# Functorial constructions of double Poisson vertex algebras 

Anne Moreau, Université Paris-Saclay (Orsay)
joint work in progress with Tristan Bozec and Maxime Fairon

## Representation Theory XVIII

Dubrovnik, Croatia, June 18th to July 1st, 2023
université
PARIS-SACLAY

## Aims

A double Poisson vertex algebra is a noncommutative differential algebra, with a double $\lambda$-bracket $\{\{-\lambda-\}$ compatible with the product and the differential.

## Aims:

- Produce examples of double Poisson vertex algebras.
- Compare different categories:


Noncomm.Alg Comm.Alg

- Consider related constructions: Poisson and Hamiltonian reductions.
- Discuss connections with vertex algebras.


## Poisson algebras

Recall that a Poisson algebra is a commutative associative algebra equipped with a Lie bracket compatible with the multiplication (Leibniz rule).

Naive observation: only few examples of noncommutative algebras equipped with a "Poisson bracket", except

$$
\{a, b\}=a b-b a .
$$

- How to define a more interesting noncommutative version?


## Double Poisson algebras

Idea: use the representation functor [KONTSEVICH-RoSENBERG]:

$$
\text { Assoc.Alg. } \longrightarrow \text { Comm.Alg., } \quad \mathbb{A} \longmapsto \mathbb{A}_{N},
$$

where $\mathbb{A}_{N}$ is the $N$-th representation algebra:

$$
\mathbb{A}_{N}:=\mathbb{C}[\operatorname{Rep}(\mathbb{A}, N)] .
$$

## Definition (Van den Bergh, 2008)

A double Poisson algebra is an associative algebra $A$ with a linear map

$$
\{-,-\}: \mathbb{A} \otimes \mathbb{A} \longrightarrow \mathbb{A} \otimes \mathbb{A}, \quad a \otimes b \longmapsto\{a, b\}\}, \quad \text { s.t. }
$$

$$
\begin{array}{ll}
\text { (skewsymmetry): } & \left\{\{a, b\}=-\{b, a\}^{\sigma}, \quad(a \otimes b)^{\sigma}:=b \otimes a,\right. \\
\text { (left Leibniz rule) : } & \{\{a, b c\}\}=\{\{a, b\} c+b\{\{a, c\}, \\
\text { (Jacobi identity): } & \{\{a,\{\{b, c\}\}\}-\{\{b,\{\{a, c\}\}-\{\{\{a, b\}, c\}\}=0 /
\end{array}
$$

## Theorem (Van den Bergh)

A double Poisson algebra structure on $\mathbb{A}$ induces a Poisson algebra structure on $A_{N}$.

## Examples

## Example 1

$\mathbb{A}=\mathbb{C}\langle a\rangle$ is a double Poisson algebra structure with

$$
\{\{a, a\}=a \otimes 1-1 \otimes a .
$$

It induces the standard Poisson bracket on $\mathbb{A}_{N}=\mathbb{C}\left[\mathrm{Mat}_{N}\right] \cong \mathbb{C}\left[\left(\mathrm{Mat}_{N}\right)^{*}\right]$.
$\mathbb{A}=\mathbb{C}\langle a\rangle /\left(a^{N}\right) \leadsto$ standard Poisson bracket on $\mathbb{C}\left[\left\{x \in\right.\right.$ Mat $\left.\left._{N}: x^{N}=0\right\}\right]$.

## Example 2

$\mathbb{A}:=\mathbb{C}\langle a, b\rangle$, with double bracket: $\{\{a, a\}\}=0=\{\{b, b\},\{\{b, a\}\}=1 \otimes 1$.
Then:

$$
\mathbb{A}_{N} \simeq \mathbb{C}\left[\mathrm{Mat}_{N}\right] \otimes \mathbb{C}\left[\mathrm{Mat}_{N}\right] \simeq \mathbb{C}\left[T^{*} \mathrm{Mat}_{N}\right]
$$

## Example 3

$\mathbb{A}=\mathbb{C}\left\langle a, b^{ \pm}\right\rangle$with: $\{\{b, b\}=0,\{a, b\}=b \otimes 1,\{a, a\}\}=a \otimes 1-1 \otimes a$.
Then:

$$
\mathbb{A}_{N} \simeq \mathbb{C}\left[\mathrm{Mat}_{N}^{*}\right] \otimes \mathbb{C}\left[\mathrm{GL}_{N}\right] \simeq \mathbb{C}\left[T^{*} \mathrm{GL}_{N}\right]
$$

## Double quivers

Let $Q$ be a quiver with vertex set $S$. The double quiver $\bar{Q}$ is obtained by adjoining a new arrow $a^{*}: s \rightarrow r$ for each $r \xrightarrow{a} s$.


## Fact (Van den Bergh)

The path algebra $\mathbb{C} \bar{Q}$ is a double Poisson algebra by:

$$
\left\{\left\{a, a^{*}\right\}\right\}=\epsilon(a) e_{h(a)} \otimes e_{t(a)}
$$

where $\epsilon(a)=+1$ if $a \in Q$ and $\epsilon(a)=-1$ otherwise. Moreover,

$$
(\mathbb{C} \bar{Q})_{\underline{n}} \simeq \mathbb{C}\left[T^{*} \operatorname{Rep}(\mathbb{C} Q, \underline{n})\right], \quad \text { with } \quad \underline{n}=\left(n_{s}\right) \in \mathbb{N}^{S}
$$

Remark (Crawley-Boevey-Etingof-Ginzburg, 2007)
This is a special case of noncommutative cotangent algebras:

$$
\mathbb{C} \bar{Q} \simeq T^{*} \mathbb{C} Q:=T(\operatorname{Der} \mathbb{C} Q)
$$

## Poisson reduction and Hamiltonian reduction

- $\mathrm{GL}_{N}$ acts on $\operatorname{Rep}(A, N)$ by conjugation of matrices by Poisson automorphisms.

One can consider the Poisson reduction $\mathbb{A}_{N}^{G L_{N}}$ (or $\mathbb{A}_{\underline{\underline{n}}}^{G L_{\underline{n}}}$ if $G L_{\underline{n}}:=\prod_{s} G_{n_{s}}$.)

- If the action is Hamiltonian with moment map $\mu$, one can also consider the Hamiltonian reduction

$$
\mathbb{C}\left[\mu^{-1}(\xi) / \mathrm{GL}_{N}\right]=\left(\mathbb{A}_{N} /\left\langle\mu^{*}(x)-\xi(x): x \in \mathfrak{g l}_{N}\right\rangle\right)^{\mathrm{GL}_{N}}
$$

for $\xi$ is a single $G L_{N}$-orbit.

## Fact (Van den Bergh)

There is a notion of noncommutative moment map $\mu$ on a double Poisson algebra $\mathbb{A}$ which induces a moment map $X(\mu): \operatorname{Rep}(\mathbb{A}, N) \rightarrow\left(\mathfrak{g l}_{N}\right)^{*}$.

## Example

Let $\mathbb{A}:=\mathbb{C} \bar{Q}$. Then $\mu=\sum_{a \in \bar{Q}} \epsilon(a) a a^{*}=\sum_{a \in Q}\left[a, a^{*}\right] \in \mathbb{A}$ is a noncommutative moment map.








## Poisson vertex algebras

## Definition (Frenkel-Ben-Zvi, Barakat-De Sole-Kac)

A Poisson vertex algebra is a commutative differential algebra $(V, \partial)$ equipped with a linear map

$$
\{-\lambda-\}: V \otimes V \rightarrow V[\lambda], \quad a \otimes b \mapsto\left\{a_{\lambda} b\right\}, \quad \text { s.t. : }
$$

(sesquilinearity): $\left\{\partial(a)_{\lambda} b\right\}=-\lambda\left\{a_{\lambda} b\right\}, \quad\left\{a_{\lambda} \partial(b)\right\}=(\lambda+\partial)\left\{a_{\lambda} b\right\}$,
(skewsymmetry): $\left\{a_{\lambda} b\right\}=-\left\{b_{-\lambda-\partial a}\right.$,
(left Leibniz rule): $\left\{a_{\lambda} b c\right\}=\left\{a_{\lambda} b\right\} c+b\left\{a_{\lambda} c\right\}$,
(Jacobi identity): $\left\{a_{\lambda}\left\{b_{\mu} c\right\}\right\}-\left\{b_{\mu}\left\{a_{\lambda} c\right\}\right\}-\left\{\left\{a_{\lambda} b\right\}_{\lambda+\mu} c\right\}=0$.

- Integrability of Hamiltonian partial differential equations.
- Study of arbitrary vertex algebras.


## Jet construction of Poisson vertex algebras

The jet algebra of a commutative $A$ is the unique (up to isomorphism) differential algebra $\mathcal{J}_{\infty} A$ such that

$$
\operatorname{Hom}_{\text {Diff.Alg }}\left(\mathcal{J}_{\infty} A, B\right) \simeq \operatorname{Hom}_{\mathrm{Alg}}(A, B), \quad \forall(B, \partial)
$$

## Example

- If $A=\mathbb{C}[a]$, then $\mathcal{J}_{\infty} A=\mathbb{C}\left[a^{(j)}: j \geqslant 0\right]$ with $\partial: a_{\ell}^{(i)} \rightarrow a_{\ell}^{(i+1)}$.
- If $A=\mathbb{C}\left[a_{1}, \ldots, a_{n}\right] / I$, then

$$
\mathcal{J}_{\infty} A=\mathbb{C}\left[a_{\ell}^{(j)}: \ell=1, \ldots, n, j \geqslant 0\right] /(\partial f, f \in I)
$$

## Observation (Arakawa)

If $A$ ) is a Poisson algebra, then there exists a unique Poisson vertex algebra structure on $\mathcal{J}_{\infty} A$ such that

$$
\left\{a_{\lambda} b\right\}:=\{a, b\}, \quad a, b \in A
$$

$\leadsto$ The geometry of $\operatorname{Spec} \mathcal{J}_{\infty} A$ gives information on the singularities of $\operatorname{Spec} A$.

## Poisson vertex algebras coming from vertex algebras

For an arbitrary vertex algebra $\mathcal{V}$, the graded algebra $\operatorname{gr} \mathcal{V}$ with respect to the Li filtration is a Poisson vertex algebra.

## Observation (Li, Arakawa)

There is a surjective Poisson vertex algebra morphism:

$$
\mathcal{J}_{\infty} R_{\mathcal{V}} \longrightarrow \operatorname{gr} \mathcal{V}
$$

where $R_{\mathcal{V}}:=\mathcal{V} / C_{2}(\mathcal{V})$ is the Zhu $C_{2}$-algebra.
Example: the universal affine vertex algebra associated with $\mathfrak{g}$ and $\kappa$

$$
\text { Let } \begin{aligned}
& V^{\kappa}(\mathfrak{g}):=U(\mathfrak{g}) \otimes_{\mathfrak{g}[t]} \oplus \mathbb{C} 1 \\
& \mathbb{C} \text {. Then: } \\
& \qquad \operatorname{gr} V^{\kappa}(\mathfrak{g}) \simeq \mathcal{J}_{\infty} \mathbb{C}\left[\mathfrak{g}^{*}\right]=\mathcal{J}_{\infty} R_{V^{\kappa}(\mathfrak{g})} .
\end{aligned}
$$

Example: the vertex algebra of chiral differential operators on $\mathbb{C}^{n}$ Let $\mathcal{D}_{\mathbb{C}^{n}}^{c h}$ be the $\beta \gamma$-system generated by fields $\beta_{i}(z), \gamma_{i}(z)$ with OPE's: $\beta_{i}(z) \gamma_{j}(z) \sim \frac{\delta_{i, j}}{z-w}$. Then:

$$
\operatorname{gr} \mathcal{D}_{\mathbb{C}^{n}}^{c h} \simeq \mathcal{J}_{\infty} \mathbb{C}\left[T^{*} \mathbb{C}^{n}\right]=\mathcal{J}_{\infty} R_{\mathcal{D}_{\mathbb{C}^{n}}^{c h}}
$$

## Double Poisson vertex algebras

## Definition (De Sole-Kac-Valeri, 2014)

A double Poisson vertex algebra is a differential algebra $\mathbb{V}$,

$$
\partial(a b)=a \cdot \partial(b)+\partial(a) \cdot b
$$

equipped with is a linear map

$$
\left.\left.\left\{-_{\lambda}-\right\}\right\}: \mathbb{V} \otimes \mathbb{V} \longrightarrow(\mathbb{V} \otimes \mathbb{V})[\lambda], \quad a \otimes b \longmapsto\left\{a_{\lambda} b\right\}\right\}, \quad \text { s.t. }
$$

(sesquilinearity): $\quad\left\{\partial(a)_{\lambda} b\right\}=-\lambda\left\{a_{\lambda} b\right\}, \quad\left\{a_{\lambda} \partial(b)\right\}=(\partial+\lambda)\left\{\left\{a_{\lambda} b\right\}\right.$,
(left Leibniz rule): $\quad\left\{\left\{a_{\lambda} b c\right\}=\left\{\left\{a_{\lambda} b\right\} c+b\left\{\left\{a_{\lambda} c\right\}\right.\right.\right.$,
(skewsymmetry): $\left\{\left\{a_{\lambda} b\right\}\right\}=-\left\{b_{-\lambda-\partial} a\right\}^{\sigma}$,
(Jacobi identity): $\quad\left\{a_{\lambda}\left\{\left\{b_{\mu} c\right\}\right\}\right\}-\left\{\left\{b_{\mu}\left\{\left\{a_{\lambda} c\right\}\right\}\right\}-\left\{\left\{\left\{a_{\lambda} b\right\}\right\}_{\lambda+\mu} c\right\}\right\}=0$.

- This theory allows to study non-abelian integrable PDEs efficiently.
- [Álvarez-Cónsul-Fernández-Heluani, 2021] This was also used to upgrade the one-to-one correspondence between some (graded) Poisson vertex algebras and Courant-Dorfman algebras to the associative setting.


## Theorem (De Sole-Kac-Valeri)

Any double Poisson vertex algebra $\mathbb{V}$ induces a Poisson vertex algebra structure on $\mathbb{V}_{N}$, and $\mathrm{GL}_{N}$ acts on $\mathbb{V}_{N}$ by Poisson vertex automorphisms.

## Example

$V=\mathbb{C}\left\langle a^{(0)}, a^{(1)}, a^{(2)}, \ldots\right\rangle$ is a double Poisson vertex algebra with

$$
\left.\left\{a_{\lambda} a\right\}\right\}=1 \otimes a-a \otimes 1+(1 \otimes 1) \lambda, \quad a:=a^{(0)} .
$$

## Jet algebras

The jet algebra $\mathcal{J}_{\infty} \mathbb{A}$ of an associative algebra $\mathbb{A}$ is the algebra generated by symbols $\partial^{k}(a), a \in \mathbb{A}, k \in \mathbb{N}$, subject to:

$$
\partial^{k}(\alpha a+\beta b)=\alpha \partial^{k}(a)+\beta \partial^{k}(b), \quad \partial^{k}(a b)=\sum_{j=0}^{k}\binom{k}{j} \partial^{j}(a) \partial^{k-j}(b) .
$$

There is $\partial \in \operatorname{Der}\left(\mathcal{J}_{\infty} \mathbb{A}\right)$ uniquely determined by: $\partial\left(\partial^{k}(a)\right):=\partial^{k+1}(a)$.

## Example 1

Consider the free algebra $\mathbb{A}=\mathbb{C}\left\langle x_{1}, \ldots, x_{\ell}\right\rangle$. Then,

$$
\mathcal{J}_{\infty} \mathbb{A}=\left\langle\partial^{k}\left(x_{1}\right), \ldots, \partial^{k}\left(x_{\ell}\right) \mid k \in \mathbb{N}\right\rangle,
$$

equipped with the derivation $\partial: \partial^{k}\left(x_{i}\right) \mapsto \partial^{k+1}\left(x_{i}\right)$ for any $1 \leqslant i \leqslant \ell$.

## Example 2: jets of path algebras

For $Q$ a quiver, $Q_{\infty}$ is the quiver with the same vertex set as $Q$, and arrow set:

$$
Q_{\infty}=\left\{a^{(\ell)} \mid a \in Q, \ell \in \mathbb{N}\right\} \quad \text { with } \quad t\left(a^{(\ell)}\right)=t(a), \quad h\left(a^{(\ell)}\right)=h(a) .
$$

Then $\mathcal{J}_{\infty}(\mathbb{C} Q) \simeq \mathbb{C} Q_{\infty}$ as a differential algebra.

Theorem (Bozec-Fairon-M., 2023)

- $\mathcal{J}_{\infty} \mathbb{A}$ is the unique differential algebra such that

$$
\operatorname{Hom}_{\text {Diff.Alg }}\left(\mathcal{J}_{\infty} \mathbb{A}, \mathbb{B}\right)=\operatorname{Hom}_{\mathrm{Alg}}(\mathbb{A}, \mathbb{B}), \quad(\mathbb{B}, \partial)
$$

- If $\mathbb{A}$ is a double Poisson algebra, then $\mathcal{J}_{\infty} \mathbb{A}$ has a unique double Poisson structure such that:

$$
\left\{\left\{a_{\lambda} b\right\}\right\}=\{\{a, b\}\}, \quad a, b \in \mathbb{A} .
$$

- The jet functor is compatible with the representation functor:

$\leadsto$ Commutativity of the top face.


## Reduction in the Poisson vertex setting

A
$\left(\mathcal{J}_{\infty} \mathbb{A}_{N}\right)^{\mathrm{GL}_{N}}$ is too big compared with $\mathcal{J}_{\infty}\left(\mathbb{A}_{N}^{G L_{N}}\right)$ in most situations! $\leadsto$ we consider the $\mathcal{J}_{\infty}\left(G L_{N}\right)$-action...

Let $G$ be an affine algebraic group acting on $Y:=\operatorname{Spec}(A)$. Then $\mathcal{J}_{\infty}(\mathrm{G})$ acts on $\mathcal{J}_{\infty}(Y)$, and so on $\mathcal{J}_{\infty}(A)$.

In general, the morphism $j_{A}: \mathcal{J}_{\infty}\left(A^{G}\right) \rightarrow\left(\mathcal{J}_{\infty} A\right)^{\mathcal{J}_{\infty}(G)}$ is neither injective, nor surjective.

Example (Linshaw-Schwarz-Song)
If $\mathrm{G}=\mathrm{GL}_{N}$ and $Y=\left(\mathbb{C}^{N}\right)^{\oplus p} \oplus\left(\left(\mathbb{C}^{N}\right)^{*}\right)^{\oplus q}$, then

$$
\mathcal{J}_{\infty}(Y / / G) \simeq\left(\mathcal{J}_{\infty} Y\right)^{\mathcal{J}}{ }^{\infty} G
$$

Example (Raïs-Tauvel, Belinson-Drinfeld)
If G is a reductive group with Lie algebra $\mathfrak{g}$, then

$$
\mathcal{J}_{\infty}\left(\mathfrak{g}^{*} / / \mathrm{G}\right) \simeq\left(\mathcal{J}_{\infty} \mathfrak{g}^{*}\right)^{\mathcal{J}} \mathrm{G}
$$

$\mathcal{J}_{\infty}(\mathrm{G})$ does not act by Poisson vertex algebra automorphisms, even if $G$ acts by Poisson algebra automorphisms on $A$.

## Theorem (Bozec-Fairon-M.)

Assume that $G$ acts by Poisson algebra automorphisms on $A$.
Then $\left(\mathcal{J}_{\infty} A\right)^{\mathcal{J}_{\infty} G}$ is a Poisson vertex subalgebra of $\mathcal{J}_{\infty} A$.

## Idea of the proof

- If $G$ connected, then $\left(\mathcal{J}_{\infty} A\right)^{\mathcal{J}_{\infty} G}=\left(\mathcal{J}_{\infty} A\right)^{\mathfrak{g}[t]}$, with $\mathfrak{g}:=\operatorname{Lie}(\mathrm{G})$.

The action of $\mathfrak{g} \llbracket t \rrbracket$ on $\mathcal{J}_{\infty} A$ is entirely determined by the action of $\mathfrak{g}$ on $A$.
For $a, b \in \mathcal{J}_{\infty} A, x \in \mathfrak{g}$ and $k, n \in \mathbb{Z}_{\geqslant 0}$ :

$$
\begin{aligned}
& \left(x t^{k}\right) \cdot \partial a=\partial\left(x t^{k}\right) \cdot a+k\left(x t^{k-1}\right) \cdot a \\
& \left(x t^{k}\right) \cdot\left(a_{(n)} b\right)=a_{(n)}\left(\left(x t^{k}\right) \cdot b\right)+\sum_{\ell=0}^{k}\binom{k}{\ell}\left(\left(x t^{k-\ell}\right) \cdot a\right)_{(n+\ell)} b .
\end{aligned}
$$

- If G is finite, then $\mathcal{J}_{\infty} \mathrm{G} \simeq \mathrm{G}$ acts by Poisson vertex algebra automorphisms.
$\leadsto$ Commutativity of the right face.


## Noncommutative Poisson reduction

Van den Bergh observed that the Poisson bracket on $\mathbb{A}_{N}^{G L_{N}}$ is completely determined by a Lie bracket on the vector space $H_{0}(\mathbb{A}):=\mathbb{A} /[\mathbb{A}, \mathbb{A}]$.

Theorem (Crawley-Boevey, Van Den Bergh, Fairon):
The multiplication yields a linear map $m \circ\{-,-\}: \mathbb{A} \otimes \mathbb{A} \rightarrow \mathbb{A}$ which descends to a Lie bracket on $H_{0}(\mathbb{A})$ :

$$
\left[a_{\sharp}, b_{\sharp}\right]:=\left(m \circ\{\{a, b\})_{\sharp} .\right.
$$

There is a unique Poisson bracket on $\mathbb{A}_{N}^{G L_{N}}$ such that for any $a, b \in \mathbb{A}$,

$$
\left\{\operatorname{tr}_{N}(a), \operatorname{tr}_{N}(b)\right\}=\operatorname{tr}_{N}\left(\left[a_{\sharp}, b_{\sharp}\right]\right),
$$

where $\operatorname{tr}_{N}(a):=\sum_{j=1}^{N} a_{j j} \in \mathbb{A}_{N}$.
$\leadsto$ Commutativity of the front face.

## Noncommutative Poisson vertex reduction

Need a suitable "vertex" analogue of Crawley-Boevey-Van Den Bergh's result. Idea: replace algebras with differential algebras and Lie brackets with Lie vertex brackets.

## Theorem (De Sole-Kac-Valeri)

If $\mathbb{V}$ is a double Poisson vertex algebra, the multiplication on $\mathbb{V}$ induces a linear map $m \circ\{\{-\lambda-\}: \mathbb{V} \otimes \mathbb{V} \rightarrow \mathbb{V}[\lambda]$ which descends to a Lie vertex bracket on $H_{0}(\mathbb{V})$ :

$$
\left[a_{\sharp \lambda} b_{\sharp}\right]:=\left(m \circ\left\{a_{\lambda} b\right\}\right)_{\sharp} .
$$

- To complete the cube, we shall consider a variation of the above theorem relative to a subspace of $H_{0}(\mathbb{V})$.


## Last corner

Theorem (Bozec-Fairon-M., 2023)
Let $\mathbb{A}$ be endowed with a $H_{0}$-Poisson structure $[-,-]$.

$$
\operatorname{Vect}_{\infty}(\mathbb{A}):=\operatorname{span}_{\mathbb{C}}\left\{\partial^{r}(a): a \in \mathbb{A}, r \geqslant 0\right\} \subset \mathcal{J}_{\infty}(\mathbb{A})
$$

- There exists a unique $H_{0}$-Poisson vertex structure on $\operatorname{Vect}_{\infty}(\mathbb{A})$ such that:

$$
\left[a_{\sharp \lambda} b_{\sharp}\right]:=\left[a_{\sharp}, b_{\sharp}\right] \lambda^{0},
$$

with $a:=\partial^{0}(a), b:=\partial^{0}(b) \in \operatorname{Vect}_{\infty}(\mathbb{A})$.

- The following diagram is commutative, for $\mathbb{A}$ a double Poisson algebra:

- The cube commutes! The same goes in the Hamiltonian setting.


## Illustrating example



```
p,q\geqslantc, for some c\geqslant1
```

- $\mathbb{C} Q_{p, q}$ is a double Poisson algebra with: $\left\{\left\{v_{i}, w_{j}\right\}\right\}=\delta_{i, j} \delta_{(i \leqslant c)} e_{2} \otimes e_{1}$.
- The case $p=q=c$ is a double Poisson algebra obtained from a double quiver.
- $\mathbb{C}\left(Q_{p, q}\right)_{\infty}$ is a double Poisson vertex algebra with:

$$
\left\{\left\{v_{i}^{(\ell)}{ }_{\lambda} w_{j}^{(m)}\right\}\right\}=(-1)^{\ell} \lambda^{\ell+m} \delta_{i, j} \delta_{(i \leqslant c)} e_{2} \otimes e_{1}
$$

- The Lie bracket on $H_{0}\left(\mathbb{C} Q_{p, q}\right)$ is computed as for the necklace Lie bracket.

Then we deduce the $H_{0}$-Poisson vertex structure on $\operatorname{Vect}_{\infty}\left(\mathbb{C} Q_{p, q}\right)$.

- Assume $\underline{n}=(n, 1)$. Then $\left(\mathbb{C} Q_{p, q}\right)_{\underline{n}} \simeq \mathbb{C}[Y]$, where $Y=\left(\mathbb{C}^{n}\right)^{\oplus p} \oplus\left(\left(\mathbb{C}^{n}\right)^{*}\right)^{\oplus q}$.
- The $\lambda$-Poisson vertex bracket on $\mathcal{J}_{\infty}\left(\mathbb{C}[Y]^{G L_{n}}\right) \simeq \mathcal{J}_{\infty}(\mathbb{C}[Y])^{\mathcal{J}}\left(G L_{n}\right)$ is computed from the Poisson bracket on $\mathbb{C}[Y]^{G L_{n}}$.


## Open problems and connections with vertex algebras

## Problem 1

Let $\mathcal{V}$ be a vertex algebra such that the Poisson structure on $R_{\mathcal{V}}$ comes from a double Poisson algebra, that is,

$$
R_{\mathcal{V}} \cong \mathbb{A}_{N}
$$

for some double Poisson algebra $\mathbb{A}$ and $N \geqslant 0$, and such that

$$
\operatorname{gr} \mathcal{V} \simeq \mathcal{J}_{\infty} R_{\mathcal{V}}
$$

$\leadsto$ The Poisson vertex structure on gr $\mathcal{V}$ comes from a double Poisson vertex algebra.

Is there a double vertex analogue for such a vertex algebra?

## Examples



How to construct double versions of $U\left(\mathfrak{g l}_{N}\right)$ and $V^{\kappa}\left(\mathfrak{g l}_{N}\right)$ corresponding to $\mathbb{C}\langle a\rangle$ and $\mathcal{J}_{\infty} \mathbb{C}\langle a\rangle$, respectively?

## Chiral differential operators



How to construct double versions of $\mathcal{D}_{\mathrm{GL}_{N}}$ and $\mathcal{D}_{\mathrm{GL}_{N}, k}^{c h}$ corresponding to $\mathbb{C}\left\langle a, b^{ \pm}\right\rangle$and $\mathcal{J}_{\infty} \mathbb{C}\left\langle a, b^{ \pm}\right\rangle$, respectively?

## Hamiltonian reduction

A noncommutative moment map $\mu$ is so that the matrix-valued function

$$
X(\mu): \operatorname{Rep}(\mathbb{A}, \underline{n}) \rightarrow\left(\mathfrak{g l}_{\underline{n}}\right)^{*}
$$

is a moment map relative the $\mathrm{GL}_{\underline{n}}$-action by conjugation.

## Problem 2

Are there analogues of $H_{0}$-structures and noncommutative moment maps that lead to more general Hamiltionian actions on the representation space ?

## Hamiltonian actions

There are two commuting Hamiltonian $\mathrm{GL}_{N}$-actions on $T^{*}\left(\mathrm{GL}_{N}\right)$ :

$$
g_{L}(h, x)=\left(h g^{-1}, g x g^{-1}\right), \quad g_{R}(h, x)=(g h, x), \quad g, h \in \mathrm{GL}_{N}, x \in \mathfrak{g l}_{N}
$$

with moment maps:

$$
\mu_{L}:(h, x) \longmapsto x, \quad \mu_{R}:(h, x) \longmapsto-h x h^{-1} .
$$

- These moment maps admits chiral quantized versions.

Set $\kappa^{*}:=-\kappa-\kappa_{\mathfrak{g l}_{N}}$. There are vertex algebra embeddings:

$$
\pi_{L}: \mathrm{V}^{\kappa^{*}}\left(\mathfrak{g l}_{N}\right) \longleftrightarrow \mathcal{D}_{\mathrm{GL}_{N}, \kappa}^{c h}, \quad \pi_{R}: \mathrm{V}^{\kappa}\left(\mathfrak{g l}_{N}\right) \longleftrightarrow \mathcal{D}_{\mathrm{GL}_{N}, \kappa}^{c h},
$$

such that [Malikov-Schechtman-Vaintrob]:

$$
\left(\mathcal{D}_{\mathrm{GL}_{N}, \kappa}^{c h}\right)^{\pi_{L}\left(\mathfrak{g l}_{N}[[t]]\right)} \cong \mathrm{V}^{\kappa^{*}}\left(\mathfrak{g l}_{N}\right), \quad\left(\mathcal{D}_{\mathrm{GL}_{N}, \kappa}^{c h}\right)^{\left.\pi_{R}\left(\mathfrak{g l}_{N}[t t]\right]\right)} \cong \mathrm{V}^{\kappa}\left(\mathfrak{g l}_{N}\right)
$$

The element

$$
\mu=a-b a b^{-1} \in \mathbb{C}\left\langle a, b^{ \pm}\right\rangle
$$

is a noncommutative moment map corresponding to $\mu:=\mu_{L}+\mu_{R}$.




## Slodowy slices

- The Poisson structure on Slodowy slices $\mathscr{S}_{f}$ is obtained by Hamiltionian reduction from that of $\mathfrak{g} \simeq \mathfrak{g}^{*}$.
- For $\mathfrak{g}=\mathfrak{g l}_{N}$, it was proved by Maffei that Slodowy slices can be described in term of quiver varieties.


## Problem 3

Can we describe the Poisson structure on Slodowy slices in $\mathfrak{g l}_{N}$ from double Poisson algebras?

- Slodowy slices admit natural quantizations: the finite $W$-algebras $U(\mathfrak{g}, f)$.
- Slodowy slices admit natural chiralizations: the universal affine $W$-algebras

$$
\mathcal{W}^{\kappa}(\mathfrak{g}, f)=H^{0}\left(\mathcal{V}^{\kappa}(\mathfrak{g})\right)
$$

We have [De Sole-Kac]: $\operatorname{gr}^{\kappa}(\mathfrak{g}, f) \cong \mathcal{J}_{\infty} \mathbb{C}\left[\mathscr{S}_{f}\right]=\mathcal{J}_{\infty} R_{\mathcal{W}^{\kappa}(\mathfrak{g}, f)}$.

