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1. Notation

g a simple, finite-dimensional Lie (super)algebra.

Wk(g, f ) universal W-algebra associated to g and an even
nilpotent f ∈ g.

Simple quotient Wk(g, f ).

For this talk: We will replace k with the shifted level ψ = k+h∨.

Wψ(g, f ) will always denote Wk(g, f ) with k = ψ − h∨.

Wψ(g, f ) the simple quotient of Wψ(g, f ).

If f = fprin is a principal nilpotent, write Wψ(g, f ) = Wψ(g).
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2. Feigin-Frenkel duality

Thm: (Feigin, Frenkel, 1991) Let g be a simple Lie algebra. Then

Wψ(g) ∼= Wψ′
(Lg), r∨ψψ′ = 1.

Here Lg is the Langlands dual Lie algebra, and r∨ is the lacity of g.

Similar result holds for g = osp1|2n.

Thm: (Creutzig, Genra)

Wψ(osp1|2n)
∼= Wψ′

(osp1|2n), 4ψψ′ = 1.



2. Feigin-Frenkel duality

Thm: (Feigin, Frenkel, 1991) Let g be a simple Lie algebra. Then

Wψ(g) ∼= Wψ′
(Lg), r∨ψψ′ = 1.

Here Lg is the Langlands dual Lie algebra, and r∨ is the lacity of g.

Similar result holds for g = osp1|2n.

Thm: (Creutzig, Genra)

Wψ(osp1|2n)
∼= Wψ′

(osp1|2n), 4ψψ′ = 1.



2. Feigin-Frenkel duality

Thm: (Feigin, Frenkel, 1991) Let g be a simple Lie algebra. Then

Wψ(g) ∼= Wψ′
(Lg), r∨ψψ′ = 1.

Here Lg is the Langlands dual Lie algebra, and r∨ is the lacity of g.

Similar result holds for g = osp1|2n.

Thm: (Creutzig, Genra)

Wψ(osp1|2n)
∼= Wψ′

(osp1|2n), 4ψψ′ = 1.



3. Coset construction of principal W-algebras

Thm: (Arakawa, Creutzig, L., 2018) Let g be simple and
simply-laced. We have diagonal embedding

V k+1(g) ↪→ V k(g)⊗ L1(g), u 7→ u ⊗ 1 + 1⊗ u, u ∈ g.

Set
Ck(g) = Com(V k+1(g),V k(g)⊗ L1(g)).

We have an isomorphism of 1-parameter VOAs

C k(g) ∼= Wψ(g), ψ =
k + h∨

k + h∨ + 1
.

Coset realization for B (and C ) is different.

Thm: (Creutzig, Genra, and Creutzig-L., 2021) We have an
isomorphism of 1-parameter VOAs

Com(V k(sp2n),V
k(osp1|2n))

∼= Wψ(so2n+1), ψ =
2k + 2n + 1

2(1 + k + n)
.
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4. What are trialities of W-algebras?

Let f ∈ g be a nilpotent, and complete f to a copy {f , h, e} of sl2
in g.

Let a ⊆ g denote the centralizer of this sl2 in g.

Then Wψ(g, f ) has affine subVOA V ψ′
(a), for some level ψ′.

By the affine coset, we mean Cψ(g, f ) := Com(V ψ′
(a),Wψ(g, f )).

Sometimes we also take invariants under some group of outer
automorphisms.

Trialities are isomorphisms between three different affine cosets

Cψ(g, f ) ∼= Cψ′
(g′, f ′) ∼= Cψ′′

(g′′, f ′′).

These unify and generalize both Feigin-Frenkel duality and the
coset realization of principal W-algebras.
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5. Hook-type W-algebras in type A

Recall: For n ≥ 1, write

sln+m = sln ⊕ glm ⊕
(
Cn ⊗ (Cm)∗

)
⊕
(
(Cn)∗ ⊗ Cm

)
.

Let fn ∈ sln+m be the nilpotent which is principal in sln and
trivial in glm.

fn corresponds to the hook-type partition n + 1 + · · ·+ 1.

Then ψ = k + n +m, and we define

Wψ(n,m) := Wψ(sln+m, fn),

which has level k = ψ − n −m.
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6. Features of Wψ(n,m)

For m ≥ 2, Wψ(n,m) has affine subalgebra

V ψ−m−1(glm) = H⊗ V ψ−m−1(slm).

Additional even generators are in weights 2, 3, . . . , n together with
2m even fields in weight n+1

2 which transform under glm as
Cm ⊕ (Cm)∗.

We define the case Wψ(0,m) separately as follows.

1. For m ≥ 2,

Wψ(0,m) = V ψ−m(slm)⊗ S(m),

where S(m) is the rank m βγ-system.

2. Wψ(0, 1) = S(1).
3. Wψ(0, 0) ∼= C.
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For n +m ≥ 2 and n ̸= m, write
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(
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.

Nilpotent fn ∈ sln is principal in sln and trivial in glm.

Define shifted level ψ = k + n −m, and let

Vψ(n,m) = Wψ(sln|m, fn),

which has level k = ψ − n +m.

Case n = m ≥ 2 slightly different: Vψ(n, n) = Wψ(psln|n, fn).
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For m ≥ 2, Vψ(n,m) has affine subalgebra

V−ψ−m+1(glm), m ̸= n,

V−ψ−n+1(sln), m = n.

Additional even generators in weights 2, 3, . . . , n, together with 2m
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3. Vψ(0, 1) = F(2).

4. Vψ(0, 0) ∼= Vψ(1, 0) ∼= C.
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9. Trialities in type A

Consider the affine cosets

Cψ(n,m) = Com(V ψ−m−1(glm),Wψ(n,m)),

Dψ(n,m) = Com(V−ψ−m+1(glm),Vψ(n,m)), n ̸= m,

Dψ(n, n) = Com(V−ψ−n+1(sln),Vψ(n, n))U(1).

Thm: (Creutzig-L., 2020) Let n ≥ m be non-negative integers.
We have isomorphisms of 1-parameter VOAs

Dψ(n,m) ∼= Cψ−1
(n −m,m) ∼= Dψ′

(m, n),
1

ψ
+

1

ψ′ = 1.

Originally conjectured in physics by Gaiotto and Rapčák (2017).
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10. Some special cases

Dψ(n, 0) ∼= Cψ−1
(n, 0) recovers Feigin-Frenkel duality in type A.

Isomorphisms Dψ(n,m) ∼= Cψ−1
(n −m,m) are of Feigin-Frenkel

type.

Dψ(n, 0) ∼= Dψ′
(0, n) recovers the coset realization of Wψ(sln).

Isomorphisms Dψ(n,m) ∼= Dψ′
(m, n) are of coset realization

type.

One more example:

Dψ(n, 1) ∼= Cψ−1
(n − 1, 1) ∼= Dψ′

(1, n),

recovers a duality conjectured by Feigin and Semikhatov and
proved in a different way by Creutzig, Genra, and Nakatsuka.
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11. Sketch of proof, cont’d

Step 1: In the ψ → ∞ limit, both Cψ(n,m) and Dψ(n,m) become
GLm-orbifolds of certain free field algebras.

Using classical invariant theory, it is shown that

1. Cψ(n,m) has generating type
W(2, 3, . . . , (m + 1)(m + n + 1)− 1),

2. Dψ(n,m) has generating type W(2, 3, . . . , (m+1)(n+1)−1).

Step 2: Universal two-parameter W∞-algebra W(c , λ) serves is a
classifying object for VOAs of type W(2, 3, . . . ,N) for some N.

W(c, λ) is freely generated of type W(2, 3, . . . ), and is defined
over the polynomial ring C[c , λ] ∼= W(c , λ)[0].
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12. One-parameter quotients of W(c , λ)

Let I ⊆ C[c, λ] be a prime ideal.

I · W(c , λ) the VOA ideal generated by I .

Quotient
W I (c, λ) = W(c , λ)/(I · W(c , λ))

is a VOA over R = C[c , λ]/I .

W I (c , λ) is simple for a generic ideal I , but for certain special
ideals I , W I (c , λ) is not simple.

Let WI (c , λ) be simple graded quotient of W I (c , λ).

Thm: (L., 2017) All simple, one-parameter VOAs of type
W(2, 3, . . . ,N) satisfying mild hypotheses, are of this form.

Variety V (I ) ⊆ C2 is called the truncation curve.
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13. One-parameter quotients of W(c , λ)

Then Cψ(n,m) and Dψ(n,m) are of the form WI (c , λ) for some I .

Step 3: Explicit truncation curves for Cψ(n,m) and Dψ(n,m).

Wψ(n,m) is an extension V ψ−m+1(glm)⊗WI (c, λ) for some I

Extension is generated by 2m fields in weight n+1
2 which transform

as Cm ⊕ (Cm)∗ under glm.

Existence of such an extension uniquely and explicitly determines I .

Same method works for Vψ(n,m).

Triality theorem follows from explicit form of I .
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14. Application: coincidences

Nontrivial pointwise isomorphisms among simple algebras Cψ(n,m)
correspond to intersection points of truncation curves.

Thm: (Creutzig, L. 2020) We have Cψ(n,m) ∼= Wϕ(sls) where

1. ψ =
m + n + s

n
, ϕ =

m + s

m + n + s
,

2. ψ =
m + n

n + s
, ϕ =

s −m

s + n
,

3. ψ =
m + n − s

n − s
, ϕ =

m + n − s

n − s
.

Cψ(1, 1) is just parafermion algebra Nk(sl2) for k = ψ − 2.
(Dong, Lam, Yamada, Wang, and others).

Family (1) says for k ∈ N,

Nk(sl2) ∼= Wϕ(sls), ϕ =
1 + s

2 + s
.

First proven by Arakawa, Lam, Yamada (2019).



14. Application: coincidences

Nontrivial pointwise isomorphisms among simple algebras Cψ(n,m)
correspond to intersection points of truncation curves.

Thm: (Creutzig, L. 2020) We have Cψ(n,m) ∼= Wϕ(sls) where

1. ψ =
m + n + s

n
, ϕ =

m + s

m + n + s
,

2. ψ =
m + n

n + s
, ϕ =

s −m

s + n
,

3. ψ =
m + n − s

n − s
, ϕ =

m + n − s

n − s
.

Cψ(1, 1) is just parafermion algebra Nk(sl2) for k = ψ − 2.
(Dong, Lam, Yamada, Wang, and others).

Family (1) says for k ∈ N,

Nk(sl2) ∼= Wϕ(sls), ϕ =
1 + s

2 + s
.

First proven by Arakawa, Lam, Yamada (2019).



14. Application: coincidences

Nontrivial pointwise isomorphisms among simple algebras Cψ(n,m)
correspond to intersection points of truncation curves.

Thm: (Creutzig, L. 2020) We have Cψ(n,m) ∼= Wϕ(sls) where

1. ψ =
m + n + s

n
, ϕ =

m + s

m + n + s
,

2. ψ =
m + n

n + s
, ϕ =

s −m

s + n
,

3. ψ =
m + n − s

n − s
, ϕ =

m + n − s

n − s
.

Cψ(1, 1) is just parafermion algebra Nk(sl2) for k = ψ − 2.
(Dong, Lam, Yamada, Wang, and others).

Family (1) says for k ∈ N,

Nk(sl2) ∼= Wϕ(sls), ϕ =
1 + s

2 + s
.

First proven by Arakawa, Lam, Yamada (2019).



14. Application: coincidences

Nontrivial pointwise isomorphisms among simple algebras Cψ(n,m)
correspond to intersection points of truncation curves.

Thm: (Creutzig, L. 2020) We have Cψ(n,m) ∼= Wϕ(sls) where

1. ψ =
m + n + s

n
, ϕ =

m + s

m + n + s
,

2. ψ =
m + n

n + s
, ϕ =

s −m

s + n
,

3. ψ =
m + n − s

n − s
, ϕ =

m + n − s

n − s
.

Cψ(1, 1) is just parafermion algebra Nk(sl2) for k = ψ − 2.
(Dong, Lam, Yamada, Wang, and others).

Family (1) says for k ∈ N,

Nk(sl2) ∼= Wϕ(sls), ϕ =
1 + s

2 + s
.

First proven by Arakawa, Lam, Yamada (2019).



15. Analogue for orthosymplectic types

We consider 8 families Lie (super)algebras g of type B,C ,D or
osps|2r , with following properties:

1. We have a decomposition g = a⊕ b⊕ ρa ⊗ ρb,

2. a and b are Lie sub(super)algebras of g,

3. b = so2m+1 or sp2m,

4. a = so2n+1, sp2n, so2n, or osp1|2n.

5. ρa, ρb transform as the standard representations of a, b,
respectively.

Consider Wψ(g, fb), where fb ∈ g is the nilpotent which is
principal in b and trivial in a.

Affine cosets are quotients of universal 2-parameter algebra
Wev(c, λ) of type W(2, 4, 6, . . . ) constructed by Kanade-L. (2019).

Similar triality theorem is due to Creutzig, L. (2021), also
conjectured by Gaiotto and Rapčák (2017).
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16. How does this generalize?

Need families of VOAs that are quotients of a universal object.

Example: Rectangular W-algebras in type A (Arakawa, Molev,
2017) and some variants.

Consider glnm equipped with the nilpotent element fnm

corresponding to the tableau with m blocks of height n.

Wψ(glnm, fnm) is called rectangular; it is freely generated of type
W(1m

2
, 2m

2
, . . . , nm

2
).

Weight one fields generate V nψ−nm(glm) and m2 fields of weight d
for 2 ≤ d ≤ n transform as adjoint glm-module.

Natural generalization of principal W-algebra, which is case m = 1.
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17. Rectangular W-algebras with tail

Now consider glnm+r equipped with the nilpotent element fnm

which is rectangular in glnm and trivial in glr .

Embedding V nψ−nm−r (glm)⊗ V ψ−r−m(glr ) ↪→ Wψ(glnm+r , fnm).

Using large level limit together with classical invariant theory, coset

Com(V ψ−r−m(glr ),Wψ(glnm+r , fnm))

has strong generating type
W(1m

2
, 2m

2
, . . . , nm

2
, (n + 1)m

2
, . . . ,Nm2

) for some N.

Similar statement holds for superalgebra Wψ(glnm|r , fnm).

Expectation: For each m ∈ N, there exists a 2-parameter VOA
Wglm(c, λ) which is freely generated of type W(1m

2
, 2m

2
, . . . ),

such that all of these VOAs arise as one-parameter quotients.

In the case m = 1, we should just recover H⊗W(c , λ).
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18. Rectangular W-algebras with tail

To construct Wglm(c , λ) from first principles is difficult.

One model for Wglm(c , λ) is obtained by taking n = 1.

Then for each r ,m ∈ N, Wψ(glnm+r , fnm) = V ℓ(glm+r ) for
ℓ = ψ −m − r , and above coset is Com(V ℓ(glr ),V

ℓ(glm+r )).

It is possible to replace r with a complex parameter to construct a
VOA with two parameters r and ℓ.

This should be isomorphic to Wglm(c , λ) after a suitable change of
parameters.

Note: For each fixed r , Com(V ℓ(glr ),V
ℓ(glm+r )) is an extension

of a Heisenberg algebra tensored with m commuting quotients of
W(c , λ).

Therefore we expect Wglm(c, λ) to be such an extension.
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19. Other types

We expect similar 2-parameter VOAs Wson(c , λ) of type

W(1d1 , 2d2 , 3d1 , 4d2 , . . . ), d1 = dim ∧2(Cn), d2 = dim Sym2(Cn).

(Currently under construction with Flor Orosz Hunziker).

Expected to be extensions of tensor products of quotients of
Wev(c, λ).

This is because Com(V k(son),V
k(son+1)) is a quotient of

Wev(c, λ) for all n ≥ 1.

In type C the story is different because
Com(V k(sp2n),V

k(sp2n+2)) has a copy of V k(sp2), and has
strong generating type W(13, 2, 33, 4, 53, . . . ).

Can replace n with a complex parameter to construct a
2-parameter VOA which is freely generated of type
W(13, 2, 33, 4, 53, . . . ).
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20. The universal object Wsp2

Vladimir Kovalchuk is (nearly) finished proving that this is a
universal object, which we denote by Wsp2 .

Similar to, but more involved, than construction of W(c, λ).
Expect it has exactly 2 free parameters c, k .

In addition to generators X ,Y ,H of V k(sp2), we have:

1. Fields L,W 4,W 6, . . . which are sp2-trivial,
2. Fields X 2i+1,Y 2i+1, h2i+1 for all i ≥ 1, which transform as

adjoint sp2-module.

We assume:

1. W 2i+2 = W 4
(1)W

2i for i ≥ 2,

2. Z 2i+3 = W 4
(1)Z

2i+1 for all i ≥ 1 and Z = X ,Y ,H.

Write down most general OPE algebra that is compatible with
sp2-symmetry, with undermined structure constants.

Structure constants are determined by imposing Jacobi identities.
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21. Some quotients of Wsp2

Let g = so4n which has a subalgebra sp2n ⊕ sp2 and decomposes as

so4n ∼= sp2n ⊕ sp2 ⊕ (ρω2 ⊗ C3).

Note: As a sp2n-module,

∧2(C2n) ∼= C⊕ ρω2 ,

so dim ρω2 = n(2n − 1)− 1.

Let fsp2n be the nilpotent which is principal in sp2n.

Wψ(so4n, fsp2n) is analogous to Wψ(glnm, fnm), where

1. Principal part gln is replaced with sp2n.
2. Rectangular part glm is replaced with sp2.

Wψ(so4n, fsp2n) is freely generated of type

W(13, 2, 33, 4, . . . , (2n − 1)3, 2n).
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23. Some quotients of Wsp2, cont’d

More generally, we have 8 families of W-(super)algebras that are
analogues of “rectangular with tail” algebras Wψ(glnm+r , fnm):

1. Principal part gln is replaced with either sp2n or so2n+1,

2. Rectangular part glm is replaced with sp2,

3. Tail part glr is replaced with g, either
so2r , so2r+1, sp2r , osp1|2r .

Example: g = so4n+2r , where fsp2n is as above inside so4n. Then
Wψ(so4n+2r , fsp2n) has affine subVOA

V ℓ1(sp2)⊗ V ℓ2(so2r ), ℓ1 = nψ − r − 2n, ℓ2 = ψ − 2r − 2.

Then Com(V ℓ2(so2r ),Wψ(so4n+2r , fsp2n))
Z2 is a quotient of Wsp2 .
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24. Some quotients of Wsp2, cont’d

Note: These 8 families are the type C analogues of the
Gaiotto-Rapčák Y -algebras.

Kovalchuk has computed their truncation curves.

Intersection points are all rational, leading to interesting
coincidences.

Strong uniqueness theorem: all W-algebras in these families are
uniquely determined up to isomorphism by:

1. Structure of Wsp2

2. Action of “tail” Lie (super)algebra on extension fields.

Observation: There are no trialities: all VOAs in these 8 families
are distinct as 1-parameter VOAs.

Unlike the W∞-algebras, these 8 families do not exhaust all the
1-parameter quotients of Wsp2 .
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25. Motivation: diagonal cosets in type A

For g = sln, we have homomorphism

V k+1(sln) → V k(sln)⊗ L1(sln).

Fermion algebra F (2n) is an extension of L1(sln), can replace
above by

V k+1(sln) → V k(sln)⊗ F (2n).

Thm: (Kac, Wakimoto, 1989) If k is admissible, this descends to

Lk+1(sln) → Lk(sln)⊗ F (2n).

Thm: (Arakawa, Creutzig, L. 2018) If k is admissible,

Com(Lk+1(sln), Lk(sln)⊗ F (2n)) ∼= Wϕ(sln), ϕ =
k + n

k + n + 1

which is lisse and rational.
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26. Diagonal cosets in type A

In type B, we can similarly consider the embedding

V k+1(so2n+1) → V k(so2n+1)⊗ F (2n + 1),

which descends to

Lk+1(so2n+1) → Lk(so2n+1)⊗ F (2n + 1),

when k is admissible.

Thm: (Creutzig, Genra, and Creutzig-L. 2021). For k admissible,

Com(Lk+1(so2n+1), Lk(so2n+1)⊗ F (2n + 1)) ∼= Wψ′(osp1|2n),

where k = −2ψ − 2n + 1 and 1
ψ + 1

ψ′ = 2.

Conj: These algebras are lisse and rational.
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27. Diagonal cosets in type C

We have conformal embedding

L1(sp2k)⊗ Lk(sp2) → F (4k),

where F (4k) is the algebra of 4k free fermions.

The images of L1(sp2k) and Lk(sp2) form a dual pair inside F (4k).

For k ∈ N and ℓ ∈ C, consider the diagonal coset

Cℓk = Com(V ℓ−1(sp2k),V
ℓ(sp2k)⊗ F (4k)),

which contains subalgebra Lk(sp2).

Cℓk has the same strong generating type as F(4k)Sp2k , which is of
type W(13, 2, 33, 4, · · · ) by classical invariant theory.

So Cℓk is a 1-parameter quotient of Wsp2 containing Lk(sp2).
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28. Diagonal cosets in type C

Thm: Cℓk is an extension of the product of universal W-algebras
Wϕ1(sp2k)⊗Wϕ2(sp2k) where

ϕ1 = −(k + 1) +
1 + ℓ+ k

1 + 2ℓ+ 2k
, ϕ2 = −(k + 1) +

ℓ+ k

1 + 2ℓ+ 2k
.

If ℓ− 1 is admissible for sp2k , we have an embedding

Lℓ(sp2k) → Lℓ−1(sp2k)⊗ F (4k).

Moreover, for admissible ℓ− 1, we have

Com(Lℓ(sp2k), Lℓ−1(sp2k)⊗ F (4k)) ∼= Ck,ℓ,
where Ck,ℓ is the simple quotient of Cℓk .

Conj: For all k ∈ N if ℓ− 1 is admissible and ϕ1, ϕ2 are
nondegenerate admissible, Ck,ℓ is lisse and rational. (True when
ℓ ∈ N).
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29. An application

Recall: sp2(2n+1) has a subalgebra so2n+1 ⊕ sp2, and

sp2(2n+1)
∼= so2n+1 ⊕ sp2 ⊕ (ρ2ω1 ⊗ C3).

Consider Wψ(osp1|2(2n+1)+2m, fso2n+1), where fso2n+1 a principal
nilpotent in

so2n+1 ⊆ sp2(2n+1) ⊆ sp2(2n+1)+2m ⊆ osp1|2(2n+1)+2m.

For a ∈ N, let

ψ =
3 + 2a+ 2m

2
, k = a+ n + 2an + 2mn.

Affine subalgebra of Wψ(osp1|2(2n+1)+2m, fso2n+1) is

V k(sp2)⊗ V a(osp1|2m).
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30. An application

This is one of the 8 families mentioned earlier, and

Com(V a(osp1|2m),Wψ(osp1|2(2n+1)+2m, fso2n+1)
Z2

is a 1-parameter quotient of Wsp2 .

Assuming the uniqueness of Wsp2 as a 2-parameter VOA, such
quotients are classified by their truncation curves.

Conj: For all a, k ∈ N, Wψ(osp1|2(2n+1)+2m, fso2n+1) has affine
subalgebra

Lk(sp2)⊗ La(osp1|2m).
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31. An application

Kovalchuk’s formulas for truncation curves imply

Com(La(osp1|2m),Wψ(osp1|2(2n+1)+2m, fso2n+1)
Z2 ∼= Ck,r ,

with r = −(k + 1) + 3+2a+2m
2 .

Ck,r should be an extension of Wϕ1(sp2k)⊗Wϕ2(sp2k) with

ϕ1 =
3 + 2k + 2m − 2n − 4an − 4mn

4(1 + k +m − n − 2an − 2mn)
,

ϕ2 =
1 + 2k +m(2− 4n)− 2n − 4an

4(1 + k +m − n − 2an − 2mn)
.

This suggest that Wψ(osp1|2(2n+1)+2m, fso2n+1) should be lisse and
rational for a, n sufficiently large.
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4(1 + k +m − n − 2an − 2mn)
.

This suggest that Wψ(osp1|2(2n+1)+2m, fso2n+1) should be lisse and
rational for a, n sufficiently large.



31. An application

Kovalchuk’s formulas for truncation curves imply

Com(La(osp1|2m),Wψ(osp1|2(2n+1)+2m, fso2n+1)
Z2 ∼= Ck,r ,

with r = −(k + 1) + 3+2a+2m
2 .

Ck,r should be an extension of Wϕ1(sp2k)⊗Wϕ2(sp2k) with

ϕ1 =
3 + 2k + 2m − 2n − 4an − 4mn

4(1 + k +m − n − 2an − 2mn)
,

ϕ2 =
1 + 2k +m(2− 4n)− 2n − 4an

4(1 + k +m − n − 2an − 2mn)
.

This suggest that Wψ(osp1|2(2n+1)+2m, fso2n+1) should be lisse and
rational for a, n sufficiently large.


