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Introduction

Classifi. of hol. VOA of ¢ = 24 was accomplished except for the moonshine
type. The remaining is to prove the uniqueness of moonshine type, i.e.,

[Uniqueness conj [FLM]] If V is VOA, with non-sing inv (,), ¢ = 24,
S dim V,,q" ! = j(1) — 744 = ¢! +196884q + ..., then V = V1?

With additional assumps, there are serveral results. e.g., if we have an iso.
V/Cy(V) =2 V1/Cy(VY) of Poisson algebras keeping grades and inner
products, then we have V = V% by a Griess' result and easy calculation.
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Introduction

Classifi. of hol. VOA of ¢ = 24 was accomplished except for the moonshine
type. The remaining is to prove the uniqueness of moonshine type, i.e.,

[Uniqueness conj [FLM]] If V is VOA, with non-sing inv (,), ¢ = 24,
S dim V,,q" ! = j(1) — 744 = ¢! +196884q + ..., then V = V1?

With additional assumps, there are serveral results. e.g., if we have an iso.
V/Cy(V) =2 V1/Cy(VY) of Poisson algebras keeping grades and inner
products, then we have V = V% by a Griess' result and easy calculation.

Conversely, what we can get from the assump of uniqueness conj? From
now on, V is a VOA satisfying these conditions.
Given data are few. Under this assumption, the known result we can use is

iso: B(V) = B(V?) of Borchers' Lie algebras. (explain later)

B(V%) is called Monster Lie algebra. However, we can not use the
Monster actions and so we just call it Borcherds' Lie algebra.
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Borcherds Lie algebra

Borcherds has also shown: B(V') is GKM algebra with simple roots
Lorentzian lattice /¢ —1
— ..t C
{<17 1)7 (17 1)7 (172>7 (173)7 } = IIl,lv with Gram matrix (_1 0)
with multiplicities dim V41 for (1,n). In particular,
B(V) is generated by root spaces B(V)(™) 2 (V,, 11, (,)) freely.
€.g. [B(V)(l’l)vB(V)(l’l)] = SkerimB(V)O,l)
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Borcherds Lie algebra

Borcherds has also shown: B(V') is GKM algebra with simple roots
Lorentzian lattice /o —1
— .7 C
{(1,=1),(1,1), (1,2), (1,3), ...} € g, with Gram matrix (—1 0)

with multiplicities dim V41 for (1,n). In particular,

B(V) is generated by root spaces B(V)(™) 2 (V,, 11, (,)) freely.

eg [B(V)D, B(V)(D)] = Skew i, p(vya.0)

Borcherds has shown: B(V?) is GKM alg. with the above simple roots.
The critical point of the proof is that he used only nonsingular inv. (,),

chy4(7) = J(7), and ¢ = 24. Hence as they mentioned in [B86] and [J10],

B(V) has the same simple roots and = B(V).
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Borcherds Lie algebra

Borcherds has also shown: B(V') is GKM algebra with simple roots

Lorentzian lattice (0 ,1)

— . C
(=1, (1,1), (1,2), (1, 3), .} € Ty, with Gram matrix \-1 0

with multiplicities dim V41 for (1,n). In particular,
B(V) is generated by root spaces B(V)(™) 2 (V,, 11, (,)) freely.
€.g. [B(V)(l’l)vB(V)(l’l)] = SkerimB(V)O,l)

Borcherds has shown: B(V?) is GKM alg. with the above simple roots.
The critical point of the proof is that he used only nonsingular inv. (,),

chy4(7) = J(7), and ¢ = 24. Hence as they mentioned in [B86] and [J10],
B(V) has the same simple roots and = B(V).

Because of that, my first impression was "we could not get back useful inf.
of V from B(V).
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| was wrong. The fact that "the structure of B(V) is very simple” comes
from the several strong restrictions on V.
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| was wrong. The fact that "the structure of B(V) is very simple” comes

from the several strong restrictions on V.
Today, | will show you one of the results from this fact. Namely, we can

prove the following theorem.

If V' is VOA, non-sing inv (,), ¢ = 24,
S dim V¢! = (1) — 744 = ¢~ + 196884q + ..., then V is Cy-cofinite.

More precisely,
Co(V)=> Vu+ L(-1)V.

n>5
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| was wrong. The fact that "the structure of B(V) is very simple” comes
from the several strong restrictions on V.

Today, | will show you one of the results from this fact. Namely, we can
prove the following theorem.

If V' is VOA, non-sing inv (,), ¢ = 24,
S dim V¢! = (1) — 744 = ¢~ + 196884q + ..., then V is Cy-cofinite.
More precisely,

Co(V)=> Vu+ L(-1)V.

n>5

The proof consists of three steps: (1) V5 C Co(V), (2) Vs C Co(V), and
(3) Vi, € Co(V) for n > 7 by induction.

Today | will show only the first step (1) because the others are similar. If |
have time, then (3).
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Physical states and Borcherds Lie algebra

SetV=Vg VHl,1' which has II; ;-graded structure.
L(n), L(n) denotes Virasoro ops of V and V, respectively. Set

P'={ue V| L(n)u=0VYn>0}
the space of physical states. Then we define

a Borcherds Lie algebra B(V) = P!/Rad(P?),

where Rad(P?) is the null space of (-,-).
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Physical states and Borcherds Lie algebra

SetV=Vg VHl,1' which has II; ;-graded structure.
L(n), L(n) denotes Virasoro ops of V and V, respectively. Set

V'={ue V| L(n)u=0Vn>0}
the space of physical states. Then we define

a Borcherds Lie algebra B(V) = P!/Rad(P?),

where Rad(P?) is the null space of (-,-).

Let P(1 n) C P! of degree (m,n) € II; 1 and
B(V)(mm) = = Pl /Rad(Pl, )
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No ghost theorem

We will recall the following results from [B86].

Theorem 2 (The no-ghost theorem)
Let V.= @22V, be a VOA of ¢ = 24 with non-sing bi. form (,) and

G < Aut(VY(we view G =G x1onV ® Vi, ;). Then
B(V)(mm) = v, as G-mods with an inv bi form if mn # 0 and

B(V)©0) 2 Vi @ C2 and B(V)™") = 0 for else.

For V&, B(VH)(mn) =~ Vﬁmﬂ as the monster simple group modules for
mn # 0.
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No ghost theorem

We will recall the following results from [B86].

Theorem 2 (The no-ghost theorem)
Let V.= @22V, be a VOA of ¢ = 24 with non-sing bi. form (,) and

G < Aut(VY(we view G =G x1onV ® Vi, ;). Then
B(V)(mm) = v, as G-mods with an inv bi form if mn # 0 and

B(V)©0) 2 Vi @ C2 and B(V)™") = 0 for else.

For V&, B(VH)(mn) =~ Vﬁmﬂ as the monster simple group modules for
mn # 0. But, for a general VOA V, G = 1 and so Borcherds' no ghost
theorem just says dim B(m’”)(V) =dim Vypy1.
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No ghost theorem

We will recall the following results from [B86].

Theorem 2 (The no-ghost theorem)
Let V.= @22V, be a VOA of ¢ = 24 with non-sing bi. form (,) and

G < Aut(VY(we view G =G x1onV ® Vi, ;). Then
B(V)(mm) = v, as G-mods with an inv bi form if mn # 0 and

B(V)©0) 2 Vi @ C2 and B(V)™") = 0 for else.

For V&, B(VH)(mn) =~ Vﬁmﬂ as the monster simple group modules for
mn # 0. But, for a general VOA V, G = 1 and so Borcherds' no ghost
theorem just says dim B(m’”)(V) =dim Vypy1.

What a waste of good theorem!
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A large group and its homogeneous spaces

P, B(V) are defined by Virasoro ops {L(n) + L'(n) | n € Z},
We will introduce a group
Definition 1

G = {g = Hm Im € HmO(va <7>) | gmL(n) = L(n)gm,n vnam S Z}

(Note: G is not auto gr. of B(V), just set of orth transf comm with Vir.)
and extend it to an auto. G ® 1y,  of V.
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A large group and its homogeneous spaces

P, B(V) are defined by Virasoro ops {L(n) + L'(n) | n € Z},
We will introduce a group
Definition 1

G={9=11,9m €11, OV, (,)) | gnL(n) = L(n)gm—n Yn,m e Z}

(Note: G is not auto gr. of B(V), just set of orth transf comm with Vir.)
and extend it to an auto. G ® 1y, | of V. By def. of physical state,

P(lm n) and B(V)(™™) are G-modules.
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A large group and its homogeneous spaces

P, B(V) are defined by Virasoro ops {L(n) + L'(n) | n € Z},
We will introduce a group
Definition 1

G = {g = Hm Im € HmO(va <7>) | gmL(n) = L(n)gm,n vnam S Z}

(Note: G is not auto gr. of B(V), just set of orth transf comm with Vir.)
and extend it to an auto. G ® 1y, | of V. By def. of physical state,

P(1m n) and B(V)(™™) are G-modules.

Definition 2 (homogeneous G-submodules)

Set VP={veV,|Lnv=0 Vi > 1} Vir primary states
= V = @renU(Vir)VP, V7 is simple G-mod. and G =T]>_ O(V%).
Define  projection: 7, :V — (U(Vir) - Vo) @ Vi,

Pk = (Pl ny),  BOU)ME = m(B(V)mm)
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Root space of Borchers Lie algebra as GG-modules

For (m,n) = (1,-1),(1,1),(1,3),(2,2), V™™ =V, .1 as G-modules.

v

In Borcherds' proof of the no-ghost theorem, his ops were given by elts in
Vi1, ;. and Vir, which implies B(V)(mvn) >~ Va1 as G-mods for mn £ 0.

v

Tsukuba Borcherds' Lie algebra and Ca-cofiniteness of moonshine VOAs



Root space of Borchers Lie algebra as GG-modules

For (m,n) = (1,-1),(1,1),(1,3),(2,2), V™™ =V, .1 as G-modules.

In Borcherds' proof of the no-ghost theorem, his ops were given by elts in
Vi1, ;. and Vir, which implies B(V)(mvn) >~ Va1 as G-mods for mn £ 0.

For v € fomﬂ, we have v ® e(™") € P It is easy to see

Vrfm+1 ® 6(m,n) = P(lmm),mn-‘rl and
Rad(P,,  npy1) = 0. Similarly,

Vi, @ 5" elmn) € Pl and
Rad(P} ) = z(_l)(vri?m ® e(m’")). where

(m,n),mn

0"V = (m,n)(~1)1 € Viy, , for (m,n) €111 ie.,

The both of mult. of V¥ . and Vih, in B(V)(™™) are one.

mn-+
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Explict form of B(V)(m:n):k

[Proof] By direct calculation, we have
Py =Clee V=1, and Rad(P} ) =0
P(lLl) =C(V? %26(171))69@[1/(72)1 ® el *||§31®5E£’51)e(171)]@Rad
%8 ® Vo =RV
From P(1173)74 =V7, P(lm),3 = V4 + Rad. mult(P(ng),O) < dim V7,
dim B(V)(13) = dim V, we have B1L3)(V) 2= V.
We will give a proof later for the case (m,n) = (2,2). O
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The useful fact and products by P} ,,,0) and my(F")

{B(V)(b™) .y = —1,0, ...} generates B Dpez B(V)(mn),
e.g. we will use
B(V)22) = [B(V)A=D, BV)19)] + [BV)(W), BV)(LD)

Coming back to physical states, we have

P(lz,g) - (P(11771))0(P(1173)) + (P(1171))0(P(11,1)) + Rad(P(1272))
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The useful fact and products by P} ,,,0) and my(F")

{B(V)(b™) .y = —1,0, ...} generates B Dpez B(V)(mn),
e.g. we will use
B(V)22) = [B(V)A=D, BV)19)] + [BV)(W), BV)(LD)

Coming back to physical states, we have

P(lz,g) - (P(11771))0(P(1173)) + (P(1171))0(P(11,1)) + Rad(P(1272))
Using P(11,1) = P(11,1),0 69P(ll,l),z (B(V)D) = B(V)(:D0 o B(V)(1:1D):2),

(P(11,1))0(P(11,1)) = <P(11,1),0)0(P(11,1)) + (P(11,1),2)0(P(11,1),2)'
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,O) and 7'('0(P1)

The useful fact and products by P}

1)

{B(V)(b™) .y = —1,0, ...} generates B Dpez B(V)(mn),
e.g. we will use
B(V)22) = [B(V)A=D, BV)19)] + [BV)(W), BV)(LD)

Coming back to physical states, we have

P(lz,g) - (P(11771))0(P(1173)) + (P(1171))0(P(11,1)) + Rad(P(1272))
Using P(11,1) = P(11,1),0 69P(ll,l),z (B(V)D) = B(V)(:D0 o B(V)(1:1D):2),

(P(11,1))0(P(11,1)) = (P(11,1),0)0(P(11,1)) + (P(ll,l),Q)O(P(ll,l),Q)'

Proposition 4

1®@el D)y =1 (e=V)g is G-isomorphism.
For a € mo(P1), 0 th product ag is G-homo.

Hence [B(V)(L~1, B(V)1F)] and [B(V)(B1D:0 B(V)(1#)] are holo.
images of B(V)(1¥) as G-modules.
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Product and projection to U(Vir)V?

For v,u € V¥, we set
dl(w,u) = (v@ el D)g(u@elV) € P(1272)
Then we have expressions:
O (v, u) = v_ou @ op(eM1)e>2) +y_ju @ o1 (e))e22)
+vgu ® 09(e11)e22) fy1u @ oz(eM1))e22) fusu @ o5 (e(H1))e22).
We note Y (e7,z) = E~(—,2)ET(—y, z)eY 2"+

= exp(Y_,2q v(—n)/nz") exp(3o07 —’y(n)/nz_”)eVZWt(ev)'i‘W‘
In particular, {Ok(e(l’l))ff@’?) | k} do not depend on the choices of v, u.
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Product and projection to U(Vir)V?

For v,u € V¥, we set
dl(w,u) = (v@ el D)g(u@elV) € P(1272)
Then we have expressions:
O (v, u) = v_ou @ op(eM1)e>2) +y_ju @ o1 (e))e22)
+vgu ® 09(e11)e22) fy1u @ oz(eM1))e22) fusu @ o5 (e(H1))e22).
We note Y (e7,z) = E~(—,2)ET(—y, z)eY 2"+
= exp(Yo52, Y(=n)/nz") exp(3o52 ) —v(n) /nz™")eT 2T
In particular, {o(e))e(®>?) | k} do not depend on the choices of v, u.
Clearly, v3_ju € V. Since V' is the only primary states in m(V),

‘ If m(v3—pu) =0, then 7y (v3_p—ju) =0 Vj € N. ‘

Since ¢ = 24, U(Vir)V{” is a Verma module for k # 0. Expressing
L(—ny) -+ L(—ng)z with ny > ... > nyg, we have
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Explicit expression by Virasoro operators

For (k,m) € N x N, operators 3Q(>2)*(—m) € U(Vir) of degree —m s.t.
T (V3—h—mt) = QEDF (—m)my(v3_gu)

We will show the exact formula for a few Q%*(—m)
Lemma 6

Forv,u € Vp and w € VP, we have:
mo(v_1u) = = {BL( 4)mo(vsu) —i—i L(— 2) mo(vsu),
70 (v_3u) = T5ass3 {3492L(—6)mo(vsu) + 1383 L(—4)L(—2)mo(vsu)}
- 196883{1271L( 3)2mo(vau) + 124L(—2)3mo(vsu)},
To(vow) = 41 {6L( 2)ma(viu) + %L(—l)gﬂg(vlu)},
m3(v_ou) = %{gL(—2)7T3(’L)2w) + %L(—l)zw;g(vgw)}, and
ma(v_ow) = £ L(—2)ms(vow) + £ L(—1)?ms(vow).
In particular, L(—2)Z € 73(Ca(V)), L(—2)31 € mo(Co(V)), and
L(-2)Y € ma((Va)o(V3) + L(—1)V3) for Z € VP and Y € V.
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Physical state defined by V}

Conversely, we can define physical states as follows:

For Z € VP, define
q)%:(Z) - ?:_é Q(272)7k(_t)Z ® Ot(e(171))e(272) c Pl

(2,2),k
Then @ (v, u) = 372 Ph(mg(v3—gu)).
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Physical state defined by V}

Conversely, we can define physical states as follows:

For Z € VP, define
L(Z) = YTEQRAK(—t)Z ® op(ePV)e2D) € Pk

Then @ (v, u) = 372 Ph(mg(v3—gu)).

Namely, ®!(v, u) is uniquely determined by elements
(7r0(v3u), TI'Q('Ulu), Fg(vou), 7T4(U_1U), 5 (U_2u>)
m m m m m
Vo ovy oVf eV oVl
i.e. The structure of V on B(V') works only on &V}”.

Lemma 8

In {7 (®*(v,u)) | v,u € VI'}, physical states over V' appears at most
onece for each k modulo Rad(P?!).
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Physical state defined by V}

Conversely, we can define physical states as follows:

For Z € VP, define
L(Z) = YTEQRAK(—t)Z ® op(ePV)e2D) € Pk

Then @ (v, u) = 372 Ph(mg(v3—gu)).

Namely, ®!(v, u) is uniquely determined by elements
(7r0(v3u), TI'Q('Ulu), Fg(vou), 7T4(U_1U), 5 (U_2u>)
m m m m m
Vo ovy oVf eV oVl
i.e. The structure of V on B(V') works only on &V}”.

Lemma 8

In {7 (®*(v,u)) | v,u € VI'}, physical states over V' appears at most
onece for each k modulo Rad(P?!).

By this lemma, we have B(V)(2?) = V5 as G-modules.
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Definition

Definition 3

X = [B(V)BD:2 B(V)(L1:2] may not be a G-module (just a subspace).
Since

Z := [B(V)=D, B(V)13)] 4 [B(V)Z20 B(V)22)] is a G-submod of

G-mod. B(V)??) = Z + X, X contains a complement of Z in B(V)2?2),
Expressing B(V)(22)/Z as a direct sum of V7, we say

“X covers a G-mod. B(V)22)/Z7."

Since Rad() is also G-mod, we also say

(P(11,1),2)0(P(11’1)72) covers a B(V)@’Q)/Z_
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P(, ,y and products (P 1y ,)0P ), elementwisely.

Since L(—m)V C Co(V) for 2 £ m > 1, Vs = VP + L(=2)VP + Co(V)s.
So we forcus our study to V2’ and V7

Proposition 9

[B(V)( ) B(V)(l’l)] covers Vs /Vy 2 VP + VP + VI at least and
(VP )o(V2p ® e(LV) covers VP + VY at least .

[Proof] — B(V)®? =g, [B(V)~Y, B(V)19)] = (V)13 = v,
m3([B(V)D0, B(V)ID]) = w5 ([B(V) D0, B(V) (1)) = 0. m
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Therefore, we have

Assume that {®'(v,u) : v,u € V§'} covers VP in B(V)22)/.J for some

G-mod J. If m.(®1(v,u)) € J for some v,u € VI, then m(®!(v,u)) =0,
that is, v3_pu = 0.

Then we can translate Proposition 9 into the following:

Spanc{(m3(vou), m5(v_gu)) € Vi & V¥ | v,u € VI'} covers V¥ + VI at
least.

Tsukuba
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Weight five

As a corollary of Lemma 6 and 11, we have:

Vs C Ca(V).
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Weight five

As a corollary of Lemma 6 and 11, we have:

Vs C Ca(V).

[Proof] By Lemma 11, for z € V¥, Tt ul € V7 s.t.

z = 75(Y v’ yut) and w3(®L(>] viut)) € J. By Lemma 10,
m3(Y vhu') = 0. Hence m3(>- v yu') = 0 and

Svlgut — z € mo(Vs) + ma(Vs) + ma(Vs). Since

mo(Vs) + m2(Vs) + ma(Vs) C Ca(V), we have z € Co(V).
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Weight five

As a corollary of Lemma 6 and 11, we have:

Vs C Ca(V).

[Proof] By Lemma 11, for z € V¥, Tt ul € V7 s.t.

z = 75(Y v’ yut) and w3(®L(>] viut)) € J. By Lemma 10,
m3(Y vhu') = 0. Hence m3(>- v yu') = 0 and

Svlgut — z € mo(Vs) + ma(Vs) + ma(Vs). Since

mo(Vs) + m2(Vs) + ma(Vs) C Ca(V), we have z € Co(V).

Similarly, for x € VP, 3vi, vt € VI sit. 0 = m5(> 0% 5ul) and

m3(> vhu') = x. Then since m3(> v’ yu') = L5 L(—2)x + &3 L(—1)%z by
Lemma 6,

Sl gul — (L5 L(—2)a+ 3 L(—1)%) € mo(Vs)+ma2(Vs)+ma(Vs) € Ca(V).
Therefore we have L(—2)x € Ca(V). O
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This completes the proof of V5 C Cy(V') and my talk.

Thank you !l
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Induction on weights

Proposition 13
Forn > 7, we have V,, C Ca(V).

[Proof]
[Case n=2m +1] We note V3, ., ®e>m C Ply ) am1 and

Rad(P(lzmmmH) = 0. As we explained, Emmﬂ( (l,k)) (P(lefk))
covers V. Since P(l1 K (® f%V‘) ® V11, ,, to get elet vjw € Va1

by product of v € @kHV and w € EBm kHV, we have j < —2.
Therefore, VQmJrl C 7r2m+1(Cg(V)) and

Vami1 © Co(V) + &3 VirVy) = Co(V) + &7 L(—2)" Vo 41—k Since
L(—2)Vap—1 C Co(V) by induction, we have V11 C Co(V).

[Case n =2m] VI ®5((2 )m) (2m) P(1 m).2m @nd

Rad (Pl o) = (L(=1) @ 1+ 1@ 62 )VE @ ™). By the same
argument as above, T2, (C2(V)) covers V' . Since

L(—=2)Vap—o € C5(V) by induction, we have Va,, C Co(V). O
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