{g}_1, k_1), \dots, (\mathfrak{g}_n, k_n)$ is a collapsing chain and write $(\mathfrak{g}_0, k_0) \triangleright (\mathfrak{g}_1, k_1) \triangleright \ldots \triangleright (\mathfrak{g}_n, k_n)$ if

$$\mathcal{H}(V_{k_i}(\mathfrak{g}_i)) = V_{k_{i+1}}(\mathfrak{g}_{i+1}), \ i = 0, \ldots, n-1$$

Pierluigi Möseneder Frajria

Let $(\mathfrak{g}, k) = (so(m), 2 - m/2)$. There is a collapsing chain $(\mathfrak{g}, k) = (\mathfrak{g}_0, k_0) \triangleright \ldots \triangleright (\mathfrak{g}', k')$ with

$$(\mathfrak{g}',k') = \begin{cases} \mathbb{C} & \text{if } m \equiv 0,1 \mod 4\\ M(1) & \text{if } m \equiv 2 \mod 4,\\ (s/(2),1) & \text{if } m \equiv 3 \mod 4. \end{cases}$$

Pierluigi Möseneder Frajria

Category KL_k

Definition

We denote by $KL^k(\mathfrak{g})$ the category of weak modules for $V^k(\mathfrak{g})$, which

- (1) are locally finite as g-modules;
- (2) admit a decomposition into generalized eigenspaces for $L_{g}(0)$ whose eigenvalues are bounded below.

We also denote by $KL_k(\mathfrak{g})$ the full subcategory of $KL^k(\mathfrak{g})$ consisting of the $V_k(\mathfrak{g})$ -modules.

Definition

We denote by $KL_{weight}^{k}(\mathfrak{g})$ (resp. KL_{k}^{weight}) the full subcategory of modules in $KL^{k}(\mathfrak{g})$ (resp. $KL_{k}(\mathfrak{g})$) on which $L_{\mathfrak{g}}(0)$ and the Cartan subalgebra \mathfrak{h} of \mathfrak{g} act semisimply.

Pierluigi Möseneder Frajria

Semisimplicity of KL_k

21/34

Main goal

Use the collapsing chains to prove that KL_k is semisimple.

Main strategy

First prove that KL_k^{weight} is semisimple then prove that $KL_k = KL_k^{weight}$.

Pierluigi Möseneder Frajria

How to prove that KL_k^{weight} is semisimple

Theorem

Suppose that we have a collapsing chain

$$(\mathfrak{g}_0, k_0) \triangleright (\mathfrak{g}_1, k_1) \triangleright \cdots \triangleright (\mathfrak{g}_n, k_n)$$

If $KL_{k_n}^{weight}(\mathfrak{g}_n)$ is semisimple then $KL_{k_i}^{weight}(\mathfrak{g}_i)$ is semisimple for all *i*.

Pierluigi Möseneder Frajria

Proof of the theorem

One proves by induction that $KL_{k_i}^{weight}(\mathfrak{g}_i)$ is semisimple for all *i*. The proof of the inductive step is a collection of various facts:

- If M ∈ KL^{weight}_{ki}(g_i) is highest weight then H(M) is highest weight and nonzero. Since KL^{weight}_{ki+1}(g_{i+1}) is semisimple H(M) is irreducible.
- H is exact on category O. This implies that M is irreducible, so every highest weight in KL^{weight}_{ki}(g_i) is irreducible.
- If M is finitely generated then it is in category \mathcal{O} . In particular it admits a finite filtration $\{0\} = M_0 \subset M_1 \subset \cdots$ with highest weight subquotients.
- By the first part of the proof M_i/M_{i-1} is irreducible.

Proof continued

At this point one needs

Lemma

If M, N are highest weight modules in $KL_{k_i}^{weight}(\mathfrak{g}_i)$ then $E \times t^1(M, N) = 0$.

Using the lemma one proves that every finitely generated module in $KL_{k_i}^{weight}(\mathfrak{g}_i)$ are semisimple using induction on the length of the filtration $\{0\} = M_0 \subset M_1 \subset \cdots$.

Using abstract nonsense one extends semisimplicity to all $KL_{k_i}^{weight}(\mathfrak{g}_i)$.

Proof of the Lemma

- There is a contravariant exact functor M → M^σ of finite order on KL^{weight}_k(g_i) that maps L(λ) to L(λ).
- If 0 → L(λ) → M → L(μ) → 0 is exact and does not split, then, since every highest weight module is irreducible, λ ≥ μ.
- If $0 \to L(\mu) \to M^{\sigma} \to L(\lambda) \to 0$ splits then we are done.
- If $0 \to L(\mu) \to M^{\sigma} \to L(\lambda) \to 0$ does not split then $\lambda = \mu$.
- Since KL^{weight}_{ki}(g_i) is a category of weight modules. Ext(L(λ), L(λ)) = 0.

Example

■ Let (g, k) = (so(m), 2 - m/2). There is a collapsing chain that terminates with

$$\begin{cases} \mathbb{C} & \text{if } m \equiv 0, 1 \mod 4, \\ M(1) & \text{if } m \equiv 2 \mod 4, \\ (sl(2), 1) & \text{if } m \equiv 3 \mod 4. \end{cases}$$

so
$$KL_{2-m/2}^{weight}(so(m))$$
 is semisimple.
• Let $(\mathfrak{g}, k) = (so(n|1), -1), n \ge 4$. \mathfrak{g} collapses to $M(1)$ so $KL_{-1}^{weight}(sl(n|1))$ is semisimple.

Pierluigi Möseneder Frajria

When is KL_k semisimple? 27/34

It is clear that $KL_k(\mathfrak{g})$ is semisimple if and only if $KL_k^{weight}(\mathfrak{g})$ is semisimple and that $KL_k(\mathfrak{g}) = KL_k^{weight}(\mathfrak{g})$.

A neat trick

Assume that we have a non-split extension

$$0 \to M \to M^{ext} \to N \to 0$$

with *M* and *N* simple. Then $N \simeq M$.

Proof.

In $KL_k L(0) = L(0)_{ss} + L(0)_{nil}$ with $L(0)_{ss}$ semisimple and $L(0)_{nil}$ locally nilpotent. If $L(0)_{nil} \neq 0$, then $L(0)_{nil}$ provides the isomorphism between M and N. If $L(0)_{nil} = 0$ then there is h in the Cartan subalgebra such that $h(0) = h(0)_{ss} + h(0)_{nil}$ with $h(0)_{nil} \neq 0$. Repeat the argument with $h(0)_{nil}$.

Pierluigi Möseneder Frajria

Application

Theorem

Assume that the category $KL_k^{weight}(\mathfrak{g})$ is semisimple and that for any irreducible $V_k(\mathfrak{g})$ -module M in $KL_k(\mathfrak{g})$ we have $Ext^1(M_{top}, M_{top}) = \{0\}$ in the category of finite-dimensional \mathfrak{g} -modules. Then $KL_k(\mathfrak{g})$ is semisimple.

Proof.

Assume that we have a non-split extension $0 \to M \to M^{ext} \to N \to 0$. Then M = N. It follows that $0 \to M_{top} \to M_{top}^{ext} \to M_{top} \to 0$ is nonsplit.

Pierluigi Möseneder Frajria

If \mathfrak{g} is even and $KL_k^{weight}(\mathfrak{g})$ is semisimple then $KL_k(\mathfrak{g})$ is semisimple.

Pierluigi Möseneder Frajria

Another example

If $\mathfrak{g} = sl(m|1)$ then $KL_{-1}(\mathfrak{g})$ is semisimple.

Proof.

Using a free field realization of $V_{-1}(sl(m|1))$ and fusion rules one can show that an irreducible $M \in KL_{-1}(sl(m|1))$ must have an atypical top. Then one uses a result of Germoni that shows that atypical modules do not have self extensions.

A realization of $V_1(sl(m|1))$

The vertex algebra $V_1(sl(m|1))$ is realized as a subalgebra of $W_1 \otimes F_m$, where W_1 is the Weyl vertex algebra generated by $a^{\pm} = a_1^{\pm}$, and F_m the Clifford vertex algebra generated by Ψ_i^{\pm} , i = 1, ..., m. Let $L = \mathbb{Z}c + \mathbb{Z}d$ be the rank two lattice such that

$$\langle c,d \rangle = 2, \ \langle c,c \rangle = \langle d,d \rangle = 0.$$

Let $V_L = M(1) \otimes \mathbb{C}[L]$ be the associated lattice vertex algebra and set

$$\Pi(0) = M(1) \otimes \mathbb{C}[\mathbb{Z}c].$$

There is an embedding of W_1 into $\Pi(0)$ so $V_1(sl(m|1))$ embeds in

 $\Pi(0)\otimes F_m$.

Pierluigi Möseneder Frajria

$$KL_1^{weight}(sl(m|1))$$
 is not semisimple

33/34

Theorem

Assume g = sl(m|1). Define

$$\widetilde{w} := e^{-mc} \otimes : \Psi_1^+ \cdots \Psi_m^+ :\in \Pi(0) \otimes F_m.$$

Then we have:

- W = V₁(𝔅)w is a highest weight V₁(𝔅)-module in the category KL₁^{weight}(𝔅).
- W is reducible and it contains a proper submodule isomorphic to V₁(g).

Pierluigi Möseneder Frajria

Extension to $KL_k^{weight}(sl(m|1)), k \in \mathbb{N}, k > 0$ Set $\mathfrak{g} = sl(m|1)$. It is clear that there is a diagonal action of $V^k(\mathfrak{g})$ on $V_1(\mathfrak{g})^{\otimes k}$. It is known that

$$V_k(\mathfrak{g}) \cong V^k(\mathfrak{g}).(\underbrace{\mathbf{1}\otimes\cdots\otimes\mathbf{1}}_{k \text{ times}}) \subset V_1(\mathfrak{g})^{\otimes k}.$$

As a consequence, we have that $\widetilde{W} \otimes V_1(\mathfrak{g})^{\otimes (k-1)}$ is a $V_k(\mathfrak{g})$ -module. Define

$$\widetilde{w}^{(k)} = \widetilde{w} \otimes \underbrace{\mathbf{1} \otimes \cdots \otimes \mathbf{1}}_{(k-1) \text{ times}}$$
$$\widetilde{W}^{(k)} = V_k(\mathfrak{g}) \cdot \widetilde{w}^{(k)} \subset \widetilde{W} \otimes V_1(\mathfrak{g})^{\otimes (k-1)}$$

 $\widetilde{W}^{(k)}$ is indecomposable non irreducible.

Pierluigi Möseneder Frajria