Borcherds' Lie algebra and C_2 -cofiniteness of moonshine VOAs

Masahiko Miyamoto

University of Tsukuba

June 27, 2023 at IUC in Dubrovnik

Introduction

Classifi. of hol. VOA of c = 24 was accomplished except for the moonshine type. The remaining is to prove the uniqueness of moonshine type, i.e.,

[Uniqueness conj [FLM]] If V is VOA, with non-sing inv $\langle, \rangle, c = 24$, $\sum \dim V_n q^{n-1} = j(\tau) - 744 = q^{-1} + 196884q + \dots$, then $V \cong V^{\natural}$?

With additional assumps, there are serveral results. e.g., if we have an iso. $V/C_2(V) \cong V^{\natural}/C_2(V^{\natural})$ of Poisson algebras keeping grades and inner products, then we have $V \cong V^{\natural}$ by a Griess' result and easy calculation.

Introduction

Classifi. of hol. VOA of c=24 was accomplished except for the moonshine type. The remaining is to prove the uniqueness of moonshine type, i.e.,

[Uniqueness conj [FLM]] If V is VOA, with non-sing inv $\langle, \rangle, c = 24$, $\sum \dim V_n q^{n-1} = j(\tau) - 744 = q^{-1} + 196884q + \dots$, then $V \cong V^{\natural}$?

With additional assumps, there are serveral results. e.g., if we have an iso. $V/C_2(V) \cong V^{\natural}/C_2(V^{\natural})$ of Poisson algebras keeping grades and inner products, then we have $V \cong V^{\natural}$ by a Griess' result and easy calculation.

Conversely, what we can get from the assump of uniqueness conj? From now on, V is a VOA satisfying these conditions. Given data are few. Under this assumption, the known result we can use is

iso: $B(V) \cong B(V^{\ddagger})$ of Borchers' Lie algebras. (explain later)

 $B(V^{\natural})$ is called Monster Lie algebra. However, we can not use the Monster actions and so we just call it Borcherds' Lie algebra.

Borcherds Lie algebra

Borcherds has also shown: B(V) is GKM algebra with simple roots $\{(1,-1),(1,1),(1,2),(1,3),...\} \subseteq II_{1,1},$ Lorentzian lattice $\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$ with Gram matrix $\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$ with multiplicities dim V_{n+1} for (1,n). In particular,

B(V) is generated by root spaces $B(V)^{(1,m)} \cong (V_{m+1}, \langle, \rangle)$ freely.

e.g. $[B(V)^{(1,1)}, B(V)^{(1,1)}] \cong \text{Skew}_{\dim B(V)^{(1,1)}}$

Borcherds Lie algebra

Borcherds has also shown: B(V) is GKM algebra with simple roots $\{(1,-1),(1,1),(1,2),(1,3),...\} \subseteq II_{1,1},$ Lorentzian lattice $\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$

with multiplicities $\dim V_{n+1}$ for (1, n). In particular,

B(V) is generated by root spaces $B(V)^{(1,m)} \cong (V_{m+1},\langle,\rangle)$ freely.

e.g.
$$[B(V)^{(1,1)}, B(V)^{(1,1)}] \cong \operatorname{Skew}_{\dim B(V)^{(1,1)}}$$

Remark 1

Borcherds has shown: $B(V^{\natural})$ is GKM alg. with the above simple roots. The critical point of the proof is that he used only nonsingular inv. \langle, \rangle , $\underline{ch}_{V^{\natural}}(\tau) = J(\tau)$, and $\underline{c} = 24$. Hence as they mentioned in [B86] and [J10], $\overline{B(V)}$ has the same simple roots and $\cong B(V^{\natural})$.

Borcherds Lie algebra

Borcherds has also shown: B(V) is GKM algebra with simple roots $\{(1,-1),(1,1),(1,2),(1,3),...\} \subseteq II_{1,1},$ Lorentzian lattice $\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$

with multiplicities $\dim V_{n+1}$ for (1, n). In particular,

B(V) is generated by root spaces $B(V)^{(1,m)} \cong (V_{m+1},\langle,\rangle)$ freely.

e.g.
$$[B(V)^{(1,1)}, B(V)^{(1,1)}] \cong \operatorname{Skew}_{\dim B(V)^{(1,1)}}$$

Remark 1

Borcherds has shown: $B(V^{\natural})$ is GKM alg. with the above simple roots. The critical point of the proof is that he used only nonsingular inv. \langle, \rangle , $\underline{ch}_{V^{\natural}}(\tau) = J(\tau)$, and $\underline{c} = 24$. Hence as they mentioned in [B86] and [J10], $\overline{B(V)}$ has the same simple roots and $\cong B(V^{\natural})$.

Because of that, my first impression was "we could not get back useful inf. of V from ${\cal B}(V).$

I was wrong. The fact that "the structure of B(V) is very simple" comes from the several strong restrictions on V.

Result

I was wrong. The fact that "the structure of B(V) is very simple" comes from the several strong restrictions on V.

Today, I will show you one of the results from this fact. Namely, we can prove the following theorem.

Theorem 1

If V is VOA, non-sing inv
$$\langle, \rangle$$
, $c = 24$,
 $\sum \dim V_n q^{n-1} = j(\tau) - 744 = q^{-1} + 196884q + \dots$, then V is C₂-cofinite.
More precisely,
 $C_2(V) = \sum V_n + L(-1)V.$

n > 5

Result

I was wrong. The fact that "the structure of B(V) is very simple" comes from the several strong restrictions on V.

Today, I will show you one of the results from this fact. Namely, we can prove the following theorem.

Theorem 1

If V is VOA, non-sing inv
$$\langle , \rangle$$
, $c = 24$,
 $\sum \dim V_n q^{n-1} = j(\tau) - 744 = q^{-1} + 196884q + ...,$ then V is C₂-cofinite.
More precisely,

$$C_2(V) = \sum_{n \ge 5} V_n + L(-1)V.$$

The proof consists of three steps: (1) $V_5 \subseteq C_2(V)$, (2) $V_6 \subseteq C_2(V)$, and (3) $V_n \subseteq C_2(V)$ for $n \ge 7$ by induction. Today I will show only the first step (1) because the others are similar. If

Today I will show only the first step (1) because the others are similar. If I have time, then (3).

Set $\tilde{V} = V \otimes V_{\mathrm{II}_{1,1}}$, which has $\mathrm{II}_{1,1}$ -graded structure. L(n), $\tilde{L}(n)$ denotes Virasoro ops of V and \tilde{V} , respectively. Set $P^1 = \{u \in \tilde{V}_1 \mid \tilde{L}(n)u = 0 \ \forall n > 0\}$

the space of physical states. Then we define

a Borcherds Lie algebra $B(V) = P^1/\text{Rad}(P^1)$,

where $\operatorname{Rad}(P^1)$ is the null space of $\langle \cdot, \cdot \rangle$.

Set $\tilde{V} = V \otimes V_{\text{II}_{1,1}}$, which has $\text{II}_{1,1}$ -graded structure. L(n), $\tilde{L}(n)$ denotes Virasoro ops of V and \tilde{V} , respectively. Set

$$P^1 = \{ u \in \tilde{V}_1 \mid \tilde{L}(n)u = 0 \ \forall n > 0 \}$$

the space of physical states. Then we define

a Borcherds Lie algebra $B(V) = P^1/\text{Rad}(P^1)$,

where $\operatorname{Rad}(P^1)$ is the null space of $\langle \cdot, \cdot \rangle$. Let $P^1_{(m,n)} \subseteq P^1$ of degree $(m,n) \in \operatorname{II}_{1,1}$ and $B(V)^{(m,n)} = P^1_{(m,n)}/\operatorname{Rad}(P^1_{(m,n)})$. We will recall the following results from [B86].

Theorem 2 (The no-ghost theorem)

Let $V = \bigoplus_{n=0}^{\infty} V_n$ be a VOA of c = 24 with non-sing bi. form \langle, \rangle and $G \leq \operatorname{Aut}(V)$ (we view $G = G \times 1$ on $V \otimes V_{\operatorname{II}_{1,1}}$). Then $B(V)^{(m,n)} \cong V_{1+mn}$ as G-mods with an inv bi form if $mn \neq 0$ and $B(V)^{(0,0)} \cong V_1 \oplus \mathbb{C}^2$ and $B(V)^{(m,n)} = 0$ for else.

For V^{\natural} , $B(V^{\natural})^{(m,n)} \cong V_{mn+1}^{\natural}$ as the monster simple group modules for $mn \neq 0$.

We will recall the following results from [B86].

Theorem 2 (The no-ghost theorem)

Let $V = \bigoplus_{n=0}^{\infty} V_n$ be a VOA of c = 24 with non-sing bi. form \langle, \rangle and $G \leq \operatorname{Aut}(V)$ (we view $G = G \times 1$ on $V \otimes V_{\operatorname{II}_{1,1}}$). Then $B(V)^{(m,n)} \cong V_{1+mn}$ as G-mods with an inv bi form if $mn \neq 0$ and $B(V)^{(0,0)} \cong V_1 \oplus \mathbb{C}^2$ and $B(V)^{(m,n)} = 0$ for else.

For V^{\natural} , $B(V^{\natural})^{(m,n)} \cong V_{mn+1}^{\natural}$ as the monster simple group modules for $mn \neq 0$. But, for a general VOA V, G = 1 and so Borcherds' no ghost theorem just says $\dim B^{(m,n)}(V) = \dim V_{mn+1}$.

We will recall the following results from [B86].

Theorem 2 (The no-ghost theorem)

Let $V = \bigoplus_{n=0}^{\infty} V_n$ be a VOA of c = 24 with non-sing bi. form \langle, \rangle and $G \leq \operatorname{Aut}(V)$ (we view $G = G \times 1$ on $V \otimes V_{\operatorname{II}_{1,1}}$). Then $B(V)^{(m,n)} \cong V_{1+mn}$ as G-mods with an inv bi form if $mn \neq 0$ and $B(V)^{(0,0)} \cong V_1 \oplus \mathbb{C}^2$ and $B(V)^{(m,n)} = 0$ for else.

For V^{\natural} , $B(V^{\natural})^{(m,n)} \cong V_{mn+1}^{\natural}$ as the monster simple group modules for $mn \neq 0$. But, for a general VOA V, G = 1 and so Borcherds' no ghost theorem just says $\dim B^{(m,n)}(V) = \dim V_{mn+1}$.

What a waste of good theorem!

A large group and its homogeneous spaces

 $P^1, \ B(V)$ are defined by Virasoro ops $\{L(n)+L'(n) \mid n \in \mathbb{Z}\},$ We will introduce a group

Definition 1

$$G = \{g = \prod_m g_m \in \prod_m O(V_m, \langle, \rangle) \mid g_m L(n) = L(n)g_{m-n} \ \forall n, m \in \mathbb{Z}\}$$

(Note: G is not auto gr. of B(V), just set of orth transf comm with Vir.) and extend it to an auto. $G \otimes 1_{V_{\Pi_{1,1}}}$ of \tilde{V} .

A large group and its homogeneous spaces

 $P^1, \ B(V)$ are defined by Virasoro ops $\{L(n)+L'(n) \mid n \in \mathbb{Z}\},$ We will introduce a group

Definition 1

$$G = \{g = \prod_m g_m \in \prod_m O(V_m, \langle, \rangle) \mid g_m L(n) = L(n)g_{m-n} \ \forall n, m \in \mathbb{Z}\}$$

(Note: G is not auto gr. of B(V), just set of orth transf comm with Vir.) and extend it to an auto. $G \otimes 1_{V_{\Pi_{1,1}}}$ of \tilde{V} . By def. of physical state,

 $P^1_{(m,n)}$ and $B(V)^{(m,n)}$ are *G*-modules.

A large group and its homogeneous spaces

 $P^1, \ B(V)$ are defined by Virasoro ops $\{L(n)+L'(n) \mid n \in \mathbb{Z}\},$ We will introduce a group

Definition 1

$$G = \{g = \prod_m g_m \in \prod_m O(V_m, \langle, \rangle) \mid g_m L(n) = L(n)g_{m-n} \ \forall n, m \in \mathbb{Z}\}$$

(Note: G is not auto gr. of B(V), just set of orth transf comm with Vir.) and extend it to an auto. $G \otimes 1_{V_{\Pi_{1,1}}}$ of \tilde{V} . By def. of physical state,

$$P^1_{(m,n)}$$
 and $B(V)^{(m,n)}$ are G -modules.

Definition 2 (homogeneous G-submodules)

Set $V_k^p = \{v \in V_k \mid L(n)v = 0 \ \forall n \ge 1\}$ Vir primary states $\Rightarrow V = \bigoplus_{k \in \mathbb{N}} U(\operatorname{Vir})V_k^p$, V_k^p is simple *G*-mod. and $G = \prod_{m=0}^{\infty} O(V_m^p)$. Define **projection**: $\pi_k : \tilde{V} \to (U(\operatorname{Vir}) \cdot V_k^p) \otimes V_{\operatorname{II}_{1,1}}$ $P_{(m,n),k}^1 := \pi_k(P_{(m,n)}^1)$, $B(V)^{(m,n),k} := \pi_k(B(V)^{(m,n)})$

Root space of Borchers Lie algebra as G-modules

Lemma 3

For
$$(m,n) = (1,-1), (1,1), (1,3), (2,2)$$
, $V^{(m,n)} \cong V_{mn+1}$ as G-modules.

Remark 2

In Borcherds' proof of the no-ghost theorem, his ops were given by elts in $V_{\mathrm{II}_{1,1,}}$ and Vir, which implies $B(V)^{(m,n)} \cong V_{mn+1}$ as G-mods for $mn \neq 0$.

Root space of Borchers Lie algebra as G-modules

Lemma 3

For
$$(m,n) = (1,-1), (1,1), (1,3), (2,2)$$
, $V^{(m,n)} \cong V_{mn+1}$ as G-modules.

Remark 2

In Borcherds' proof of the no-ghost theorem, his ops were given by elts in $V_{\mathrm{II}_{1,1,}}$ and Vir, which implies $B(V)^{(m,n)} \cong V_{mn+1}$ as G-mods for $mn \neq 0$.

For
$$v \in V_{mn+1}^p$$
, we have $v \otimes e^{(m,n)} \in P^1$. It is easy to see $V_{mn+1}^p \otimes e^{(m,n)} = P_{(m,n),mn+1}^1$ and $\operatorname{Rad}(P_{(m,n),mn+1}^1) = 0$. Similarly, $V_{mn}^p \otimes \delta_{(-1)}^{(m,-n)} e^{(m,n)} \subseteq P_{(m,n)}^1$ and $\operatorname{Rad}(P_{(m,n),mn}^1) = \tilde{L}(-1)(V_{mn}^p \otimes e^{(m,n)})$, where $\delta_{(-1)}^{(m,n)} \mathbf{1}' = (m,n)(-1)\mathbf{1} \in V_{\operatorname{II}_{1,1}}$ for $(m,n) \in \operatorname{II}_{1,1}$. i.e.,

The both of mult. of V_{mn+1}^p and V_{mn}^p in $B(V)^{(m,n)}$ are one.

$\begin{array}{ll} \left[\mbox{Proof} \right] & \mbox{By direct calculation, we have} \\ P_{(1,-1)}^1 = \mathbb{C} \mathbf{1} \otimes e^{(1,-1)} \cong V_0 & \mbox{and} & \mbox{Rad}(P_{(1,-1)}^1) = 0 \\ P_{(1,1)}^1 = \mathbb{C}(V_2^p \otimes e^{(1,1)}) \oplus \mathbb{C}[L(-2)\mathbf{1} \otimes e^{(1,1)} - 6\mathbf{1} \otimes \delta_{(-1)}^{(1,-1)} e^{(1,1)}] \oplus \mbox{Rad} \\ & & & & \\ V_2^p & \oplus & V_0 & \cong V_2. \end{array}$ From $P_{(1,3),4}^1 = V_4^p$, $P_{(1,3),3}^1 = V_3^p$ + Rad. $\operatorname{mult}(P_{(1,3),0}^1) < \dim V_2^p$, $\dim B(V)^{(1,3)} = \dim V_4$, we have $B^{(1,3)}(V) \cong V_4$. We will give a proof later for the case (m, n) = (2, 2).

The useful fact and products by $P^1_{(1,-1)},0)$ and $\pi_0(P^1)$

$$\{B(V)^{(1,n)}: n = -1, 0, \ldots\}$$
 generates $\bigoplus_{m=1}^{\infty} \oplus_{n \in \mathbb{Z}} B(V)^{(m,n)}$.

e.g. we will use $B(V)^{(2,2)} = [B(V)^{(1,-1)}, B(V)^{(1,3)}] + [B(V)^{(1,1)}, B(V)^{(1,1)}]$ Coming back to physical states, we have $P_{(2,2)}^{1} \subseteq (P_{(1,-1)}^{1})_{0}(P_{(1,3)}^{1}) + (P_{(1,1)}^{1})_{0}(P_{(1,1)}^{1}) + \text{Rad}(P_{(2,2)}^{1})$ The useful fact and products by $P^1_{(1,-1)},0)$ and $\pi_0(P^1)$

$$\{B(V)^{(1,n)}: n = -1, 0, \ldots\}$$
 generates $\bigoplus_{m=1}^{\infty} \oplus_{n \in \mathbb{Z}} B(V)^{(m,n)}$.

e.g. we will use $B(V)^{(2,2)} = [B(V)^{(1,-1)}, B(V)^{(1,3)}] + [B(V)^{(1,1)}, B(V)^{(1,1)}]$ Coming back to physical states, we have $P_{(2,2)}^1 \subseteq (P_{(1,-1)}^1)_0(P_{(1,3)}^1) + (P_{(1,1)}^1)_0(P_{(1,1)}^1) + \text{Rad}(P_{(2,2)}^1)$ Using $P_{(1,1)}^1 = P_{(1,1),0}^1 \oplus P_{(1,1),2}^1$ $(B(V)^{(1,1)} = B(V)^{(1,1),0} \oplus B(V)^{(1,1),2})$, $(P_{(1,1)}^1)_0(P_{(1,1)}^1) = (P_{(1,1),0}^1)_0(P_{(1,1)}^1) + (P_{(1,1),2}^1)_0(P_{(1,1),2}^1)$. The useful fact and products by $P^1_{(1,-1)},0)$ and $\pi_0(P^1)$

$$\{B(V)^{(1,n)}: n = -1, 0, \ldots\}$$
 generates $\bigoplus_{m=1}^{\infty} \oplus_{n \in \mathbb{Z}} B(V)^{(m,n)}$.

e.g. we will use $B(V)^{(2,2)} = [B(V)^{(1,-1)}, B(V)^{(1,3)}] + [B(V)^{(1,1)}, B(V)^{(1,1)}]$ Coming back to physical states, we have $P_{(2,2)}^1 \subseteq (P_{(1,-1)}^1)_0(P_{(1,3)}^1) + (P_{(1,1)}^1)_0(P_{(1,1)}^1) + \text{Rad}(P_{(2,2)}^1)$ Using $P_{(1,1)}^1 = P_{(1,1),0}^1 \oplus P_{(1,1),2}^1$ $(B(V)^{(1,1)} = B(V)^{(1,1),0} \oplus B(V)^{(1,1),2})$, $(P_{(1,1)}^1)_0(P_{(1,1)}^1) = (P_{(1,1),0}^1)_0(P_{(1,1)}^1) + (P_{(1,1),2}^1)_0(P_{(1,1),2}^1)$.

Proposition 4

$$(\mathbf{1} \otimes e^{(1,-1)})_0 = 1 \otimes (e^{(1,-1)})_0$$
 is *G*-isomorphism.
For $\alpha \in \pi_0(P^1)$, 0 th product α_0 is *G*-homo.

Hence $[B(V)^{(1,-1)}, B(V)^{(1,k)}]$ and $[B(V)^{(1,1),0}, B(V)^{(1,k)}]$ are holo. images of $B(V)^{(1,k)}$ as *G*-modules.

Product and projection to $U(Vir)V_n^p$

For $v,u\in V_2^p$, we set $\Phi^1(v,u)=(v\otimes e^{(1,1)})_0(u\otimes e^{(1,1)}) \quad \in P^1_{(2,2)}$

Then we have expressions:

 $\Phi^{1}(v,u) = v_{-2}u \otimes o_{0}(e^{(1,1)})e^{(2,2)} + v_{-1}u \otimes o_{1}(e^{(1,1)})e^{(2,2)}$ $+ v_{0}u \otimes o_{2}(e^{(1,1)})e^{(2,2)} + v_{1}u \otimes o_{3}(e^{(1,1)})e^{(2,2)} + v_{3}u \otimes o_{5}(e^{(1,1)})e^{(2,2)}.$

We note
$$Y(e^{\gamma}, z) = E^{-}(-\gamma, z)E^{+}(-\gamma, z)e^{\gamma}z^{\operatorname{wt}(e^{\gamma})+\gamma}$$

= $\exp(\sum_{n=1}^{\infty}\gamma(-n)/nz^{n})\exp(\sum_{n=1}^{\infty}-\gamma(n)/nz^{-n})e^{\gamma}z^{\operatorname{wt}(e^{\gamma})+\gamma}.$

In particular, $\{o_k(e^{(1,1)})e^{(2,2)} \mid k\}$ do not depend on the choices of v, u.

Product and projection to $U(Vir)V_n^p$

For $v, u \in V_2^p$, we set $\Phi^1(v, u) = (v \otimes e^{(1,1)})_0(u \otimes e^{(1,1)}) \in P^1_{(2,2)}$ Then we have expressions: $\Phi^1(v, u) = v_{-2}u \otimes o_0(e^{(1,1)})e^{(2,2)} + v_{-1}u \otimes o_1(e^{(1,1)})e^{(2,2)} + v_0u \otimes o_2(e^{(1,1)})e^{(2,2)} + v_1u \otimes o_3(e^{(1,1)})e^{(2,2)} + v_3u \otimes o_5(e^{(1,1)})e^{(2,2)}.$ We note $Y(e^{\gamma}, z) = E^-(-\gamma, z)E^+(-\gamma, z)e^{\gamma}z^{\operatorname{wt}(e^{\gamma})+\gamma}$

$$= \exp(\sum_{n=1}^{\infty} \gamma(-n)/nz^n) \exp(\sum_{n=1}^{\infty} -\gamma(n)/nz^{-n}) e^{\gamma} z^{\text{wt}(e^{\gamma}) + \gamma}.$$

In particular, $\{o_k(e^{(1,1)})e^{(2,2)} \mid k\}$ do not depend on the choices of v, u. Clearly, $v_{3-k}u \in V_k$. Since V_k^p is the only primary states in $\pi_k(V)$,

If
$$\pi_k(v_{3-k}u) = 0$$
, then $\pi_k(v_{3-k-j}u) = 0 \ \forall j \in \mathbb{N}$.

Since c = 24, $U(Vir)V_k^p$ is a Verma module for $k \neq 0$. Expressing $L(-n_1)\cdots L(-n_k)z$ with $n_1 \geq \ldots \geq n_k$, we have

Explicit expression by Virasoro operators

Lemma 5

For
$$(k,m) \in \mathbb{N} \times \mathbb{N}$$
, operators $\exists Q^{(2,2),k}(-m) \in U(\text{Vir})$ of degree $-m$ s.t. $\pi_k(v_{3-k-m}u) = Q^{(2,2),k}(-m)\pi_k(v_{3-k}u)$

We will show the exact formula for a few $Q^{a,b}(-m)$.

Lemma 6

For
$$v, u \in V_2^p$$
 and $w \in V_3^p$, we have:

$$\begin{aligned} \pi_0(v_{-1}u) &= \frac{1}{71} \{ 3L(-4)\pi_0(v_3u) + \frac{11}{12}L(-2)^2\pi_0(v_3u), \\ \pi_0(v_{-3}u) &= \frac{1}{196883} \{ 3492L(-6)\pi_0(v_3u) + \frac{15623}{12}L(-4)L(-2)\pi_0(v_3u) \} \\ &+ \frac{1}{196883} \{ \frac{1271}{2}L(-3)^2\pi_0(v_3u) + 124L(-2)^3\pi_0(v_3u) \}, \\ \pi_2(v_0w) &= \frac{1}{41} \{ 6L(-2)\pi_2(v_1u) + \frac{1}{4}L(-1)^2\pi_2(v_1u) \}, \\ \pi_3(v_{-2}u) &= \frac{1}{47} \{ \frac{17}{3}L(-2)\pi_3(v_2w) + \frac{11}{2}L(-1)^2\pi_3(v_2w) \}, \end{aligned}$$
 and

$$\begin{aligned} \pi_4(v_{-2}w) &= \frac{1}{8}L(-2)\pi_4(v_0w) + \frac{1}{16}L(-1)^2\pi_4(v_0w). \\ ln \text{ particular, } L(-2)Z \in \pi_3(C_2(V)), L(-2)^3 \mathbf{1} \in \pi_0(C_2(V)), \text{ and} \\ L(-2)Y \in \pi_2((V_2)_0(V_3) + L(-1)V_3) \end{aligned}$$
 for $Z \in V_4^p$ and $Y \in V_2^p$.

Physical state defined by V_k^p

Conversely, we can define physical states as follows:

Lemma 7

For $Z \in V_k^p$, define $\Phi_k^1(Z) = \sum_{t=0}^{5-t} Q^{(2,2),k}(-t)Z \otimes o_t(e^{(1,1)})e^{(2,2)} \in P^1_{(2,2),k}$ Then $\Phi^1(v, u) = \sum_{k=0}^{\infty} \Phi_k^1(\pi_k(v_{3-k}u)).$

Physical state defined by V_k^p

Conversely, we can define physical states as follows:

Lemma 7

For $Z \in V_k^p$, define $\Phi_k^1(Z) = \sum_{t=0}^{5-t} Q^{(2,2),k}(-t)Z \otimes o_t(e^{(1,1)})e^{(2,2)} \in P^1_{(2,2),k}$ Then $\Phi^1(v, u) = \sum_{k=0}^{\infty} \Phi_k^1(\pi_k(v_{3-k}u)).$ Namely, $\Phi^1(v, u)$ is uniquely determined by elements $(\pi_0(v_3u), \pi_2(v_1u), \pi_3(v_0u), \pi_4(v_{-1}u), \pi_5(v_{-2}u))$ $V_0^{\cap} \oplus V_2^p \oplus V_3^p \oplus V_4^p \oplus V_5^p.$ i.e. The structure of V on B(V) works only on $\oplus V_k^p$.

Lemma 8

In $\{\pi_k(\Phi^1(v, u)) \mid v, u \in V_2^p\}$, physical states over V_k^p appears at most onece for each k modulo $\operatorname{Rad}(P^1)$.

Physical state defined by V_k^p

Conversely, we can define physical states as follows:

Lemma 7

For $Z \in V_k^p$, define $\Phi_k^1(Z) = \sum_{t=0}^{5-t} Q^{(2,2),k}(-t)Z \otimes o_t(e^{(1,1)})e^{(2,2)} \in P^1_{(2,2),k}$ Then $\Phi^1(v, u) = \sum_{k=0}^{\infty} \Phi_k^1(\pi_k(v_{3-k}u)).$ Namely, $\Phi^1(v, u)$ is uniquely determined by elements $(\pi_0(v_3u), \pi_2(v_1u), \pi_3(v_0u), \pi_4(v_{-1}u), \pi_5(v_{-2}u))$ $V_0^{\cap} \oplus V_2^p \oplus V_3^p \oplus V_4^p \oplus V_5^p.$ i.e. The structure of V on B(V) works only on $\oplus V_k^p$.

Lemma 8

In $\{\pi_k(\Phi^1(v, u)) \mid v, u \in V_2^p\}$, physical states over V_k^p appears at most onece for each k modulo $\operatorname{Rad}(P^1)$.

By this lemma, we have $B(V)^{(2,2)} \cong V_5$ as G-modules.

Definition 3

 $X:=[B(V)^{(1,1),2},B(V)^{(1,1),2}]$ may not be a $G\operatorname{-module}$ (just a subspace). Since

$$\begin{split} &Z := [B(V)^{(1,-1)}, B(V)^{(1,3)}] + [B(V)^{(2,2),0}, B(V)^{(2,2)}] \text{ is a G-submod of G-mod. $B(V)^{(2,2)} = Z + X$, X contains a complement of Z in $B(V)^{(2,2)}$. Expressing $B(V)^{(2,2)}/Z$ as a direct sum of V_k^p, we say$$

"X covers a G-mod. $B(V)^{(2,2)}/Z$."

Since Rad() is also *G*-mod, we also say

$$(P^1_{(1,1),2})_0(P^1_{(1,1),2})$$
 covers a $B(V)^{(2,2)}/Z$

$P_{(1,1)}^1$ and products $(P_{(1,1),2}^1)_0 P_{(1,1),2}^1$ elementwisely.

Since $L(-m)V \subseteq C_2(V)$ for $2 \neq m \geq 1$, $V_5 = V_5^p + L(-2)V_3^p + C_2(V)_5$. So we forcus our study to V_3^p and V_5^p

Proposition 9

$$[B(V)^{(1,1)}, B(V)^{(1,1)}]$$
 covers $V_5/V_4 \cong V_5^p + V_3^p + V_2^p$ at least and $(V_2^p \otimes e^{(1,1)})_0 (V_2^p \otimes e^{(1,1)})$ covers $V_5^p + V_3^p$ at least .

[Proof] $B(V)^{(2,2)} \cong V_5$, $[B(V)^{(1,-1)}, B(V)^{(1,3)}] \cong B(V)^{(1,3)} \cong V_4$, $\pi_3([B(V)^{(1,1),0}, B(V)^{(1,1)}]) = \pi_5([B(V)^{(1,1),0}, B(V)^{(1,1)}]) = 0.$

Covering

Therefore, we have

Lemma 10

Assume that $\{\Phi^1(v, u) : v, u \in V_2^p\}$ covers V_k^p in $B(V)^{(2,2)}/J$ for some G-mod J. If $\pi_k(\Phi^1(v, u)) \in J$ for some $v, u \in V_2^p$, then $\pi_k(\Phi^1(v, u)) = 0$, that is, $v_{3-k}u = 0$.

Then we can translate Proposition 9 into the following:

Lemma 11

$$\text{Span}_{\mathbb{C}}\{(\pi_3(v_0u), \pi_5(v_{-2}u)) \in V_3^p \oplus V_5^p \mid v, u \in V_2^p\} \text{ covers } V_5^p + V_3^p \text{ at least.}$$

Weight five

As a corollary of Lemma 6 and 11, we have:

Lemma 12

 $V_5 \subseteq C_2(V).$

Weight five

As a corollary of Lemma 6 and 11, we have:

Lemma 12

 $V_5 \subseteq C_2(V).$

[Proof] By Lemma 11, for
$$z \in V_5^p$$
, $\exists v^i, u^i \in V_2^p$ s.t.
 $z = \pi_5(\sum v_{-2}^i u^i)$ and $\pi_3(\Phi^1(\sum v_0^i u^i)) \in J$. By Lemma 10,
 $\pi_3(\sum v_0^i u^i) = 0$. Hence $\pi_3(\sum v_{-2}^i u^i) = 0$ and
 $\sum v_{-2}^i u^i - z \in \pi_0(V_5) + \pi_2(V_5) + \pi_4(V_5)$. Since
 $\pi_0(V_5) + \pi_2(V_5) + \pi_4(V_5) \subseteq C_2(V)$, we have $z \in C_2(V)$.

Weight five

As a corollary of Lemma 6 and 11, we have:

Lemma 12

 $V_5 \subseteq C_2(V).$

[Proof] By Lemma 11, for
$$z \in V_5^p$$
, $\exists v^i, u^i \in V_2^p$ s.t.
 $z = \pi_5(\sum v_{-2}^i u^i)$ and $\pi_3(\Phi^1(\sum v_0^i u^i)) \in J$. By Lemma 10,
 $\pi_3(\sum v_0^i u^i) = 0$. Hence $\pi_3(\sum v_{-2}^i u^i) = 0$ and
 $\sum v_{-2}^i u^i - z \in \pi_0(V_5) + \pi_2(V_5) + \pi_4(V_5)$. Since
 $\pi_0(V_5) + \pi_2(V_5) + \pi_4(V_5) \subseteq C_2(V)$, we have $z \in C_2(V)$.

Similarly, for $x \in V_3^p$, $\exists v^i, u^i \in V_2^p$ s.t. $0 = \pi_5(\sum v_{-2}^i u^i)$ and $\pi_3(\sum v_0^i u^i) = x$. Then since $\pi_3(\sum v_{-2}^i u^i) = \frac{17}{141}L(-2)x + \frac{11}{94}L(-1)^2x$ by Lemma 6,

 $\sum_{i=2} v_{-2}^{i} u^{i} - \left(\frac{17}{141}L(-2)x + \frac{11}{94}L(-1)^{2}x\right) \in \pi_{0}(V_{5}) + \pi_{2}(V_{5}) + \pi_{4}(V_{5}) \subseteq C_{2}(V).$ Therefore we have $L(-2)x \in C_{2}(V)$. \Box

This completes the proof of $V_5 \subseteq C_2(V)$ and my talk.

Thank you !!

Induction on weights

Proposition 13

For $n \geq 7$, we have $V_n \subseteq C_2(V)$.

[Proof]

 $[\mathsf{Case} \ n = 2m+1] \quad \text{We note } V^p_{2m+1} \otimes e^{(2,m)} \subseteq P^1_{(2,m),2m+1} \text{ and }$ $\operatorname{Rad}(P^1_{(2,m),2m+1}) = 0.$ As we explained, $\sum \pi_{2m+1}(P^1_{(1,k)})_0(P^1_{(1,m-k)})$ covers V_{2m+1}^p . Since $P_{(1,k)}^1 \subseteq (\bigoplus_{i=0}^{k+1} V_j) \otimes V_{\mathrm{II}_{1,1}}$, to get elet $v_j w \in V_{2m+1}$ by product of $v \in \bigoplus_{i=0}^{k+1} V_i$ and $w \in \bigoplus_{i=0}^{m-k+1} V_i$, we have $j \leq -2$. Therefore, $V_{2m+1}^p \subseteq \pi_{2m+1}(C_2(V))$ and $V_{2m+1}^p \subseteq C_2(V) + \bigoplus_{i=0}^{2m} \operatorname{Vir} V_i) = C_2(V) + \bigoplus_{k=1}^m L(-2)^k V_{2m+1-k}$. Since $L(-2)V_{2m-1} \subseteq C_2(\tilde{V})$ by induction, we have $V_{2m+1} \subseteq C_2(V)$. $[\mathsf{Case}\ n=2m] \quad V^p_{2m}\otimes \delta^{(2,-m)}_{(-1)}e^{(2,m)}\subseteq P^1_{(2,m),2m} \text{ and }$ $\operatorname{Rad}(P_{(2m),2m}^1) = (L(-1) \otimes 1 + 1 \otimes \delta_{(-1)}^{(2m)})V_{2m}^p \otimes e^{(2m)}$. By the same argument as above, $\pi_{2m}(C_2(V))$ covers V_{2m}^p . Since $L(-2)V_{2m-2} \subseteq C_2(V)$ by induction, we have $V_{2m} \subseteq C_2(V)$.