Borcherds' Lie algebra and C_{2}-cofiniteness of moonshine VOAs

Masahiko Miyamoto
University of Tsukuba

June 27, 2023 at IUC in Dubrovnik

Introduction

Classifi. of hol. VOA of $c=24$ was accomplished except for the moonshine type. The remaining is to prove the uniqueness of moonshine type, i.e.,
[Uniqueness conj [FLM]] If V is VOA, with non-sing inv $\langle\rangle,, c=24$, $\sum \operatorname{dim} V_{n} q^{n-1}=j(\tau)-744=q^{-1}+196884 q+\ldots$, then $V \cong V^{\natural}$?

With additional assumps, there are serveral results. e.g., if we have an iso. $V / C_{2}(V) \cong V^{\natural} / C_{2}\left(V^{\natural}\right)$ of Poisson algebras keeping grades and inner products, then we have $V \cong V^{\natural}$ by a Griess' result and easy calculation.

Introduction

Classifi. of hol. VOA of $c=24$ was accomplished except for the moonshine type. The remaining is to prove the uniqueness of moonshine type, i.e.,
[Uniqueness conj [FLM]] If V is VOA, with non-sing inv $\langle\rangle,, c=24$, $\sum \operatorname{dim} V_{n} q^{n-1}=j(\tau)-744=q^{-1}+196884 q+\ldots$, then $V \cong V^{\natural}$?

With additional assumps, there are serveral results. e.g., if we have an iso. $V / C_{2}(V) \cong V^{\natural} / C_{2}\left(V^{\natural}\right)$ of Poisson algebras keeping grades and inner products, then we have $V \cong V^{\natural}$ by a Griess' result and easy calculation.

Conversely, what we can get from the assump of uniqueness conj? From now on, V is a VOA satisfying these conditions.
Given data are few. Under this assumption, the known result we can use is

$$
\text { iso: } B(V) \cong B\left(V^{\mathrm{\natural}}\right) \text { of Borchers' Lie algebras. (explain later) }
$$

$B\left(V^{\natural}\right)$ is called Monster Lie algebra. However, we can not use the Monster actions and so we just call it Borcherds' Lie algebra.

Borcherds Lie algebra

Borcherds has also shown: $B(V)$ is GKM algebra with simple roots

$$
\{(1,-1),(1,1),(1,2),(1,3), \ldots\} \subseteq \mathrm{I}_{1,1}, \quad \begin{aligned}
& \text { Lorentzian lattice } \\
& \text { with Gram matrix }
\end{aligned}\left(\begin{array}{rr}
0 & -1 \\
-1 & 0
\end{array}\right)
$$

with multiplicities $\operatorname{dim} V_{n+1}$ for $(1, n)$. In particular, $B(V)$ is generated by root spaces $B(V)^{(1, m)} \cong\left(V_{m+1},\langle\rangle,\right)$ freely.
e.g. $\left[B(V)^{(1,1)}, B(V)^{(1,1)}\right] \cong$ Skew $_{\operatorname{dim}} B(V)^{(1,1)}$

Borcherds Lie algebra

Borcherds has also shown: $B(V)$ is GKM algebra with simple roots

$$
\{(1,-1),(1,1),(1,2),(1,3), \ldots\} \subseteq \Pi_{1,1}, \quad \begin{aligned}
& \text { Lorentzian lattice } \\
& \text { with } G r a m \text { matrix }
\end{aligned}\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right)
$$

with multiplicities $\operatorname{dim} V_{n+1}$ for $(1, n)$. In particular, $B(V)$ is generated by root spaces $B(V)^{(1, m)} \cong\left(V_{m+1},\langle\rangle,\right)$ freely.
e.g. $\left[B(V)^{(1,1)}, B(V)^{(1,1)}\right] \cong \operatorname{Skew}_{\operatorname{dim} B(V)^{(1,1)}}$

Remark 1

Borcherds has shown: $B\left(V^{\natural}\right)$ is GKM alg. with the above simple roots. The critical point of the proof is that he used only nonsingular inv. \langle,$\rangle ,$ $\mathrm{ch}_{V^{\mathrm{\natural}}}(\tau)=J(\tau)$, and $\underline{c=24}$. Hence as they mentioned in [B86] and [J10], $B(V)$ has the same simple roots and $\cong B\left(V^{\natural}\right)$.

Borcherds Lie algebra

Borcherds has also shown: $B(V)$ is GKM algebra with simple roots

$$
\{(1,-1),(1,1),(1,2),(1,3), \ldots\} \subseteq \Pi_{1,1}, \quad \begin{aligned}
& \text { Lorentzian lattice } \\
& \text { with } G r a m \text { matrix }
\end{aligned}\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right)
$$

with multiplicities $\operatorname{dim} V_{n+1}$ for $(1, n)$. In particular, $B(V)$ is generated by root spaces $B(V)^{(1, m)} \cong\left(V_{m+1},\langle\rangle,\right)$ freely.
e.g. $\left[B(V)^{(1,1)}, B(V)^{(1,1)}\right] \cong \operatorname{Skew}_{\operatorname{dim} B(V)^{(1,1)}}$

Remark 1

Borcherds has shown: $B\left(V^{\natural}\right)$ is GKM alg. with the above simple roots. The critical point of the proof is that he used only nonsingular inv. \langle,$\rangle ,$ $\mathrm{ch}_{V^{\mathrm{\natural}}}(\tau)=J(\tau)$, and $\underline{c=24}$. Hence as they mentioned in [B86] and [J10], $B(V)$ has the same simple roots and $\cong B\left(V^{\natural}\right)$.

Because of that, my first impression was "we could not get back useful inf. of V from $B(V)$.

Result

I was wrong. The fact that "the structure of $B(V)$ is very simple" comes from the several strong restrictions on V.

Result

I was wrong. The fact that "the structure of $B(V)$ is very simple" comes from the several strong restrictions on V.
Today, I will show you one of the results from this fact. Namely, we can prove the following theorem.

Theorem 1

If V is VOA, non-sing inv $\langle\rangle,, c=24$,
$\sum \operatorname{dim} V_{n} q^{n-1}=j(\tau)-744=q^{-1}+196884 q+\ldots$, then V is C_{2}-cofinite. More precisely,

$$
C_{2}(V)=\sum_{n \geq 5} V_{n}+L(-1) V
$$

Result

I was wrong. The fact that "the structure of $B(V)$ is very simple" comes from the several strong restrictions on V.
Today, I will show you one of the results from this fact. Namely, we can prove the following theorem.

Theorem 1

If V is VOA, non-sing inv $\langle\rangle,, c=24$,
$\sum \operatorname{dim} V_{n} q^{n-1}=j(\tau)-744=q^{-1}+196884 q+\ldots$, then V is C_{2}-cofinite. More precisely,

$$
C_{2}(V)=\sum_{n \geq 5} V_{n}+L(-1) V
$$

The proof consists of three steps: (1) $V_{5} \subseteq C_{2}(V)$, (2) $V_{6} \subseteq C_{2}(V)$, and (3) $V_{n} \subseteq C_{2}(V)$ for $n \geq 7$ by induction.

Today I will show only the first step (1) because the others are similar. If I have time, then (3).

Physical states and Borcherds Lie algebra

Set $\tilde{V}=V \otimes V_{\mathrm{II}_{1,1}}$, which has $\mathrm{I}_{1,1}$-graded structure. $L(n), \tilde{L}(n)$ denotes Virasoro ops of V and \tilde{V}, respectively. Set

$$
P^{1}=\left\{u \in \tilde{V}_{1} \mid \tilde{L}(n) u=0 \forall n>0\right\}
$$

the space of physical states. Then we define

$$
\text { a Borcherds Lie algebra } B(V)=P^{1} / \operatorname{Rad}\left(P^{1}\right)
$$

where $\operatorname{Rad}\left(P^{1}\right)$ is the null space of $\langle\cdot, \cdot\rangle$.

Physical states and Borcherds Lie algebra

Set $\tilde{V}=V \otimes V_{\mathrm{II}_{1,1}}$, which has $\mathrm{I}_{1,1}$-graded structure. $L(n), \tilde{L}(n)$ denotes Virasoro ops of V and \tilde{V}, respectively. Set

$$
P^{1}=\left\{u \in \tilde{V}_{1} \mid \tilde{L}(n) u=0 \forall n>0\right\}
$$

the space of physical states. Then we define

$$
\text { a Borcherds Lie algebra } B(V)=P^{1} / \operatorname{Rad}\left(P^{1}\right)
$$

where $\operatorname{Rad}\left(P^{1}\right)$ is the null space of $\langle\cdot, \cdot\rangle$.
Let $P_{(m, n)}^{1} \subseteq P^{1}$ of degree $(m, n) \in \mathrm{I}_{1,1}$ and
$B(V)^{(m, n)}=P_{(m, n)}^{1} / \operatorname{Rad}\left(P_{(m, n)}^{1}\right)$.

No ghost theorem

We will recall the following results from [B86].

Theorem 2 (The no-ghost theorem)

Let $V=\oplus_{n=0}^{\infty} V_{n}$ be a VOA of $c=24$ with non-sing bi. form \langle,$\rangle and$ $G \leq \operatorname{Aut}(V)$ (we view $G=G \times 1$ on $V \otimes V_{\mathrm{II}_{1,1}}$). Then
$B(V)^{(m, n)} \cong V_{1+m n}$ as G-mods with an inv bi form if $m n \neq 0$ and $B(V)^{(0,0)} \cong V_{1} \oplus \mathbb{C}^{2}$ and $B(V)^{(m, n)}=0$ for else.

For $V^{\natural}, B\left(V^{\natural}\right)^{(m, n)} \cong V_{m n+1}^{\natural}$ as the monster simple group modules for $m n \neq 0$.

No ghost theorem

We will recall the following results from [B86].

Theorem 2 (The no-ghost theorem)

Let $V=\oplus_{n=0}^{\infty} V_{n}$ be a VOA of $c=24$ with non-sing bi. form \langle,$\rangle and$ $G \leq \operatorname{Aut}(V)$ (we view $G=G \times 1$ on $V \otimes V_{\mathrm{II}_{1,1}}$). Then $B(V)^{(m, n)} \cong V_{1+m n}$ as G-mods with an inv bi form if $m n \neq 0$ and $B(V)^{(0,0)} \cong V_{1} \oplus \mathbb{C}^{2}$ and $B(V)^{(m, n)}=0$ for else.

For $V^{\natural}, B\left(V^{\natural}\right)^{(m, n)} \cong V_{m n+1}^{\natural}$ as the monster simple group modules for $m n \neq 0$. But, for a general VOA $V, G=1$ and so Borcherds' no ghost theorem just says $\operatorname{dim} B^{(m, n)}(V)=\operatorname{dim} V_{m n+1}$.

No ghost theorem

We will recall the following results from [B86].

Theorem 2 (The no-ghost theorem)

Let $V=\oplus_{n=0}^{\infty} V_{n}$ be a VOA of $c=24$ with non-sing bi. form \langle,$\rangle and$ $G \leq \operatorname{Aut}(V)$ (we view $G=G \times 1$ on $V \otimes V_{\mathrm{II}_{1,1}}$). Then $B(V)^{(m, n)} \cong V_{1+m n}$ as G-mods with an inv bi form if $m n \neq 0$ and $B(V)^{(0,0)} \cong V_{1} \oplus \mathbb{C}^{2}$ and $B(V)^{(m, n)}=0$ for else.

For $V^{\natural}, B\left(V^{\natural}\right)^{(m, n)} \cong V_{m n+1}^{\natural}$ as the monster simple group modules for $m n \neq 0$. But, for a general VOA $V, G=1$ and so Borcherds' no ghost theorem just says $\operatorname{dim} B^{(m, n)}(V)=\operatorname{dim} V_{m n+1}$.

What a waste of good theorem!

A large group and its homogeneous spaces

$P^{1}, B(V)$ are defined by Virasoro ops $\left\{L(n)+L^{\prime}(n) \mid n \in \mathbb{Z}\right\}$,
We will introduce a group
Definition 1
$G=\left\{g=\prod_{m} g_{m} \in \prod_{m} O\left(V_{m},\langle\rangle,\right) \mid g_{m} L(n)=L(n) g_{m-n}{ }^{\forall} n, m \in \mathbb{Z}\right\}$
(Note: G is not auto gr. of $B(V)$, just set of orth transf comm with Vir.) and extend it to an auto. $G \otimes 1_{\mathrm{III}_{1,1}}$ of \tilde{V}.

A large group and its homogeneous spaces

$P^{1}, B(V)$ are defined by Virasoro ops $\left\{L(n)+L^{\prime}(n) \mid n \in \mathbb{Z}\right\}$,
We will introduce a group
Definition 1
$G=\left\{g=\prod_{m} g_{m} \in \prod_{m} O\left(V_{m},\langle\rangle,\right) \mid g_{m} L(n)=L(n) g_{m-n}{ }^{\forall} n, m \in \mathbb{Z}\right\}$
(Note: G is not auto gr. of $B(V)$, just set of orth transf comm with Vir.) and extend it to an auto. $G \otimes 1_{\mathrm{III}_{1,1}}$ of \tilde{V}. By def. of physical state,

$$
P_{(m, n)}^{1} \text { and } B(V)^{(m, n)} \text { are } G \text {-modules. }
$$

A large group and its homogeneous spaces

$P^{1}, B(V)$ are defined by Virasoro ops $\left\{L(n)+L^{\prime}(n) \mid n \in \mathbb{Z}\right\}$,
We will introduce a group
Definition 1
$G=\left\{g=\prod_{m} g_{m} \in \prod_{m} O\left(V_{m},\langle\rangle,\right) \mid g_{m} L(n)=L(n) g_{m-n}{ }^{\forall} n, m \in \mathbb{Z}\right\}$
(Note: G is not auto gr. of $B(V)$, just set of orth transf comm with Vir.) and extend it to an auto. $G \otimes 1_{V_{\mathrm{II}_{1,1}}}$ of V. By def. of physical state,

$$
P_{(m, n)}^{1} \text { and } B(V)^{(m, n)} \text { are } G \text {-modules. }
$$

Definition 2 (homogeneous G-submodules)

Set $\quad V_{k}^{p}=\left\{v \in V_{k} \mid L(n) v=0^{\forall} n \geq 1\right\} \quad$ Vir primary states $\Rightarrow V=\oplus_{k \in \mathbb{N}} U(\mathrm{Vir}) V_{k}^{p}, \quad V_{k}^{p}$ is simple G-mod. and $G=\prod_{m=0}^{\infty} O\left(V_{m}^{p}\right)$. Define projection: $\pi_{k}: \tilde{V} \rightarrow\left(U(\mathrm{Vir}) \cdot V_{k}^{p}\right) \otimes V_{\mathrm{II}_{1,1}}$ $P_{(m, n), k}^{1}:=\pi_{k}\left(P_{(m, n)}^{1}\right), \quad B(V)^{(m, n), k}:=\pi_{k}\left(B(V)^{(m, n)}\right)$

Root space of Borchers Lie algebra as G-modules

Lemma 3

For $(m, n)=(1,-1),(1,1),(1,3),(2,2), V^{(m, n)} \cong V_{m n+1}$ as G-modules.

Remark 2

In Borcherds' proof of the no-ghost theorem, his ops were given by elts in $V_{\mathrm{II}_{1,1},}$ and Vir, which implies $B(V)^{(m, n)} \cong V_{m n+1}$ as G-mods for $m n \neq 0$.

Root space of Borchers Lie algebra as G-modules

Lemma 3

For $(m, n)=(1,-1),(1,1),(1,3),(2,2), V^{(m, n)} \cong V_{m n+1}$ as G-modules.

Remark 2

In Borcherds' proof of the no-ghost theorem, his ops were given by elts in $V_{\mathrm{II}_{1,1} \text {, and }}$ Vir, which implies $B(V)^{(m, n)} \cong V_{m n+1}$ as G-mods for $m n \neq 0$.

For $v \in V_{m n+1}^{p}$, we have $v \otimes e^{(m, n)} \in P^{1}$. It is easy to see $V_{m n+1}^{p} \otimes e^{(m, n)}=P_{(m, n), m n+1}^{1}$ and
$\operatorname{Rad}\left(P_{(m, n), m n+1}^{1}\right)=0$. Similarly,
$V_{m n}^{p} \otimes \delta_{(-1)}^{(m,-n)} e^{(m, n)} \subseteq P_{(m, n)}^{1}$ and
$\operatorname{Rad}\left(P_{(m, n), m n}^{1}\right)=\tilde{L}(-1)\left(V_{m n}^{p} \otimes e^{(m, n)}\right)$, where
$\delta_{(-1)}^{(m, n)} \mathbf{1}^{\prime}=(m, n)(-1) \mathbf{1} \in V_{\mathrm{II}_{1,1}}$ for $(m, n) \in \mathrm{I}_{1,1}$. i.e.,
The both of mult. of $V_{m n+1}^{p}$ and $V_{m n}^{p}$ in $B(V)^{(m, n)}$ are one.

Explict form of $B(V)^{(m, n), k}$

[Proof] By direct calculation, we have

$$
\begin{array}{ccc}
P_{(1,-1)}^{1}=\mathbb{C} \mathbf{1} \otimes e^{(1,-1)} \cong V_{0} & \text { and } & \operatorname{Rad}\left(P_{(1,-1)}^{1}\right)=0 \\
P_{(1,1)}^{1}=\mathbb{C}\left(V_{2}^{p} \otimes_{\| R} e^{(1,1)}\right) \oplus \mathbb{C}\left[L(-2) \mathbf{1} \otimes e^{(1,1)}-6 \mathbf{1} \otimes \delta_{(-1)}^{(1,-1)} e^{(1,1)}\right] \oplus \operatorname{Rad} \\
V_{2}^{p} & \oplus & V_{0}
\end{array}
$$

From $P_{(1,3), 4}^{1}=V_{4}^{p}, P_{(1,3), 3}^{1}=V_{3}^{p}+\operatorname{Rad} . \operatorname{mult}\left(P_{(1,3), 0}^{1}\right)<\operatorname{dim} V_{2}^{p}$, $\operatorname{dim} B(V)^{(1,3)}=\operatorname{dim} V_{4}$, we have $B^{(1,3)}(V) \cong V_{4}$.
We will give a proof later for the case $(m, n)=(2,2)$.

The useful fact and products by $\left.P_{(1,-1)}^{1}, 0\right)$ and $\pi_{0}\left(P^{1}\right)$

$$
\left\{B(V)^{(1, n)}: n=-1,0, \ldots\right\} \text { generates } \oplus_{m=1}^{\infty} \oplus_{n \in \mathbb{Z}} B(V)^{(m, n)}
$$

e.g. we will use

$$
B(V)^{(2,2)}=\left[B(V)^{(1,-1)}, B(V)^{(1,3)}\right]+\left[B(V)^{(1,1)}, B(V)^{(1,1)}\right]
$$

Coming back to physical states, we have

$$
P_{(2,2)}^{1} \subseteq\left(P_{(1,-1)}^{1}\right)_{0}\left(P_{(1,3)}^{1}\right)+\left(P_{(1,1)}^{1}\right)_{0}\left(P_{(1,1)}^{1}\right)+\operatorname{Rad}\left(P_{(2,2)}^{1}\right)
$$

The useful fact and products by $\left.P_{(1,-1)}^{1}, 0\right)$ and $\pi_{0}\left(P^{1}\right)$

$$
\left\{B(V)^{(1, n)}: n=-1,0, \ldots\right\} \text { generates } \oplus_{m=1}^{\infty} \oplus_{n \in \mathbb{Z}} B(V)^{(m, n)}
$$

e.g. we will use

$$
B(V)^{(2,2)}=\left[B(V)^{(1,-1)}, B(V)^{(1,3)}\right]+\left[B(V)^{(1,1)}, B(V)^{(1,1)}\right]
$$

Coming back to physical states, we have

$$
P_{(2,2)}^{1} \subseteq\left(P_{(1,-1)}^{1}\right)_{0}\left(P_{(1,3)}^{1}\right)+\left(P_{(1,1)}^{1}\right)_{0}\left(P_{(1,1)}^{1}\right)+\operatorname{Rad}\left(P_{(2,2)}^{1}\right)
$$

Using $P_{(1,1)}^{1}=P_{(1,1), 0}^{1} \oplus P_{(1,1), 2}^{1} \quad\left(B(V)^{(1,1)}=B(V)^{(1,1), 0} \oplus B(V)^{(1,1), 2}\right)$,

$$
\left(P_{(1,1)}^{1}\right)_{0}\left(P_{(1,1)}^{1}\right)=\left(P_{(1,1), 0}^{1}\right)_{0}\left(P_{(1,1)}^{1}\right)+\left(P_{(1,1), 2}^{1}\right)_{0}\left(P_{(1,1), 2}^{1}\right)
$$

The useful fact and products by $\left.P_{(1,-1)}^{1}, 0\right)$ and $\pi_{0}\left(P^{1}\right)$

$$
\left\{B(V)^{(1, n)}: n=-1,0, \ldots\right\} \text { generates } \oplus_{m=1}^{\infty} \oplus_{n \in \mathbb{Z}} B(V)^{(m, n)}
$$

e.g. we will use

$$
B(V)^{(2,2)}=\left[B(V)^{(1,-1)}, B(V)^{(1,3)}\right]+\left[B(V)^{(1,1)}, B(V)^{(1,1)}\right]
$$

Coming back to physical states, we have

$$
P_{(2,2)}^{1} \subseteq\left(P_{(1,-1)}^{1}\right)_{0}\left(P_{(1,3)}^{1}\right)+\left(P_{(1,1)}^{1}\right)_{0}\left(P_{(1,1)}^{1}\right)+\operatorname{Rad}\left(P_{(2,2)}^{1}\right)
$$

Using $P_{(1,1)}^{1}=P_{(1,1), 0}^{1} \oplus P_{(1,1), 2}^{1} \quad\left(B(V)^{(1,1)}=B(V)^{(1,1), 0} \oplus B(V)^{(1,1), 2}\right)$,

$$
\left(P_{(1,1)}^{1}\right)_{0}\left(P_{(1,1)}^{1}\right)=\left(P_{(1,1), 0}^{1}\right)_{0}\left(P_{(1,1)}^{1}\right)+\left(P_{(1,1), 2}^{1}\right)_{0}\left(P_{(1,1), 2}^{1}\right)
$$

Proposition 4

$\left(\mathbf{1} \otimes e^{(1,-1)}\right)_{0}=1 \otimes\left(e^{(1,-1)}\right)_{0}$ is G-isomorphism.
For $\alpha \in \pi_{0}\left(P^{1}\right), 0$ th product α_{0} is G-homo.
Hence $\left[B(V)^{(1,-1)}, B(V)^{(1, k)}\right]$ and $\left[B(V)^{(1,1), 0}, B(V)^{(1, k)}\right]$ are holo. images of $B(V)^{(1, k)}$ as G-modules.

Product and projection to $U($ Vir $) V_{n}^{p}$

For $v, u \in V_{2}^{p}$, we set

$$
\Phi^{1}(v, u)=\left(v \otimes e^{(1,1)}\right)_{0}\left(u \otimes e^{(1,1)}\right) \quad \in P_{(2,2)}^{1}
$$

Then we have expressions:

$$
\begin{aligned}
& \Phi^{1}(v, u)=v_{-2} u \otimes o_{0}\left(e^{(1,1)}\right) e^{(2,2)}+v_{-1} u \otimes o_{1}\left(e^{(1,1)}\right) e^{(2,2)} \\
& \quad+v_{0} u \otimes o_{2}\left(e^{(1,1)}\right) e^{(2,2)}+v_{1} u \otimes o_{3}\left(e^{(1,1)}\right) e^{(2,2)}+v_{3} u \otimes o_{5}\left(e^{(1,1)}\right) e^{(2,2)}
\end{aligned}
$$

We note $\quad Y\left(e^{\gamma}, z\right)=E^{-}(-\gamma, z) E^{+}(-\gamma, z) e^{\gamma} z^{\mathrm{wt}}\left(e^{\gamma}\right)+\gamma$

$$
=\exp \left(\sum_{n=1}^{\infty} \gamma(-n) / n z^{n}\right) \exp \left(\sum_{n=1}^{\infty}-\gamma(n) / n z^{-n}\right) e^{\gamma} z^{\mathrm{wt}\left(e^{\gamma}\right)+\gamma} .
$$

In particular, $\left\{o_{k}\left(e^{(1,1)}\right) e^{(2,2)} \mid k\right\}$ do not depend on the choices of v, u.

Product and projection to $U($ Vir $) V_{n}^{p}$

For $v, u \in V_{2}^{p}$, we set

$$
\Phi^{1}(v, u)=\left(v \otimes e^{(1,1)}\right)_{0}\left(u \otimes e^{(1,1)}\right) \quad \in P_{(2,2)}^{1}
$$

Then we have expressions:

$$
\begin{aligned}
& \Phi^{1}(v, u)=v_{-2} u \otimes o_{0}\left(e^{(1,1)}\right) e^{(2,2)}+v_{-1} u \otimes o_{1}\left(e^{(1,1)}\right) e^{(2,2)} \\
& \quad+v_{0} u \otimes o_{2}\left(e^{(1,1)}\right) e^{(2,2)}+v_{1} u \otimes o_{3}\left(e^{(1,1)}\right) e^{(2,2)}+v_{3} u \otimes o_{5}\left(e^{(1,1)}\right) e^{(2,2)}
\end{aligned}
$$

We note $\quad Y\left(e^{\gamma}, z\right)=E^{-}(-\gamma, z) E^{+}(-\gamma, z) e^{\gamma} z^{\mathrm{wt}}\left(e^{\gamma}\right)+\gamma$

$$
=\exp \left(\sum_{n=1}^{\infty} \gamma(-n) / n z^{n}\right) \exp \left(\sum_{n=1}^{\infty}-\gamma(n) / n z^{-n}\right) e^{\gamma} z^{\mathrm{wt}\left(e^{\gamma}\right)+\gamma} .
$$

In particular, $\left\{o_{k}\left(e^{(1,1)}\right) e^{(2,2)} \mid k\right\}$ do not depend on the choices of v, u.
Clearly, $v_{3-k} u \in V_{k}$. Since V_{k}^{p} is the only primary states in $\pi_{k}(V)$,

$$
\text { If } \pi_{k}\left(v_{3-k} u\right)=0 \text {, then } \pi_{k}\left(v_{3-k-j} u\right)=0 \forall j \in \mathbb{N} \text {. }
$$

Since $c=24, U(\mathrm{Vir}) V_{k}^{p}$ is a Verma module for $k \neq 0$. Expressing $L\left(-n_{1}\right) \cdots L\left(-n_{k}\right) z$ with $n_{1} \geq \ldots \geq n_{k}$, we have

Explicit expression by Virasoro operators

Lemma 5

For $(k, m) \in \mathbb{N} \times \mathbb{N}$, operators ${ }^{\exists} Q^{(2,2), k}(-m) \in U($ Vir $)$ of degree $-m$ s.t. $\pi_{k}\left(v_{3-k-m} u\right)=Q^{(2,2), k}(-m) \pi_{k}\left(v_{3-k} u\right)$

We will show the exact formula for a few $Q^{a, b}(-m)$.

Lemma 6

For $v, u \in V_{2}^{p}$ and $w \in V_{3}^{p}$, we have:

$$
\begin{aligned}
& \pi_{0}\left(v_{-1} u\right)=\frac{1}{71}\left\{3 L(-4) \pi_{0}\left(v_{3} u\right)+\frac{11}{12} L(-2)^{2} \pi_{0}\left(v_{3} u\right),\right. \\
& \pi_{0}\left(v_{-3} u\right)=\frac{1}{196883}\left\{3492 L(-6) \pi_{0}\left(v_{3} u\right)+\frac{15623}{12} L(-4) L(-2) \pi_{0}\left(v_{3} u\right)\right\} \\
& \quad+\frac{1}{196883}\left\{\frac{1271}{2} L(-3)^{2} \pi_{0}\left(v_{3} u\right)+124 L(-2)^{3} \pi_{0}\left(v_{3} u\right)\right\}, \\
& \pi_{2}\left(v_{0} w\right)=\frac{1}{41}\left\{6 L(-2) \pi_{2}\left(v_{1} u\right)+\frac{1}{4} L(-1)^{2} \pi_{2}\left(v_{1} u\right)\right\}, \\
& \pi_{3}\left(v_{-2} u\right)=\frac{1}{47}\left\{\frac{17}{3} L(-2) \pi_{3}\left(v_{2} w\right)+\frac{11}{2} L(-1)^{2} \pi_{3}\left(v_{2} w\right)\right\}, \quad \text { and } \\
& \pi_{4}\left(v_{-2} w\right)=\frac{1}{8} L(-2) \pi_{4}\left(v_{0} w\right)+\frac{1}{16} L(-1)^{2} \pi_{4}\left(v_{0} w\right) .
\end{aligned}
$$

In particular, $L(-2) Z \in \pi_{3}\left(C_{2}(V)\right), L(-2)^{3} \mathbf{1} \in \pi_{0}\left(C_{2}(V)\right)$, and $L(-2) Y \in \pi_{2}\left(\left(V_{2}\right)_{0}\left(V_{3}\right)+L(-1) V_{3}\right)$ for $Z \in V_{4}^{p}$ and $Y \in V_{2}^{p}$.

Physical state defined by V_{k}^{p}

Conversely, we can define physical states as follows:

Lemma 7

For $Z \in V_{k}^{p}$, define

$$
\Phi_{k}^{1}(Z)=\sum_{t=0}^{5-t} Q^{(2,2), k}(-t) Z \otimes o_{t}\left(e^{(1,1)}\right) e^{(2,2)} \in P_{(2,2), k}^{1}
$$

Then $\Phi^{1}(v, u)=\sum_{k=0}^{\infty} \Phi_{k}^{1}\left(\pi_{k}\left(v_{3-k} u\right)\right)$.

Physical state defined by V_{k}^{p}

Conversely, we can define physical states as follows:

Lemma 7

For $Z \in V_{k}^{p}$, define

$$
\Phi_{k}^{1}(Z)=\sum_{t=0}^{5-t} Q^{(2,2), k}(-t) Z \otimes o_{t}\left(e^{(1,1)}\right) e^{(2,2)} \in P_{(2,2), k}^{1}
$$

Then $\Phi^{1}(v, u)=\sum_{k=0}^{\infty} \Phi_{k}^{1}\left(\pi_{k}\left(v_{3-k} u\right)\right)$.
Namely, $\Phi^{1}(v, u)$ is uniquely determined by elements

$$
\begin{array}{cccc}
\left(\pi_{0}\left(v_{3} u\right),\right. & \pi_{2}\left(v_{1} u\right), & \left.\pi_{3}\left(v_{0} u\right), \pi_{4}\left(v_{-1} u\right), \pi_{5}\left(v_{-2} u\right)\right) \\
\oplus & \oplus & \oplus \\
V_{0} & \oplus V_{2}^{p} & \oplus & \oplus \\
& \oplus & \oplus \\
\hline
\end{array} V_{4}^{p} \stackrel{\oplus}{\oplus} V_{5}^{p} .
$$

i.e. The structure of V on $B(V)$ works only on $\oplus V_{k}^{p}$.

Lemma 8

$\operatorname{In}\left\{\pi_{k}\left(\Phi^{1}(v, u)\right) \mid v, u \in V_{2}^{p}\right\}$, physical states over V_{k}^{p} appears at most onece for each k modulo $\operatorname{Rad}\left(P^{1}\right)$.

Physical state defined by V_{k}^{p}

Conversely, we can define physical states as follows:

Lemma 7

For $Z \in V_{k}^{p}$, define

$$
\Phi_{k}^{1}(Z)=\sum_{t=0}^{5-t} Q^{(2,2), k}(-t) Z \otimes o_{t}\left(e^{(1,1)}\right) e^{(2,2)} \in P_{(2,2), k}^{1}
$$

Then $\Phi^{1}(v, u)=\sum_{k=0}^{\infty} \Phi_{k}^{1}\left(\pi_{k}\left(v_{3-k} u\right)\right)$.
Namely, $\Phi^{1}(v, u)$ is uniquely determined by elements

$$
\begin{array}{cccc}
\left(\pi_{0}\left(v_{3} u\right),\right. & \pi_{2}\left(v_{1} u\right), & \left.\pi_{3}\left(v_{0} u\right), \pi_{4}\left(v_{-1} u\right), \pi_{5}\left(v_{-2} u\right)\right) \\
\oplus & \oplus & \oplus \\
V_{0} & \oplus V_{2}^{p} & \oplus & \oplus \\
& \oplus & \oplus \\
\hline
\end{array} V_{4}^{p} \stackrel{\oplus}{\oplus} V_{5}^{p} .
$$

i.e. The structure of V on $B(V)$ works only on $\oplus V_{k}^{p}$.

Lemma 8

In $\left\{\pi_{k}\left(\Phi^{1}(v, u)\right) \mid v, u \in V_{2}^{p}\right\}$, physical states over V_{k}^{p} appears at most onece for each k modulo $\operatorname{Rad}\left(P^{1}\right)$.

By this lemma, we have $B(V)^{(2,2)} \cong V_{5}$ as G-modules.

Definition

Definition 3

$X:=\left[B(V)^{(1,1), 2}, B(V)^{(1,1), 2}\right]$ may not be a G-module (just a subspace). Since
$Z:=\left[B(V)^{(1,-1)}, B(V)^{(1,3)}\right]+\left[B(V)^{(2,2), 0}, B(V)^{(2,2)}\right]$ is a G-submod of
G-mod. $B(V)^{(2,2)}=Z+X, X$ contains a complement of Z in $B(V)^{(2,2)}$.
Expressing $B(V)^{(2,2)} / Z$ as a direct sum of V_{k}^{p}, we say
" X covers a G-mod. $B(V)^{(2,2)} / Z$."
Since $\operatorname{Rad}()$ is also G-mod, we also say

$$
\left(P_{(1,1), 2}^{1}\right)_{0}\left(P_{(1,1), 2}^{1}\right) \text { covers a } B(V)^{(2,2)} / Z
$$

Since $L(-m) V \subseteq C_{2}(V)$ for $2 \neq m \geq 1, V_{5}=V_{5}^{p}+L(-2) V_{3}^{p}+C_{2}(V)_{5}$.
So we forcus our study to V_{3}^{p} and V_{5}^{p}

Proposition 9

$\left[B(V)^{(1,1)}, B(V)^{(1,1)}\right]$ covers $V_{5} / V_{4} \cong V_{5}^{p}+V_{3}^{p}+V_{2}^{p}$ at least and $\left(V_{2}^{p} \otimes e^{(1,1)}\right)_{0}\left(V_{2}^{p} \otimes e^{(1,1)}\right)$ covers $V_{5}^{p}+V_{3}^{p}$ at least .
[Proof] $\quad B(V)^{(2,2)} \cong V_{5},\left[B(V)^{(1,-1)}, B(V)^{(1,3)}\right] \cong B(V)^{(1,3)} \cong V_{4}$,
$\pi_{3}\left(\left[B(V)^{(1,1), 0}, B(V)^{(1,1)}\right]\right)=\pi_{5}\left(\left[B(V)^{(1,1), 0}, B(V)^{(1,1)}\right]\right)=0$.

Covering

Therefore, we have

Lemma 10

Assume that $\left\{\Phi^{1}(v, u): v, u \in V_{2}^{p}\right\}$ covers V_{k}^{p} in $B(V)^{(2,2)} / J$ for some G-mod J. If $\pi_{k}\left(\Phi^{1}(v, u)\right) \in J$ for some $v, u \in V_{2}^{p}$, then $\pi_{k}\left(\Phi^{1}(v, u)\right)=0$, that is, $v_{3-k} u=0$.

Then we can translate Proposition 9 into the following:

Lemma 11

$\operatorname{Span}_{\mathbb{C}}\left\{\left(\pi_{3}\left(v_{0} u\right), \pi_{5}\left(v_{-2} u\right)\right) \in V_{3}^{p} \oplus V_{5}^{p} \mid v, u \in V_{2}^{p}\right\}$ covers $V_{5}^{p}+V_{3}^{p}$ at least.

Weight five

As a corollary of Lemma 6 and 11, we have:

Lemma 12

$V_{5} \subseteq C_{2}(V)$.

Weight five

As a corollary of Lemma 6 and 11, we have:

Lemma 12

$V_{5} \subseteq C_{2}(V)$.
[Proof] By Lemma 11, for $z \in V_{5}^{p},{ }^{\exists} v^{i}, u^{i} \in V_{2}^{p}$ s.t.
$z=\pi_{5}\left(\sum v_{-2}^{i} u^{i}\right)$ and $\pi_{3}\left(\Phi^{1}\left(\sum v_{0}^{i} u^{i}\right)\right) \in J$. By Lemma 10, $\pi_{3}\left(\sum v_{0}^{i} u^{i}\right)=0$. Hence $\pi_{3}\left(\sum v_{-2}^{i} u^{i}\right)=0$ and
$\sum v_{-2}^{i} u^{i}-z \in \pi_{0}\left(V_{5}\right)+\pi_{2}\left(V_{5}\right)+\pi_{4}\left(V_{5}\right)$. Since
$\pi_{0}\left(V_{5}\right)+\pi_{2}\left(V_{5}\right)+\pi_{4}\left(V_{5}\right) \subseteq C_{2}(V)$, we have $z \in C_{2}(V)$.

Weight five

As a corollary of Lemma 6 and 11, we have:

Lemma 12

$V_{5} \subseteq C_{2}(V)$.
[Proof] By Lemma 11, for $z \in V_{5}^{p},{ }^{\exists} v^{i}, u^{i} \in V_{2}^{p}$ s.t.
$z=\pi_{5}\left(\sum v_{-2}^{i} u^{i}\right)$ and $\pi_{3}\left(\Phi^{1}\left(\sum v_{0}^{i} u^{i}\right)\right) \in J$. By Lemma 10,
$\pi_{3}\left(\sum v_{0}^{i} u^{i}\right)=0$. Hence $\pi_{3}\left(\sum v_{-2}^{i} u^{i}\right)=0$ and
$\sum v_{-2}^{i} u^{i}-z \in \pi_{0}\left(V_{5}\right)+\pi_{2}\left(V_{5}\right)+\pi_{4}\left(V_{5}\right)$. Since
$\pi_{0}\left(V_{5}\right)+\pi_{2}\left(V_{5}\right)+\pi_{4}\left(V_{5}\right) \subseteq C_{2}(V)$, we have $z \in C_{2}(V)$.
Similarly, for $x \in V_{3}^{p},{ }^{\exists} v^{i}, u^{i} \in V_{2}^{p}$ s.t. $0=\pi_{5}\left(\sum v_{-2}^{i} u^{i}\right)$ and $\pi_{3}\left(\sum v_{0}^{i} u^{i}\right)=x$. Then since $\pi_{3}\left(\sum v_{-2}^{i} u^{i}\right)=\frac{17}{141} L(-2) x+\frac{11}{94} L(-1)^{2} x$ by Lemma 6,
$\sum v_{-2}^{i} u^{i}-\left(\frac{17}{141} L(-2) x+\frac{11}{94} L(-1)^{2} x\right) \in \pi_{0}\left(V_{5}\right)+\pi_{2}\left(V_{5}\right)+\pi_{4}\left(V_{5}\right) \subseteq C_{2}(V)$.
Therefore we have $L(-2) x \in C_{2}(V)$.

This completes the proof of $V_{5} \subseteq C_{2}(V)$ and my talk.

Thank you !!

Induction on weights

Proposition 13

For $n \geq 7$, we have $V_{n} \subseteq C_{2}(V)$.

[Proof]

[Case $n=2 m+1] \quad$ We note $V_{2 m+1}^{p} \otimes e^{(2, m)} \subseteq P_{(2, m), 2 m+1}^{1}$ and $\operatorname{Rad}\left(P_{(2, m), 2 m+1}^{1}\right)=0$. As we explained, $\sum \pi_{2 m+1}\left(P_{(1, k)}^{1}\right)_{0}\left(P_{(1, m-k)}^{1}\right)$ covers $V_{2 m+1}^{p}$. Since $P_{(1, k)}^{1} \subseteq\left(\oplus_{j=0}^{k+1} V_{j}\right) \otimes V_{\mathrm{II}_{1,1}}$, to get elet $v_{j} w \in V_{2 m+1}$ by product of $v \in \oplus_{j=0}^{k+1} V_{j}$ and $w \in \oplus_{j=0}^{m-k+1} V_{j}$, we have $j \leq-2$.
Therefore, $V_{2 m+1}^{p} \subseteq \pi_{2 m+1}\left(C_{2}(V)\right)$ and
$\left.V_{2 m+1}^{p} \subseteq C_{2}(V)+\oplus_{j=0}^{2 m} \operatorname{Vir} V_{j}\right)=C_{2}(V)+\oplus_{k=1}^{m} L(-2)^{k} V_{2 m+1-k}$. Since $L(-2) V_{2 m-1} \subseteq C_{2}(V)$ by induction, we have $V_{2 m+1} \subseteq C_{2}(V)$.
[Case $n=2 m$] $\quad V_{2 m}^{p} \otimes \delta_{(-1)}^{(2,-m)} e^{(2, m)} \subseteq P_{(2, m), 2 m}^{1}$ and
$\operatorname{Rad}\left(P_{(2, m), 2 m}^{1}\right)=\left(L(-1) \otimes 1+1 \otimes \delta_{(-1)}^{(2, m)}\right) V_{2 m}^{p} \otimes e^{(2, m)}$. By the same argument as above, $\pi_{2 m}\left(C_{2}(V)\right)$ covers $V_{2 m}^{p}$. Since $L(-2) V_{2 m-2} \subseteq C_{2}(V)$ by induction, we have $V_{2 m} \subseteq C_{2}(V)$.

