
||

Collapsing chains

Pierluigi Möseneder Frajria

joint works with D. Adamovic, V. Kac, P. Papi, and O. Perse

Papers

- D. Adamović, V. G. Kac, P. Möseneder Frajria, P. Papi, and O. Perše, An application of collapsing levels to the representation theory of affine vertex algebras, Int. Math. Res. Not. IMRN, (2020), pp. 4103-4143.

围 D. Adamović, P. Möseneder Frajria, and P. Papi, On the semisimplicity of the category $K L_{k}$ for affine Lie superalgebras, Adv. Math., 405 (2022), pp. Paper No. 108493, 35.

Minimal W-algebras

Let \mathfrak{g} be a simple Lie superalgebra such that $\mathfrak{g}_{\overline{0}}$ is reductive and \mathfrak{g} admits a nondegenerate even supersymmetric invariant form $(\cdot \mid \cdot)$.
■ Choose a Cartan subalgebra \mathfrak{h} of $\mathfrak{g}_{\overline{0}}$ and a positive set of roots for Δ^{+}in the set Δ of roots for $(\mathfrak{g}, \mathfrak{h})$ such that the highest root θ is even.

- Choose f to be a root vector $e_{-\theta}$.
- The invariant bilinear form (.|.) is normalized so that $(\theta \mid \theta)=2$.
- Choose the root vector $e=e_{\theta} \in \mathfrak{g}_{\theta}$ in such a way that $\left(e_{\theta} \mid e_{-\theta}\right)=\frac{1}{2}$. Set $x=\left[e_{\theta}, e_{-\theta}\right]$.

The minimal gradation

The gradation induced by $\operatorname{ad} x$ is

$$
\mathfrak{g}=\mathbb{C} f \oplus \mathfrak{g}_{-1 / 2} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{1 / 2} \oplus \mathbb{C} e
$$

Moreover

$$
\mathfrak{g}_{0}=\mathbb{C} x \oplus \mathfrak{g}^{\natural}
$$

with $\mathfrak{g}^{\natural}=\mathfrak{g}_{0}^{f}$. Moreover

$$
\mathfrak{g}^{\natural}=\oplus_{i} \mathfrak{g}_{i}^{\natural}
$$

with $\mathfrak{g}_{i}^{\natural}$ simple or abelian.

The minimal W-algebra $W^{k}(\mathfrak{g}, \theta)$

The minimal W-algebra $W^{k}(\mathfrak{g}, \theta)$ is the VOA freely generated by fields

$$
J^{\left\{a^{i}\right\}}\left(\left\{a^{i}\right\} \text { a basis of } \mathfrak{g}^{\natural}\right), G^{\left\{u^{i}\right\}}\left(\left\{u^{i}\right\} \text { a basis of } \mathfrak{g}_{-1 / 2}\right), L
$$

λ-bracket

- L is a conformal vector with central charge

$$
\frac{k \operatorname{dim} \mathfrak{g}}{k+h^{\vee}}-6 k+h^{\vee}-4
$$

$\square J^{\{a\}}, a \in \mathfrak{g}^{\natural}$ are primary of conformal weight $\Delta=1$ and generate an affine vertex algebra $V^{\beta_{k}}\left(\mathfrak{g}^{\natural}\right)$, where

$$
\beta_{k}(a, b)=\delta_{i j}\left(k+\frac{h^{\vee}-h_{i}^{\vee}}{2}\right)(a \mid b), a \in \mathfrak{g}_{i}^{\natural}, \quad b \in \mathfrak{g}_{j}^{\natural} .
$$

h_{i}^{\vee} is half the eigenvalue of the Casimir of \mathfrak{g}^{\natural} acting on $\mathfrak{g}_{i}^{\natural}$ relative to $(\cdot \mid \cdot)_{\mid \mathfrak{g}^{\natural} \times \mathfrak{g}^{\natural}}$
$\square\left[J{ }^{\{a\}}{ }_{\lambda} G^{\{v\}}\right]=G^{\{[a, v]\}}$ for $v \in \mathfrak{g}_{-1 / 2}, a \in \mathfrak{g}^{\natural} ;$

λ-bracket

$\square G^{\{v\}}, v \in \mathfrak{g}_{-1 / 2}$ are primary of conformal weight $\Delta=\frac{3}{2}$;

- Set $\langle u, v\rangle=(e \mid[u, v])$ for $u, v \in \mathfrak{g}_{-1 / 2}$. In all cases $\mathfrak{g}^{\natural}=\oplus_{i} \mathfrak{g}_{i}^{\natural}$ with $\mathfrak{g}_{i}^{\natural}$ simple or abelian ideal. Let a^{\natural} (resp. a_{i}^{\natural}) denote the projection of $a \in \mathfrak{g}_{0}$ on $\mathfrak{g}^{\natural}\left(\right.$ resp. $\left.\mathfrak{g}_{i}^{\natural}\right)$ w.r.t. $\mathfrak{g}_{0}=\oplus \mathfrak{g}_{i}^{\natural} \oplus \mathbb{C} x$. Then

$$
\begin{gathered}
{\left[G^{\{u\}}{ }_{\lambda} G^{\{v\}}\right]=-2\left(k+h^{\vee}\right)\langle u, v\rangle L+\langle u, v\rangle \sum_{\alpha=1}^{\operatorname{dim} \mathfrak{g}^{\natural}}: J^{\left\{u^{\alpha}\right\}} J^{\left\{u_{\alpha}\right\}}:} \\
+2 \sum_{\alpha, \beta}\left\langle\left[u_{\alpha}, u\right],\left[v, u^{\beta}\right]\right\rangle: J^{\left\{u^{\alpha}\right\}} J^{\left\{u_{\beta}\right\}}:+2(k+1)(\partial+2 \lambda) J^{\left\{[[e, u], v]^{\natural}\right\}} \\
\quad+2 \lambda \sum_{\alpha, \beta}\left\langle\left[u_{\alpha}, u\right],\left[v, u^{\beta}\right]\right\rangle J^{\left\{\left[u^{\alpha}, u_{\beta}\right]\right\}}+2 \lambda^{2}\langle u, v\rangle p(k)|0\rangle
\end{gathered}
$$

Table for $p(k)$ in the classical cases

\mathfrak{g}	$p(k)$
$s /(m \mid n), n \neq m$	$(k+1)(k+(m-n) / 2)$
$p s l(m \mid m)$	$k(k+1)$
$\operatorname{osp}(m \mid n)$	$(k+2)(k+(m-n-4) / 2)$
$\operatorname{spo}(n \mid m)$	$(k+1 / 2)(k+(n-m+4) / 4)$

Table for $p(k)$: exceptional cases

\mathfrak{g}	$p(k)$
E_{6}	$(k+3)(k+4)$
E_{7}	$(k+4)(k+6)$
E_{8}	$(k+6)(k+10)$
F_{4}	$(k+5 / 2)(k+3)$
G_{2}	$(k+4 / 3)(k+5 / 3)$
$D(2,1 ; a)$	$(k-a)(k+1+a)$
$F(4), \mathfrak{g}^{\natural}=s o(7)$	$(k+2 / 3)(k-2 / 3)$
$F(4), \mathfrak{g}^{\natural}=D(2,1 ; 2)$	$(k+3 / 2)(k+1)$
$G(3), \mathfrak{g}^{\natural}=G_{2}$	$(k-1 / 2)(k+3 / 4)$
$G(3), \mathfrak{g}^{\natural}=\operatorname{osp}(3 \mid 2)$	$(k+2 / 3)(k+4 / 3)$

The minimal simple W-algebra $W_{k}(\mathfrak{g}, \theta)$

If $k \neq-h^{\vee}$ then $W^{k}(\mathfrak{g}, \theta)$ admits a unique simple quotient denoted by $W_{k}(\mathfrak{g}, \theta)$.

Quantum reduction functor

The quantum reduction functor is a functor from categories of $V^{k}(\mathfrak{g})$-modules to the category of $W^{k}(\mathfrak{g}, \theta)$-modules such that

$$
\mathcal{H}\left(V^{k}(\mathfrak{g})\right)=W^{k}(\mathfrak{g}, \theta)
$$

and, if $k \notin \mathbb{Z}_{+}$,

$$
\mathcal{H}\left(V_{k}(\mathfrak{g})\right)=W_{k}(\mathfrak{g}, \theta) .
$$

In particular \mathcal{H} maps $V_{k}(\mathfrak{g})$-modules to $W_{k}(\mathfrak{g}, \theta)$-modules.

Highest weight modules

Let \mathfrak{h}^{\natural} be the Cartan subalgebra of \mathfrak{g}^{\natural}, and let

$$
\mathfrak{g}^{\natural}=\mathfrak{n}_{-}^{\natural} \oplus \mathfrak{h}^{\mathfrak{\natural}} \oplus \mathfrak{n}_{+}^{\natural}
$$

be the triangular decomposition corresponding to a choice of the set of positive roots. For $\nu \in\left(\mathfrak{h}^{\mathfrak{\natural}}\right)^{*}$ and $\ell_{0} \in \mathbb{C}$, a highest weight module for $W^{k}(\mathfrak{g}, \theta)$ of highest weight $\left(\nu, \ell_{0}\right)$ is a module generated by a vector $v_{\nu, \ell_{0}}$ (the highest vector) such that

1. $J_{0}^{\{h\}} v_{\nu, \ell_{0}}=\nu(h) v_{\nu, \ell_{0}}$ for $h \in \mathfrak{h}^{\natural}$
2. $L_{0} v_{\nu, \ell_{0}}=\ell_{0} v_{\nu, \ell_{0}}$
3. $\int_{n}^{\{u\}} v_{\nu, \ell_{0}}=G_{n}^{\{v\}} v_{\nu, \ell_{0}}=L_{n} v_{\nu, \ell_{0}}=0$ for $n>0, u \in \mathfrak{g}^{\natural}, v \in \mathfrak{g}_{-1 / 2}$
4. $J_{0}^{\{u\}} v_{\nu, \ell_{0}}=0$ for $u \in \mathfrak{n}_{+}^{\natural}$.

Verma and irreducible modules

Fix a basis $\left\{v_{i} \mid i \in I\right\}$ of $\mathfrak{g}_{-1 / 2}$ and a basis $\left\{u_{i} \mid i \in J\right\}$ of $\mathfrak{n}_{-}^{\natural}$. Set $A^{\{i\}}=J^{\left\{u_{i}\right\}}$ if $i \in J, A^{\{i\}}=G^{\left\{v_{i}\right\}}$ if $i \in I$, and $A^{\{0\}}=L$.

A highest weight module M of highest weight $\left(\nu, \ell_{0}\right)$ is called a Verma module if

$$
\mathcal{B}=\left\{\left(A_{-m_{1}}^{\{1\}}\right)^{b_{1}} \cdots\left(A_{-m_{s}}^{\{s\}}\right)^{b_{s}} v_{\nu, \ell_{0}}\right\}
$$

where $b_{i} \in \mathbb{Z}_{+}, b_{i} \leqslant 1$ if $i \in I, m_{i} \geqslant 0$ is a basis of M.
The Verma module of highest weight $\left(\nu, \ell_{0}\right)$ exists, is unique up to isomorphism, and is denoted by $M^{W}\left(\nu, \ell_{0}\right)$.

If M is a highest weight module of highest weight $\left(\nu, \ell_{0}\right)$ then M is a quotient of $M^{W}\left(\nu, \ell_{0}\right)$. The unique irreducible quotient is denoted by $L^{W}\left(\nu, \ell_{0}\right)$.

Reduction of highest weight modules

- If M is a highest weight module for $V^{k}(\mathfrak{g})$ of highest weight Λ, then $\mathcal{H}(M)$ is either zero or a highest weight module over $W^{k}(\mathfrak{g}, \theta)$ of highest weight (ν, ℓ) with

$$
\nu=\Lambda_{\mid h^{\natural}}, \quad \ell=\frac{(\Lambda \mid \Lambda+2 \rho)}{2\left(k+h^{\vee}\right)}-\Lambda(x) .
$$

- The functor \mathcal{H} maps Verma modules to Verma modules.
- Let $\lambda \in \widehat{\mathfrak{h}}_{k}^{*}$. If $(\lambda \mid \delta-\theta) \in\{0,1,2, \ldots\}$, then $\mathcal{H}(L(\lambda))=\{0\}$. Otherwise, $\mathcal{H}(L(\lambda))$ is an irreducible highest weight $W^{k}(\mathfrak{g}, \theta)$-module.

Collapsing levels

The roots of $p(k)$ are called collapsing levels.
If k is a collapsing level then $W_{k}(\mathfrak{g}, \theta)$ "collapses" to the image of $V^{\beta_{k}}\left(\mathfrak{g}^{\natural}\right)$ in $W_{k}(\mathfrak{g}, \theta)$:

$$
W_{k}(\mathfrak{g}, \theta)=V_{\beta_{k}}\left(\mathfrak{g}^{\mathfrak{h}}\right)
$$

Remark

In this case the reduction functor provides a functor from
$V_{k}(\mathfrak{g})$-modules to $V_{\beta_{k}}\left(\mathfrak{g}^{\natural}\right)$-modules.

Example

$$
\mathfrak{g}=D(2,1 ; n), n \in \mathbb{N}, k=-\frac{n}{n+1}, W_{k}(\mathfrak{g}, \theta)=V_{n-1}(s /(2)) .
$$

A highest weight module $L(\Lambda)$ can be a $V_{k}(\mathfrak{g})$-module only if

$$
\Lambda=\ell \theta+\frac{r}{2} \alpha
$$

where α is the positive root of $s /(2), r=0,1,2, \ldots, n-1$ and

$$
\ell=-\frac{r}{2(n+1)}, \quad \ell=\frac{r+2}{2(n+1)}, \quad \ell=-\frac{n}{2(n+1)}-\frac{m}{2}, m \in \mathbb{Z}_{+}
$$

For many collapsing levels the collapsed algebra

$$
W_{k}(\mathfrak{g}, \theta)=V_{k^{\prime}}\left(\mathfrak{g}_{i}^{\natural}\right)
$$

with k^{\prime} collapsing again.

Example

Take $\mathfrak{g}=s o(m)$ and $k=2-m / 2$. Then

$$
W_{k}(\mathfrak{g}, \theta)=V_{4-m / 2}(s o(m-4)) .
$$

In such a case one has a collapsing chain:

$$
V_{k}(\mathfrak{g}), \mathcal{H}\left(V_{k}(\mathfrak{g})\right), \mathcal{H}^{2}\left(V_{k}(\mathfrak{g})\right), \ldots,
$$

Collapsing chains

Definition

We say that a sequence $\left(\mathfrak{g}_{0}, k_{0}\right),\left(\mathfrak{g}_{1}, k_{1}\right), \ldots,\left(\mathfrak{g}_{n}, k_{n}\right)$ is a collapsing chain and write $\left(\mathfrak{g}_{0}, k_{0}\right) \triangleright\left(\mathfrak{g}_{1}, k_{1}\right) \triangleright \ldots \triangleright\left(\mathfrak{g}_{n}, k_{n}\right)$ if

$$
\mathcal{H}\left(V_{k_{i}}\left(\mathfrak{g}_{i}\right)\right)=V_{k_{i+1}}\left(\mathfrak{g}_{i+1}\right), \quad i=0, \ldots, n-1
$$

Example

Let $(\mathfrak{g}, k)=(s o(m), 2-m / 2)$. There is a collapsing chain $(\mathfrak{g}, k)=\left(\mathfrak{g}_{0}, k_{0}\right) \triangleright \ldots \triangleright\left(\mathfrak{g}^{\prime}, k^{\prime}\right)$ with

$$
\left(\mathfrak{g}^{\prime}, k^{\prime}\right)= \begin{cases}\mathbb{C} & \text { if } m \equiv 0,1 \bmod 4 \\ M(1) & \text { if } m \equiv 2 \bmod 4 \\ (s l(2), 1) & \text { if } m \equiv 3 \bmod 4\end{cases}
$$

Category $K L_{k}$

Definition

We denote by $K L^{k}(\mathfrak{g})$ the category of weak modules for $V^{k}(\mathfrak{g})$, which
(1) are locally finite as \mathfrak{g}-modules;
(2) admit a decomposition into generalized eigenspaces for $L_{\mathfrak{g}}(0)$ whose eigenvalues are bounded below.
We also denote by $K L_{k}(\mathfrak{g})$ the full subcategory of $K L^{k}(\mathfrak{g})$ consisting of the $V_{k}(\mathfrak{g})$-modules.

Definition

We denote by $K L_{\text {weight }}^{k}(\mathfrak{g})$ (resp. $K L_{k}^{\text {weight }}$) the full subcategory of modules in $K L^{k}(\mathfrak{g})$ (resp. $K L_{k}(\mathfrak{g})$) on which $L_{\mathfrak{g}}(0)$ and the Cartan subalgebra \mathfrak{h} of \mathfrak{g} act semisimply.

Semisimplicity of $K L_{k}$

Main goal
Use the collapsing chains to prove that $K L_{k}$ is semisimple.

Main strategy
First prove that $K L_{k}^{\text {weight }}$ is semisimple then prove that $K L_{k}=K L_{k}^{\text {weight }}$.

How to prove that $K L_{k}^{\text {weight }}$ is semisimple

Theorem

Suppose that we have a collapsing chain

$$
\left(\mathfrak{g}_{0}, k_{0}\right) \triangleright\left(\mathfrak{g}_{1}, k_{1}\right) \triangleright \cdots \triangleright\left(\mathfrak{g}_{n}, k_{n}\right)
$$

If $K L_{k_{n}}^{\text {weight }}\left(\mathfrak{g}_{n}\right)$ is semisimple then $K L_{k_{i}}^{\text {weight }}\left(\mathfrak{g}_{i}\right)$ is semisimple for all i.

Proof of the theorem

One proves by induction that $K L_{k_{i}}^{\text {weight }}\left(\mathfrak{g}_{i}\right)$ is semisimple for all i. The proof of the inductive step is a collection of various facts:

- If $M \in K L_{k_{i}}^{\text {weight }}\left(\mathfrak{g}_{i}\right)$ is highest weight then $\mathcal{H}(M)$ is highest weight and nonzero. Since $K L_{k_{i+1}}^{\text {weight }}\left(\mathfrak{g}_{i+1}\right)$ is semisimple $\mathcal{H}(M)$ is irreducible.
- \mathcal{H} is exact on category \mathcal{O}. This implies that M is irreducible, so every highest weight in $K L_{k_{i}}^{\text {weight }}\left(\mathfrak{g}_{i}\right)$ is irreducible.
- If M is finitely generated then it is in category \mathcal{O}. In particular it admits a finite filtration $\{0\}=M_{0} \subset M_{1} \subset \cdots$ with highest weight subquotients.
■ By the first part of the proof M_{i} / M_{i-1} is irreducible.

Proof continued

At this point one needs

Lemma

If M, N are highest weight modules in $K L_{k_{i}}^{\text {weight }}\left(\mathfrak{g}_{i}\right)$ then $E x t^{1}(M, N)=0$.

Using the lemma one proves that every finitely generated module in $K L_{k_{i}}^{\text {weight }}\left(\mathfrak{g}_{i}\right)$ are semisimple using induction on the length of the filtration $\{0\}=M_{0} \subset M_{1} \subset \cdots$.
Using abstract nonsense one extends semisimplicity to all $K L_{k_{i}}^{\text {weight }}\left(\mathfrak{g}_{i}\right)$.

Proof of the Lemma

- There is a contravariant exact functor $M \mapsto M^{\sigma}$ of finite order on $K L_{k_{i}}^{\text {weight }}\left(\mathfrak{g}_{i}\right)$ that maps $L(\lambda)$ to $L(\lambda)$.
■ If $0 \rightarrow L(\lambda) \rightarrow M \rightarrow L(\mu) \rightarrow 0$ is exact and does not split, then, since every highest weight module is irreducible, $\lambda \geqslant \mu$.
■ If $0 \rightarrow L(\mu) \rightarrow M^{\sigma} \rightarrow L(\lambda) \rightarrow 0$ splits then we are done.
- If $0 \rightarrow L(\mu) \rightarrow M^{\sigma} \rightarrow L(\lambda) \rightarrow 0$ does not split then $\lambda=\mu$.
- Since $K L_{k_{i}}^{\text {weight }}\left(\mathfrak{g}_{i}\right)$ is a category of weight modules. $\operatorname{Ext}(L(\lambda), L(\lambda))=0$.

Example

- Let $(\mathfrak{g}, k)=(s o(m), 2-m / 2)$. There is a collapsing chain that terminates with

$$
\begin{cases}\mathbb{C} & \text { if } m \equiv 0,1 \quad \bmod 4 \\ M(1) & \text { if } m \equiv 2 \bmod 4 \\ (s /(2), 1) & \text { if } m \equiv 3 \bmod 4\end{cases}
$$

so $K L_{2-m / 2}^{\text {weight }}(\mathrm{so}(\mathrm{m}))$ is semisimple.

- Let $(\mathfrak{g}, k)=(\operatorname{so}(n \mid 1),-1), n \geqslant 4$. \mathfrak{g} collapses to $M(1)$ so $K L_{-1}^{\text {weight }}(s l(n \mid 1))$ is semisimple.

It is clear that $K L_{k}(\mathfrak{g})$ is semisimple if and only if $K L_{k}^{\text {weight }}(\mathfrak{g})$ is semisimple and that $K L_{k}(\mathfrak{g})=K L_{k}^{\text {weight }}(\mathfrak{g})$.

A neat trick

Assume that we have a non-split extension

$$
0 \rightarrow M \rightarrow M^{e x t} \rightarrow N \rightarrow 0
$$

with M and N simple. Then $N \simeq M$.

Proof.

In $K L_{k} L(0)=L(0)_{s s}+L(0)_{\text {nil }}$ with $L(0)_{s s}$ semisimple and $L(0)_{\text {nil }}$ locally nilpotent. If $L(0)_{\text {nil }} \neq 0$, then $L(0)_{\text {nil }}$ provides the isomorphism between M and N. If $L(0)_{\text {nil }}=0$ then there is h in the Cartan subalgebra such that $h(0)=h(0)_{s s}+h(0)_{\text {nil }}$ with $h(0)_{\text {nil }} \neq 0$. Repeat the argument with $h(0)_{\text {nil }}$.

Application

Theorem

Assume that the category $K L_{k}^{\text {weight }}(\mathfrak{g})$ is semisimple and that for any irreducible $V_{k}(\mathfrak{g})$-module M in $K L_{k}(\mathfrak{g})$ we have $E x t^{1}\left(M_{\text {top }}, M_{\text {top }}\right)=\{0\}$ in the category of finite-dimensional \mathfrak{g}-modules. Then $K L_{k}(\mathfrak{g})$ is semisimple.

Proof.

Assume that we have a non-split extension $0 \rightarrow M \rightarrow M^{e x t} \rightarrow N \rightarrow 0$. Then $M=N$. It follows that $0 \rightarrow M_{\text {top }} \rightarrow M_{\text {top }}^{\text {ext }} \rightarrow M_{\text {top }} \rightarrow 0$ is nonsplit.

Example

If \mathfrak{g} is even and $K L_{k}^{\text {weight }}(\mathfrak{g})$ is semisimple then $K L_{k}(\mathfrak{g})$ is semisimple.

Another example

If $\mathfrak{g}=s /(m \mid 1)$ then $K L_{-1}(\mathfrak{g})$ is semisimple.

Proof.

Using a free field realization of $V_{-1}(s /(m \mid 1))$ and fusion rules one can show that an irreducible $M \in K L_{-1}(s /(m \mid 1))$ must have an atypical top. Then one uses a result of Germoni that shows that atypical modules do not have self extensions.

A realization of $V_{1}(s /(m \mid 1))$

The vertex algebra $V_{1}(s /(m \mid 1))$ is realized as a subalgebra of $W_{1} \otimes F_{m}$, where W_{1} is the Weyl vertex algebra generated by $a^{ \pm}=a_{1}^{ \pm}$, and F_{m} the Clifford vertex algebra generated by $\Psi_{i}^{ \pm}, i=1, \ldots, m$.
Let $L=\mathbb{Z} c+\mathbb{Z} d$ be the rank two lattice such that

$$
\langle c, d\rangle=2,\langle c, c\rangle=\langle d, d\rangle=0 .
$$

Let $V_{L}=M(1) \otimes \mathbb{C}[L]$ be the associated lattice vertex algebra and set

$$
\Pi(0)=M(1) \otimes \mathbb{C}[\mathbb{Z} c]
$$

There is an embedding of W_{1} into $\Pi(0)$ so $V_{1}(s /(m \mid 1))$ embeds in

$$
\Pi(0) \otimes F_{m} .
$$

$K L_{1}^{\text {weight }}(s /(m \mid 1))$ is not semisimple

Theorem

Assume $\mathfrak{g}=s l(m \mid 1)$. Define

$$
\widetilde{w}:=e^{-m c} \otimes: \Psi_{1}^{+} \ldots \Psi_{m}^{+}: \in \Pi(0) \otimes F_{m} .
$$

Then we have:

- $\widetilde{W}=V_{1}(\mathfrak{g}) \widetilde{W}$ is a highest weight $V_{1}(\mathfrak{g})$-module in the category $K L_{1}^{\text {weight }}(\mathfrak{g})$.
- \widetilde{W} is reducible and it contains a proper submodule isomorphic to $V_{1}(\mathfrak{g})$.

Extension to $K L_{k}^{\text {weight }}(s l(m \mid 1)), k \in \mathbb{N}, k>0$

Set $\mathfrak{g}=s l(m \mid 1)$. It is clear that there is a diagonal action of $V^{k}(\mathfrak{g})$ on $V_{1}(\mathfrak{g})^{\otimes k}$. It is known that

$$
V_{k}(\mathfrak{g}) \cong V^{k}(\mathfrak{g}) \cdot(\underbrace{\mathbf{1} \otimes \cdots \otimes \mathbf{1}}_{k \text { times }}) \subset V_{1}(\mathfrak{g})^{\otimes k} .
$$

As a consequence, we have that $\widetilde{W} \otimes V_{1}(\mathfrak{g})^{\otimes(k-1)}$ is a $V_{k}(\mathfrak{g})$-module. Define

$$
\begin{gathered}
\widetilde{w}^{(k)}=\widetilde{w} \otimes \underbrace{\mathbf{1} \otimes \cdots \otimes \mathbf{1}}_{(k-1) \text { times }} \\
\widetilde{W}^{(k)}=V_{k}(\mathfrak{g}) \cdot \widetilde{w}^{(k)} \subset \widetilde{W} \otimes V_{1}(\mathfrak{g})^{\otimes(k-1)} .
\end{gathered}
$$

$\widetilde{W}^{(k)}$ is indecomposable non irreducible.

