Universal vertex algebras beyond the \mathcal{W}_{∞}-algebras

Andrew Linshaw
University of Denver

Joint with T. Creutzig (Edmonton) and V. Kovalchuk (Denver)

1. Notation

\mathfrak{g} a simple, finite-dimensional Lie (super)algebra.
$\mathcal{W}^{k}(\mathfrak{g}, f)$ universal \mathcal{W}-algebra associated to \mathfrak{g} and an even nilpotent $f \in \mathfrak{g}$.

Simple quotient $\mathcal{W}_{k}(\mathfrak{g}, f)$.
For this talk: We will replace k with the shifted level $\psi=k+h^{\vee}$.
$\mathcal{W}^{\psi}(g, f)$ will always denote $\mathcal{W}^{k}(g, f)$ with $k=\psi-h^{V}$.
$\mathcal{W}_{\psi}(\mathfrak{g}, f)$ the simple quotient of $\mathcal{W}_{\psi}(\mathfrak{g}, f)$.
If $f=f_{\text {prin }}$ is a principal nilpotent, write $\mathcal{W}^{\psi}(g, f)=\mathcal{W}^{\psi}(g)$.

1. Notation

\mathfrak{g} a simple, finite-dimensional Lie (super)algebra.
$\mathcal{W}^{k}(\mathfrak{g}, f)$ universal \mathcal{W}-algebra associated to \mathfrak{g} and an even nilpotent $f \in \mathfrak{g}$.

Simple quotient $\mathcal{W}_{k}(\mathfrak{g}, f)$.
For this talk: We will replace k with the shifted level $\psi=k+h^{\vee}$
$\mathcal{W}^{\psi}(g, f)$ will always denote $\mathcal{W}^{k}(g, f)$ with $k=\psi-h^{v}$
$\mathcal{W}_{\psi}(\mathfrak{g}, f)$ the simple quotient of $\mathcal{W}_{\psi}(\mathfrak{g}, f)$.
If $f=f_{\text {prin }}$ is a principal nilpotent, write $\mathcal{W}^{\psi}(g, f)=\mathcal{W}^{\psi}(g)$.

1. Notation

\mathfrak{g} a simple, finite-dimensional Lie (super)algebra.
$\mathcal{W}^{k}(\mathfrak{g}, f)$ universal \mathcal{W}-algebra associated to \mathfrak{g} and an even nilpotent $f \in \mathfrak{g}$.

Simple quotient $\mathcal{W}_{k}(\mathfrak{g}, f)$.
For this talk: We will replace k with the shifted level $\psi=k+h^{\vee}$
$\mathcal{W}^{\psi}(\mathfrak{g}, f)$ will always denote $\mathcal{W}^{k}(\mathfrak{g}, f)$ with $k=\psi-h^{\vee}$
$W_{\psi}(g, f)$ the simple quotient of $W_{\psi}(g, f)$.
If $f=f_{\text {prin }}$ is a principal nilpotent, write $\mathcal{W}^{\psi}(\mathfrak{g}, f)=\mathcal{W}^{\psi}(\mathfrak{g})$.

1. Notation

\mathfrak{g} a simple, finite-dimensional Lie (super)algebra.
$\mathcal{W}^{k}(\mathfrak{g}, f)$ universal \mathcal{W}-algebra associated to \mathfrak{g} and an even nilpotent $f \in \mathfrak{g}$.

Simple quotient $\mathcal{W}_{k}(\mathfrak{g}, f)$.
For this talk: We will replace k with the shifted level $\psi=k+h^{\vee}$.
$\mathcal{W}^{\psi}(\mathfrak{g}, f)$ will always denote $\mathcal{W}^{k}(\mathfrak{g}, f)$ with $k=\psi-h^{\vee}$.
$\mathcal{W}_{\psi}(\mathfrak{g}, f)$ the simple quotient of $\mathcal{W}_{\psi}(\mathfrak{g}, f)$.
If $f=f_{\text {prin }}$ is a principal nilpotent, write $\mathcal{W}^{*}(g, f)=\mathcal{W}^{\psi}(g)$.

1. Notation

\mathfrak{g} a simple, finite-dimensional Lie (super)algebra.
$\mathcal{W}^{k}(\mathfrak{g}, f)$ universal \mathcal{W}-algebra associated to \mathfrak{g} and an even nilpotent $f \in \mathfrak{g}$.

Simple quotient $\mathcal{W}_{k}(\mathfrak{g}, f)$.
For this talk: We will replace k with the shifted level $\psi=k+h^{\vee}$.
$\mathcal{W}^{\psi}(\mathfrak{g}, f)$ will always denote $\mathcal{W}^{k}(\mathfrak{g}, f)$ with $k=\psi-h^{\vee}$.
$\mathcal{W}_{\psi}(\mathfrak{g}, f)$ the simple quotient of $\mathcal{W}_{\psi}(\mathfrak{g}, f)$.
If $f=f_{\text {prin }}$ is a principal nilpotent, write $\mathcal{W}^{\psi}(\mathfrak{g}, f)=\mathcal{W}^{\psi}(\mathfrak{g})$.

1. Notation

\mathfrak{g} a simple, finite-dimensional Lie (super)algebra.
$\mathcal{W}^{k}(\mathfrak{g}, f)$ universal \mathcal{W}-algebra associated to \mathfrak{g} and an even nilpotent $f \in \mathfrak{g}$.

Simple quotient $\mathcal{W}_{k}(\mathfrak{g}, f)$.
For this talk: We will replace k with the shifted level $\psi=k+h^{\vee}$.
$\mathcal{W}^{\psi}(\mathfrak{g}, f)$ will always denote $\mathcal{W}^{k}(\mathfrak{g}, f)$ with $k=\psi-h^{\vee}$.
$\mathcal{W}_{\psi}(\mathfrak{g}, f)$ the simple quotient of $\mathcal{W}_{\psi}(\mathfrak{g}, f)$.
If $f=f_{\text {prin }}$ is a principal nilpotent, write $\mathcal{W}^{\psi}(g, f)=\mathcal{W}^{\psi}(g)$.

1. Notation

\mathfrak{g} a simple, finite-dimensional Lie (super)algebra.
$\mathcal{W}^{k}(\mathfrak{g}, f)$ universal \mathcal{W}-algebra associated to \mathfrak{g} and an even nilpotent $f \in \mathfrak{g}$.

Simple quotient $\mathcal{W}_{k}(\mathfrak{g}, f)$.
For this talk: We will replace k with the shifted level $\psi=k+h^{\vee}$.
$\mathcal{W}^{\psi}(\mathfrak{g}, f)$ will always denote $\mathcal{W}^{k}(\mathfrak{g}, f)$ with $k=\psi-h^{\vee}$.
$\mathcal{W}_{\psi}(\mathfrak{g}, f)$ the simple quotient of $\mathcal{W}_{\psi}(\mathfrak{g}, f)$.
If $f=f_{\text {prin }}$ is a principal nilpotent, write $\mathcal{W}^{\psi}(\mathfrak{g}, f)=\mathcal{W}^{\psi}(\mathfrak{g})$.

2. Feigin-Frenkel duality

Thm: (Feigin, Frenkel, 1991) Let \mathfrak{g} be a simple Lie algebra. Then

$$
\mathcal{W}^{\psi}(\mathfrak{g}) \cong \mathcal{W}^{\psi^{\prime}}\left({ }^{L} \mathfrak{g}\right), \quad r^{\vee} \psi \psi^{\prime}=1
$$

Here ${ }^{L} \mathfrak{g}$ is the Langlands dual Lie algebra, and r^{\vee} is the lacity of \mathfrak{g}.
Similar result holds for $\mathfrak{g}=\boldsymbol{0 s p}_{1 \mid 2 n}$.
Thm: (Creutzig, Genra)

$$
\mathcal{W}^{\psi}\left(\operatorname{osp}_{1 \mid 2 n}\right) \cong \mathcal{W}^{\psi^{\prime}}\left(\operatorname{osp}_{1 \mid 2 n}\right)
$$

2. Feigin-Frenkel duality

Thm: (Feigin, Frenkel, 1991) Let \mathfrak{g} be a simple Lie algebra. Then

$$
\mathcal{W}^{\psi}(\mathfrak{g}) \cong \mathcal{W}^{\psi^{\prime}}\left({ }^{L} \mathfrak{g}\right), \quad r^{\vee} \psi \psi^{\prime}=1
$$

Here ${ }^{L} \mathfrak{g}$ is the Langlands dual Lie algebra, and r^{\vee} is the lacity of \mathfrak{g}.
Similar result holds for $\mathfrak{g}=\mathfrak{o s p}_{1 \mid 2 n}$.
Thm: (Creutzig, Genra)

$$
\mathcal{W}^{\psi}\left(\mathfrak{o s p}_{1 \mid 2 n}\right) \cong \mathcal{W}^{\psi^{\prime}}\left(\mathfrak{o s p}_{1 \mid 2 n}\right),
$$

2. Feigin-Frenkel duality

Thm: (Feigin, Frenkel, 1991) Let \mathfrak{g} be a simple Lie algebra. Then

$$
\mathcal{W}^{\psi}(\mathfrak{g}) \cong \mathcal{W}^{\psi^{\prime}}\left({ }^{L} \mathfrak{g}\right), \quad r^{\vee} \psi \psi^{\prime}=1
$$

Here ${ }^{L} \mathfrak{g}$ is the Langlands dual Lie algebra, and r^{\vee} is the lacity of \mathfrak{g}.
Similar result holds for $\mathfrak{g}=\mathfrak{o s p}_{1 \mid 2 n}$.
Thm: (Creutzig, Genra)

$$
\mathcal{W}^{\psi}\left(\mathfrak{o s p}_{1 \mid 2 n}\right) \cong \mathcal{W}^{\psi^{\prime}}\left(\mathfrak{o s p}_{1 \mid 2 n}\right), \quad 4 \psi \psi^{\prime}=1
$$

3. Coset construction of principal \mathcal{W}-algebras

Thm: (Arakawa, Creutzig, L., 2018) Let \mathfrak{g} be simple and simply-laced. We have diagonal embedding

$$
V^{k+1}(\mathfrak{g}) \hookrightarrow V^{k}(\mathfrak{g}) \otimes L_{1}(\mathfrak{g}), \quad u \mapsto u \otimes 1+1 \otimes u, \quad u \in \mathfrak{g}
$$

Set

$$
\mathcal{C}^{k}(\mathfrak{g})=\operatorname{Com}\left(V^{k+1}(\mathfrak{g}), V^{k}(\mathfrak{g}) \otimes L_{1}(\mathfrak{g})\right)
$$

We have an isomorphism of 1-parameter VOAs

$$
C^{k}(\mathfrak{g}) \cong \mathcal{W}^{\psi}(\mathfrak{g}), \quad \psi=\frac{k+h^{\vee}}{k+h^{\vee}+1}
$$

Coset realization for B (and C) is different.
Thm: (Creutzig, Genra, and Creutzig-1., 2021) We have an isomorphism of 1-parameter VOAs

3. Coset construction of principal \mathcal{W}-algebras

Thm: (Arakawa, Creutzig, L., 2018) Let \mathfrak{g} be simple and simply-laced. We have diagonal embedding

$$
V^{k+1}(\mathfrak{g}) \hookrightarrow V^{k}(\mathfrak{g}) \otimes L_{1}(\mathfrak{g}), \quad u \mapsto u \otimes 1+1 \otimes u, \quad u \in \mathfrak{g}
$$

Set

$$
\mathcal{C}^{k}(\mathfrak{g})=\operatorname{Com}\left(V^{k+1}(\mathfrak{g}), V^{k}(\mathfrak{g}) \otimes L_{1}(\mathfrak{g})\right)
$$

We have an isomorphism of 1-parameter VOAs

$$
C^{k}(\mathfrak{g}) \cong \mathcal{W}^{\psi}(\mathfrak{g}), \quad \psi=\frac{k+h^{\vee}}{k+h^{\vee}+1}
$$

Coset realization for B (and C) is different.
Thm: (Creutzig, Genra, and Creutzig-L., 2021) We have an isomorphism of 1-parameter VOAs

3. Coset construction of principal \mathcal{W}-algebras

Thm: (Arakawa, Creutzig, L., 2018) Let \mathfrak{g} be simple and simply-laced. We have diagonal embedding

$$
V^{k+1}(\mathfrak{g}) \hookrightarrow V^{k}(\mathfrak{g}) \otimes L_{1}(\mathfrak{g}), \quad u \mapsto u \otimes 1+1 \otimes u, \quad u \in \mathfrak{g} .
$$

Set

$$
\mathcal{C}^{k}(\mathfrak{g})=\operatorname{Com}\left(V^{k+1}(\mathfrak{g}), V^{k}(\mathfrak{g}) \otimes L_{1}(\mathfrak{g})\right)
$$

We have an isomorphism of 1-parameter VOAs

$$
C^{k}(\mathfrak{g}) \cong \mathcal{W}^{\psi}(\mathfrak{g}), \quad \psi=\frac{k+h^{\vee}}{k+h^{\vee}+1}
$$

Coset realization for B (and C) is different.
Thm: (Creutzig, Genra, and Creutzig-L., 2021) We have an isomorphism of 1-parameter VOAs
$\operatorname{Com}\left(V^{k}\left(\mathfrak{s p}_{2 n}\right), V^{k}\left(\mathfrak{o s p}_{1 \mid 2 n}\right)\right) \cong \mathcal{W}^{\psi}\left(\mathfrak{s o}_{2 n+1}\right), \quad \psi=\frac{2 k+2 n+1}{2(1+k+n)}$.

4. What are trialities of \mathcal{W}-algebras?

Let $f \in \mathfrak{g}$ be a nilpotent, and complete f to a copy $\{f, h, e\}$ of $\mathfrak{s l}_{2}$ in \mathfrak{g}.

Let $\mathfrak{a} \subseteq \mathfrak{g}$ denote the centralizer of this $\mathfrak{s l}_{2}$ in \mathfrak{g}.
Then $W^{\psi^{\prime}}(g, f)$ has affine subVOA $V^{\psi^{\prime}}(a)$, for some level ψ^{\prime}
By the affine coset, we mean $\mathcal{C}^{\psi}(\mathfrak{g}, f):=\operatorname{Com}\left(V^{\psi^{\prime}}(\mathfrak{a}), \mathcal{W}^{\psi}(\mathfrak{g}, f)\right)$.
Sometimes we also take invariants under some group of outer automorphisms.

Trialities are isomorphisms between three different affine cosets

$$
C^{\prime k}(g, f) \cong C^{\prime k^{\prime}}\left(g^{\prime}, f^{\prime}\right) \cong C^{\prime \prime \prime}\left(g^{\prime \prime}, f^{\prime \prime}\right) \text {. }
$$

These unify and generalize both Feigin-Frenkel duality and the coset realization of principal \mathcal{W}-algebras.

4. What are trialities of \mathcal{W}-algebras?

Let $f \in \mathfrak{g}$ be a nilpotent, and complete f to a copy $\{f, h, e\}$ of $\mathfrak{s l}_{2}$ in \mathfrak{g}.

Let $\mathfrak{a} \subseteq \mathfrak{g}$ denote the centralizer of this $\mathfrak{s l}_{2}$ in \mathfrak{g}.
Then $\mathcal{W}^{\psi}(\mathfrak{g}, f)$ has affine subVOA $V^{\psi^{\prime}}(\mathfrak{a})$, for some level ψ^{\prime}.
By the affine coset, we mean $\mathcal{C}^{\psi}(\mathfrak{g}, f):=\operatorname{Com}\left(V^{\psi^{\prime}}(\mathfrak{a}), \mathcal{W}^{\psi}(\mathfrak{g}, f)\right)$.
Sometimes we also take invariants under some group of outer automorphisms.

Trialities are isomorphisms between three different affine cosets

$$
C^{\prime \prime}(g, f) \cong C^{k^{\prime}}\left(g^{\prime}, f^{\prime}\right) \simeq C^{k^{\prime \prime}}\left(g^{\prime \prime}, f^{\prime \prime}\right) .
$$

These unify and generalize both Feigin-Frenkel duality and the coset realization of principal \mathcal{W}-algebras.

4. What are trialities of \mathcal{W}-algebras?

Let $f \in \mathfrak{g}$ be a nilpotent, and complete f to a copy $\{f, h, e\}$ of $\mathfrak{s l}_{2}$ in \mathfrak{g}.

Let $\mathfrak{a} \subseteq \mathfrak{g}$ denote the centralizer of this $\mathfrak{s l}_{2}$ in \mathfrak{g}.
Then $\mathcal{W}^{\psi}(\mathfrak{g}, f)$ has affine subVOA $V^{\psi^{\prime}}(\mathfrak{a})$, for some level ψ^{\prime}.
By the affine coset, we mean $\mathcal{C}^{\psi}(g, f):=\operatorname{Com}\left(V^{\psi^{\prime}}(\mathfrak{a}), \mathcal{W}^{\psi}(g, f)\right)$.
Sometimes we also take invariants under some group of outer automorphisms.

Trialities are isomorphisms between three different affine cosets

These unify and generalize both Feigin-Frenkel duality and the coset realization of principal \mathcal{W}-algebras.

4. What are trialities of \mathcal{W}-algebras?

Let $f \in \mathfrak{g}$ be a nilpotent, and complete f to a copy $\{f, h, e\}$ of $\mathfrak{s l}_{2}$ in \mathfrak{g}.

Let $\mathfrak{a} \subseteq \mathfrak{g}$ denote the centralizer of this $\mathfrak{s l}_{2}$ in \mathfrak{g}.
Then $\mathcal{W}^{\psi}(\mathfrak{g}, f)$ has affine subVOA $V^{\psi^{\prime}}(\mathfrak{a})$, for some level ψ^{\prime}.
By the affine coset, we mean $\mathcal{C}^{\psi}(\mathfrak{g}, f):=\operatorname{Com}\left(V^{\psi^{\prime}}(\mathfrak{a}), \mathcal{W}^{\psi}(\mathfrak{g}, f)\right)$.
Sometimes we also take invariants under some group of outer automorphisms.

Trialities are isomorphisms between three different affine cosets

These unify and generalize both Feigin-Frenkel duality and the coset realization of principal \mathcal{W}-algebras.

4. What are trialities of \mathcal{W}-algebras?

Let $f \in \mathfrak{g}$ be a nilpotent, and complete f to a copy $\{f, h, e\}$ of $\mathfrak{s l}_{2}$ in \mathfrak{g}.

Let $\mathfrak{a} \subseteq \mathfrak{g}$ denote the centralizer of this $\mathfrak{s l}_{2}$ in \mathfrak{g}.
Then $\mathcal{W}^{\psi}(\mathfrak{g}, f)$ has affine subVOA $V^{\psi^{\prime}}(\mathfrak{a})$, for some level ψ^{\prime}.
By the affine coset, we mean $\mathcal{C}^{\psi}(\mathfrak{g}, f):=\operatorname{Com}\left(V^{\psi^{\prime}}(\mathfrak{a}), \mathcal{W}^{\psi}(\mathfrak{g}, f)\right)$.
Sometimes we also take invariants under some group of outer automorphisms.

Trialities are isomorphisms between three different affine cosets

These unify and generalize both Feigin-Frenkel duality and the coset realization of principal \mathcal{W}-algebras.

4. What are trialities of \mathcal{W}-algebras?

Let $f \in \mathfrak{g}$ be a nilpotent, and complete f to a copy $\{f, h, e\}$ of $\mathfrak{s l}_{2}$ in \mathfrak{g}.

Let $\mathfrak{a} \subseteq \mathfrak{g}$ denote the centralizer of this $\mathfrak{s l}_{2}$ in \mathfrak{g}.
Then $\mathcal{W}^{\psi}(\mathfrak{g}, f)$ has affine subVOA $V^{\psi^{\prime}}(\mathfrak{a})$, for some level ψ^{\prime}.
By the affine coset, we mean $\mathcal{C}^{\psi}(\mathfrak{g}, f):=\operatorname{Com}\left(V^{\psi^{\prime}}(\mathfrak{a}), \mathcal{W}^{\psi}(\mathfrak{g}, f)\right)$.
Sometimes we also take invariants under some group of outer automorphisms.

Trialities are isomorphisms between three different affine cosets

$$
\mathcal{C}^{\psi}(\mathfrak{g}, f) \cong \mathcal{C}^{\psi^{\prime}}\left(\mathfrak{g}^{\prime}, f^{\prime}\right) \cong \mathcal{C}^{\psi^{\prime \prime}}\left(\mathfrak{g}^{\prime \prime}, f^{\prime \prime}\right)
$$

These unify and generalize both Feigin-Frenkel duality and the coset realization of principal \mathcal{W}-algebras.

5. Hook-type \mathcal{W}-algebras in type A

Recall: For $n \geq 1$, write

$$
\mathfrak{s l}_{n+m}=\mathfrak{s l}_{n} \oplus \mathfrak{g l}_{m} \oplus\left(\mathbb{C}^{n} \otimes\left(\mathbb{C}^{m}\right)^{*}\right) \oplus\left(\left(\mathbb{C}^{n}\right)^{*} \otimes \mathbb{C}^{m}\right)
$$

Let $f_{n} \in \mathfrak{s l}_{n+m}$ be the nilpotent which is principal in $\mathfrak{s l}_{n}$ and trivial in $\mathfrak{g l}_{m}$.
f_{n} corresponds to the hook-type partition $n+1+\cdots+1$.
Then $\psi=k+n+m$, and we define

$$
\mathcal{W}^{\psi}(n, m):=\mathcal{W}^{\psi}\left(s l_{n+m}, f_{n}\right),
$$

which has level $k=\psi-n-m$.

5. Hook-type \mathcal{W}-algebras in type A

Recall: For $n \geq 1$, write

$$
\mathfrak{s l}_{n+m}=\mathfrak{s l}_{n} \oplus \mathfrak{g l}_{m} \oplus\left(\mathbb{C}^{n} \otimes\left(\mathbb{C}^{m}\right)^{*}\right) \oplus\left(\left(\mathbb{C}^{n}\right)^{*} \otimes \mathbb{C}^{m}\right)
$$

Let $f_{n} \in \mathfrak{s l}_{n+m}$ be the nilpotent which is principal in $\mathfrak{s l}_{n}$ and trivial in $\mathfrak{g l}_{m}$.
f_{n} corresponds to the hook-type partition $n+1+\cdots+1$.
Then $\psi=k+n+m$, and we define

$$
W^{\psi}(n, m):=W^{\psi}\left(s l_{n+m}, f_{n}\right),
$$

which has level $k=\psi-n-m$.

5. Hook-type \mathcal{W}-algebras in type A

Recall: For $n \geq 1$, write

$$
\mathfrak{s l}_{n+m}=\mathfrak{s l}_{n} \oplus \mathfrak{g l}_{m} \oplus\left(\mathbb{C}^{n} \otimes\left(\mathbb{C}^{m}\right)^{*}\right) \oplus\left(\left(\mathbb{C}^{n}\right)^{*} \otimes \mathbb{C}^{m}\right)
$$

Let $f_{n} \in \mathfrak{s l}_{n+m}$ be the nilpotent which is principal in $\mathfrak{s l}_{n}$ and trivial in $\mathfrak{g l}_{m}$.
f_{n} corresponds to the hook-type partition $n+1+\cdots+1$.
Then $\psi=k+n+m$, and we define

$$
\mathcal{W}^{\psi}(n, m):=\mathcal{W}^{\psi}\left(\mathfrak{s l}_{n+m}, f_{n}\right),
$$

which has level $k=\psi-n-m$.

5. Hook-type \mathcal{W}-algebras in type A

Recall: For $n \geq 1$, write

$$
\mathfrak{s l}_{n+m}=\mathfrak{s l}_{n} \oplus \mathfrak{g l}_{m} \oplus\left(\mathbb{C}^{n} \otimes\left(\mathbb{C}^{m}\right)^{*}\right) \oplus\left(\left(\mathbb{C}^{n}\right)^{*} \otimes \mathbb{C}^{m}\right)
$$

Let $f_{n} \in \mathfrak{s l}_{n+m}$ be the nilpotent which is principal in $\mathfrak{s l}_{n}$ and trivial in $\mathfrak{g l}_{m}$.
f_{n} corresponds to the hook-type partition $n+1+\cdots+1$.
Then $\psi=k+n+m$, and we define

$$
\mathcal{W}^{\psi}(n, m):=\mathcal{W}^{\psi}\left(\mathfrak{s l}_{n+m}, f_{n}\right)
$$

which has level $k=\psi-n-m$.

6. Features of $\mathcal{W}^{\psi}(n, m)$

For $m \geq 2, \mathcal{W}^{\psi}(n, m)$ has affine subalgebra

$$
V^{\psi-m-1}\left(\mathfrak{g l}_{m}\right)=\mathcal{H} \otimes V^{\psi-m-1}\left(\mathfrak{s l}_{m}\right)
$$

> Additional even generators are in weights $2,3, \ldots, n$ together with $2 m$ even fields in weight $\frac{n+1}{2}$ which transform under $\mathfrak{g l}_{m}$ as $\mathbb{C}^{m} \oplus\left(\mathbb{C}^{m}\right)^{*}$.

> We define the case $\mathcal{W}^{\psi}(0, m)$ separately as follows. 1. For $m \geq 2$,

$$
\mathcal{W}^{\psi}(0, m)=V^{\psi-m}\left(s_{m}\right) \otimes \mathcal{S}(m)
$$

where $\mathcal{S}(m)$ is the rank $m \beta \gamma$-system.
2. $\mathcal{W}^{\psi}(0,1)=\mathcal{S}(1)$.
3. $\mathcal{W}^{\psi}(0,0) \cong \mathbb{C}$.

6. Features of $\mathcal{W}^{\psi}(n, m)$

For $m \geq 2, \mathcal{W}^{\psi}(n, m)$ has affine subalgebra

$$
V^{\psi-m-1}\left(\mathfrak{g l}_{m}\right)=\mathcal{H} \otimes V^{\psi-m-1}\left(\mathfrak{s l}_{m}\right)
$$

Additional even generators are in weights $2,3, \ldots, n$ together with $2 m$ even fields in weight $\frac{n+1}{2}$ which transform under $\mathfrak{g l}_{m}$ as $\mathbb{C}^{m} \oplus\left(\mathbb{C}^{m}\right)^{*}$.

We define the case $\mathcal{W}^{\psi}(0, m)$ separately as follows.

1. For $m \geq 2$,

$$
\mathcal{W}^{\psi}(0, m)=V^{\psi-m}\left(\mathfrak{s l}_{m}\right) \otimes \mathcal{S}(m),
$$

where $\mathcal{S}(m)$ is the rank $m \beta \gamma$-system.
\square
3. $\mathcal{N}^{\psi}(0,0) \cong \mathbb{C}$.

6. Features of $\mathcal{W}^{\psi}(n, m)$

For $m \geq 2, \mathcal{W}^{\psi}(n, m)$ has affine subalgebra

$$
V^{\psi-m-1}\left(\mathfrak{g l}_{m}\right)=\mathcal{H} \otimes V^{\psi-m-1}\left(\mathfrak{s l}_{m}\right)
$$

Additional even generators are in weights $2,3, \ldots, n$ together with $2 m$ even fields in weight $\frac{n+1}{2}$ which transform under $\mathfrak{g l}_{m}$ as $\mathbb{C}^{m} \oplus\left(\mathbb{C}^{m}\right)^{*}$.

We define the case $\mathcal{W}^{\psi}(0, m)$ separately as follows.

1. For $m \geq 2$,

$$
\mathcal{W}^{\psi}(0, m)=V^{\psi-m}\left(\mathfrak{s l}_{m}\right) \otimes \mathcal{S}(m)
$$

where $\mathcal{S}(m)$ is the rank $m \beta \gamma$-system.
2. $\mathcal{W}^{\psi}(0,1)=\mathcal{S}(1)$.
3. $\mathcal{W}^{\psi}(0,0) \cong \mathbb{C}$.

7. Hook-type \mathcal{W}-superalgebras of type A

For $n+m \geq 2$ and $n \neq m$, write

$$
\mathfrak{s l}_{n \mid m}=\mathfrak{s l}_{n} \oplus \mathfrak{g l}_{m} \oplus\left(\mathbb{C}^{n} \otimes\left(\mathbb{C}^{m}\right)^{*}\right) \oplus\left(\left(\mathbb{C}^{n}\right)^{*} \otimes \mathbb{C}^{m}\right)
$$

Nilpotent $f_{n} \in \mathfrak{s l}_{n}$ is principal in $\mathfrak{s l}_{n}$ and trivial in $\mathfrak{g l}_{m}$.
Define shifted level $\psi=k+n-m$, and let

$$
\mathcal{V}^{\psi}(n, m)=\mathcal{W}^{\psi}\left(\mathfrak{s l}_{n \mid m}, f_{n}\right),
$$

which has level $k=\psi-n+m$.
Case $n=m \geq 2$ slightly different: $\mathcal{V}^{\psi}(n, n)=\mathcal{W}^{\psi}\left(\operatorname{psl}_{n \mid n}, f_{n}\right)$.

7. Hook-type \mathcal{W}-superalgebras of type A

For $n+m \geq 2$ and $n \neq m$, write

$$
\mathfrak{s l}_{n \mid m}=\mathfrak{s l}_{n} \oplus \mathfrak{g l}_{m} \oplus\left(\mathbb{C}^{n} \otimes\left(\mathbb{C}^{m}\right)^{*}\right) \oplus\left(\left(\mathbb{C}^{n}\right)^{*} \otimes \mathbb{C}^{m}\right)
$$

Nilpotent $f_{n} \in \mathfrak{s l}_{n}$ is principal in $\mathfrak{s l}_{n}$ and trivial in $\mathfrak{g l}_{m}$.
Define shifted level $\psi=k+n-m$, and let

$$
\nu^{\psi}(n, m)=W^{\psi}\left(s l_{n \mid m}, f_{n}\right),
$$

which has level $k=\psi-n+m$.
Case $n=m \geq 2$ slightly different: $\mathcal{V}^{\psi}(n, n)=\mathcal{W}^{\psi}\left(\operatorname{psl}_{n \mid n}, f_{n}\right)$.

7. Hook-type \mathcal{W}-superalgebras of type A

For $n+m \geq 2$ and $n \neq m$, write

$$
\mathfrak{s l}_{n \mid m}=\mathfrak{s l}_{n} \oplus \mathfrak{g l}_{m} \oplus\left(\mathbb{C}^{n} \otimes\left(\mathbb{C}^{m}\right)^{*}\right) \oplus\left(\left(\mathbb{C}^{n}\right)^{*} \otimes \mathbb{C}^{m}\right)
$$

Nilpotent $f_{n} \in \mathfrak{s l}_{n}$ is principal in $\mathfrak{s l}_{n}$ and trivial in $\mathfrak{g l}_{m}$.
Define shifted level $\psi=k+n-m$, and let

$$
\mathcal{V}^{\psi}(n, m)=\mathcal{W}^{\psi}\left(\mathfrak{s l}_{n \mid m}, f_{n}\right)
$$

which has level $k=\psi-n+m$.
Case $n=m \geq 2$ slightly different: $\mathcal{V}^{\psi}(n, n)=\mathcal{W}^{\psi}\left(\mathfrak{p s l}_{n \mid n}, f_{n}\right)$.

7. Hook-type \mathcal{W}-superalgebras of type A

For $n+m \geq 2$ and $n \neq m$, write

$$
\mathfrak{s l}_{n \mid m}=\mathfrak{s l}_{n} \oplus \mathfrak{g l}_{m} \oplus\left(\mathbb{C}^{n} \otimes\left(\mathbb{C}^{m}\right)^{*}\right) \oplus\left(\left(\mathbb{C}^{n}\right)^{*} \otimes \mathbb{C}^{m}\right)
$$

Nilpotent $f_{n} \in \mathfrak{s l}_{n}$ is principal in $\mathfrak{s l}_{n}$ and trivial in $\mathfrak{g l}_{m}$.
Define shifted level $\psi=k+n-m$, and let

$$
\mathcal{V}^{\psi}(n, m)=\mathcal{W}^{\psi}\left(\mathfrak{s l}_{n \mid m}, f_{n}\right)
$$

which has level $k=\psi-n+m$.
Case $n=m \geq 2$ slightly different: $\mathcal{V}^{\psi}(n, n)=\mathcal{W}^{\psi}\left(\mathfrak{p s l}_{n \mid n}, f_{n}\right)$.

8. Hook-type \mathcal{W}-superalgebras of type A

For $m \geq 2, \mathcal{V}^{\psi}(n, m)$ has affine subalgebra

$$
\begin{array}{lc}
V^{-\psi-m+1}\left(\mathfrak{g l}_{m}\right), & m \neq n \\
V^{-\psi-n+1}\left(\mathfrak{s l}_{n}\right), & m=n
\end{array}
$$

Additional even generators in weights $2,3, \ldots, n$, together with $2 m$ odd fields in weight $\frac{n+1}{2}$ transforming under $\mathfrak{a l}_{m}$ as $\mathbb{C}^{m} \oplus\left(\mathbb{C}^{m}\right)^{*}$.

We define the cases $\mathcal{V}^{\psi}(0, m)$ and $\mathcal{V}^{\psi}(1,1)$ separately as follows. 1. For $m \geq 2$.

$$
\mathcal{V}^{\psi}(0, m)=V^{-\psi-m}\left(\mathfrak{s l}_{m}\right) \otimes \mathcal{F}(2 m)
$$

where $\mathcal{F}(2 m)$ is the rank $2 m$ free fermion algebra.
2. $\mathcal{V}^{\psi}(1,1)=A(1)$, rank one symplectic fermion algebra.
3. $\nu^{\psi}(0,1)=\mathcal{F}(2)$.
4. $\mathcal{V}^{\psi}(0,0) \cong \mathcal{V}^{\psi}(1,0) \cong \mathbb{C}$.

8. Hook-type \mathcal{W}-superalgebras of type A

For $m \geq 2, \mathcal{V}^{\psi}(n, m)$ has affine subalgebra

$$
\begin{aligned}
& V^{-\psi-m+1}\left(\mathfrak{g l}_{m}\right), \quad m \neq n, \\
& V^{-\psi-n+1}\left(\mathfrak{s l}_{n}\right), \quad m=n .
\end{aligned}
$$

Additional even generators in weights $2,3, \ldots, n$, together with $2 m$ odd fields in weight $\frac{n+1}{2}$ transforming under $\mathfrak{g l}_{m}$ as $\mathbb{C}^{m} \oplus\left(\mathbb{C}^{m}\right)^{*}$.

We define the cases $\mathcal{V}^{\psi}(0, m)$ and $\mathcal{V}^{\psi}(1,1)$ separately as follows.

where $\mathcal{F}(2 m)$ is the rank $2 m$ free fermion algebra. 2. $\mathcal{V}^{\psi}(1,1)=\mathcal{A}(1)$, rank one symplectic fermion algebra.
\square
4. $\mathcal{V}^{\psi}(0,0) \cong \mathcal{V}^{\psi}(1,0) \cong \mathbb{C}$.

8. Hook-type \mathcal{W}-superalgebras of type A

For $m \geq 2, \mathcal{V}^{\psi}(n, m)$ has affine subalgebra

$$
\begin{aligned}
& V^{-\psi-m+1}\left(\mathfrak{g l}_{m}\right), \quad m \neq n, \\
& V^{-\psi-n+1}\left(\mathfrak{s l}_{n}\right), \quad m=n .
\end{aligned}
$$

Additional even generators in weights $2,3, \ldots, n$, together with $2 m$ odd fields in weight $\frac{n+1}{2}$ transforming under $\mathfrak{g l}_{m}$ as $\mathbb{C}^{m} \oplus\left(\mathbb{C}^{m}\right)^{*}$.

We define the cases $\mathcal{V}^{\psi}(0, m)$ and $\mathcal{V}^{\psi}(1,1)$ separately as follows.

1. For $m \geq 2$,

$$
\mathcal{V}^{\psi}(0, m)=V^{-\psi-m}\left(\mathfrak{s l}_{m}\right) \otimes \mathcal{F}(2 m)
$$

where $\mathcal{F}(2 m)$ is the rank $2 m$ free fermion algebra.
2. $\mathcal{V}^{\psi}(1,1)=\mathcal{A}(1)$, rank one symplectic fermion algebra.
3. $\mathcal{V}^{\psi}(0,1)=\mathcal{F}(2)$.
4. $\mathcal{V}^{\psi}(0,0) \cong \mathcal{V}^{\psi}(1,0) \cong \mathbb{C}$.

9. Trialities in type A

Consider the affine cosets

$$
\begin{aligned}
& \mathcal{C}^{\psi}(n, m)=\operatorname{Com}\left(V^{\psi-m-1}\left(\mathfrak{g l}_{m}\right), \mathcal{W}^{\psi}(n, m)\right), \\
& \mathcal{D}^{\psi}(n, m)=\operatorname{Com}\left(V^{-\psi-m+1}\left(\mathfrak{g l}_{m}\right), \mathcal{V}^{\psi}(n, m)\right), \quad n \neq m, \\
& \mathcal{D}^{\psi}(n, n)=\operatorname{Com}\left(V^{-\psi-n+1}\left(\mathfrak{s l}_{n}\right), \mathcal{V}^{\psi}(n, n)\right)^{U(1)} .
\end{aligned}
$$

Thm: (Creutzig-L., 2020) Let $n \geq m$ be non-negative integers. We have isomorphisms of 1-parameter VOAs

9. Trialities in type A

Consider the affine cosets

$$
\begin{aligned}
& \mathcal{C}^{\psi}(n, m)=\operatorname{Com}\left(V^{\psi-m-1}\left(\mathfrak{g l}_{m}\right), \mathcal{W}^{\psi}(n, m)\right), \\
& \mathcal{D}^{\psi}(n, m)=\operatorname{Com}\left(V^{-\psi-m+1}\left(\mathfrak{g l}_{m}\right), \mathcal{V}^{\psi}(n, m)\right), \quad n \neq m, \\
& \mathcal{D}^{\psi}(n, n)=\operatorname{Com}\left(V^{-\psi-n+1}\left(\mathfrak{s l}_{n}\right), \mathcal{V}^{\psi}(n, n)\right)^{U(1)}
\end{aligned}
$$

Thm: (Creutzig-L., 2020) Let $n \geq m$ be non-negative integers. We have isomorphisms of 1-parameter VOAs

$$
\mathcal{D}^{\psi}(n, m) \cong \mathcal{C}^{\psi^{-1}}(n-m, m) \cong \mathcal{D}^{\psi^{\prime}}(m, n), \quad \frac{1}{\psi}+\frac{1}{\psi^{\prime}}=1
$$

9. Trialities in type A

Consider the affine cosets

$$
\begin{aligned}
& \mathcal{C}^{\psi}(n, m)=\operatorname{Com}\left(V^{\psi-m-1}\left(\mathfrak{g l}_{m}\right), \mathcal{W}^{\psi}(n, m)\right), \\
& \mathcal{D}^{\psi}(n, m)=\operatorname{Com}\left(V^{-\psi-m+1}\left(\mathfrak{g l}_{m}\right), \mathcal{V}^{\psi}(n, m)\right), \quad n \neq m, \\
& \mathcal{D}^{\psi}(n, n)=\operatorname{Com}\left(V^{-\psi-n+1}\left(\mathfrak{s l}_{n}\right), \mathcal{V}^{\psi}(n, n)\right)^{U(1)}
\end{aligned}
$$

Thm: (Creutzig-L., 2020) Let $n \geq m$ be non-negative integers.
We have isomorphisms of 1-parameter VOAs

$$
\mathcal{D}^{\psi}(n, m) \cong \mathcal{C}^{\psi^{-1}}(n-m, m) \cong \mathcal{D}^{\psi^{\prime}}(m, n), \quad \frac{1}{\psi}+\frac{1}{\psi^{\prime}}=1
$$

Originally conjectured in physics by Gaiotto and Rapčák (2017).

10. Some special cases

$\mathcal{D}^{\psi}(n, 0) \cong \mathcal{C}^{\psi^{-1}}(n, 0)$ recovers Feigin-Frenkel duality in type A.
Isomorphisms $\mathcal{D}^{\psi}(n, m) \cong \mathcal{C}^{\psi^{-1}}(n-m, m)$ are of Feigin-Frenkel
type.
$D^{\psi}(n, 0) \cong \mathcal{D}^{\psi^{\prime}}(0, n)$ recovers the coset realization of $\mathcal{N}^{\psi}\left(5 I_{n}\right)$.
Isomorphisms $\mathcal{D}^{\psi}(n, m) \cong \mathcal{D}^{\psi^{\prime}}(m, n)$ are of coset realization type.

One more example:

$$
\mathcal{D}^{\psi}(n, 1) \cong \mathcal{C}^{\psi^{-1}}(n-1,1) \cong \mathcal{D}^{\psi^{\prime}}(1, n),
$$

recovers a duality conjectured by Feigin and Semikhatov and proved in a different way by Creutzig, Genra, and Nakatsuka.

10. Some special cases

$\mathcal{D}^{\psi}(n, 0) \cong \mathcal{C}^{\psi^{-1}}(n, 0)$ recovers Feigin-Frenkel duality in type A. Isomorphisms $\mathcal{D}^{\psi}(n, m) \cong \mathcal{C}^{\psi^{-1}}(n-m, m)$ are of Feigin-Frenkel type.
$\mathcal{D}^{\psi}(n, 0) \cong \mathcal{D}^{\psi}(0, n)$ recovers the coset realization of $\mathcal{W}^{\psi}\left(\mathfrak{s l}_{n}\right)$.
Isomorphisms $\mathcal{D}^{n \prime \prime}(n, m) \cong \mathcal{D}^{w \prime}(m, n)$ are of coset realization type.

One more example:

$$
\mathcal{D}^{\psi}(n, 1) \cong C^{\psi^{-1}}(n-1,1) \cong \mathcal{D}^{\psi^{\prime}}(1, n)
$$

recovers a duality conjectured by Feigin and Semikhatov and proved in a different way by Creutzig, Genra, and Nakatsuka.

10. Some special cases

$\mathcal{D}^{\psi}(n, 0) \cong \mathcal{C}^{\psi^{-1}}(n, 0)$ recovers Feigin-Frenkel duality in type A.
Isomorphisms $\mathcal{D}^{\psi}(n, m) \cong \mathcal{C}^{\psi^{-1}}(n-m, m)$ are of Feigin-Frenkel type.
$\mathcal{D}^{\psi}(n, 0) \cong \mathcal{D}^{\psi^{\prime}}(0, n)$ recovers the coset realization of $\mathcal{W}^{\psi}\left(\mathfrak{s l}_{n}\right)$.
Isomorphisms $\mathcal{D}^{\psi}(n, m) \cong \mathcal{D}^{\psi^{\prime}}(m, n)$ are of coset realization type.

One more example:

$$
\mathcal{D}^{\psi}(n, 1) \cong \mathcal{C}^{\psi^{-1}}(n-1,1) \cong \mathcal{D}^{\psi^{\prime}}(1, n)
$$

recovers a duality conjectured by Feigin and Semikhatov and proved in a different way by Creutzig, Genra, and Nakatsuka.

10. Some special cases

$\mathcal{D}^{\psi}(n, 0) \cong \mathcal{C}^{\psi^{-1}}(n, 0)$ recovers Feigin-Frenkel duality in type A.
Isomorphisms $\mathcal{D}^{\psi}(n, m) \cong \mathcal{C}^{\psi^{-1}}(n-m, m)$ are of Feigin-Frenkel type.
$\mathcal{D}^{\psi}(n, 0) \cong \mathcal{D}^{\psi^{\prime}}(0, n)$ recovers the coset realization of $\mathcal{W}^{\psi}\left(\mathfrak{s l}_{n}\right)$.
Isomorphisms $\mathcal{D}^{\psi}(n, m) \cong \mathcal{D}^{\psi^{\prime}}(m, n)$ are of coset realization type.

One more example:

recovers a duality conjectured by Feigin and Semikhatov and proved in a different way by Creutzig. Genra, and Nakatsuka.

10. Some special cases

$\mathcal{D}^{\psi}(n, 0) \cong \mathcal{C}^{\psi^{-1}}(n, 0)$ recovers Feigin-Frenkel duality in type A.
Isomorphisms $\mathcal{D}^{\psi}(n, m) \cong \mathcal{C}^{\psi^{-1}}(n-m, m)$ are of Feigin-Frenkel type.
$\mathcal{D}^{\psi}(n, 0) \cong \mathcal{D}^{\psi^{\prime}}(0, n)$ recovers the coset realization of $\mathcal{W}^{\psi}\left(\mathfrak{s l}_{n}\right)$.
Isomorphisms $\mathcal{D}^{\psi}(n, m) \cong \mathcal{D}^{\psi^{\prime}}(m, n)$ are of coset realization type.

One more example:

$$
\mathcal{D}^{\psi}(n, 1) \cong \mathcal{C}^{\psi^{-1}}(n-1,1) \cong \mathcal{D}^{\psi^{\prime}}(1, n)
$$

recovers a duality conjectured by Feigin and Semikhatov and proved in a different way by Creutzig, Genra, and Nakatsuka.

11. Sketch of proof, cont'd

Step 1: In the $\psi \rightarrow \infty$ limit, both $\mathcal{C}^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$ become $G L_{m}$-orbifolds of certain free field algebras.

11. Sketch of proof, cont'd

Step 1: In the $\psi \rightarrow \infty$ limit, both $\mathcal{C}^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$ become $G L_{m}$-orbifolds of certain free field algebras.

Using classical invariant theory, it is shown that

1. $\mathcal{C}^{\psi}(n, m)$ has generating type

$$
\mathcal{W}(2,3, \ldots,(m+1)(m+n+1)-1)
$$

2. $\mathcal{D}^{\psi}(n, m)$ has generating type $\mathcal{W}(2,3, \ldots,(m+1)(n+1)-1)$.

Step 2: Universal two-parameter \mathcal{W}_{∞}-algebra $\mathcal{W}(c, \lambda)$ serves is a
classifying object for VOAs of type $\mathcal{W}(2,3, \ldots, N)$ for some N.
$\mathcal{W}(c, \lambda)$ is freely generated of type $\mathcal{W}(2,3, \ldots)$, and is defined
over the polynomial ring $\mathbb{C}[c, \lambda] \cong \mathcal{W}(c, \lambda)[0]$

11. Sketch of proof, cont'd

Step 1: In the $\psi \rightarrow \infty$ limit, both $\mathcal{C}^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$ become $G L_{m}$-orbifolds of certain free field algebras.

Using classical invariant theory, it is shown that

1. $\mathcal{C}^{\psi}(n, m)$ has generating type

$$
\mathcal{W}(2,3, \ldots,(m+1)(m+n+1)-1)
$$

2. $\mathcal{D}^{\psi}(n, m)$ has generating type $\mathcal{W}(2,3, \ldots,(m+1)(n+1)-1)$.

Step 2: Universal two-parameter \mathcal{W}_{∞}-algebra $\mathcal{W}(c, \lambda)$ serves is a classifying object for VOAs of type $\mathcal{W}(2,3, \ldots, N)$ for some N.
$\mathcal{W}(c, \lambda)$ is freely generated of type $\mathcal{W}(2,3, \ldots)$, and is defined over the polynomial ring $\mathbb{C}[c, \lambda] \cong \mathcal{W}(c, \lambda)[0]$

11. Sketch of proof, cont'd

Step 1: In the $\psi \rightarrow \infty$ limit, both $\mathcal{C}^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$ become $G L_{m}$-orbifolds of certain free field algebras.

Using classical invariant theory, it is shown that

1. $\mathcal{C}^{\psi}(n, m)$ has generating type $\mathcal{W}(2,3, \ldots,(m+1)(m+n+1)-1)$,
2. $\mathcal{D}^{\psi}(n, m)$ has generating type $\mathcal{W}(2,3, \ldots,(m+1)(n+1)-1)$.

Step 2: Universal two-parameter \mathcal{W}_{∞}-algebra $\mathcal{W}(c, \lambda)$ serves is a classifying object for VOAs of type $\mathcal{W}(2,3, \ldots, N)$ for some N.
$\mathcal{W}(c, \lambda)$ is freely generated of type $\mathcal{W}(2,3, \ldots)$, and is defined over the polynomial ring $\mathbb{C}[c, \lambda] \cong \mathcal{W}(c, \lambda)[0]$.

12. One-parameter quotients of $\mathcal{W}(c, \lambda)$

Let $I \subseteq \mathbb{C}[c, \lambda]$ be a prime ideal.
I W $\mathcal{W}(c, \lambda)$ the VOA ideal generated by I
Quotient

$$
\mathcal{W}^{\prime}(c, \lambda)=\mathcal{W}(c, \lambda) /(I \cdot \mathcal{W}(c, \lambda))
$$

is a VOA over $R=\mathbb{C}[c, \lambda] / I$.
$W^{\prime}(c, \lambda)$ is simple for a generic ideal / , but for certain special ideals $I, \mathcal{W}^{\prime}(c, \lambda)$ is not simple.

Let $\mathcal{W}_{l}(c, \lambda)$ be simple graded quotient of $\mathcal{W}^{\prime}(c, \lambda)$.
Thm: (L., 2017) All simple, one-parameter VOAs of type $\mathcal{W}(2,3, \ldots, N)$ satisfying mild hypotheses, are of this form.

Variety $V(I) \subseteq \mathbb{C}^{2}$ is called the truncation curve.

12. One-parameter quotients of $\mathcal{W}(c, \lambda)$

Let $I \subseteq \mathbb{C}[c, \lambda]$ be a prime ideal.
$I \cdot \mathcal{W}(c, \lambda)$ the VOA ideal generated by I.
Quotient

$$
\mathcal{W}^{\prime}(c, \lambda)=\mathcal{W}(c, \lambda) /(I \cdot \mathcal{W}(c, \lambda))
$$

is a VOA over $R=\mathbb{C}[c, \lambda] / I$.
$W^{\prime}(c, \lambda)$ is simple for a generic ideal $/$, but for certain special ideals $I, \mathcal{W}^{\prime}(c, \lambda)$ is not simple.

Let $\mathcal{W}_{l}(c, \lambda)$ be simple graded quotient of $\mathcal{W}^{\prime}(c, \lambda)$.
Thm: (L., 2017) All simple, one-parameter VOAs of type $\mathcal{W}(2,3, \ldots, N)$ satisfying mild hypotheses, are of this form.

12. One-parameter quotients of $\mathcal{W}(c, \lambda)$

Let $I \subseteq \mathbb{C}[c, \lambda]$ be a prime ideal.
$I \cdot \mathcal{W}(c, \lambda)$ the VOA ideal generated by I.
Quotient

$$
\mathcal{W}^{\prime}(c, \lambda)=\mathcal{W}(c, \lambda) /(I \cdot \mathcal{W}(c, \lambda))
$$

is a VOA over $R=\mathbb{C}[c, \lambda] / I$.
$\mathcal{W}^{\prime}(c, \lambda)$ is simple for a generic ideal I, but for certain special ideals $I, \mathcal{W}^{\prime}(c, \lambda)$ is not simple.

Let $\mathcal{W}_{l}(c, \lambda)$ be simple graded quotient of $\mathcal{W}^{\prime}(c, \lambda)$.
Thm: (L., 2017) All simple, one-parameter VOAs of type $\mathcal{W}(2,3, \ldots, N)$ satisfying mild hypotheses, are of this form.

12. One-parameter quotients of $\mathcal{W}(c, \lambda)$

Let $I \subseteq \mathbb{C}[c, \lambda]$ be a prime ideal.
$I \cdot \mathcal{W}(c, \lambda)$ the VOA ideal generated by I.
Quotient

$$
\mathcal{W}^{\prime}(c, \lambda)=\mathcal{W}(c, \lambda) /(I \cdot \mathcal{W}(c, \lambda))
$$

is a VOA over $R=\mathbb{C}[c, \lambda] / I$.
$\mathcal{W}^{\prime}(c, \lambda)$ is simple for a generic ideal I, but for certain special ideals $I, \mathcal{W}^{\prime}(c, \lambda)$ is not simple.

Let $\mathcal{W}_{1}(c, \lambda)$ be simple graded quotient of $\mathcal{W}^{\prime}(c, \lambda)$.
Thm: (L., 2017) All simple, one-parameter VOAs of type
$\mathcal{W}(2,3, \ldots, N)$ satisfying mild hypotheses, are of this form.

12. One-parameter quotients of $\mathcal{W}(c, \lambda)$

Let $I \subseteq \mathbb{C}[c, \lambda]$ be a prime ideal.
$I \cdot \mathcal{W}(c, \lambda)$ the VOA ideal generated by I.
Quotient

$$
\mathcal{W}^{\prime}(c, \lambda)=\mathcal{W}(c, \lambda) /(I \cdot \mathcal{W}(c, \lambda))
$$

is a VOA over $R=\mathbb{C}[c, \lambda] / I$.
$\mathcal{W}^{\prime}(c, \lambda)$ is simple for a generic ideal I, but for certain special ideals $I, \mathcal{W}^{\prime}(c, \lambda)$ is not simple.

Let $\mathcal{W}_{l}(c, \lambda)$ be simple graded quotient of $\mathcal{W}^{\prime}(c, \lambda)$.

12. One-parameter quotients of $\mathcal{W}(c, \lambda)$

Let $I \subseteq \mathbb{C}[c, \lambda]$ be a prime ideal.
$I \cdot \mathcal{W}(c, \lambda)$ the VOA ideal generated by I.
Quotient

$$
\mathcal{W}^{\prime}(c, \lambda)=\mathcal{W}(c, \lambda) /(I \cdot \mathcal{W}(c, \lambda))
$$

is a VOA over $R=\mathbb{C}[c, \lambda] / I$.
$\mathcal{W}^{\prime}(c, \lambda)$ is simple for a generic ideal I, but for certain special ideals $I, \mathcal{W}^{\prime}(c, \lambda)$ is not simple.

Let $\mathcal{W}_{l}(c, \lambda)$ be simple graded quotient of $\mathcal{W}^{\prime}(c, \lambda)$.
Thm: (L., 2017) All simple, one-parameter VOAs of type $\mathcal{W}(2,3, \ldots, N)$ satisfying mild hypotheses, are of this form.

12. One-parameter quotients of $\mathcal{W}(c, \lambda)$

Let $I \subseteq \mathbb{C}[c, \lambda]$ be a prime ideal.
$I \cdot \mathcal{W}(c, \lambda)$ the VOA ideal generated by I.
Quotient

$$
\mathcal{W}^{\prime}(c, \lambda)=\mathcal{W}(c, \lambda) /(I \cdot \mathcal{W}(c, \lambda))
$$

is a VOA over $R=\mathbb{C}[c, \lambda] / I$.
$\mathcal{W}^{\prime}(c, \lambda)$ is simple for a generic ideal I, but for certain special ideals $I, \mathcal{W}^{\prime}(c, \lambda)$ is not simple.

Let $\mathcal{W}_{l}(c, \lambda)$ be simple graded quotient of $\mathcal{W}^{\prime}(c, \lambda)$.
Thm: (L., 2017) All simple, one-parameter VOAs of type $\mathcal{W}(2,3, \ldots, N)$ satisfying mild hypotheses, are of this form.

Variety $V(I) \subseteq \mathbb{C}^{2}$ is called the truncation curve.

13. One-parameter quotients of $\mathcal{W}(c, \lambda)$

Then $\mathcal{C}^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$ are of the form $\mathcal{W}_{l}(c, \lambda)$ for some I.
Step 3: Explicit truncation curves for $\mathcal{C}^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$.
$\mathcal{W}^{\psi}(n, m)$ is an extension $V^{\psi-m+1}\left(\mathfrak{g l}_{m}\right) \otimes \mathcal{W}_{l}(c, \lambda)$ for some I
Extension is generated by 2 m fields in weight $\frac{\pi+1}{2}$ which transform as $\mathbb{C}^{m} \oplus\left(\mathbb{C}^{m}\right)^{*}$ under $\mathfrak{g l}_{m}$.

Existence of such an extension uniquely and explicitly determines /
Same method works for $\mathcal{V}^{\psi}(n, m)$.
Triality theorem follows from explicit form of I.

13. One-parameter quotients of $\mathcal{W}(c, \lambda)$

Then $\mathcal{C}^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$ are of the form $\mathcal{W}_{l}(c, \lambda)$ for some I.
Step 3: Explicit truncation curves for $\mathcal{C}^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$.

Extension is generated by $2 m$ fields in weight $\frac{n+1}{2}$ which transform as $\mathbb{C}^{m} \oplus\left(\mathbb{C}^{m}\right)^{*}$ under $\mathfrak{g l}_{m}$.

Existence of such an extension uniquely and explicitly determines /
Same method works for $\mathcal{V}^{\psi}(n, m)$.
Triality theorem follows from explicit form of I.

13. One-parameter quotients of $\mathcal{W}(c, \lambda)$

Then $\mathcal{C}^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$ are of the form $\mathcal{W}_{l}(c, \lambda)$ for some I.
Step 3: Explicit truncation curves for $\mathcal{C}^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$. $\mathcal{W}^{\psi}(n, m)$ is an extension $V^{\psi-m+1}\left(\mathfrak{g l}_{m}\right) \otimes \mathcal{W}_{l}(c, \lambda)$ for some I Extension is generated by $2 m$ fields in weight $\frac{n+1}{2}$ which transform as $\mathbb{C}^{m} \oplus\left(\mathbb{C}^{m}\right)^{*}$ under $\mathfrak{g l}_{m}$.

Existence of such an extension uniquely and explicitly determines /
Same method works for $\mathcal{V}^{\psi}(n, m)$.
Triality theorem follows from explicit form of I.

13. One-parameter quotients of $\mathcal{W}(c, \lambda)$

Then $\mathcal{C}^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$ are of the form $\mathcal{W}_{l}(c, \lambda)$ for some I.
Step 3: Explicit truncation curves for $\mathcal{C}^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$. $\mathcal{W}^{\psi}(n, m)$ is an extension $V^{\psi-m+1}\left(\mathfrak{g l}_{m}\right) \otimes \mathcal{W}_{l}(c, \lambda)$ for some I Extension is generated by $2 m$ fields in weight $\frac{n+1}{2}$ which transform as $\mathbb{C}^{m} \oplus\left(\mathbb{C}^{m}\right)^{*}$ under $\mathfrak{g l}_{m}$.

Existence of such an extension uniquely and explicitly determines $/$.
Same method works for $\mathcal{V}^{\psi}(n, m)$.
Triality theorem follows from explicit form of I.

13. One-parameter quotients of $\mathcal{W}(c, \lambda)$

Then $\mathcal{C}^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$ are of the form $\mathcal{W}_{l}(c, \lambda)$ for some I.
Step 3: Explicit truncation curves for $\mathcal{C}^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$. $\mathcal{W}^{\psi}(n, m)$ is an extension $V^{\psi-m+1}\left(\mathfrak{g l}_{m}\right) \otimes \mathcal{W}_{l}(c, \lambda)$ for some I Extension is generated by $2 m$ fields in weight $\frac{n+1}{2}$ which transform as $\mathbb{C}^{m} \oplus\left(\mathbb{C}^{m}\right)^{*}$ under $\mathfrak{g l}_{m}$.

Existence of such an extension uniquely and explicitly determines l.
Same method works for $\mathcal{V}^{\psi}(n, m)$.
Triality theorem follows from explicit form of I.

13. One-parameter quotients of $\mathcal{W}(c, \lambda)$

Then $\mathcal{C}^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$ are of the form $\mathcal{W}_{l}(c, \lambda)$ for some I.
Step 3: Explicit truncation curves for $\mathcal{C}^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$. $\mathcal{W}^{\psi}(n, m)$ is an extension $V^{\psi-m+1}\left(\mathfrak{g l}_{m}\right) \otimes \mathcal{W}_{l}(c, \lambda)$ for some I Extension is generated by $2 m$ fields in weight $\frac{n+1}{2}$ which transform as $\mathbb{C}^{m} \oplus\left(\mathbb{C}^{m}\right)^{*}$ under $\mathfrak{g l}_{m}$.

Existence of such an extension uniquely and explicitly determines l.
Same method works for $\mathcal{V}^{\psi}(n, m)$.
Triality theorem follows from explicit form of I.

13. One-parameter quotients of $\mathcal{W}(c, \lambda)$

Then $\mathcal{C}^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$ are of the form $\mathcal{W}_{l}(c, \lambda)$ for some I.
Step 3: Explicit truncation curves for $\mathcal{C}^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$. $\mathcal{W}^{\psi}(n, m)$ is an extension $V^{\psi-m+1}\left(\mathfrak{g l}_{m}\right) \otimes \mathcal{W}_{l}(c, \lambda)$ for some I Extension is generated by $2 m$ fields in weight $\frac{n+1}{2}$ which transform as $\mathbb{C}^{m} \oplus\left(\mathbb{C}^{m}\right)^{*}$ under $\mathfrak{g l}_{m}$.

Existence of such an extension uniquely and explicitly determines l.
Same method works for $\mathcal{V}^{\psi}(n, m)$.
Triality theorem follows from explicit form of I.

14. Application: coincidences

Nontrivial pointwise isomorphisms among simple algebras $\mathcal{C}_{\psi}(n, m)$ correspond to intersection points of truncation curves.

$C_{\psi}(1,1)$ is just parafermion algebra $N_{k}\left(\mathfrak{s l}_{2}\right)$ for $k=\psi-2$. (Dong, Lam, Yamada, Wang, and others).

Family (1) says for $k \in \mathbb{N}$,

$$
N_{k}\left(\mathfrak{s l}_{2}\right) \cong \mathcal{W}_{\phi}\left(\mathfrak{s l}_{s}\right),
$$

\square

14. Application: coincidences

Nontrivial pointwise isomorphisms among simple algebras $\mathcal{C}_{\psi}(n, m)$ correspond to intersection points of truncation curves.

Thm: (Creutzig, L. 2020) We have $\mathcal{C}_{\psi}(n, m) \cong \mathcal{W}_{\phi}\left(\mathfrak{s l}_{s}\right)$ where

1. $\psi=\frac{m+n+s}{n}, \quad \phi=\frac{m+s}{m+n+s}$,
2. $\psi=\frac{m+n}{n+s}, \quad \phi=\frac{s-m}{s+n}$,
3. $\psi=\frac{m+n-s}{n-s}, \quad \phi=\frac{m+n-s}{n-s}$.
$C_{\psi}(1,1)$ is just parafermion algebra $N_{k}\left(\mathfrak{s l}_{2}\right)$ for $k=\psi-2$. (Dong, Lam, Yamada, Wang, and others).

Family (1) says for $k \in \mathbb{N}$,
$N_{k}\left(\mathfrak{s l}_{2}\right) \cong \mathcal{W}_{\phi}\left(\mathfrak{s l}_{s}\right)$,

14. Application: coincidences

Nontrivial pointwise isomorphisms among simple algebras $\mathcal{C}_{\psi}(n, m)$ correspond to intersection points of truncation curves.

Thm: (Creutzig, L. 2020) We have $\mathcal{C}_{\psi}(n, m) \cong \mathcal{W}_{\phi}\left(\mathfrak{s l}_{s}\right)$ where

1. $\psi=\frac{m+n+s}{n}$,

$$
\phi=\frac{m+s}{m+n+s}
$$

2. $\psi=\frac{m+n}{n+s}$,
$\phi=\frac{s-m}{s+n}$,
3. $\psi=\frac{m+n-s}{n-s}, \quad \phi=\frac{m+n-s}{n-s}$.
$C_{\psi}(1,1)$ is just parafermion algebra $N_{k}\left(\mathfrak{s l}_{2}\right)$ for $k=\psi-2$. (Dong, Lam, Yamada, Wang, and others).

Family (1) says for $k \in \mathbb{N}$,

14. Application: coincidences

Nontrivial pointwise isomorphisms among simple algebras $\mathcal{C}_{\psi}(n, m)$ correspond to intersection points of truncation curves.

Thm: (Creutzig, L. 2020) We have $\mathcal{C}_{\psi}(n, m) \cong \mathcal{W}_{\phi}\left(\mathfrak{s l}_{s}\right)$ where

1. $\psi=\frac{m+n+s}{n}$,

$$
\phi=\frac{m+s}{m+n+s}
$$

2. $\psi=\frac{m+n}{n+s}$,
$\phi=\frac{s-m}{s+n}$,
3. $\psi=\frac{m+n-s}{n-s}$,
$\phi=\frac{m+n-s}{n-s}$.
$C_{\psi}(1,1)$ is just parafermion algebra $N_{k}\left(\mathfrak{s l}_{2}\right)$ for $k=\psi-2$. (Dong, Lam, Yamada, Wang, and others).

Family (1) says for $k \in \mathbb{N}$,

$$
N_{k}\left(\mathfrak{s l}_{2}\right) \cong \mathcal{W}_{\phi}\left(\mathfrak{s l}_{s}\right), \quad \phi=\frac{1+s}{2+s} .
$$

First proven by Arakawa, Lam, Yamada (2019).

15. Analogue for orthosymplectic types

We consider 8 families Lie (super)algebras \mathfrak{g} of type B, C, D or $\mathfrak{o s p}_{s \mid 2 r}$, with following properties:

1. We have a decomposition $\mathfrak{g}=\mathfrak{a} \oplus \mathfrak{b} \oplus \rho_{\mathfrak{a}} \otimes \rho_{\mathfrak{b}}$,
2. \mathfrak{a} and \mathfrak{b} are Lie sub(super)algebras of \mathfrak{g},
3. $\mathfrak{b}=\mathfrak{s o}_{2 m+1}$ or $\mathfrak{s p}_{2 m}$,
4. $\mathfrak{a}=\mathfrak{s o}_{2 n+1}, \mathfrak{s p}_{2 n}, \mathfrak{s o}_{2 n}$, or $\mathfrak{o s p}_{1 \mid 2 n}$.
5. $\rho_{\mathfrak{a}}, \rho_{\mathfrak{b}}$ transform as the standard representations of $\mathfrak{a}, \mathfrak{b}$, respectively.

Consider $\mathcal{W}^{\psi}\left(\mathfrak{g}, f_{b}\right)$, where $f_{b} \in \mathfrak{g}$ is the nilpotent which is principal in \mathfrak{b} and trivial in \mathfrak{a}.

Affine cosets are quotients of universal 2-parameter algebra $\mathcal{W}^{\mathrm{ev}}(c, \lambda)$ of type $\mathcal{W}(2,4,6, \ldots)$ constructed by Kanade-L. (2019)

Similar triality theorem is due to Creutzig, L. (2021), also conjectured by Gaiotto and Rapčák (2017).

15. Analogue for orthosymplectic types

We consider 8 families Lie (super)algebras \mathfrak{g} of type B, C, D or $\mathfrak{o s p}_{s \mid 2 r}$, with following properties:

1. We have a decomposition $\mathfrak{g}=\mathfrak{a} \oplus \mathfrak{b} \oplus \rho_{\mathfrak{a}} \otimes \rho_{\mathfrak{b}}$,
2. \mathfrak{a} and \mathfrak{b} are Lie sub(super)algebras of \mathfrak{g},
3. $\mathfrak{b}=\mathfrak{s o}_{2 m+1}$ or $\mathfrak{s p}_{2 m}$,
4. $\mathfrak{a}=\mathfrak{s o}_{2 n+1}, \mathfrak{S p}_{2 n}, \mathfrak{S o}_{2 n}$, or $\mathfrak{o s p}_{1 \mid 2 n}$.
5. $\rho_{\mathfrak{a}}, \rho_{\mathfrak{b}}$ transform as the standard representations of $\mathfrak{a}, \mathfrak{b}$, respectively.

Consider $\mathcal{W}^{\psi}\left(\mathfrak{g}, f_{\mathfrak{b}}\right)$, where $f_{\mathfrak{b}} \in \mathfrak{g}$ is the nilpotent which is principal in \mathfrak{b} and trivial in \mathfrak{a}.

Affine cosets are quotients of universal 2-parameter algebra $\mathcal{W}^{\mathrm{ev}}(c, \lambda)$ of type $\mathcal{W}(2,4,6, \ldots)$ constructed by Kanade-L. (2019)

15. Analogue for orthosymplectic types

We consider 8 families Lie (super)algebras \mathfrak{g} of type B, C, D or $\mathfrak{o s p}_{s \mid 2 r}$, with following properties:

1. We have a decomposition $\mathfrak{g}=\mathfrak{a} \oplus \mathfrak{b} \oplus \rho_{\mathfrak{a}} \otimes \rho_{\mathfrak{b}}$,
2. \mathfrak{a} and \mathfrak{b} are Lie sub(super)algebras of \mathfrak{g},
3. $\mathfrak{b}=\mathfrak{s o}_{2 m+1}$ or $\mathfrak{s p}_{2 m}$,
4. $\mathfrak{a}=\mathfrak{s o}_{2 n+1}, \mathfrak{S p}_{2 n}, \mathfrak{S o}_{2 n}$, or $\mathfrak{o s p}_{1 \mid 2 n}$.
5. $\rho_{\mathfrak{a}}, \rho_{\mathfrak{b}}$ transform as the standard representations of $\mathfrak{a}, \mathfrak{b}$, respectively.

Consider $\mathcal{W}^{\psi}\left(\mathfrak{g}, f_{\mathfrak{b}}\right)$, where $f_{\mathfrak{b}} \in \mathfrak{g}$ is the nilpotent which is principal in \mathfrak{b} and trivial in \mathfrak{a}.

Affine cosets are quotients of universal 2-parameter algebra $\mathcal{W}^{\text {ev }}(c, \lambda)$ of type $\mathcal{W}(2,4,6, \ldots)$ constructed by Kanade-L. (2019).

Similar triality theorem is due to Creutzig, L. (2021), also conjectured by Gaiotto and Rapčák

15. Analogue for orthosymplectic types

We consider 8 families Lie (super)algebras \mathfrak{g} of type B, C, D or $\mathfrak{o s p}_{s \mid 2 r}$, with following properties:

1. We have a decomposition $\mathfrak{g}=\mathfrak{a} \oplus \mathfrak{b} \oplus \rho_{\mathfrak{a}} \otimes \rho_{\mathfrak{b}}$,
2. \mathfrak{a} and \mathfrak{b} are Lie sub(super)algebras of \mathfrak{g},
3. $\mathfrak{b}=\mathfrak{s o}_{2 m+1}$ or $\mathfrak{s p}_{2 m}$,
4. $\mathfrak{a}=\mathfrak{5 0}_{2 n+1}, \mathfrak{S p}_{2 n}, \mathfrak{S o}_{2 n}$, or $\mathfrak{o s p}_{1 \mid 2 n}$.
5. $\rho_{\mathfrak{a}}, \rho_{\mathfrak{b}}$ transform as the standard representations of $\mathfrak{a}, \mathfrak{b}$, respectively.

Consider $\mathcal{W}^{\psi}\left(\mathfrak{g}, f_{\mathfrak{b}}\right)$, where $f_{\mathfrak{b}} \in \mathfrak{g}$ is the nilpotent which is principal in \mathfrak{b} and trivial in \mathfrak{a}.

Affine cosets are quotients of universal 2-parameter algebra $\mathcal{W}^{\text {ev }}(c, \lambda)$ of type $\mathcal{W}(2,4,6, \ldots)$ constructed by Kanade-L. (2019).

Similar triality theorem is due to Creutzig, L. (2021), also conjectured by Gaiotto and Rapčák (2017).

16. How does this generalize?

Need families of VOAs that are quotients of a universal object.
Example: Rectangular \mathcal{W}-algebras in type A (Arakawa, Molev, 2017) and some variants.

Consider $\mathfrak{g l}_{n m}$ equipped with the nilpotent element $f_{n^{m}}$ corresponding to the tableau with m blocks of height n.
$\mathcal{W}^{\psi}\left(g_{n m}, f_{n m}\right)$ is called rectangular; it is freely generated of type $\mathcal{W}\left(1^{m^{2}}, 2^{m^{2}}, \ldots, n^{m^{2}}\right)$.

Weight one fields generate $V^{n \psi-n m}\left(g_{m}\right)$ and m^{2} fields of weight d for $2 \leq d \leq n$ transform as adjoint $\mathfrak{g l}_{m}$-module.

Natural generalization of principal \mathcal{W}-algebra, which is case $m=1$

16. How does this generalize?

Need families of VOAs that are quotients of a universal object.
Example: Rectangular \mathcal{W}-algebras in type A (Arakawa, Molev, 2017) and some variants.

Consider $\mathfrak{g l}_{n m}$ equipped with the nilpotent element $f_{n m}$ corresponding to the tableau with m blocks of height n.
$\mathcal{W}^{\psi}\left(g_{n m m}, f_{n m}\right)$ is called rectangular; it is freely generated of type $\mathcal{W}\left(1^{m^{2}}, 2^{m^{2}}, \ldots, n^{m^{2}}\right)$.

Weight one fields generate $V^{n \psi-n m}\left(g_{m}\right)$ and m^{2} fields of weight d for $2 \leq d \leq n$ transform as adjoint $\mathfrak{g l}_{m}$-module.

Natural generalization of principal \mathcal{W}-algebra, which is case $m=1$.

16. How does this generalize?

Need families of VOAs that are quotients of a universal object.
Example: Rectangular \mathcal{W}-algebras in type A (Arakawa, Molev, 2017) and some variants.

Consider $\mathfrak{g l}_{n m}$ equipped with the nilpotent element $f_{n^{m}}$ corresponding to the tableau with m blocks of height n.

Weight one fields generate $V^{n \psi-n m}\left(\mathfrak{g l}_{m}\right)$ and m^{2} fields of weight d for $2 \leq d \leq n$ transform as adjoint $\mathfrak{g l}_{m}$-module. Natural generalization of principal \mathcal{W}-algebra, which is case $m=1$.

16. How does this generalize?

Need families of VOAs that are quotients of a universal object.
Example: Rectangular \mathcal{W}-algebras in type A (Arakawa, Molev, 2017) and some variants.

Consider $\mathfrak{g l}_{n m}$ equipped with the nilpotent element $f_{n^{m}}$ corresponding to the tableau with m blocks of height n.
$\mathcal{W}^{\psi}\left(\mathfrak{g l}_{n m}, f_{n^{m}}\right)$ is called rectangular; it is freely generated of type $\mathcal{W}\left(1^{m^{2}}, 2^{m^{2}}, \ldots, n^{m^{2}}\right)$.

Weight one fields generate $V^{n \psi-n m}\left(g_{m}\right)$ and m^{2} fields of weight d for $2 \leq d \leq n$ transform as adjoint $\mathfrak{g l}_{m}$-module. Natural generalization of principal W-algebra, which is case $m=1$

16. How does this generalize?

Need families of VOAs that are quotients of a universal object.
Example: Rectangular \mathcal{W}-algebras in type A (Arakawa, Molev, 2017) and some variants.

Consider $\mathfrak{g l}_{n m}$ equipped with the nilpotent element $f_{n^{m}}$ corresponding to the tableau with m blocks of height n.
$\mathcal{W}^{\psi}\left(\mathfrak{g l}_{n m}, f_{n^{m}}\right)$ is called rectangular; it is freely generated of type $\mathcal{W}\left(1^{m^{2}}, 2^{m^{2}}, \ldots, n^{m^{2}}\right)$.

Weight one fields generate $V^{n \psi-n m}\left(\mathfrak{g l}_{m}\right)$ and m^{2} fields of weight d for $2 \leq d \leq n$ transform as adjoint $\mathfrak{g l}_{m}$-module.

Natural generalization of principal \mathcal{W}-algebra, which is case $m=1$.

16. How does this generalize?

Need families of VOAs that are quotients of a universal object.
Example: Rectangular \mathcal{W}-algebras in type A (Arakawa, Molev, 2017) and some variants.

Consider $\mathfrak{g l}_{n m}$ equipped with the nilpotent element $f_{n^{m}}$ corresponding to the tableau with m blocks of height n.
$\mathcal{W}^{\psi}\left(\mathfrak{g l}_{n m}, f_{n^{m}}\right)$ is called rectangular; it is freely generated of type $\mathcal{W}\left(1^{m^{2}}, 2^{m^{2}}, \ldots, n^{m^{2}}\right)$.

Weight one fields generate $V^{n \psi-n m}\left(\mathfrak{g l}_{m}\right)$ and m^{2} fields of weight d for $2 \leq d \leq n$ transform as adjoint $\mathfrak{g l}_{m}$-module.

Natural generalization of principal \mathcal{W}-algebra, which is case $m=1$.

17. Rectangular \mathcal{W}-algebras with tail

Now consider $\mathfrak{g l}_{n m+r}$ equipped with the nilpotent element $f_{n^{m}}$ which is rectangular in $\mathfrak{g l}_{n m}$ and trivial in $\mathfrak{g l}_{r}$.

Using large level limit together with classical invariant theory, coset

has strong generating type
$\mathcal{W}\left(1^{m^{2}}, 2^{m^{2}}, \ldots, n^{m^{2}},(n+1)^{m^{2}} \ldots, N^{m^{2}}\right)$ for some N
Similar statement holds for superalgebra $\mathcal{W}^{\psi}\left(\mathfrak{g l}_{n m \mid r}, f_{n m}\right)$
Expectation: For each $m \in \mathbb{N}$, there exists a 2-parameter VOA
$\mathcal{W}^{\mathfrak{g l}_{m}}(c, \lambda)$ which is freely generated of type $\mathcal{W}\left(1^{m^{2}}, 2^{m^{2}}, \ldots\right)$,
such that all of these VOAs arise as one-parameter quotients.

17. Rectangular \mathcal{W}-algebras with tail

Now consider $\mathfrak{g l}_{n m+r}$ equipped with the nilpotent element $f_{n^{m}}$ which is rectangular in $\mathfrak{g l}_{n m}$ and trivial in $\mathfrak{g l}_{r}$.

Embedding $V^{n \psi-n m-r}\left(\mathfrak{g l}_{m}\right) \otimes V^{\psi-r-m}\left(\mathfrak{g l}_{r}\right) \hookrightarrow \mathcal{W}^{\psi}\left(\mathfrak{g l}_{n m+r}, f_{n^{m}}\right)$.
Using large level limit together with classical invariant theory, coset

has strong generating type
$\mathcal{N}\left(1^{m^{2}}, 2^{m^{2}} \ldots, n^{m^{2}}(n+1)^{m^{2}} \ldots, N^{m^{2}}\right)$ for some N
Similar statement holds for superalgebra $\mathcal{W}^{\psi}\left(\mathfrak{g l}_{n m \mid r}, f_{n^{m}}\right)$
Expectation: For each $m \in \mathbb{N}$, there exists a 2-parameter VOA
$\mathcal{W}^{\mathfrak{g} l_{m}}(c, \lambda)$ which is freely generated of type $\mathcal{W}\left(1^{m^{2}}, 2^{m^{2}}, \ldots\right)$,
such that all of these VOAs arise as one-parameter quotients.

17. Rectangular \mathcal{W}-algebras with tail

Now consider $\mathfrak{g l}_{n m+r}$ equipped with the nilpotent element $f_{n^{m}}$ which is rectangular in $\mathfrak{g l}_{n m}$ and trivial in $\mathfrak{g l}_{r}$.

Embedding $V^{n \psi-n m-r}\left(\mathfrak{g l}_{m}\right) \otimes V^{\psi-r-m}\left(\mathfrak{g l}_{r}\right) \hookrightarrow \mathcal{W}^{\psi}\left(\mathfrak{g l}_{n m+r}, f_{n^{m}}\right)$.
Using large level limit together with classical invariant theory, coset

$$
\operatorname{Com}\left(V^{\psi-r-m}\left(\mathfrak{g l}_{r}\right), \mathcal{W}^{\psi}\left(\mathfrak{g l}_{n m+r}, f_{n^{m}}\right)\right)
$$

has strong generating type
$\mathcal{W}\left(1^{m^{2}}, 2^{m^{2}}, \ldots, n^{m^{2}},(n+1)^{m^{2}}, \ldots, N^{m^{2}}\right)$ for some N.
Similar statement holds for superalgebra $\mathcal{W}^{\psi}\left(g_{n m \mid r}, f_{n m}\right)$
Expectation: For each $m \in \mathbb{N}$, there exists a 2-parameter VOA
such that all of these VOAs arise as one-parameter quotients.

17. Rectangular \mathcal{W}-algebras with tail

Now consider $\mathfrak{g l}_{n m+r}$ equipped with the nilpotent element $f_{n^{m}}$ which is rectangular in $\mathfrak{g l}_{n m}$ and trivial in $\mathfrak{g l}_{r}$.

Embedding $V^{n \psi-n m-r}\left(\mathfrak{g l}_{m}\right) \otimes V^{\psi-r-m}\left(\mathfrak{g l}_{r}\right) \hookrightarrow \mathcal{W}^{\psi}\left(\mathfrak{g l}_{n m+r}, f_{n^{m}}\right)$.
Using large level limit together with classical invariant theory, coset

$$
\operatorname{Com}\left(V^{\psi-r-m}\left(\mathfrak{g l}_{r}\right), \mathcal{W}^{\psi}\left(\mathfrak{g l}_{n m+r}, f_{n^{m}}\right)\right)
$$

has strong generating type
$\mathcal{W}\left(1^{m^{2}}, 2^{m^{2}}, \ldots, n^{m^{2}},(n+1)^{m^{2}}, \ldots, N^{m^{2}}\right)$ for some N.
Similar statement holds for superalgebra $\mathcal{W}^{\psi}\left(\mathfrak{g l}_{n m \mid r}, f_{n^{m}}\right)$.
Expectation: For each $m \in \mathbb{N}$, there exists a 2-parameter VOA such that all of these VOAs arise as one-parameter quotients.

17. Rectangular \mathcal{W}-algebras with tail

Now consider $\mathfrak{g l}_{n m+r}$ equipped with the nilpotent element $f_{n^{m}}$ which is rectangular in $\mathfrak{g l}_{n m}$ and trivial in $\mathfrak{g l}_{r}$.

Embedding $V^{n \psi-n m-r}\left(\mathfrak{g l}_{m}\right) \otimes V^{\psi-r-m}\left(\mathfrak{g l}_{r}\right) \hookrightarrow \mathcal{W}^{\psi}\left(\mathfrak{g l}_{n m+r}, f_{n^{m}}\right)$.
Using large level limit together with classical invariant theory, coset

$$
\operatorname{Com}\left(V^{\psi-r-m}\left(\mathfrak{g l}_{r}\right), \mathcal{W}^{\psi}\left(\mathfrak{g l}_{n m+r}, f_{n^{m}}\right)\right)
$$

has strong generating type
$\mathcal{W}\left(1^{m^{2}}, 2^{m^{2}}, \ldots, n^{m^{2}},(n+1)^{m^{2}}, \ldots, N^{m^{2}}\right)$ for some N.
Similar statement holds for superalgebra $\mathcal{W}^{\psi}\left(\mathfrak{g l}_{n m \mid r}, f_{n^{m}}\right)$.
Expectation: For each $m \in \mathbb{N}$, there exists a 2-parameter VOA $\mathcal{W}^{\mathfrak{g}_{m}}(c, \lambda)$ which is freely generated of type $\mathcal{W}\left(1^{m^{2}}, 2^{m^{2}}, \ldots\right)$, such that all of these VOAs arise as one-parameter quotients.

In the case $m=1$

17. Rectangular \mathcal{W}-algebras with tail

Now consider $\mathfrak{g l}_{n m+r}$ equipped with the nilpotent element $f_{n^{m}}$ which is rectangular in $\mathfrak{g l}_{n m}$ and trivial in $\mathfrak{g l}_{r}$.

Embedding $V^{n \psi-n m-r}\left(\mathfrak{g l}_{m}\right) \otimes V^{\psi-r-m}\left(\mathfrak{g l}_{r}\right) \hookrightarrow \mathcal{W}^{\psi}\left(\mathfrak{g l}_{n m+r}, f_{n^{m}}\right)$.
Using large level limit together with classical invariant theory, coset

$$
\operatorname{Com}\left(V^{\psi-r-m}\left(\mathfrak{g l}_{r}\right), \mathcal{W}^{\psi}\left(\mathfrak{g l}_{n m+r}, f_{n^{m}}\right)\right)
$$

has strong generating type
$\mathcal{W}\left(1^{m^{2}}, 2^{m^{2}}, \ldots, n^{m^{2}},(n+1)^{m^{2}}, \ldots, N^{m^{2}}\right)$ for some N.
Similar statement holds for superalgebra $\mathcal{W}^{\psi}\left(\mathfrak{g l}_{n m \mid r}, f_{n^{m}}\right)$.
Expectation: For each $m \in \mathbb{N}$, there exists a 2-parameter VOA $\mathcal{W}^{\mathfrak{g}_{m}}(c, \lambda)$ which is freely generated of type $\mathcal{W}\left(1^{m^{2}}, 2^{m^{2}}, \ldots\right)$, such that all of these VOAs arise as one-parameter quotients.

In the case $m=1$, we should just recover $\mathcal{H} \otimes \mathcal{W}(c, \lambda)$.

18. Rectangular \mathcal{W}-algebras with tail

To construct $\mathcal{W}^{\mathfrak{g l}_{m}}(c, \lambda)$ from first principles is difficult.
One model for $\mathcal{W}^{\mathfrak{g l}}(c, \lambda)$ is obtained by taking $n=1$.
Then for each $r, m \in \mathbb{N}, \mathcal{W}^{\psi}\left(\mathfrak{g l}_{n m+r}, f_{n^{m}}\right)=V^{\ell}\left(\mathfrak{g l}_{m+r}\right)$ for
$\ell=\psi-m-r$, and above coset is $\operatorname{Com}\left(V^{\ell}\left(\mathfrak{g l}_{r}\right), V^{\ell}\left(\mathfrak{g l}_{m+r}\right)\right)$.
It is possible to replace r with a complex parameter to construct a VOA with two parameters r and ℓ.

This should be isomorphic to $W^{\mathrm{ar}_{m}}(c, \lambda)$ after a suitable change of parameters.

Note: For each fixed r, $\operatorname{Com}\left(V^{\ell}\left(\mathfrak{g l}_{r}\right), V^{\ell}\left(\mathfrak{g l}_{m+r}\right)\right)$ is an extension of a Heisenberg algebra tensored with m commuting quotients of $\mathcal{W}(c, \lambda)$.

Therefore we expect $\mathcal{W}^{\mathfrak{g l}_{m}}(c, \lambda)$ to be such an extegsion

18. Rectangular \mathcal{W}-algebras with tail

To construct $\mathcal{W}^{\mathfrak{g r}_{m}}(c, \lambda)$ from first principles is difficult.
One model for $\mathcal{W}^{\mathfrak{g l}_{m}}(c, \lambda)$ is obtained by taking $n=1$.

It is possible to replace r with a complex parameter to construct a VOA with two parameters r and ℓ.

This should be isomorphic to $\mathcal{W}^{g l} m(c, \lambda)$ after a suitable change of parameters.

Note: For each fixed r, $\operatorname{Com}\left(V^{\ell}\left(\mathfrak{g l}_{r}\right), V^{\ell}\left(g_{m+r}\right)\right)$ is an extension of a Heisenberg algebra tensored with m commuting quotients of $\mathcal{W}(c, \lambda)$.

18. Rectangular \mathcal{W}-algebras with tail

To construct $\mathcal{W}^{\mathfrak{g r}_{m}}(c, \lambda)$ from first principles is difficult.
One model for $\mathcal{W}^{\mathfrak{g l}_{m}}(c, \lambda)$ is obtained by taking $n=1$.
Then for each $r, m \in \mathbb{N}, \mathcal{W}^{\psi}\left(\mathfrak{g l}_{n m+r}, f_{n^{m}}\right)=V^{\ell}\left(\mathfrak{g l}_{m+r}\right)$ for $\ell=\psi-m-r$, and above coset is $\operatorname{Com}\left(V^{\ell}\left(\mathfrak{g l}_{r}\right), V^{\ell}\left(\mathfrak{g l}_{m+r}\right)\right)$.

It is possible to replace r with a complex parameter to construct a VOA with two parameters r and ℓ.

This should be isomorphic to $W^{\mathbf{o r}_{m}}(c, \lambda)$ after a suitable change of parameters.

Note: For each fixed r, $\operatorname{Com}\left(V^{\ell}\left(\mathfrak{g l}_{r}\right), V^{\ell}\left(\mathfrak{g l}_{m+r}\right)\right)$ is an extension of a Heisenberg algebra tensored with m commuting quotients of $\mathcal{W}(c, \lambda)$.

18. Rectangular \mathcal{W}-algebras with tail

To construct $\mathcal{W}^{\mathfrak{g r}_{m}}(c, \lambda)$ from first principles is difficult.
One model for $\mathcal{W}^{\mathfrak{g l}_{m}}(c, \lambda)$ is obtained by taking $n=1$.
Then for each $r, m \in \mathbb{N}, \mathcal{W}^{\psi}\left(\mathfrak{g l}_{n m+r}, f_{n^{m}}\right)=V^{\ell}\left(\mathfrak{g l}_{m+r}\right)$ for $\ell=\psi-m-r$, and above coset is $\operatorname{Com}\left(V^{\ell}\left(\mathfrak{g l}_{r}\right), V^{\ell}\left(\mathfrak{g l}_{m+r}\right)\right)$.

It is possible to replace r with a complex parameter to construct a VOA with two parameters r and ℓ.

This should be isomorphic to $\mathcal{W}^{\underline{g} m}(c, \lambda)$ after a suitable change of parameters.

Note: For each fixed r, $\operatorname{Com}\left(V^{\ell}\left(g_{r}\right), V^{\ell}\left(g l_{m+r}\right)\right)$ is an extension of a Heisenberg algebra tensored with m commuting quotients of $\mathcal{W}(c, \lambda)$.

18. Rectangular \mathcal{W}-algebras with tail

To construct $\mathcal{W}^{\mathfrak{g r}_{m}}(c, \lambda)$ from first principles is difficult.
One model for $\mathcal{W}^{\mathfrak{g l}_{m}}(c, \lambda)$ is obtained by taking $n=1$.
Then for each $r, m \in \mathbb{N}, \mathcal{W}^{\psi}\left(\mathfrak{g l}_{n m+r}, f_{n^{m}}\right)=V^{\ell}\left(\mathfrak{g l}_{m+r}\right)$ for $\ell=\psi-m-r$, and above coset is $\operatorname{Com}\left(V^{\ell}\left(\mathfrak{g l}_{r}\right), V^{\ell}\left(\mathfrak{g l}_{m+r}\right)\right)$.

It is possible to replace r with a complex parameter to construct a VOA with two parameters r and ℓ.

This should be isomorphic to $\mathcal{W}^{\mathfrak{g r}_{m}}(c, \lambda)$ after a suitable change of parameters.

18. Rectangular \mathcal{W}-algebras with tail

To construct $\mathcal{W}^{\mathfrak{g r}_{m}}(c, \lambda)$ from first principles is difficult.
One model for $\mathcal{W}^{\mathfrak{g l}_{m}}(c, \lambda)$ is obtained by taking $n=1$.
Then for each $r, m \in \mathbb{N}, \mathcal{W}^{\psi}\left(\mathfrak{g l}_{n m+r}, f_{n^{m}}\right)=V^{\ell}\left(\mathfrak{g l}_{m+r}\right)$ for $\ell=\psi-m-r$, and above coset is $\operatorname{Com}\left(V^{\ell}\left(\mathfrak{g l}_{r}\right), V^{\ell}\left(\mathfrak{g l}_{m+r}\right)\right)$.

It is possible to replace r with a complex parameter to construct a VOA with two parameters r and ℓ.

This should be isomorphic to $\mathcal{W}^{\mathfrak{g r}_{m}}(c, \lambda)$ after a suitable change of parameters.

Note: For each fixed $r, \operatorname{Com}\left(V^{\ell}\left(\mathfrak{g l}_{r}\right), V^{\ell}\left(\mathfrak{g l}_{m+r}\right)\right)$ is an extension of a Heisenberg algebra tensored with m commuting quotients of $\mathcal{W}(c, \lambda)$.

18. Rectangular \mathcal{W}-algebras with tail

To construct $\mathcal{W}^{\mathfrak{g r}_{m}}(c, \lambda)$ from first principles is difficult.
One model for $\mathcal{W}^{\mathfrak{g l}_{m}}(c, \lambda)$ is obtained by taking $n=1$.
Then for each $r, m \in \mathbb{N}, \mathcal{W}^{\psi}\left(\mathfrak{g l}_{n m+r}, f_{n^{m}}\right)=V^{\ell}\left(\mathfrak{g l}_{m+r}\right)$ for $\ell=\psi-m-r$, and above coset is $\operatorname{Com}\left(V^{\ell}\left(\mathfrak{g l}_{r}\right), V^{\ell}\left(\mathfrak{g l}_{m+r}\right)\right)$.

It is possible to replace r with a complex parameter to construct a VOA with two parameters r and ℓ.

This should be isomorphic to $\mathcal{W}^{\mathfrak{g r}_{m}}(c, \lambda)$ after a suitable change of parameters.

Note: For each fixed $r, \operatorname{Com}\left(V^{\ell}\left(\mathfrak{g l}_{r}\right), V^{\ell}\left(\mathfrak{g l}_{m+r}\right)\right)$ is an extension of a Heisenberg algebra tensored with m commuting quotients of $\mathcal{W}(c, \lambda)$.

Therefore we expect $\mathcal{W}^{\mathfrak{g l}_{m}}(c, \lambda)$ to be such an extension.

19. Other types

We expect similar 2-parameter VOAs $\mathcal{W}^{\mathfrak{s o}_{n}}(c, \lambda)$ of type $\mathcal{W}\left(1^{d_{1}}, 2^{d_{2}}, 3^{d_{1}}, 4^{d_{2}}, \ldots\right), \quad d_{1}=\operatorname{dim} \wedge^{2}\left(\mathbb{C}^{n}\right), \quad d_{2}=\operatorname{dim} \operatorname{Sym}^{2}\left(\mathbb{C}^{n}\right)$.
(Currently under construction with Flor Orosz Hunziker).

Expected to be extensions of tensor products of quotients of $\mathcal{W}^{\text {ev }}(c, \lambda)$.

This is because $\operatorname{Com}\left(V^{k}\left(50_{n}\right), V^{k}\left(50_{n+1}\right)\right)$ is a quotient of $\mathcal{W}^{\text {ev }}(c, \lambda)$ for all $n \geq 1$.

In type C the story is different because
$\operatorname{Com}\left(V^{k}\left(\mathfrak{s p}_{2 n}\right), V^{k}\left(\mathfrak{s p}_{2 n+2}\right)\right)$ has a copy of $V^{k}\left(\mathfrak{s p}_{2}\right)$, and has strong generating type $\mathcal{W}\left(1^{3}, 2,3^{3}, 4,5^{3}, \ldots\right)$.

Can replace n with a complex parameter to construct a 2-parameter VOA which is freely generated of type

19. Other types

We expect similar 2-parameter VOAs $\mathcal{W}^{\mathfrak{5 0}_{n}}(c, \lambda)$ of type $\mathcal{W}\left(1^{d_{1}}, 2^{d_{2}}, 3^{d_{1}}, 4^{d_{2}}, \ldots\right), \quad d_{1}=\operatorname{dim} \wedge^{2}\left(\mathbb{C}^{n}\right), \quad d_{2}=\operatorname{dim} \operatorname{Sym}^{2}\left(\mathbb{C}^{n}\right)$.
(Currently under construction with Flor Orosz Hunziker).
Expected to be extensions of tensor products of quotients of $\mathcal{W}^{\text {ev }}(c, \lambda)$.

This is because $\operatorname{Com}\left(V^{k}\left(50_{n}\right), V^{k}\left(50_{n+1}\right)\right)$ is a quotient of $\mathcal{W}^{\mathrm{ev}}(c, \lambda)$ for all $n \geq 1$.

In type C the story is different because
$\operatorname{Com}\left(V^{k}\left(\mathfrak{s p}_{2 n}\right), V^{k}\left(\mathfrak{s p}_{2 n+2}\right)\right)$ has a copy of $V^{k}\left(\mathfrak{s p}_{2}\right)$, and has strong generating type $\mathcal{W}\left(1^{3}, 2,3^{3}, 4,5^{3}, \ldots\right)$.

Can replace n with a complex parameter to construct a 2-parameter VOA which is freely generated of type

19. Other types

We expect similar 2-parameter VOAs $\mathcal{W}^{\mathfrak{s o}_{n}}(c, \lambda)$ of type $\mathcal{W}\left(1^{d_{1}}, 2^{d_{2}}, 3^{d_{1}}, 4^{d_{2}}, \ldots\right), \quad d_{1}=\operatorname{dim} \wedge^{2}\left(\mathbb{C}^{n}\right), \quad d_{2}=\operatorname{dim} \operatorname{Sym}^{2}\left(\mathbb{C}^{n}\right)$.
(Currently under construction with Flor Orosz Hunziker).
Expected to be extensions of tensor products of quotients of $\mathcal{W}^{\text {ev }}(c, \lambda)$.

This is because $\operatorname{Com}\left(V^{k}\left(\mathfrak{s o}_{n}\right), V^{k}\left(\mathfrak{s o}_{n+1}\right)\right)$ is a quotient of $\mathcal{W}^{\mathrm{ev}}(c, \lambda)$ for all $n \geq 1$.

In type C the story is different because
$\operatorname{Com}\left(V^{k}\left(\mathfrak{s p}_{2 n}\right), V^{k}\left(\mathfrak{s p}_{2 n+2}\right)\right)$ has a copy of $V^{k}\left(\mathfrak{s p}_{2}\right)$, and has strong generating type $\mathcal{W}\left(1^{3}, 2,3^{3}, 4,5^{3}, \ldots\right)$.

Can replace n with a complex parameter to construct a 2-parameter VOA which is freely generated of type $\mathcal{W}\left(1^{3}, 2,3^{3}, 4,5^{3}\right.$,

19. Other types

We expect similar 2-parameter VOAs $\mathcal{W}^{\mathfrak{s o}_{n}}(c, \lambda)$ of type $\mathcal{W}\left(1^{d_{1}}, 2^{d_{2}}, 3^{d_{1}}, 4^{d_{2}}, \ldots\right), \quad d_{1}=\operatorname{dim} \wedge^{2}\left(\mathbb{C}^{n}\right), \quad d_{2}=\operatorname{dim} \operatorname{Sym}^{2}\left(\mathbb{C}^{n}\right)$.
(Currently under construction with Flor Orosz Hunziker).
Expected to be extensions of tensor products of quotients of $\mathcal{W}^{\text {ev }}(c, \lambda)$.

This is because $\operatorname{Com}\left(V^{k}\left(\mathfrak{s o}_{n}\right), V^{k}\left(\mathfrak{s o}_{n+1}\right)\right)$ is a quotient of $\mathcal{W}^{\mathrm{ev}}(c, \lambda)$ for all $n \geq 1$.

In type C the story is different because
$\operatorname{Com}\left(V^{k}\left(\mathfrak{s p}_{2 n}\right), V^{k}\left(\mathfrak{s p}_{2 n+2}\right)\right)$ has a copy of $V^{k}\left(\mathfrak{s p}_{2}\right)$, and has strong generating type $\mathcal{W}\left(1^{3}, 2,3^{3}, 4,5^{3}, \ldots\right)$.

Can replace n with a complex parameter to construct a 2-parameter VOA which is freely generated of type

19. Other types

We expect similar 2-parameter VOAs $\mathcal{W}^{\mathfrak{s o}_{n}}(c, \lambda)$ of type $\mathcal{W}\left(1^{d_{1}}, 2^{d_{2}}, 3^{d_{1}}, 4^{d_{2}}, \ldots\right), \quad d_{1}=\operatorname{dim} \wedge^{2}\left(\mathbb{C}^{n}\right), \quad d_{2}=\operatorname{dim} \operatorname{Sym}^{2}\left(\mathbb{C}^{n}\right)$.
(Currently under construction with Flor Orosz Hunziker).
Expected to be extensions of tensor products of quotients of $\mathcal{W}^{\text {ev }}(c, \lambda)$.

This is because $\operatorname{Com}\left(V^{k}\left(\mathfrak{s o}_{n}\right), V^{k}\left(\mathfrak{s o}_{n+1}\right)\right)$ is a quotient of $\mathcal{W}^{\text {ev }}(c, \lambda)$ for all $n \geq 1$.

In type C the story is different because
$\operatorname{Com}\left(V^{k}\left(\mathfrak{s p}_{2 n}\right), V^{k}\left(\mathfrak{s p}_{2 n+2}\right)\right)$ has a copy of $V^{k}\left(\mathfrak{s p}_{2}\right)$, and has strong generating type $\mathcal{W}\left(1^{3}, 2,3^{3}, 4,5^{3}, \ldots\right)$.

Can replace n with a complex parameter to construct a 2-parameter VOA which is freely generated of type $\mathcal{W}\left(1^{3}, 2,3^{3}, 4,5^{3}, \ldots\right)$.

20. The universal object $\mathcal{W}^{\mathfrak{s p}_{2}}$

Vladimir Kovalchuk is (nearly) finished proving that this is a universal object, which we denote by $\mathcal{W}^{\mathfrak{s p}_{2}}$.

```
Similar to, but more involved, than construction of \mathcal{W}(c,\lambda).
Expect it has exactly 2 free parameters c, k.
In addition to generators }X,Y,H\mathrm{ of }\mp@subsup{V}{}{k}({\mp@subsup{p}{2}{})\mathrm{ ), we have:
    1. Fields L, W'4},\mp@subsup{W}{}{6},\ldots\mathrm{ which are }\mp@subsup{\mathfrak{sp}}{2}{2}\mathrm{ -trivial,
    2. Fields }\mp@subsup{X}{}{2i+1},\mp@subsup{Y}{}{2i+1},\mp@subsup{h}{}{2i+1}\mathrm{ for all i}\geq1\mathrm{ , which transform as
    adjoint }\mp@subsup{\mathfrak{sp}}{2}{}\mathrm{ -module.
```

We assume:
1. $W^{2 i+2}=W_{(1)}^{4} W^{2 i}$ for $i \geq 2$,
2. $Z^{2 i+3}=W_{(1)}^{4} Z^{2 i+1}$ for all $i \geq 1$ and $Z=X, Y, H$
Write down most general OPE algebra that is compatible with
$\mathfrak{s p}_{2}$-symmetry, with undermined structure constants.
Structure constants are determined by imposing , لagp,bi, identitities.

20. The universal object $\mathcal{W}^{\text {sp }_{2}}$

Vladimir Kovalchuk is (nearly) finished proving that this is a universal object, which we denote by $\mathcal{W}^{\mathfrak{s p}_{2}}$.

Similar to, but more involved, than construction of $\mathcal{W}(c, \lambda)$. Expect it has exactly 2 free parameters c, k.

We assume:

Write down most general OPE algebra that is compatible with $\mathfrak{s p}_{2}$-symmetry, with undermined structure constants.

20. The universal object $\mathcal{W}^{\mathfrak{s p}_{2}}$

Vladimir Kovalchuk is (nearly) finished proving that this is a universal object, which we denote by $\mathcal{W}^{\text {sp }_{2}}$.

Similar to, but more involved, than construction of $\mathcal{W}(c, \lambda)$. Expect it has exactly 2 free parameters c, k.

In addition to generators X, Y, H of $V^{k}\left(\mathfrak{s p}_{2}\right)$, we have:

1. Fields L, W^{4}, W^{6}, \ldots which are $\mathfrak{s p}_{2}$-trivial,
2. Fields $X^{2 i+1}, Y^{2 i+1}, h^{2 i+1}$ for all $i \geq 1$, which transform as adjoint $\mathfrak{s p}_{2}$-module.

We assume:

Write down most general OPE algebra that is compatible with $\mathfrak{s p}_{2}$-symmetry, with undermined structure constants.

20. The universal object $\mathcal{W}^{\text {sp }_{2}}$

Vladimir Kovalchuk is (nearly) finished proving that this is a universal object, which we denote by $\mathcal{W}^{\text {sp }_{2}}$.

Similar to, but more involved, than construction of $\mathcal{W}(c, \lambda)$.
Expect it has exactly 2 free parameters c, k.
In addition to generators X, Y, H of $V^{k}\left(\mathfrak{s p}_{2}\right)$, we have:

1. Fields L, W^{4}, W^{6}, \ldots which are $\mathfrak{s p}_{2}$-trivial,
2. Fields $X^{2 i+1}, Y^{2 i+1}, h^{2 i+1}$ for all $i \geq 1$, which transform as adjoint $\mathfrak{s p}_{2}$-module.

We assume:

$$
\begin{aligned}
& \text { 1. } W^{2 i+2}=W_{(1)}^{4} W^{2 i} \text { for } i \geq 2 \text {, } \\
& \text { 2. } Z^{2 i+3}=W_{(1)}^{4} Z^{2 i+1} \text { for all } i \geq 1 \text { and } Z=X, Y, H .
\end{aligned}
$$

\square
Write down most general OPE algebra that is compatible with $\mathfrak{s p}_{2}$-symmetry, with undermined structure constants.

20. The universal object $\mathcal{W}^{\text {sp }_{2}}$

Vladimir Kovalchuk is (nearly) finished proving that this is a universal object, which we denote by $\mathcal{W}^{\mathfrak{s p}_{2}}$.

Similar to, but more involved, than construction of $\mathcal{W}(c, \lambda)$.
Expect it has exactly 2 free parameters c, k.
In addition to generators X, Y, H of $V^{k}\left(\mathfrak{s p}_{2}\right)$, we have:

1. Fields L, W^{4}, W^{6}, \ldots which are $\mathfrak{s p}_{2}$-trivial,
2. Fields $X^{2 i+1}, Y^{2 i+1}, h^{2 i+1}$ for all $i \geq 1$, which transform as adjoint $\mathfrak{s p}_{2}$-module.

We assume:

$$
\begin{aligned}
& \text { 1. } W^{2 i+2}=W_{(1)}^{4} W^{2 i} \text { for } i \geq 2 \text {, } \\
& \text { 2. } Z^{2 i+3}=W_{(1)}^{4} Z^{2 i+1} \text { for all } i \geq 1 \text { and } Z=X, Y, H .
\end{aligned}
$$

Write down most general OPE algebra that is compatible with $\mathfrak{s p}_{2}$-symmetry, with undermined structure constants.

20. The universal object $\mathcal{W}^{\mathfrak{s p}_{2}}$

Vladimir Kovalchuk is (nearly) finished proving that this is a universal object, which we denote by $\mathcal{W}^{\mathfrak{s p}_{2}}$.

Similar to, but more involved, than construction of $\mathcal{W}(c, \lambda)$.
Expect it has exactly 2 free parameters c, k.
In addition to generators X, Y, H of $V^{k}\left(\mathfrak{s p}_{2}\right)$, we have:

1. Fields L, W^{4}, W^{6}, \ldots which are $\mathfrak{s p}_{2}$-trivial,
2. Fields $X^{2 i+1}, Y^{2 i+1}, h^{2 i+1}$ for all $i \geq 1$, which transform as adjoint $\mathfrak{s p}_{2}$-module.

We assume:

$$
\begin{aligned}
& \text { 1. } W^{2 i+2}=W_{(1)}^{4} W^{2 i} \text { for } i \geq 2 \text {, } \\
& \text { 2. } Z^{2 i+3}=W_{(1)}^{4} Z^{2 i+1} \text { for all } i \geq 1 \text { and } Z=X, Y, H .
\end{aligned}
$$

Write down most general OPE algebra that is compatible with $\mathfrak{s p}_{2}$-symmetry, with undermined structure constants.

Structure constants are determined by imposing Jacobi identities.

21. Some quotients of $\mathcal{W}^{\mathfrak{s p}_{2}}$

Let $\mathfrak{g}=\mathfrak{s o}_{4 n}$ which has a subalgebra $\mathfrak{s p}_{2 n} \oplus \mathfrak{S p}_{2}$ and decomposes as

$$
\mathfrak{s o}_{4 n} \cong \mathfrak{s p}_{2 n} \oplus \mathfrak{s p}_{2} \oplus\left(\rho_{\omega_{2}} \otimes \mathbb{C}^{3}\right)
$$

Note: As a $\mathfrak{s p}_{2 n}$-module,
so $\operatorname{dim} \rho_{\omega_{2}}=n(2 n-1)-1$.
Let $f_{\mathfrak{s p}_{2 n}}$ be the nilpotent which is principal in $\mathfrak{s p}_{2 n}$.
$W^{\psi}\left(50_{4 n}, f_{5 p_{2 n}}\right)$ is analogous to $\mathcal{W}^{\psi}\left(\mathrm{gr}_{n m}, f_{n m}\right)$, where

1. Principal part $\mathfrak{g l}_{n}$ is replaced with $\mathfrak{s p}_{2 n}$.
2. Rectangular part $\mathfrak{g l}_{m}$ is replaced with $\mathfrak{s p}_{2}$.
$W^{\psi}\left(5_{4 n}, f_{5 p_{2 n}}\right)$ is freely generated of type

$$
\mathcal{W}\left(1^{3}, 2,3^{3}, 4, \ldots,(2 n-1)^{3}, 2 n\right)
$$

21. Some quotients of $\mathcal{W}^{\mathfrak{s p}_{2}}$

Let $\mathfrak{g}=\mathfrak{s o}_{4 n}$ which has a subalgebra $\mathfrak{s p}_{2 n} \oplus \mathfrak{S p}_{2}$ and decomposes as

$$
\mathfrak{s o}_{4 n} \cong \mathfrak{s p}_{2 n} \oplus \mathfrak{s p}_{2} \oplus\left(\rho_{\omega_{2}} \otimes \mathbb{C}^{3}\right)
$$

Note: As a $\mathfrak{s p}_{2 n}$-module,

$$
\wedge^{2}\left(\mathbb{C}^{2 n}\right) \cong \mathbb{C} \oplus \rho_{\omega_{2}}
$$

so $\operatorname{dim} \rho_{\omega_{2}}=n(2 n-1)-1$.
Let $f_{5 p_{2 n}}$ be the nilpotent which is principal in $s p_{2 n}$.
$\mathcal{W}^{\psi}\left(\mathfrak{5 0}_{4 n}, f_{\mathfrak{s p}_{2 n}}\right)$ is analogous to $\mathcal{W}^{\psi}\left(\mathfrak{g l}_{n m}, f_{n^{m}}\right)$, where

1. Principal part $\mathfrak{g l}_{n}$ is replaced with $\mathfrak{s p}_{2 n}$.
2. Rectangular part $\mathfrak{g l}_{m}$ is replaced with $\mathfrak{s p}_{2}$.
$\mathcal{W}^{\psi}\left({50_{4 n}}, f_{\mathfrak{s p}_{2 n}}\right)$ is freely generated of type

$$
\mathcal{W}\left(1^{3}, 2,3^{3}, 4, \ldots,(2 n-1)^{3}, 2 n\right)
$$

21. Some quotients of $\mathcal{W}^{\mathfrak{s p}_{2}}$

Let $\mathfrak{g}=\mathfrak{s o}_{4 n}$ which has a subalgebra $\mathfrak{s p}_{2 n} \oplus \mathfrak{S p}_{2}$ and decomposes as

$$
\mathfrak{s o}_{4 n} \cong \mathfrak{s p}_{2 n} \oplus \mathfrak{s p}_{2} \oplus\left(\rho_{\omega_{2}} \otimes \mathbb{C}^{3}\right)
$$

Note: As a $\mathfrak{s p}_{2 n}$-module,

$$
\wedge^{2}\left(\mathbb{C}^{2 n}\right) \cong \mathbb{C} \oplus \rho_{\omega_{2}},
$$

so $\operatorname{dim} \rho_{\omega_{2}}=n(2 n-1)-1$.
Let $f_{\mathfrak{s p}_{2 n}}$ be the nilpotent which is principal in $\mathfrak{s p}_{2 n}$.

$\mathcal{W}^{\psi}\left({50_{4 n}}, f_{\mathfrak{5 p}_{2 n}}\right)$ is freely generated of type

$$
\mathcal{W}\left(1^{3}, 2,3^{3}, 4, \ldots,(2 n-1)^{3}, 2 n\right)
$$

21. Some quotients of $\mathcal{W}^{\mathfrak{s p}_{2}}$

Let $\mathfrak{g}=\mathfrak{s o}_{4 n}$ which has a subalgebra $\mathfrak{s p}_{2 n} \oplus \mathfrak{s p}_{2}$ and decomposes as

$$
\mathfrak{s o}_{4 n} \cong \mathfrak{s p}_{2 n} \oplus \mathfrak{s p}_{2} \oplus\left(\rho_{\omega_{2}} \otimes \mathbb{C}^{3}\right)
$$

Note: As a $\mathfrak{s p}_{2 n}$-module,

$$
\wedge^{2}\left(\mathbb{C}^{2 n}\right) \cong \mathbb{C} \oplus \rho_{\omega_{2}}
$$

so $\operatorname{dim} \rho_{\omega_{2}}=n(2 n-1)-1$.
Let $f_{\mathfrak{s p}_{2 n}}$ be the nilpotent which is principal in $\mathfrak{s p}_{2 n}$.
$\mathcal{W}^{\psi}\left({50_{4 n}}, f_{\mathfrak{s p}_{2 n}}\right)$ is analogous to $\mathcal{W}^{\psi}\left(\mathfrak{g l}_{n m}, f_{n^{m}}\right)$, where

1. Principal part $\mathfrak{g l}_{n}$ is replaced with $\mathfrak{s p}_{2 n}$.
2. Rectangular part $\mathfrak{g l}_{m}$ is replaced with $\mathfrak{s p}_{2}$.
$\mathcal{W}^{\psi}\left(50_{4 n}, f_{5 p_{2 n}}\right)$ is freely generated of type

21. Some quotients of $\mathcal{W}^{\mathfrak{s p}_{2}}$

Let $\mathfrak{g}=\mathfrak{s o}_{4 n}$ which has a subalgebra $\mathfrak{s p}_{2 n} \oplus \mathfrak{s p}_{2}$ and decomposes as

$$
\mathfrak{s o}_{4 n} \cong \mathfrak{s p}_{2 n} \oplus \mathfrak{s p}_{2} \oplus\left(\rho_{\omega_{2}} \otimes \mathbb{C}^{3}\right)
$$

Note: As a $\mathfrak{s p}_{2 n}$-module,

$$
\wedge^{2}\left(\mathbb{C}^{2 n}\right) \cong \mathbb{C} \oplus \rho_{\omega_{2}}
$$

so $\operatorname{dim} \rho_{\omega_{2}}=n(2 n-1)-1$.
Let $f_{\mathfrak{s p}_{2 n}}$ be the nilpotent which is principal in $\mathfrak{s p}_{2 n}$.
$\mathcal{W}^{\psi}\left(\mathfrak{s o}_{4 n}, f_{\mathfrak{s p}_{2 n}}\right)$ is analogous to $\mathcal{W}^{\psi}\left(\mathfrak{g l}_{n m}, f_{n^{m}}\right)$, where

1. Principal part $\mathfrak{g l}_{n}$ is replaced with $\mathfrak{s p}_{2 n}$.
2. Rectangular part $\mathfrak{g l}_{m}$ is replaced with $\mathfrak{s p}_{2}$.
$\mathcal{W}^{\psi}\left(\mathfrak{5 o}_{4 n}, f_{\mathfrak{s p}_{2 n}}\right)$ is freely generated of type

$$
\mathcal{W}\left(1^{3}, 2,3^{3}, 4, \ldots,(2 n-1)^{3}, 2 n\right)
$$

22. Some quotients of $\mathcal{W}^{\mathfrak{s p}_{2}}$

Let $\mathfrak{g}=\mathfrak{s p}_{2(2 n+1)}$ which has a subalgebra $\mathfrak{s o}_{2 n+1} \oplus \mathfrak{s p}_{2}$ and decomposes as

$$
\mathfrak{s p}_{2(2 n+1)} \cong \mathfrak{s o}_{2 n+1} \oplus \mathfrak{s p}_{2} \oplus\left(\rho_{2 \omega_{1}} \otimes \mathbb{C}^{3}\right)
$$

Note: As a $\mathfrak{5 0}_{2 n+1}$-module,

so $\operatorname{dim} \rho_{2 \omega_{1}}=(2 n+1)(n+1)-1$.
Let $f_{\mathfrak{S o}_{2 n+1}}$ be the nilpotent which is principal in $\mathfrak{s o}_{2 n+1}$.
$\mathcal{W h}^{\psi}\left(\mathfrak{s p}_{2(2 n+1)}, f_{502 n+1}\right)$ is analogous to $\mathcal{N}^{\psi}\left(\mathfrak{g r}_{n m}, f_{n^{m}}\right)$, where

1. Principal part $\mathfrak{g l}_{n}$ is replaced with $50_{2 n+1}$.
2. Rectangular part $\mathfrak{g l}_{m}$ is replaced with $\mathfrak{s p}_{2}$.
$\mathcal{W}^{\psi}\left(5 p_{2(2 n+1)}, f_{502 n+1}\right)$ is freely generated of type

22. Some quotients of $\mathcal{W}^{\operatorname{sp}_{2}}$

Let $\mathfrak{g}=\mathfrak{s p}_{2(2 n+1)}$ which has a subalgebra $\mathfrak{s o}_{2 n+1} \oplus \mathfrak{s p}_{2}$ and decomposes as

$$
\mathfrak{s p}_{2(2 n+1)} \cong \mathfrak{s o}_{2 n+1} \oplus \mathfrak{s p}_{2} \oplus\left(\rho_{2 \omega_{1}} \otimes \mathbb{C}^{3}\right)
$$

Note: As a $\mathfrak{s o}_{2 n+1}$-module,

$$
\operatorname{Sym}^{2}\left(\mathbb{C}^{2 n+1}\right) \cong \mathbb{C} \oplus \rho_{2 \omega_{1}},
$$

so $\operatorname{dim} \rho_{2 \omega_{1}}=(2 n+1)(n+1)-1$.
Let $f_{502 n+1}$ be the nilpotent which is principal in $50_{2 n+1}$.
$\mathcal{W}^{\psi}\left(\mathfrak{s p}_{2(2 n+1)}, f_{\mathfrak{S O}_{2 n+1}}\right)$ is analogous to $\mathcal{W}^{\psi}\left(\mathfrak{g l}_{n m}, f_{n^{m}}\right)$, where 1. Principal part $\mathfrak{g l}_{n}$ is replaced with $\mathfrak{5 0}_{2 n+1}$.
2. Rectangular part $\mathfrak{g l}_{m}$ is replaced with $\mathfrak{s p}_{2}$
$\mathcal{W}^{\psi}\left(\mathfrak{s p}_{2(2 n+1)}, f_{50_{2 n+1}}\right)$ is freely generated of type

22. Some quotients of $\mathcal{W}^{\operatorname{sp}_{2}}$

Let $\mathfrak{g}=\mathfrak{s p}_{2(2 n+1)}$ which has a subalgebra $\mathfrak{s o}_{2 n+1} \oplus \mathfrak{s p}_{2}$ and decomposes as

$$
\mathfrak{s p}_{2(2 n+1)} \cong \mathfrak{s o}_{2 n+1} \oplus \mathfrak{s p}_{2} \oplus\left(\rho_{2 \omega_{1}} \otimes \mathbb{C}^{3}\right)
$$

Note: As a $\mathfrak{s o}_{2 n+1}$-module,

$$
\operatorname{Sym}^{2}\left(\mathbb{C}^{2 n+1}\right) \cong \mathbb{C} \oplus \rho_{2 \omega_{1}},
$$

so $\operatorname{dim} \rho_{2 \omega_{1}}=(2 n+1)(n+1)-1$.
Let $f_{\mathfrak{S O}_{2 n+1}}$ be the nilpotent which is principal in $\mathfrak{s o}_{2 n+1}$.

$\mathcal{W}^{\psi}\left(5_{2(2 n+1)}, f_{\mathfrak{s o}_{2 n+1}}\right)$ is freely generated of type

22. Some quotients of $\mathcal{W}^{\text {sp }_{2}}$

Let $\mathfrak{g}=\mathfrak{s p}_{2(2 n+1)}$ which has a subalgebra $\mathfrak{s o}_{2 n+1} \oplus \mathfrak{s p}_{2}$ and decomposes as

$$
\mathfrak{s p}_{2(2 n+1)} \cong \mathfrak{s o}_{2 n+1} \oplus \mathfrak{s p}_{2} \oplus\left(\rho_{2 \omega_{1}} \otimes \mathbb{C}^{3}\right)
$$

Note: As a $\mathfrak{s o}_{2 n+1}$-module,

$$
\operatorname{Sym}^{2}\left(\mathbb{C}^{2 n+1}\right) \cong \mathbb{C} \oplus \rho_{2 \omega_{1}},
$$

so $\operatorname{dim} \rho_{2 \omega_{1}}=(2 n+1)(n+1)-1$.
Let $f_{\mathfrak{S O}_{2 n+1}}$ be the nilpotent which is principal in $\mathfrak{s o}_{2 n+1}$.
$\mathcal{W}^{\psi}\left(\mathfrak{s p}_{2(2 n+1)}, f_{\mathfrak{s o}_{2 n+1}}\right)$ is analogous to $\mathcal{W}^{\psi}\left(\mathfrak{g l}_{n m}, f_{n^{m}}\right)$, where

1. Principal part $\mathfrak{g l}_{n}$ is replaced with $\mathfrak{s o}_{2 n+1}$.
2. Rectangular part $\mathfrak{g l}_{m}$ is replaced with $\mathfrak{s p}_{2}$.
\square

22. Some quotients of $\mathcal{W}^{\operatorname{sp}_{2}}$

Let $\mathfrak{g}=\mathfrak{s p}_{2(2 n+1)}$ which has a subalgebra $\mathfrak{s o}_{2 n+1} \oplus \mathfrak{s p}_{2}$ and decomposes as

$$
\mathfrak{s p}_{2(2 n+1)} \cong \mathfrak{s o}_{2 n+1} \oplus \mathfrak{s p}_{2} \oplus\left(\rho_{2 \omega_{1}} \otimes \mathbb{C}^{3}\right)
$$

Note: As a $\mathfrak{s o}_{2 n+1}$-module,

$$
\operatorname{Sym}^{2}\left(\mathbb{C}^{2 n+1}\right) \cong \mathbb{C} \oplus \rho_{2 \omega_{1}},
$$

so $\operatorname{dim} \rho_{2 \omega_{1}}=(2 n+1)(n+1)-1$.
Let $f_{\mathfrak{S O}_{2 n+1}}$ be the nilpotent which is principal in $\mathfrak{s o}_{2 n+1}$.
$\mathcal{W}^{\psi}\left(\mathfrak{s p}_{2(2 n+1)}, f_{\mathfrak{s o}_{2 n+1}}\right)$ is analogous to $\mathcal{W}^{\psi}\left(\mathfrak{g l}_{n m}, f_{n^{m}}\right)$, where

1. Principal part $\mathfrak{g l}_{n}$ is replaced with $\mathfrak{s o}_{2 n+1}$.
2. Rectangular part $\mathfrak{g l}_{m}$ is replaced with $\mathfrak{s p}_{2}$.
$\mathcal{W}^{\psi}\left(\mathfrak{s p}_{2(2 n+1)}, f_{\mathfrak{s o}_{2 n+1}}\right)$ is freely generated of type

$$
\mathcal{W}\left(1^{3}, 2,3^{3}, 4, \ldots,(2 n-1)^{3}, 2 n\right)
$$

23. Some quotients of $\mathcal{W}^{\mathfrak{s p}_{2}}$, cont'd

More generally, we have 8 families of \mathcal{W}-(super)algebras that are analogues of "rectangular with tail" algebras $\mathcal{W}^{\psi}\left(\mathfrak{g l}_{n m+r}, f_{n^{m}}\right)$:

1. Principal part $\mathfrak{g l}_{n}$ is replaced with either $\mathfrak{s p}_{2 n}$ or $\mathfrak{s o}_{2 n+1}$,
2. Rectangular part $\mathfrak{g l}_{m}$ is replaced with $\mathfrak{s p}_{2}$,
3. Tail part $\mathfrak{g l}_{r}$ is replaced with \mathfrak{g}, either $\mathfrak{s o}_{2 r}, \mathfrak{s o}_{2 r+1}, \mathfrak{s p}_{2 r}, \mathfrak{o s p}_{1 \mid 2 r}$.

Example: $\mathfrak{g}=\mathfrak{5 0}_{4 n+2 r}$, where $f_{\mathrm{sp}_{2 n}}$ is as above inside $\mathfrak{S O}_{4 n}$. Then $\mathcal{W}^{\psi}\left(50_{4 n+2 r}, f_{\mathrm{sp}_{2 n}}\right)$ has affine subVOA

23. Some quotients of $\mathcal{W}^{s p_{2}}$, cont'd

More generally, we have 8 families of \mathcal{W}-(super)algebras that are analogues of "rectangular with tail" algebras $\mathcal{W}^{\psi}\left(\mathfrak{g l}_{n m+r}, f_{n^{m}}\right)$:

1. Principal part $\mathfrak{g l}_{n}$ is replaced with either $\mathfrak{s p}_{2 n}$ or $\mathfrak{s o}_{2 n+1}$,
2. Rectangular part $\mathfrak{g l}_{m}$ is replaced with $\mathfrak{s p}_{2}$,
3. Tail part $\mathfrak{g l}_{r}$ is replaced with \mathfrak{g}, either

$$
\mathfrak{s o}_{2 r}, \mathfrak{s o}_{2 r+1}, \mathfrak{s p}_{2 r}, \mathfrak{o s p}_{1 \mid 2 r} .
$$

Example: $\mathfrak{g}=\mathfrak{s o}_{4 n+2 r}$, where $f_{\text {sp }_{2 n}}$ is as above inside $\mathfrak{s o}_{4 n}$. Then $\mathcal{W}^{\psi}\left(\mathfrak{s o}_{4 n+2 r}, f_{\text {sp }_{2 n}}\right)$ has affine subVOA
$V^{\ell_{1}}\left(\mathfrak{s p}_{2}\right) \otimes V^{\ell_{2}}\left(\mathfrak{s o}_{2 r}\right), \quad \ell_{1}=n \psi-r-2 n, \quad \ell_{2}=\psi-2 r-2$.

23. Some quotients of $\mathcal{W}^{s p_{2}}$, cont'd

More generally, we have 8 families of \mathcal{W}-(super)algebras that are analogues of "rectangular with tail" algebras $\mathcal{W}^{\psi}\left(\mathfrak{g l}_{n m+r}, f_{n^{m}}\right)$:

1. Principal part $\mathfrak{g l}_{n}$ is replaced with either $\mathfrak{s p}_{2 n}$ or $\mathfrak{s o}_{2 n+1}$,
2. Rectangular part $\mathfrak{g l}_{m}$ is replaced with $\mathfrak{s p}_{2}$,
3. Tail part $\mathfrak{g l}_{r}$ is replaced with \mathfrak{g}, either

$$
\mathfrak{s o}_{2 r}, \mathfrak{s o}_{2 r+1}, \mathfrak{s p}_{2 r}, \mathfrak{o s p}_{1 \mid 2 r} .
$$

Example: $\mathfrak{g}=\mathfrak{s o}_{4 n+2 r}$, where $f_{\text {sp }_{2 n}}$ is as above inside $\mathfrak{s o}_{4 n}$. Then $\mathcal{W}^{\psi}\left(\mathfrak{s o}_{4 n+2 r}, f_{\text {sp }_{2 n}}\right)$ has affine subVOA
$V^{\ell_{1}}\left(\mathfrak{s p}_{2}\right) \otimes V^{\ell_{2}}\left(\mathfrak{s o}_{2 r}\right), \quad \ell_{1}=n \psi-r-2 n, \quad \ell_{2}=\psi-2 r-2$.

Then $\operatorname{Com}\left(V^{\ell_{2}}\left(\mathfrak{s o}_{2 r}\right), \mathcal{W}^{\psi}\left(\mathfrak{s o}_{4 n+2 r}, f_{\mathrm{sp}_{2 n}}\right)\right)^{\mathbb{Z}_{2}}$ is a quotient of $\mathcal{W}^{\mathfrak{s p}_{2}}$.

24. Some quotients of $\mathcal{W}^{\mathfrak{s p}_{2}}$, cont'd

Note: These 8 families are the type C analogues of the Gaiotto-Rapčák Y-algebras.

Kovalchuk has computed their truncation curves.
Intersection points are all rational, leading to interesting coincidences.

Strong uniqueness theorem: all \mathcal{W}-algebras in these families are uniquely determined up to isomorphism by:

1. Structure of $\mathcal{W}^{\mathfrak{s p}_{2}}$
2. Action of "tail" Lie (super)algebra on extension fields.

Observation: There are no trialities: all VOAs in these 8 families are distinct as 1-parameter VOAs.

Unlike the \mathcal{W}_{∞}-algebras, these 8 families do not exhaust all the 1-parameter quotients of $\mathcal{W}^{s p_{2}}$

24. Some quotients of $\mathcal{W}^{\text {sp }_{2}}$, cont'd

Note: These 8 families are the type C analogues of the Gaiotto-Rapčák Y-algebras.

Kovalchuk has computed their truncation curves.
Intersection points are all rational, leading to interesting coincidences.

Strong uniqueness theorem: all \mathcal{W}-algebras in these families are uniquely determined up to isomorphism by:

1. Structure of $\mathcal{W}^{\mathfrak{S p}_{2}}$
2. Action of "tail" Lie (super)algebra on extension fields.

Observation: There are no trialities: all VOAs in these 8 families are distinct as 1-parameter VOAs.

Unlike the \mathcal{W}_{∞}-algebras, these 8 families do not exhaust all the 1-parameter quotients of $\mathcal{W}^{s p_{2}}$

24. Some quotients of $\mathcal{W}^{\text {sp }_{2}}$, cont'd

Note: These 8 families are the type C analogues of the Gaiotto-Rapčák Y-algebras.

Kovalchuk has computed their truncation curves.
Intersection points are all rational, leading to interesting coincidences.

Strong uniqueness theorem: all \mathcal{W}-algebras in these families are uniquely determined up to isomorphism by: 1. Structure of $\mathcal{W}^{\mathrm{sp}_{2}}$
2. Action of "tail" Lie (super)algebra on extension fields.

Observation: There are no trialities: all VOAs in these 8 families are distinct as 1-parameter VOAs.

Unlike the \mathcal{W}_{∞}-algebras, these 8 families do not exhaust all the 1-parameter quotients of $\mathcal{W}^{s p_{2}}$

24. Some quotients of $\mathcal{W}^{\text {sp }_{2}}$, cont'd

Note: These 8 families are the type C analogues of the Gaiotto-Rapčák Y-algebras.

Kovalchuk has computed their truncation curves.
Intersection points are all rational, leading to interesting coincidences.

Strong uniqueness theorem: all \mathcal{W}-algebras in these families are uniquely determined up to isomorphism by:

1. Structure of $\mathcal{W}^{\mathfrak{s p}_{2}}$
2. Action of "tail" Lie (super)algebra on extension fields.

Observation: There are no trialities: all VOAs in these 8 families are distinct as 1-parameter VOAs.

24. Some quotients of $\mathcal{W}^{\mathfrak{s p}_{2}}$, cont'd

Note: These 8 families are the type C analogues of the Gaiotto-Rapčák Y-algebras.

Kovalchuk has computed their truncation curves.
Intersection points are all rational, leading to interesting coincidences.

Strong uniqueness theorem: all \mathcal{W}-algebras in these families are uniquely determined up to isomorphism by:

1. Structure of $\mathcal{W}^{\mathfrak{s p}_{2}}$
2. Action of "tail" Lie (super)algebra on extension fields.

Observation: There are no trialities: all VOAs in these 8 families are distinct as 1-parameter VOAs.

24. Some quotients of $\mathcal{W}^{\mathfrak{s p}_{2}}$, cont'd

Note: These 8 families are the type C analogues of the Gaiotto-Rapčák Y-algebras.

Kovalchuk has computed their truncation curves.
Intersection points are all rational, leading to interesting coincidences.

Strong uniqueness theorem: all \mathcal{W}-algebras in these families are uniquely determined up to isomorphism by:

1. Structure of $\mathcal{W}^{\mathfrak{s p}_{2}}$
2. Action of "tail" Lie (super)algebra on extension fields.

Observation: There are no trialities: all VOAs in these 8 families are distinct as 1-parameter VOAs.

Unlike the \mathcal{W}_{∞}-algebras, these 8 families do not exhaust all the 1-parameter quotients of $\mathcal{W}^{\mathfrak{s p}_{2}}$.

25. Motivation: diagonal cosets in type A

For $\mathfrak{g}=\mathfrak{s l}_{n}$, we have homomorphism

$$
V^{k+1}\left(\mathfrak{s l}_{n}\right) \rightarrow V^{k}\left(\mathfrak{s l}_{n}\right) \otimes L_{1}\left(\mathfrak{s l}_{n}\right) .
$$

Fermion algebra $F(2 n)$ is an extension of $L_{1}\left(\mathfrak{s l}_{n}\right)$, can replace above by

$$
V^{k+1}\left(\mathfrak{s l} l_{n}\right) \rightarrow V^{k}\left(\mathfrak{s l} l_{n}\right) \otimes F(2 n) .
$$

Thm: (Kac, Wakimoto, 1989) If k is admissible, this descends to

$$
I_{k+1}\left(\mathfrak{F r}_{n}\right) \rightarrow I_{k}\left(\mathfrak{F r}_{n}\right) \otimes F(2 n)
$$

Thm: (Arakawa, Creutzig, L. 2018) If k is admissible, $\operatorname{Com}\left(L_{k+1}\left(\mathfrak{s l} l_{n}\right), L_{k}\left(\mathfrak{s i} \mathfrak{l}_{n}\right) \otimes F(2 n)\right) \cong \mathcal{W}_{\phi}\left(\mathfrak{s l} l_{n}\right)$,

25. Motivation: diagonal cosets in type A

For $\mathfrak{g}=\mathfrak{s l}_{n}$, we have homomorphism

$$
V^{k+1}\left(\mathfrak{s l}_{n}\right) \rightarrow V^{k}\left(\mathfrak{s l}_{n}\right) \otimes L_{1}\left(\mathfrak{s l}_{n}\right) .
$$

Fermion algebra $F(2 n)$ is an extension of $L_{1}\left(\mathfrak{s l}_{n}\right)$, can replace above by

$$
V^{k+1}\left(\mathfrak{s l}_{n}\right) \rightarrow V^{k}\left(\mathfrak{s l}_{n}\right) \otimes F(2 n) .
$$

Thm: (Kac, Wakimoto, 1989) If k is admissible, this descends to

$$
I_{k+1}\left(\mathfrak{s r}_{n}\right) \rightarrow I_{k}\left(\mathfrak{s r}_{n}\right) \otimes F(2 n)
$$

Thm: (Arakawa, Creutzig, L. 2018) If k is admissible, $\operatorname{Com}\left(L_{k+1}\left(\mathfrak{s l}_{n}\right), L_{k}\left(\mathfrak{s l}_{n}\right) \otimes F(2 n)\right) \cong \mathcal{W}_{\phi}\left(\mathfrak{s l}_{n}\right)$,

25. Motivation: diagonal cosets in type A

For $\mathfrak{g}=\mathfrak{s l}_{n}$, we have homomorphism

$$
V^{k+1}\left(\mathfrak{s l}_{n}\right) \rightarrow V^{k}\left(\mathfrak{s l}_{n}\right) \otimes L_{1}\left(\mathfrak{s l}_{n}\right) .
$$

Fermion algebra $F(2 n)$ is an extension of $L_{1}\left(\mathfrak{s l}_{n}\right)$, can replace above by

$$
V^{k+1}\left(\mathfrak{s l}_{n}\right) \rightarrow V^{k}\left(\mathfrak{s l}_{n}\right) \otimes F(2 n) .
$$

Thm: (Kac, Wakimoto, 1989) If k is admissible, this descends to

$$
L_{k+1}\left(\mathfrak{s l}_{n}\right) \rightarrow L_{k}\left(\mathfrak{s l}_{n}\right) \otimes F(2 n)
$$

Thm: (Arakawa, Creutzig, L. 2018) If k is admissible,

$$
\operatorname{Com}\left(L_{k+1}\left(\mathfrak{s l}_{n}\right), L_{k}\left(\mathfrak{s l}_{n}\right) \otimes F(2 n)\right) \cong \mathcal{W}_{\phi}\left(\mathfrak{s l}_{n}\right), \quad \phi=\frac{k+n}{k+n+1}
$$

which is lisse and rational.

26. Diagonal cosets in type A

In type B, we can similarly consider the embedding

$$
V^{k+1}\left(\mathfrak{s o}_{2 n+1}\right) \rightarrow V^{k}\left(\mathfrak{s o}_{2 n+1}\right) \otimes F(2 n+1)
$$

which descends to

$$
L_{k+1}\left(\mathfrak{s o}_{2 n+1}\right) \rightarrow L_{k}\left(\mathfrak{s o}_{2 n+1}\right) \otimes F(2 n+1)
$$

when k is admissible.
Thm: (Creutzig, Genra, and Creutzig-L. 2021). For k admissible,
$\operatorname{Com}\left(L_{k+1}\left(50_{2 n+1}\right), L_{k}\left(50_{2 n+1}\right) \otimes F(2 n+1)\right) \cong \mathcal{W}_{\psi^{\prime}}\left(\operatorname{osp}_{1 \mid 2 n}\right)$,
where $k=-2 \psi-2 n+1$ and $\frac{1}{\psi}+\frac{1}{\psi^{\prime}}=2$.

26. Diagonal cosets in type A

In type B, we can similarly consider the embedding

$$
V^{k+1}\left(\mathfrak{s o}_{2 n+1}\right) \rightarrow V^{k}\left(\mathfrak{s o}_{2 n+1}\right) \otimes F(2 n+1)
$$

which descends to

$$
L_{k+1}\left(\mathfrak{s o}_{2 n+1}\right) \rightarrow L_{k}\left(\mathfrak{s o}_{2 n+1}\right) \otimes F(2 n+1)
$$

when k is admissible.
Thm: (Creutzig, Genra, and Creutzig-L. 2021). For k admissible,

$$
\operatorname{Com}\left(L_{k+1}\left(\mathfrak{s o}_{2 n+1}\right), L_{k}\left(\mathfrak{s o}_{2 n+1}\right) \otimes F(2 n+1)\right) \cong \mathcal{W}_{\psi^{\prime}}\left(\mathfrak{o s p}_{1 \mid 2 n}\right)
$$

where $k=-2 \psi-2 n+1$ and $\frac{1}{\psi}+\frac{1}{\psi^{\prime}}=2$.

26. Diagonal cosets in type A

In type B, we can similarly consider the embedding

$$
V^{k+1}\left(\mathfrak{s o}_{2 n+1}\right) \rightarrow V^{k}\left(\mathfrak{s o}_{2 n+1}\right) \otimes F(2 n+1)
$$

which descends to

$$
L_{k+1}\left(\mathfrak{s o}_{2 n+1}\right) \rightarrow L_{k}\left(\mathfrak{s o}_{2 n+1}\right) \otimes F(2 n+1)
$$

when k is admissible.
Thm: (Creutzig, Genra, and Creutzig-L. 2021). For k admissible,

$$
\operatorname{Com}\left(L_{k+1}\left(\mathfrak{s o}_{2 n+1}\right), L_{k}\left(\mathfrak{s o}_{2 n+1}\right) \otimes F(2 n+1)\right) \cong \mathcal{W}_{\psi^{\prime}}\left(\mathfrak{o s p}_{1 \mid 2 n}\right)
$$

where $k=-2 \psi-2 n+1$ and $\frac{1}{\psi}+\frac{1}{\psi^{\prime}}=2$.
Conj: These algebras are lisse and rational.

27. Diagonal cosets in type C

We have conformal embedding

$$
L_{1}\left(\mathfrak{s p}_{2 k}\right) \otimes L_{k}\left(\mathfrak{s p}_{2}\right) \rightarrow F(4 k),
$$

where $F(4 k)$ is the algebra of $4 k$ free fermions.
The images of $L_{1}\left(\mathfrak{s p}_{2 k}\right)$ and $L_{k}\left(\mathfrak{s p}_{2}\right)$ form a dual pair inside $F(4 k)$.
For $k \in \mathbb{N}$ and $\ell \in \mathbb{C}$, consider the diagonal coset

which contains subalgebra $L_{k}\left(\mathfrak{s p}_{2}\right)$.
C_{k}^{0} has the same strong generating type as $\mathcal{F}(4 k)^{S_{2 k}}$, which is of type $\mathcal{W}\left(1^{3}, 2,3^{3}, 4, \cdots\right)$ by classical invariant theory.

27. Diagonal cosets in type C

We have conformal embedding

$$
L_{1}\left(\mathfrak{s p}_{2 k}\right) \otimes L_{k}\left(\mathfrak{s p}_{2}\right) \rightarrow F(4 k),
$$

where $F(4 k)$ is the algebra of $4 k$ free fermions.
The images of $L_{1}\left(\mathfrak{s p}_{2 k}\right)$ and $L_{k}\left(\mathfrak{s p}_{2}\right)$ form a dual pair inside $F(4 k)$.
For $k \in \mathbb{N}$ and $\ell \in \mathbb{C}$, consider the diagonal coset

$$
\mathcal{C}_{k}^{\ell}=\operatorname{Com}\left(V^{\ell-1}\left(\mathfrak{s p}_{2 k}\right), V^{\ell}\left(\mathfrak{s p}_{2 k}\right) \otimes F(4 k)\right)
$$

which contains subalgebra $L_{k}\left(\mathfrak{s p}_{2}\right)$.
C_{k}^{0} has the same strong generating type as $\mathcal{F}(4 k)^{S_{2 k}}$, which is of type $\mathcal{W}\left(1^{3}, 2,3^{3}, 4, \cdots\right)$ by classical invariant theory.

27. Diagonal cosets in type C

We have conformal embedding

$$
L_{1}\left(\mathfrak{s p}_{2 k}\right) \otimes L_{k}\left(\mathfrak{s p}_{2}\right) \rightarrow F(4 k),
$$

where $F(4 k)$ is the algebra of $4 k$ free fermions.
The images of $L_{1}\left(\mathfrak{s p}_{2 k}\right)$ and $L_{k}\left(\mathfrak{s p}_{2}\right)$ form a dual pair inside $F(4 k)$.
For $k \in \mathbb{N}$ and $\ell \in \mathbb{C}$, consider the diagonal coset

$$
\mathcal{C}_{k}^{\ell}=\operatorname{Com}\left(V^{\ell-1}\left(\mathfrak{s p}_{2 k}\right), V^{\ell}\left(\mathfrak{s p}_{2 k}\right) \otimes F(4 k)\right),
$$

which contains subalgebra $L_{k}\left(\mathfrak{s p}_{2}\right)$.

27. Diagonal cosets in type C

We have conformal embedding

$$
L_{1}\left(\mathfrak{s p}_{2 k}\right) \otimes L_{k}\left(\mathfrak{s p}_{2}\right) \rightarrow F(4 k),
$$

where $F(4 k)$ is the algebra of $4 k$ free fermions.
The images of $L_{1}\left(\mathfrak{s p}_{2 k}\right)$ and $L_{k}\left(\mathfrak{s p}_{2}\right)$ form a dual pair inside $F(4 k)$.
For $k \in \mathbb{N}$ and $\ell \in \mathbb{C}$, consider the diagonal coset

$$
\mathcal{C}_{k}^{\ell}=\operatorname{Com}\left(V^{\ell-1}\left(\mathfrak{s p}_{2 k}\right), V^{\ell}\left(\mathfrak{s p}_{2 k}\right) \otimes F(4 k)\right),
$$

which contains subalgebra $L_{k}\left(\mathfrak{s p}_{2}\right)$.
\mathcal{C}_{k}^{ℓ} has the same strong generating type as $\mathcal{F}(4 k)^{S_{p_{2 k}}}$, which is of type $\mathcal{W}\left(1^{3}, 2,3^{3}, 4, \cdots\right)$ by classical invariant theory.

27. Diagonal cosets in type C

We have conformal embedding

$$
L_{1}\left(\mathfrak{s p}_{2 k}\right) \otimes L_{k}\left(\mathfrak{s p}_{2}\right) \rightarrow F(4 k),
$$

where $F(4 k)$ is the algebra of $4 k$ free fermions.
The images of $L_{1}\left(\mathfrak{s p}_{2 k}\right)$ and $L_{k}\left(\mathfrak{s p}_{2}\right)$ form a dual pair inside $F(4 k)$.
For $k \in \mathbb{N}$ and $\ell \in \mathbb{C}$, consider the diagonal coset

$$
\mathcal{C}_{k}^{\ell}=\operatorname{Com}\left(V^{\ell-1}\left(\mathfrak{s p}_{2 k}\right), V^{\ell}\left(\mathfrak{s p}_{2 k}\right) \otimes F(4 k)\right),
$$

which contains subalgebra $L_{k}\left(\mathfrak{s p}_{2}\right)$.
\mathcal{C}_{k}^{ℓ} has the same strong generating type as $\mathcal{F}(4 k)^{S_{p_{2 k}}}$, which is of type $\mathcal{W}\left(1^{3}, 2,3^{3}, 4, \cdots\right)$ by classical invariant theory.

So \mathcal{C}_{k}^{ℓ} is a 1-parameter quotient of $\mathcal{W}^{\mathfrak{s p}_{2}}$ containing $L_{k}\left(\mathfrak{s p}_{2}\right)$.

28. Diagonal cosets in type C

Thm: \mathcal{C}_{k}^{ℓ} is an extension of the product of universal \mathcal{W}-algebras $\mathcal{W}^{\phi_{1}}\left(\mathfrak{s p}_{2 k}\right) \otimes \mathcal{W}^{\phi_{2}}\left(\mathfrak{s p}_{2 k}\right)$ where
$\phi_{1}=-(k+1)+\frac{1+\ell+k}{1+2 \ell+2 k}, \quad \phi_{2}=-(k+1)+\frac{\ell+k}{1+2 \ell+2 k}$.

If $\ell-1$ is admissible for $\mathfrak{s p}_{2 k}$, we have an embedding

$$
L_{\ell}\left(\mathfrak{s p}_{2 k}\right) \rightarrow L_{\ell-1}\left(\mathfrak{s p}_{2_{2 k}}\right) \otimes F(4 k) .
$$

Moreover, for admissible $\ell-1$, we have

$$
\operatorname{Com}\left(L_{\ell}\left(\mathfrak{s p}_{2 k}\right) \cdot L_{\ell-1}\left(\mathfrak{s p}_{2 k}\right) \otimes F(4 k)\right) \cong C_{k, \ell}
$$

where $\mathcal{C}_{k, \ell}$ is the simple quotient of \mathcal{C}_{k}^{ℓ}.
Conj: For all $k \in \mathbb{N}$ if $\ell-1$ is admissible and ϕ_{1}, ϕ_{2} are
nondegenerate admissible, $\mathcal{C}_{k, \ell}$ is lisse and rational. (True when

28. Diagonal cosets in type C

Thm: \mathcal{C}_{k}^{ℓ} is an extension of the product of universal \mathcal{W}-algebras $\mathcal{W}^{\phi_{1}}\left(\mathfrak{s p}_{2 k}\right) \otimes \mathcal{W}^{\phi_{2}}\left(\mathfrak{s p}_{2 k}\right)$ where
$\phi_{1}=-(k+1)+\frac{1+\ell+k}{1+2 \ell+2 k}, \quad \phi_{2}=-(k+1)+\frac{\ell+k}{1+2 \ell+2 k}$.

If $\ell-1$ is admissible for $\mathfrak{s p}_{2 k}$, we have an embedding

$$
L_{\ell}\left(\mathfrak{s p}_{2 k}\right) \rightarrow L_{\ell-1}\left(\mathfrak{s p}_{2 k}\right) \otimes F(4 k)
$$

Moreover, for admissible $\ell-1$, we have

$$
\operatorname{Com}\left(L_{\ell}\left(\mathfrak{s p}_{2 k}\right) \cdot L_{\ell-1}\left(\mathfrak{s p}_{2 k}\right) \otimes F(4 k)\right) \cong C_{k, \ell}
$$

where $\mathcal{C}_{k, \ell}$ is the simple quotient of \mathcal{C}_{k}^{ℓ}.
Conj: For all $k \in \mathbb{N}$ if $\ell-1$ is admissible and ϕ_{1}, ϕ_{2} are nondegenerate admissible, $\mathcal{C}_{k, \ell}$ is lisse and rational. (True when

28. Diagonal cosets in type C

Thm: \mathcal{C}_{k}^{ℓ} is an extension of the product of universal \mathcal{W}-algebras $\mathcal{W}^{\phi_{1}}\left(\mathfrak{s p}_{2 k}\right) \otimes \mathcal{W}^{\phi_{2}}\left(\mathfrak{s p}_{2 k}\right)$ where
$\phi_{1}=-(k+1)+\frac{1+\ell+k}{1+2 \ell+2 k}, \quad \phi_{2}=-(k+1)+\frac{\ell+k}{1+2 \ell+2 k}$.

If $\ell-1$ is admissible for $\mathfrak{s p}_{2 k}$, we have an embedding

$$
L_{\ell}\left(\mathfrak{s p}_{2 k}\right) \rightarrow L_{\ell-1}\left(\mathfrak{s p}_{2 k}\right) \otimes F(4 k)
$$

Moreover, for admissible $\ell-1$, we have

$$
\operatorname{Com}\left(L_{\ell}\left(\mathfrak{s p}_{2 k}\right), L_{\ell-1}\left(\mathfrak{s p}_{2 k}\right) \otimes F(4 k)\right) \cong \mathcal{C}_{k, \ell},
$$

where $\mathcal{C}_{k, \ell}$ is the simple quotient of \mathcal{C}_{k}^{ℓ}.
Conj: For all $k \in \mathbb{N}$ if $\ell-1$ is admissible and ϕ_{1}, ϕ_{2} are nondegenerate admissible, $\mathcal{C}_{k, \ell}$ is lisse and rational. (True when

28. Diagonal cosets in type C

Thm: \mathcal{C}_{k}^{ℓ} is an extension of the product of universal \mathcal{W}-algebras $\mathcal{W}^{\phi_{1}}\left(\mathfrak{s p}_{2 k}\right) \otimes \mathcal{W}^{\phi_{2}}\left(\mathfrak{s p}_{2 k}\right)$ where
$\phi_{1}=-(k+1)+\frac{1+\ell+k}{1+2 \ell+2 k}, \quad \phi_{2}=-(k+1)+\frac{\ell+k}{1+2 \ell+2 k}$.

If $\ell-1$ is admissible for $\mathfrak{s p}_{2 k}$, we have an embedding

$$
L_{\ell}\left(\mathfrak{s p}_{2 k}\right) \rightarrow L_{\ell-1}\left(\mathfrak{s p}_{2 k}\right) \otimes F(4 k)
$$

Moreover, for admissible $\ell-1$, we have

$$
\operatorname{Com}\left(L_{\ell}\left(\mathfrak{s p}_{2 k}\right), L_{\ell-1}\left(\mathfrak{s p}_{2 k}\right) \otimes F(4 k)\right) \cong \mathcal{C}_{k, \ell},
$$

where $\mathcal{C}_{k, \ell}$ is the simple quotient of \mathcal{C}_{k}^{ℓ}.
Conj: For all $k \in \mathbb{N}$ if $\ell-1$ is admissible and ϕ_{1}, ϕ_{2} are nondegenerate admissible, $\mathcal{C}_{k, \ell}$ is lisse and rational. (True when $\ell \in \mathbb{N})$.

28. Diagonal cosets in type C

Thm: \mathcal{C}_{k}^{ℓ} is an extension of the product of universal \mathcal{W}-algebras $\mathcal{W}^{\phi_{1}}\left(\mathfrak{s p}_{2 k}\right) \otimes \mathcal{W}^{\phi_{2}}\left(\mathfrak{s p}_{2 k}\right)$ where
$\phi_{1}=-(k+1)+\frac{1+\ell+k}{1+2 \ell+2 k}, \quad \phi_{2}=-(k+1)+\frac{\ell+k}{1+2 \ell+2 k}$.

If $\ell-1$ is admissible for $\mathfrak{s p}_{2 k}$, we have an embedding

$$
L_{\ell}\left(\mathfrak{s p}_{2 k}\right) \rightarrow L_{\ell-1}\left(\mathfrak{s p}_{2 k}\right) \otimes F(4 k)
$$

Moreover, for admissible $\ell-1$, we have

$$
\operatorname{Com}\left(L_{\ell}\left(\mathfrak{s p}_{2 k}\right), L_{\ell-1}\left(\mathfrak{s p}_{2 k}\right) \otimes F(4 k)\right) \cong \mathcal{C}_{k, \ell},
$$

where $\mathcal{C}_{k, \ell}$ is the simple quotient of \mathcal{C}_{k}^{ℓ}.
Conj: For all $k \in \mathbb{N}$ if $\ell-1$ is admissible and ϕ_{1}, ϕ_{2} are nondegenerate admissible, $\mathcal{C}_{k, \ell}$ is lisse and rational. (True when $\ell \in \mathbb{N})$.

29. An application

Recall: $\mathfrak{s p}_{2(2 n+1)}$ has a subalgebra $\mathfrak{s o}_{2 n+1} \oplus \mathfrak{s p}_{2}$, and

$$
\mathfrak{s p}_{2(2 n+1)} \cong \mathfrak{s o}_{2 n+1} \oplus \mathfrak{s p}_{2} \oplus\left(\rho_{2 \omega_{1}} \otimes \mathbb{C}^{3}\right)
$$

Consider $\mathcal{W}^{\psi}\left(\mathfrak{o s p}_{1 \mid 2(2 n+1)+2 m}, f_{\mathfrak{5 0}_{2 n+1}}\right)$, where $f_{5_{0} 0_{n+1}}$ a principal nilpotent in

$$
\mathfrak{s o}_{2 n+1} \subseteq \mathfrak{s p}_{2(2 n+1)} \subseteq \mathfrak{s p}_{2(2 n+1)+2 m} \subseteq \mathfrak{o s p}_{1 \mid 2(2 n+1)+2 m} .
$$

For $a \in \mathbb{N}$, let

Affine subalgebra of $\mathcal{W}^{\psi}\left(\mathfrak{o s p}_{1 \mid 2(2 n+1)+2 m}, f_{\mathfrak{S O}_{2 n+1}}\right)$ is

29. An application

Recall: $\mathfrak{s p}_{2(2 n+1)}$ has a subalgebra $\mathfrak{s o}_{2 n+1} \oplus \mathfrak{s p}_{2}$, and

$$
\mathfrak{s p}_{2(2 n+1)} \cong \mathfrak{s o}_{2 n+1} \oplus \mathfrak{s p}_{2} \oplus\left(\rho_{2 \omega_{1}} \otimes \mathbb{C}^{3}\right)
$$

Consider $\mathcal{W}^{\psi}\left(\mathfrak{o s p}_{1 \mid 2(2 n+1)+2 m}, f_{\mathfrak{s o}_{2 n+1}}\right)$, where $f_{\mathfrak{s o}_{2 n+1}}$ a principal nilpotent in

$$
\mathfrak{s o}_{2 n+1} \subseteq \mathfrak{s p}_{2(2 n+1)} \subseteq \mathfrak{s p}_{2(2 n+1)+2 m} \subseteq \mathfrak{o s p}_{1 \mid 2(2 n+1)+2 m}
$$

For $a \in \mathbb{N}$, let

Affine subalgebra of $\mathcal{W}^{\psi}\left(\mathfrak{o s p}_{1 \mid 2(2 n+1)+2 m}, f_{\mathfrak{s o}_{2 n+1}}\right)$ is

29. An application

Recall: $\mathfrak{s p}_{2(2 n+1)}$ has a subalgebra $\mathfrak{s o}_{2 n+1} \oplus \mathfrak{s p}_{2}$, and

$$
\mathfrak{s p}_{2(2 n+1)} \cong \mathfrak{s o}_{2 n+1} \oplus \mathfrak{s p}_{2} \oplus\left(\rho_{2 \omega_{1}} \otimes \mathbb{C}^{3}\right)
$$

Consider $\mathcal{W}^{\psi}\left(\mathfrak{o s p}_{1 \mid 2(2 n+1)+2 m}, f_{\mathfrak{s o}_{2 n+1}}\right)$, where $f_{\mathfrak{s o}_{2 n+1}}$ a principal nilpotent in

$$
\mathfrak{s o}_{2 n+1} \subseteq \mathfrak{s p}_{2(2 n+1)} \subseteq \mathfrak{s p}_{2(2 n+1)+2 m} \subseteq \mathfrak{o s p}_{1 \mid 2(2 n+1)+2 m}
$$

For $a \in \mathbb{N}$, let

$$
\psi=\frac{3+2 a+2 m}{2}, \quad k=a+n+2 a n+2 m n .
$$

Affine subalgebra of $\mathcal{W}^{\psi}\left(\mathfrak{o s p}_{1 \mid 2(2 n+1)+2 m}, f_{\mathfrak{S O}_{2 n+1}}\right)$ is

29. An application

Recall: $\mathfrak{s p}_{2(2 n+1)}$ has a subalgebra $\mathfrak{s o}_{2 n+1} \oplus \mathfrak{s p}_{2}$, and

$$
\mathfrak{s p}_{2(2 n+1)} \cong \mathfrak{s o}_{2 n+1} \oplus \mathfrak{s p}_{2} \oplus\left(\rho_{2 \omega_{1}} \otimes \mathbb{C}^{3}\right)
$$

Consider $\mathcal{W}^{\psi}\left(\mathfrak{o s p}_{1 \mid 2(2 n+1)+2 m}, f_{\mathfrak{s o}_{2 n+1}}\right)$, where $f_{\mathfrak{S o}_{2 n+1}}$ a principal nilpotent in

$$
\mathfrak{s o}_{2 n+1} \subseteq \mathfrak{s p}_{2(2 n+1)} \subseteq \mathfrak{s p}_{2(2 n+1)+2 m} \subseteq \mathfrak{o s p}_{1 \mid 2(2 n+1)+2 m}
$$

For $a \in \mathbb{N}$, let

$$
\psi=\frac{3+2 a+2 m}{2}, \quad k=a+n+2 a n+2 m n .
$$

Affine subalgebra of $\mathcal{W}^{\psi}\left(\mathfrak{o s p}_{1 \mid 2(2 n+1)+2 m}, f_{\mathfrak{s o}_{2 n+1}}\right)$ is

$$
V^{k}\left(\mathfrak{s p}_{2}\right) \otimes V^{a}\left(\mathfrak{o s p}_{1 \mid 2 m}\right)
$$

30. An application

This is one of the 8 families mentioned earlier, and

$$
\operatorname{Com}\left(V^{a}\left(\mathfrak{o s p}_{1 \mid 2 m}\right), \mathcal{W}^{\psi}\left(\mathfrak{o s p}_{1 \mid 2(2 n+1)+2 m}, f_{\mathfrak{s o}_{2 n+1}}\right)^{\mathbb{Z}_{2}}\right.
$$

is a 1-parameter quotient of $\mathcal{W}^{\text {sp }_{2}}$.
Assuming the uniqueness of $\mathcal{W}^{\text {sp }_{2}}$ as a 2-parameter VOA, such quotients are classified by their truncation curves.

Conj: For all $a, k \in \mathbb{N}, \mathcal{W}_{\psi}\left(\mathfrak{o s p}_{1 \mid 2(2 n+1)+2 m}, f_{50_{2 n+1}}\right)$ has affine subalgebra

$$
L_{k}\left(\mathfrak{s p}_{2}\right) \otimes L_{a}\left(\mathfrak{o s p}_{1 \mid 2 m}\right) .
$$

30. An application

This is one of the 8 families mentioned earlier, and

$$
\operatorname{Com}\left(V^{a}\left(\mathfrak{o s p}_{1 \mid 2 m}\right), \mathcal{W}^{\psi}\left(\mathfrak{o s p}_{1 \mid 2(2 n+1)+2 m}, f_{\mathfrak{s o}_{2 n+1}}\right)^{\mathbb{Z}_{2}}\right.
$$

is a 1-parameter quotient of $\mathcal{W}^{\text {sp }_{2}}$.
Assuming the uniqueness of $\mathcal{W}^{\mathfrak{s p}_{2}}$ as a 2-parameter VOA, such quotients are classified by their truncation curves.

Conj: For all $a, k \in \mathbb{N}, \mathcal{W}_{\psi}\left(\operatorname{osp}_{1 \mid 2(2 n+1)+2 m}, f_{502 n+1}\right)$ has affine subalgebra

30. An application

This is one of the 8 families mentioned earlier, and

$$
\operatorname{Com}\left(V^{a}\left(\mathfrak{o s p}_{1 \mid 2 m}\right), \mathcal{W}^{\psi}\left(\mathfrak{o s p}_{1 \mid 2(2 n+1)+2 m}, f_{\mathfrak{s o}_{2 n+1}}\right)^{\mathbb{Z}_{2}}\right.
$$

is a 1-parameter quotient of $\mathcal{W}^{\text {sp }_{2}}$.
Assuming the uniqueness of $\mathcal{W}^{\mathfrak{s p}_{2}}$ as a 2-parameter VOA, such quotients are classified by their truncation curves.

Conj: For all $a, k \in \mathbb{N}, \mathcal{W}_{\psi}\left(\mathfrak{o s p}_{1 \mid 2(2 n+1)+2 m}, f_{\mathfrak{S o}_{2 n+1}}\right)$ has affine subalgebra

$$
L_{k}\left(\mathfrak{s p}_{2}\right) \otimes L_{a}\left(\mathfrak{o s p}_{1 \mid 2 m}\right)
$$

31. An application

Kovalchuk's formulas for truncation curves imply

$$
\operatorname{Com}\left(L_{a}\left(\mathfrak{o s p}_{1 \mid 2 m}\right), \mathcal{W}_{\psi}\left(\mathfrak{o s p}_{1 \mid 2(2 n+1)+2 m}, f_{\mathfrak{s o}_{2 n+1}}\right)^{\mathbb{Z}_{2}} \cong \mathcal{C}_{k, r},\right.
$$

with $r=-(k+1)+\frac{3+2 a+2 m}{2}$.
$\mathcal{C}_{k, r}$ should be an extension of $\mathcal{W}_{\phi_{1}}\left(\mathfrak{s p}_{2 k}\right) \otimes \mathcal{W}_{\phi_{2}}\left(\mathfrak{s p}_{2 k}\right)$ with

$$
\phi_{2}=\frac{1+2 k+m(2-4 n)-2 n-4 a n}{4(1+k+m-n-2 a n-2 m n)} .
$$

31. An application

Kovalchuk's formulas for truncation curves imply

$$
\operatorname{Com}\left(L_{a}\left(\mathfrak{o s p}_{1 \mid 2 m}\right), \mathcal{W}_{\psi}\left(\mathfrak{o s p}_{1 \mid 2(2 n+1)+2 m}, f_{\mathfrak{s o}_{2 n+1}}\right)^{\mathbb{Z}_{2}} \cong \mathcal{C}_{k, r},\right.
$$

with $r=-(k+1)+\frac{3+2 a+2 m}{2}$.
$\mathcal{C}_{k, r}$ should be an extension of $\mathcal{W}_{\phi_{1}}\left(\mathfrak{s p}_{2 k}\right) \otimes \mathcal{W}_{\phi_{2}}\left(\mathfrak{s p}_{2 k}\right)$ with

$$
\begin{aligned}
\phi_{1} & =\frac{3+2 k+2 m-2 n-4 a n-4 m n}{4(1+k+m-n-2 a n-2 m n)} \\
\phi_{2} & =\frac{1+2 k+m(2-4 n)-2 n-4 a n}{4(1+k+m-n-2 a n-2 m n)}
\end{aligned}
$$

31. An application

Kovalchuk's formulas for truncation curves imply

$$
\operatorname{Com}\left(L_{a}\left(\mathfrak{o s p}_{1 \mid 2 m}\right), \mathcal{W}_{\psi}\left(\mathfrak{o s p}_{1 \mid 2(2 n+1)+2 m}, f_{\mathfrak{s o}_{2 n+1}}\right)^{\mathbb{Z}_{2}} \cong \mathcal{C}_{k, r},\right.
$$

with $r=-(k+1)+\frac{3+2 a+2 m}{2}$.
$\mathcal{C}_{k, r}$ should be an extension of $\mathcal{W}_{\phi_{1}}\left(\mathfrak{s p}_{2 k}\right) \otimes \mathcal{W}_{\phi_{2}}\left(\mathfrak{s p}_{2 k}\right)$ with

$$
\begin{aligned}
\phi_{1} & =\frac{3+2 k+2 m-2 n-4 a n-4 m n}{4(1+k+m-n-2 a n-2 m n)} \\
\phi_{2} & =\frac{1+2 k+m(2-4 n)-2 n-4 a n}{4(1+k+m-n-2 a n-2 m n)}
\end{aligned}
$$

This suggest that $\mathcal{W}_{\psi}\left(\mathfrak{o s p}_{1 \mid 2(2 n+1)+2 m}, f_{\mathfrak{s o p}_{2 n+1}}\right)$ should be lisse and rational for a, n sufficiently large.

