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.. Introduction

Classifi. of hol. VOA of c = 24 was accomplished except for the moonshine
type. The remaining is to prove the uniqueness of moonshine type, i.e.,

[Uniqueness conj [FLM]] If V is VOA, with non-sing inv ⟨, ⟩, c = 24,∑
dimVnq

n−1 = j(τ)− 744 = q−1 + 196884q + ..., then V ∼= V ♮?

With additional assumps, there are serveral results. e.g., if we have an iso.
V/C2(V ) ∼= V ♮/C2(V

♮) of Poisson algebras keeping grades and inner
products, then we have V ∼= V ♮ by a Griess’ result and easy calculation.

Conversely, what we can get from the assump of uniqueness conj? From
now on, V is a VOA satisfying these conditions.
Given data are few. Under this assumption, the known result we can use is

iso: B(V ) ∼= B(V ♮) of Borchers’ Lie algebras. (explain later)

B(V ♮) is called Monster Lie algebra. However, we can not use the
Monster actions and so we just call it Borcherds’ Lie algebra.
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.. Borcherds Lie algebra

Borcherds has also shown: B(V ) is GKM algebra with simple roots

{(1,−1), (1, 1), (1, 2), (1, 3), ...} ⊆ II1,1,
Lorentzian lattice
with Gram matrix

(
0 −1

−1 0

)
with multiplicities dimVn+1 for (1, n). In particular,

B(V ) is generated by root spaces B(V )(1,m) ∼= (Vm+1, ⟨, ⟩) freely.
e.g. [B(V )(1,1), B(V )(1,1)] ∼= SkewdimB(V )(1,1)

.
Remark 1
..

......

Borcherds has shown: B(V ♮) is GKM alg. with the above simple roots.
The critical point of the proof is that he used only nonsingular inv. ⟨, ⟩,
chV ♮(τ) = J(τ), and c = 24. Hence as they mentioned in [B86] and [J10],

B(V ) has the same simple roots and ∼= B(V ♮).

Because of that, my first impression was ”we could not get back useful inf.
of V from B(V ).
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.. Result

I was wrong. The fact that ”the structure of B(V ) is very simple” comes
from the several strong restrictions on V .

Today, I will show you one of the results from this fact. Namely, we can
prove the following theorem.
.
Theorem 1
..

......

If V is VOA, non-sing inv ⟨, ⟩, c = 24,∑
dimVnq

n−1 = j(τ)− 744 = q−1 + 196884q + ..., then V is C2-cofinite.
More precisely,

C2(V ) =
∑
n≥5

Vn + L(−1)V.

The proof consists of three steps: (1) V5 ⊆ C2(V ), (2) V6 ⊆ C2(V ), and
(3) Vn ⊆ C2(V ) for n ≥ 7 by induction.
Today I will show only the first step (1) because the others are similar. If I
have time, then (3).
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.. Physical states and Borcherds Lie algebra

Set Ṽ = V ⊗ VII1,1 , which has II1,1-graded structure.

L(n), L̃(n) denotes Virasoro ops of V and Ṽ , respectively. Set

P 1 = {u ∈ Ṽ1 | L̃(n)u = 0 ∀n > 0}
the space of physical states. Then we define

a Borcherds Lie algebra B(V ) = P 1/Rad(P 1),

where Rad(P 1) is the null space of ⟨·, ·⟩.

Let P 1
(m,n) ⊆ P 1 of degree (m,n) ∈ II1,1 and

B(V )(m,n) = P 1
(m,n)/Rad(P

1
(m,n)).

Tsukuba Borcherds’ Lie algebra and C2-cofiniteness of moonshine VOAs



.. Physical states and Borcherds Lie algebra
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.. No ghost theorem

We will recall the following results from [B86].
.
Theorem 2 (The no-ghost theorem)
..

......

Let V = ⊕∞
n=0Vn be a VOA of c = 24 with non-sing bi. form ⟨, ⟩ and

G ≤ Aut(V ) (we view G = G× 1 on V ⊗ VII1,1). Then

B(V )(m,n) ∼= V1+mn as G-mods with an inv bi form if mn ̸= 0 and
B(V )(0,0) ∼= V1 ⊕ C2 and B(V )(m,n) = 0 for else.

For V ♮, B(V ♮)(m,n) ∼= V ♮
mn+1 as the monster simple group modules for

mn ̸= 0.

But, for a general VOA V , G = 1 and so Borcherds’ no ghost
theorem just says dimB(m,n)(V ) = dimVmn+1.

What a waste of good theorem!
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.. A large group and its homogeneous spaces

P 1, B(V ) are defined by Virasoro ops {L(n) + L′(n) | n ∈ Z},
We will introduce a group
.
Definition 1
..

......
G = {g =

∏
m gm ∈

∏
mO(Vm, ⟨, ⟩) | gmL(n) = L(n)gm−n

∀n,m ∈ Z}

(Note: G is not auto gr. of B(V ), just set of orth transf comm with Vir.)
and extend it to an auto. G⊗ 1VII1,1

of Ṽ .

By def. of physical state,

P 1
(m,n) and B(V )(m,n) are G-modules.

.
Definition 2 (homogeneous G-submodules)
..

......

Set V p
k = {v ∈ Vk | L(n)v = 0 ∀n ≥ 1} Vir primary states

⇒ V = ⊕k∈NU(Vir)V p
k , V p

k is simple G-mod. and G =
∏∞

m=0O(V p
m).

Define projection: πk :Ṽ → (U(Vir) · V p
k )⊗ VII1,1

P 1
(m,n),k := πk(P

1
(m,n)), B(V )(m,n),k := πk(B(V )(m,n))
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.. Root space of Borchers Lie algebra as G-modules

.
Lemma 3
..

......For (m,n) = (1,−1), (1, 1), (1, 3), (2, 2), V (m,n) ∼= Vmn+1 as G-modules.

.
Remark 2
..

......

In Borcherds’ proof of the no-ghost theorem, his ops were given by elts in
VII1,1, and Vir, which implies B(V )(m,n) ∼= Vmn+1 as G-mods for mn ̸= 0.

For v ∈ V p
mn+1, we have v ⊗ e(m,n) ∈ P 1. It is easy to see

V p
mn+1 ⊗ e(m,n) = P 1

(m,n),mn+1 and

Rad(P 1
(m,n),mn+1) = 0. Similarly,

V p
mn ⊗ δ

(m,−n)
(−1) e(m,n) ⊆ P 1

(m,n) and

Rad(P 1
(m,n),mn) = L̃(−1)(V p

mn ⊗ e(m,n)), where

δ
(m,n)
(−1) 1′ = (m,n)(−1)1 ∈ VII1,1 for (m,n) ∈ II1,1. i.e.,

The both of mult. of V p
mn+1 and V p

mn in B(V )(m,n) are one.
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.. Explict form of B(V )(m,n),k

[Proof] By direct calculation, we have

P 1
(1,−1) = C1⊗ e(1,−1)∼= V0 and Rad(P 1

(1,−1)) = 0

P 1
(1,1) = C(V p

2 ⊗ e(1,1))⊕C[L(−2)1⊗ e(1,1)−61⊗δ
(1,−1)
(−1) e(1,1)]⊕Rad∼= ∼=

V p
2 ⊕ V0

∼= V2.

From P 1
(1,3),4 = V p

4 , P
1
(1,3),3 = V p

3 +Rad. mult(P 1
(1,3),0) < dimV p

2 ,

dimB(V )(1,3) = dimV4, we have B(1,3)(V ) ∼= V4.
We will give a proof later for the case (m,n) = (2, 2).
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.. The useful fact and products by P 1
(1,−1), 0) and π0(P

1)

{B(V )(1,n) : n = −1, 0, ...} generates ⊕∞
m=1 ⊕n∈Z B(V )(m,n).

e.g. we will use
B(V )(2,2) = [B(V )(1,−1), B(V )(1,3)] + [B(V )(1,1), B(V )(1,1)]

Coming back to physical states, we have
P 1
(2,2) ⊆ (P 1

(1,−1))0(P
1
(1,3)) + (P 1

(1,1))0(P
1
(1,1)) + Rad(P 1

(2,2))

Using P 1
(1,1) = P 1

(1,1),0 ⊕P 1
(1,1),2 (B(V )(1,1) = B(V )(1,1),0 ⊕B(V )(1,1),2),

(P 1
(1,1))0(P

1
(1,1)) = (P 1

(1,1),0)0(P
1
(1,1)) + (P 1

(1,1),2)0(P
1
(1,1),2).

.
Proposition 4
..

......

(1⊗ e(1,−1))0 = 1⊗ (e(1,−1))0 is G-isomorphism.
For α ∈ π0(P

1), 0 th product α0 is G-homo.

Hence [B(V )(1,−1), B(V )(1,k)] and [B(V )(1,1),0, B(V )(1,k)] are holo.
images of B(V )(1,k) as G-modules.
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.. Product and projection to U(Vir)V p
n

For v, u ∈ V p
2 , we set

Φ1(v, u) = (v ⊗ e(1,1))0(u⊗ e(1,1)) ∈ P 1
(2,2)

Then we have expressions:

Φ1(v, u) = v−2u⊗ o0(e
(1,1))e(2,2) + v−1u⊗ o1(e

(1,1))e(2,2)

+v0u⊗ o2(e
(1,1))e(2,2)+v1u⊗ o3(e

(1,1))e(2,2)+v3u⊗ o5(e
(1,1))e(2,2).

We note Y (eγ , z) = E−(−γ, z)E+(−γ, z)eγzwt(eγ)+γ

= exp(
∑∞

n=1 γ(−n)/nzn) exp(
∑∞

n=1−γ(n)/nz−n)eγzwt(eγ)+γ .

In particular, {ok(e(1,1))e(2,2) | k} do not depend on the choices of v, u.

Clearly, v3−ku ∈ Vk. Since V p
k is the only primary states in πk(V ),

If πk(v3−ku) = 0, then πk(v3−k−ju) = 0 ∀j ∈ N.

Since c = 24, U(Vir)V p
k is a Verma module for k ̸= 0. Expressing

L(−n1) · · ·L(−nk)z with n1 ≥ ... ≥ nk, we have
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.. Explicit expression by Virasoro operators

.
Lemma 5
..

......

For (k,m) ∈ N× N, operators ∃Q(2,2),k(−m) ∈ U(Vir) of degree −m s.t.
πk(v3−k−mu) = Q(2,2),k(−m)πk(v3−ku)

We will show the exact formula for a few Qa,b(−m).
.
Lemma 6
..

......

For v, u ∈ V p
2 and w ∈ V p

3 , we have:

π0(v−1u) =
1
71{3L(−4)π0(v3u) +

11
12L(−2)2π0(v3u),

π0(v−3u) =
1

196883{3492L(−6)π0(v3u) +
15623
12 L(−4)L(−2)π0(v3u)}

+ 1
196883{

1271
2 L(−3)2π0(v3u) + 124L(−2)3π0(v3u)},

π2(v0w) =
1
41{6L(−2)π2(v1u) +

1
4L(−1)2π2(v1u)},

π3(v−2u) =
1
47{

17
3 L(−2)π3(v2w) +

11
2 L(−1)2π3(v2w)}, and

π4(v−2w) =
1
8L(−2)π4(v0w) +

1
16L(−1)2π4(v0w).

In particular, L(−2)Z ∈ π3(C2(V )), L(−2)31 ∈ π0(C2(V )), and
L(−2)Y ∈ π2((V2)0(V3) + L(−1)V3) for Z ∈ V p

4 and Y ∈ V p
2 .
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.. Physical state defined by V p
k

Conversely, we can define physical states as follows:
.
Lemma 7
..

......

For Z ∈ V p
k , define

Φ1
k(Z) =

∑5−t
t=0Q

(2,2),k(−t)Z ⊗ ot(e
(1,1))e(2,2) ∈ P 1

(2,2),k

Then Φ1(v, u) =
∑∞

k=0Φ
1
k(πk(v3−ku)).

Namely, Φ1(v, u) is uniquely determined by elements
(π0(v3u), π2(v1u), π3(v0u), π4(v−1u), π5(v−2u))∈ ∈ ∈ ∈ ∈

V0 ⊕ V p
2 ⊕ V p

3 ⊕ V p
4 ⊕ V p

5 .
i.e. The structure of V on B(V ) works only on ⊕V p

k .
.
Lemma 8
..

......

In {πk(Φ1(v, u)) | v, u ∈ V p
2 }, physical states over V

p
k appears at most

onece for each k modulo Rad(P 1).

By this lemma, we have B(V )(2,2) ∼= V5 as G-modules.
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.. Definition

.
Definition 3
..

......

X := [B(V )(1,1),2, B(V )(1,1),2] may not be a G-module (just a subspace).
Since
Z := [B(V )(1,−1), B(V )(1,3)] + [B(V )(2,2),0, B(V )(2,2)] is a G-submod of
G-mod. B(V )(2,2) = Z +X, X contains a complement of Z in B(V )(2,2).
Expressing B(V )(2,2)/Z as a direct sum of V p

k , we say

“X covers a G-mod. B(V )(2,2)/Z.”

Since Rad() is also G-mod, we also say

(P 1
(1,1),2)0(P

1
(1,1),2) covers a B(V )(2,2)/Z .
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.. P 1
(1,1) and products (P 1

(1,1),2)0P
1
(1,1),2 elementwisely.

Since L(−m)V ⊆ C2(V ) for 2 ̸= m ≥ 1, V5 = V p
5 + L(−2)V p

3 + C2(V )5.
So we forcus our study to V p

3 and V p
5.

Proposition 9
..

......

[B(V )(1,1), B(V )(1,1)] covers V5/V4
∼= V p

5 + V p
3 + V p

2 at least and
(V p

2 ⊗ e(1,1))0(V
p
2 ⊗ e(1,1)) covers V p

5 + V p
3 at least .

[Proof] B(V )(2,2) ∼= V5, [B(V )(1,−1), B(V )(1,3)] ∼= B(V )(1,3) ∼= V4,
π3([B(V )(1,1),0, B(V )(1,1)]) = π5([B(V )(1,1),0, B(V )(1,1)]) = 0.

Tsukuba Borcherds’ Lie algebra and C2-cofiniteness of moonshine VOAs



.. Covering

Therefore, we have
.
Lemma 10
..

......

Assume that {Φ1(v, u) : v, u ∈ V p
2 } covers V p

k in B(V )(2,2)/J for some
G-mod J . If πk(Φ

1(v, u)) ∈ J for some v, u ∈ V p
2 , then πk(Φ

1(v, u)) = 0,
that is, v3−ku = 0.

Then we can translate Proposition 9 into the following:
.
Lemma 11
..

......

SpanC{(π3(v0u), π5(v−2u)) ∈ V p
3 ⊕ V p

5 | v, u ∈ V p
2 } covers V p

5 + V p
3 at

least.

Tsukuba Borcherds’ Lie algebra and C2-cofiniteness of moonshine VOAs



.. Weight five

As a corollary of Lemma 6 and 11, we have:
.
Lemma 12
..

......V5 ⊆ C2(V ).

[Proof] By Lemma 11, for z ∈ V p
5 ,

∃vi, ui ∈ V p
2 s.t.

z = π5(
∑

vi−2u
i) and π3(Φ

1(
∑

vi0u
i)) ∈ J . By Lemma 10,

π3(
∑

vi0u
i) = 0. Hence π3(

∑
vi−2u

i) = 0 and∑
vi−2u

i − z ∈ π0(V5) + π2(V5) + π4(V5). Since
π0(V5) + π2(V5) + π4(V5) ⊆ C2(V ), we have z ∈ C2(V ).

Similarly, for x ∈ V p
3 ,

∃vi, ui ∈ V p
2 s.t. 0 = π5(

∑
vi−2u

i) and
π3(

∑
vi0u

i) = x. Then since π3(
∑

vi−2u
i) = 17

141L(−2)x+ 11
94L(−1)2x by

Lemma 6,∑
vi−2u

i−( 17
141L(−2)x+ 11

94L(−1)2x) ∈ π0(V5)+π2(V5)+π4(V5) ⊆ C2(V ).
Therefore we have L(−2)x ∈ C2(V ).
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This completes the proof of V5 ⊆ C2(V ) and my talk.

Thank you !!
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.. Induction on weights

.
Proposition 13
..
......For n ≥ 7, we have Vn ⊆ C2(V ).

[Proof]
[Case n = 2m+ 1] We note V p

2m+1 ⊗ e(2,m) ⊆ P 1
(2,m),2m+1 and

Rad(P 1
(2,m),2m+1) = 0. As we explained,

∑
π2m+1(P

1
(1,k))0(P

1
(1,m−k))

covers V p
2m+1. Since P 1

(1,k) ⊆ (⊕k+1
j=0Vj)⊗ VII1,1 , to get elet vjw ∈ V2m+1

by product of v ∈ ⊕k+1
j=0Vj and w ∈ ⊕m−k+1

j=0 Vj , we have j ≤ −2.
Therefore, V p

2m+1 ⊆ π2m+1(C2(V )) and
V p
2m+1 ⊆ C2(V ) +⊕2m

j=0VirVj) = C2(V ) +⊕m
k=1L(−2)kV2m+1−k. Since

L(−2)V2m−1 ⊆ C2(V ) by induction, we have V2m+1 ⊆ C2(V ).

[Case n = 2m] V p
2m ⊗ δ

(2,−m)
(−1) e(2,m) ⊆ P 1

(2,m),2m and

Rad(P 1
(2,m),2m) = (L(−1)⊗ 1 + 1⊗ δ

(2,m)
(−1) )V

p
2m ⊗ e(2,m). By the same

argument as above, π2m(C2(V )) covers V p
2m. Since

L(−2)V2m−2 ⊆ C2(V ) by induction, we have V2m ⊆ C2(V ).
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