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2/34Minimal W -algebras

Let g be a simple Lie superalgebra such that g0̄ is reductive and g
admits a nondegenerate even supersymmetric invariant form (·|·).

Choose a Cartan subalgebra h of g0̄ and a positive set of roots for
∆+ in the set ∆ of roots for (g, h) such that the highest root θ is
even.

Choose f to be a root vector e−θ.

The invariant bilinear form (. | .) is normalized so that (θ|θ) = 2.

Choose the root vector e = eθ ∈ gθ in such a way that
(eθ|e−θ) =

1
2 . Set x = [eθ, e−θ].
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3/34The minimal gradation

The gradation induced by adx is

g = Cf ⊕ g−1/2 ⊕ g0 ⊕ g1/2 ⊕ Ce

Moreover
g0 = Cx ⊕ g♮

with g♮ = gf0. Moreover

g♮ = ⊕ig
♮
i

with g♮i simple or abelian.
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4/34The minimal W -algebra W k(g, θ)

The minimal W -algebra W k(g, θ) is the VOA freely generated by fields

J{a
i} ({ai} a basis of g♮),G {ui} ({ui} a basis of g−1/2), L
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5/34λ-bracket

L is a conformal vector with central charge

k dim g

k + h∨
− 6k + h∨ − 4

J{a}, a ∈ g♮ are primary of conformal weight ∆ = 1 and generate
an affine vertex algebra V βk (g♮), where

βk(a, b) = δij(k +
h∨ − h∨i

2
)(a|b), a ∈ g♮i , b ∈ g♮j .

h∨i is half the eigenvalue of the Casimir of g♮ acting on g♮i relative
to (·|·)|g♮×g♮

[J{a}λG
{v}] = G {[a,v ]} for v ∈ g−1/2, a ∈ g♮;
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6/34λ-bracket

G {v}, v ∈ g−1/2 are primary of conformal weight ∆ = 3
2 ;

Set ⟨u, v⟩ = (e|[u, v ]) for u, v ∈ g−1/2. In all cases g♮ = ⊕ig
♮
i with

g♮i simple or abelian ideal. Let a♮ (resp. a♮i ) denote the projection of

a ∈ g0 on g♮ (resp. g♮i ) w.r.t. g0 = ⊕g♮i ⊕ Cx . Then

[G {u}
λG

{v}] = −2(k + h∨)⟨u, v⟩L+ ⟨u, v⟩
dim g♮∑
α=1

: J{u
α}J{uα} :

+2
∑
α,β

⟨[uα, u], [v , uβ]⟩ : J{u
α}J{uβ} : +2(k + 1)(∂ + 2λ)J{[[e,u],v ]

♮}

+2λ
∑
α,β

⟨[uα, u], [v , uβ]⟩J{[u
α,uβ ]} + 2λ2⟨u, v⟩p(k)|0⟩
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7/34Table for p(k) in the classical cases

g p(k)

sl(m|n), n ̸= m (k + 1)(k + (m − n)/2)

psl(m|m) k(k + 1)

osp(m|n) (k + 2)(k + (m − n − 4)/2)

spo(n|m) (k + 1/2)(k + (n −m + 4)/4)
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8/34Table for p(k): exceptional cases

g p(k)

E6 (k + 3)(k + 4)

E7 (k + 4)(k + 6)

E8 (k + 6)(k + 10)

F4 (k + 5/2)(k + 3)

G2 (k + 4/3)(k + 5/3)

D(2, 1; a) (k − a)(k + 1 + a)

F (4), g♮ = so(7) (k + 2/3)(k − 2/3)

F (4), g♮ = D(2, 1; 2) (k + 3/2)(k + 1)

G (3), g♮ = G2 (k − 1/2)(k + 3/4)

G (3), g♮ = osp(3|2) (k + 2/3)(k + 4/3)

Pierluigi Möseneder Frajria



9/34The minimal simple W -algebra Wk(g, θ)

If k ̸= −h∨ then W k(g, θ) admits a unique simple quotient denoted by
Wk(g, θ).
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10/34Quantum reduction functor

The quantum reduction functor is a functor from categories of
V k(g)-modules to the category of W k(g, θ)-modules such that

H(V k(g)) = W k(g, θ)

and, if k /∈ Z+,
H(Vk(g)) = Wk(g, θ).

In particular H maps Vk(g)-modules to Wk(g, θ)-modules.
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11/34Highest weight modules

Let h♮ be the Cartan subalgebra of g♮, and let

g♮ = n♮− ⊕ h♮ ⊕ n♮+

be the triangular decomposition corresponding to a choice of the set of
positive roots. For ν ∈ (h♮)∗ and ℓ0 ∈ C, a highest weight module for
W k(g, θ) of highest weight (ν, ℓ0) is a module generated by a vector
vν,ℓ0 (the highest vector) such that

1. J
{h}
0 vν,ℓ0 = ν(h)vν,ℓ0 for h ∈ h♮

2. L0vν,ℓ0 = ℓ0vν,ℓ0

3. J
{u}
n vν,ℓ0 = G

{v}
n vν,ℓ0 = Lnvν,ℓ0 = 0 for n > 0, u ∈ g♮, v ∈ g−1/2

4. J
{u}
0 vν,ℓ0 = 0 for u ∈ n♮+.
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12/34Verma and irreducible modules

Fix a basis {vi | i ∈ I} of g−1/2 and a basis {ui | i ∈ J} of n♮−. Set

A{i} = J{ui} if i ∈ J, A{i} = G {vi} if i ∈ I , and A{0} = L.

A highest weight module M of highest weight (ν, ℓ0) is called a Verma
module if

B =

{(
A
{1}
−m1

)b1
· · ·

(
A
{s}
−ms

)bs
vν,ℓ0

}
where bi ∈ Z+ , bi ⩽ 1 if i ∈ I , mi ⩾ 0 is a basis of M.

The Verma module of highest weight (ν, ℓ0) exists, is unique up to
isomorphism, and is denoted by MW (ν, ℓ0).

If M is a highest weight module of highest weight (ν, ℓ0) then M is a
quotient of MW (ν, ℓ0). The unique irreducible quotient is denoted by
LW (ν, ℓ0).
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13/34Reduction of highest weight modules

If M is a highest weight module for V k(g) of highest weight Λ,
then H(M) is either zero or a highest weight module over W k(g, θ)
of highest weight (ν, ℓ) with

ν = Λ|h♮ , ℓ =
(Λ|Λ + 2ρ)

2(k + h∨)
− Λ(x).

The functor H maps Verma modules to Verma modules.

Let λ ∈ ĥ∗k . If (λ|δ − θ) ∈ {0, 1, 2, . . .}, then H(L(λ)) = {0}.
Otherwise, H(L(λ)) is an irreducible highest weight
W k(g, θ)-module.
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14/34Collapsing levels

The roots of p(k) are called collapsing levels.

If k is a collapsing level then Wk(g, θ) “collapses” to the image of
V βk (g♮) in Wk(g, θ):

Wk(g, θ) = Vβk
(g♮)

Remark

In this case the reduction functor provides a functor from
Vk(g)-modules to Vβk

(g♮)-modules.
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15/34Example

g = D(2, 1; n), n ∈ N, k = − n

n + 1
,Wk(g, θ) = Vn−1(sl(2)).

A highest weight module L(Λ) can be a Vk(g)-module only if

Λ = ℓθ +
r

2
α

where α is the positive root of sl(2), r = 0, 1, 2, . . . , n − 1 and

ℓ = − r

2(n + 1)
, ℓ =

r + 2

2(n + 1)
, ℓ = − n

2(n + 1)
− m

2
,m ∈ Z+
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16/34Fun fact

For many collapsing levels the collapsed algebra

Wk(g, θ) = Vk ′(g♮i )

with k ′ collapsing again.
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17/34Example

Take g = so(m) and k = 2−m/2. Then

Wk(g, θ) = V4−m/2(so(m − 4)).

In such a case one has a collapsing chain:

Vk(g),H(Vk(g)),H2(Vk(g)), . . . ,
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18/34Collapsing chains

Definition

We say that a sequence (g0, k0), (g1, k1), . . . , (gn, kn) is a collapsing
chain and write (g0, k0) ▷ (g1, k1) ▷ . . . ▷ (gn, kn) if

H(Vki (gi )) = Vki+1
(gi+1), i = 0, . . . , n − 1
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19/34Example

Let (g, k) = (so(m), 2−m/2). There is a collapsing chain
(g, k) = (g0, k0) ▷ . . . ▷ (g

′, k ′) with

(g′, k ′) =


C if m ≡ 0, 1 mod 4,

M(1) if m ≡ 2 mod 4,

(sl(2), 1) if m ≡ 3 mod 4.
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20/34Category KLk

Definition

We denote by KLk(g) the category of weak modules for V k(g), which

(1) are locally finite as g-modules;

(2) admit a decomposition into generalized eigenspaces for Lg(0) whose
eigenvalues are bounded below.

We also denote by KLk(g) the full subcategory of KLk(g) consisting of
the Vk(g)-modules.

Definition

We denote by KLkweight(g) (resp. KL
weight
k ) the full subcategory of

modules in KLk(g) (resp. KLk(g)) on which Lg(0) and the Cartan
subalgebra h of g act semisimply.
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21/34Semisimplicity of KLk

Main goal

Use the collapsing chains to prove that KLk is semisimple.

Main strategy

First prove that KLweightk is semisimple then prove that KLk = KLweightk .
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22/34How to prove that KLweightk is semisimple

Theorem

Suppose that we have a collapsing chain

(g0, k0) ▷ (g1, k1) ▷ · · · ▷ (gn, kn)

If KLweightkn
(gn) is semisimple then KLweightki

(gi ) is semisimple for all i .
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23/34Proof of the theorem

One proves by induction that KLweightki
(gi ) is semisimple for all i . The

proof of the inductive step is a collection of various facts:

If M ∈ KLweightki
(gi ) is highest weight then H(M) is highest weight

and nonzero. Since KLweightki+1
(gi+1) is semisimple H(M) is

irreducible.

H is exact on category O. This implies that M is irreducible, so
every highest weight in KLweightki

(gi ) is irreducible.

If M is finitely generated then it is in category O. In particular it
admits a finite filtration {0} = M0 ⊂ M1 ⊂ · · · with highest weight
subquotients.

By the first part of the proof Mi/Mi−1 is irreducible.
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24/34Proof continued

At this point one needs

Lemma

If M,N are highest weight modules in KLweightki
(gi ) then

Ext1(M,N) = 0.

Using the lemma one proves that every finitely generated module in
KLweightki

(gi ) are semisimple using induction on the length of the
filtration {0} = M0 ⊂ M1 ⊂ · · · .
Using abstract nonsense one extends semisimplicity to all KLweightki

(gi ).
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25/34Proof of the Lemma

There is a contravariant exact functor M 7→ Mσ of finite order on
KLweightki

(gi ) that maps L(λ) to L(λ).

If 0 → L(λ) → M → L(µ) → 0 is exact and does not split, then,
since every highest weight module is irreducible, λ ⩾ µ.

If 0 → L(µ) → Mσ → L(λ) → 0 splits then we are done.

If 0 → L(µ) → Mσ → L(λ) → 0 does not split then λ = µ.

Since KLweightki
(gi ) is a category of weight modules.

Ext(L(λ), L(λ)) = 0.
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26/34Example

Let (g, k) = (so(m), 2−m/2). There is a collapsing chain that
terminates with

C if m ≡ 0, 1 mod 4,

M(1) if m ≡ 2 mod 4,

(sl(2), 1) if m ≡ 3 mod 4.

so KLweight2−m/2(so(m)) is semisimple.

Let (g, k) = (so(n|1),−1), n ⩾ 4. g collapses to M(1) so

KLweight−1 (sl(n|1)) is semisimple.
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27/34When is KLk semisimple?

It is clear that KLk(g) is semisimple if and only if KLweightk (g) is

semisimple and that KLk(g) = KLweightk (g).
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28/34A neat trick

Assume that we have a non-split extension

0 → M → Mext → N → 0

with M and N simple. Then N ≃ M.

Proof.

In KLk L(0) = L(0)ss + L(0)nil with L(0)ss semisimple and L(0)nil
locally nilpotent. If L(0)nil ̸= 0, then L(0)nil provides the isomorphism
between M and N. If L(0)nil = 0 then there is h in the Cartan
subalgebra such that h(0) = h(0)ss + h(0)nil with h(0)nil ̸= 0. Repeat
the argument with h(0)nil .

Pierluigi Möseneder Frajria



29/34Application

Theorem

Assume that the category KLweightk (g) is semisimple and that for any
irreducible Vk(g)–module M in KLk(g) we have
Ext1(Mtop,Mtop) = {0} in the category of finite-dimensional
g–modules. Then KLk(g) is semisimple.

Proof.

Assume that we have a non-split extension 0 → M → Mext → N → 0.
Then M = N. It follows that 0 → Mtop → Mext

top → Mtop → 0 is
nonsplit.
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30/34Example

If g is even and KLweightk (g) is semisimple then KLk(g) is semisimple.
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31/34Another example

If g = sl(m|1) then KL−1(g) is semisimple.

Proof.

Using a free field realization of V−1(sl(m|1)) and fusion rules one can
show that an irreducible M ∈ KL−1(sl(m|1)) must have an atypical top.
Then one uses a result of Germoni that shows that atypical modules do
not have self extensions.
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32/34A realization of V1(sl(m|1))

The vertex algebra V1(sl(m|1)) is realized as a subalgebra of W1 ⊗ Fm,
where W1 is the Weyl vertex algebra generated by a± = a±1 , and Fm
the Clifford vertex algebra generated by Ψ±

i , i = 1, . . . ,m.
Let L = Zc + Zd be the rank two lattice such that

⟨c , d⟩ = 2, ⟨c , c⟩ = ⟨d , d⟩ = 0.

Let VL = M(1)⊗ C[L] be the associated lattice vertex algebra and set

Π(0) = M(1)⊗ C[Zc].

There is an embedding of W1 into Π(0) so V1(sl(m|1)) embeds in

Π(0)⊗ Fm.
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33/34KLweight1 (sl(m|1)) is not semisimple

Theorem

Assume g = sl(m|1). Define

w̃ := e−mc⊗ : Ψ+
1 · · ·Ψ+

m :∈ Π(0)⊗ Fm.

Then we have:

W̃ = V1(g)w̃ is a highest weight V1(g)–module in the category

KLweight1 (g).

W̃ is reducible and it contains a proper submodule isomorphic to
V1(g).
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34/34Extension to KLweightk (sl(m|1)), k ∈ N, k > 0

Set g = sl(m|1). It is clear that there is a diagonal action of V k(g) on
V1(g)

⊗k . It is known that

Vk(g) ∼= V k(g).(1⊗ · · · ⊗ 1︸ ︷︷ ︸
k times

) ⊂ V1(g)
⊗k .

As a consequence, we have that W̃ ⊗ V1(g)
⊗(k−1) is a Vk(g)–module.

Define
w̃ (k) = w̃ ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸

(k−1) times

W̃ (k) = Vk(g).w̃
(k) ⊂ W̃ ⊗ V1(g)

⊗(k−1).

W̃ (k) is indecomposable non irreducible.
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