Universal vertex algebras beyond the $\mathcal{W}_\infty\text{-}\mathsf{algebras}$

Andrew Linshaw

University of Denver

Joint with T. Creutzig (Edmonton) and V. Kovalchuk (Denver)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

\mathfrak{g} a simple, finite-dimensional Lie (super)algebra.

 $\mathcal{W}^k(\mathfrak{g}, f)$ universal \mathcal{W} -algebra associated to \mathfrak{g} and an even nilpotent $f \in \mathfrak{g}$.

```
Simple quotient \mathcal{W}_k(\mathfrak{g}, f).
```

For this talk: We will replace k with the shifted level $\psi = k + h^{\vee}$.

 $\mathcal{W}^{\psi}(\mathfrak{g}, f)$ will always denote $\mathcal{W}^{k}(\mathfrak{g}, f)$ with $k = \psi - h^{\vee}$.

 $\mathcal{W}_{\psi}(\mathfrak{g}, f)$ the simple quotient of $\mathcal{W}_{\psi}(\mathfrak{g}, f)$.

If $f = f_{prin}$ is a principal nilpotent, write $W^{\psi}(\mathfrak{g}, f) = W^{\psi}(\mathfrak{g})$.

 ${\mathfrak g}$ a simple, finite-dimensional Lie (super)algebra.

 $\mathcal{W}^k(\mathfrak{g}, f)$ universal \mathcal{W} -algebra associated to \mathfrak{g} and an even nilpotent $f \in \mathfrak{g}$.

Simple quotient $W_k(\mathfrak{g}, f)$.

For this talk: We will replace k with the shifted level $\psi = k + h^{\vee}$.

 $\mathcal{W}^{\psi}(\mathfrak{g}, f)$ will always denote $\mathcal{W}^{k}(\mathfrak{g}, f)$ with $k = \psi - h^{\vee}$.

 $\mathcal{W}_{\psi}(\mathfrak{g}, f)$ the simple quotient of $\mathcal{W}_{\psi}(\mathfrak{g}, f)$.

If $f = f_{prin}$ is a principal nilpotent, write $\mathcal{W}^{\psi}(\mathfrak{g}, f) = \mathcal{W}^{\psi}(\mathfrak{g})$.

 ${\mathfrak g}$ a simple, finite-dimensional Lie (super)algebra.

 $\mathcal{W}^k(\mathfrak{g}, f)$ universal \mathcal{W} -algebra associated to \mathfrak{g} and an even nilpotent $f \in \mathfrak{g}$.

Simple quotient $\mathcal{W}_k(\mathfrak{g}, f)$.

For this talk: We will replace k with the shifted level $\psi = k + h^{\vee}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\mathcal{W}^\psi(\mathfrak{g},f)$ will always denote $\mathcal{W}^k(\mathfrak{g},f)$ with $k=\psi-h^ee.$

 $\mathcal{W}_{\psi}(\mathfrak{g}, f)$ the simple quotient of $\mathcal{W}_{\psi}(\mathfrak{g}, f)$.

If $f = f_{prin}$ is a principal nilpotent, write $\mathcal{W}^{\psi}(\mathfrak{g}, f) = \mathcal{W}^{\psi}(\mathfrak{g})$.

 \mathfrak{g} a simple, finite-dimensional Lie (super)algebra.

 $\mathcal{W}^k(\mathfrak{g}, f)$ universal \mathcal{W} -algebra associated to \mathfrak{g} and an even nilpotent $f \in \mathfrak{g}$.

Simple quotient $\mathcal{W}_k(\mathfrak{g}, f)$.

For this talk: We will replace k with the shifted level $\psi = k + h^{\vee}$.

 $\mathcal{W}^{\psi}(\mathfrak{g},f)$ will always denote $\mathcal{W}^{k}(\mathfrak{g},f)$ with $k=\psi-h^{ee}.$

 $\mathcal{W}_{\psi}(\mathfrak{g}, f)$ the simple quotient of $\mathcal{W}_{\psi}(\mathfrak{g}, f)$.

If $f = f_{prin}$ is a principal nilpotent, write $\mathcal{W}^{\psi}(\mathfrak{g}, f) = \mathcal{W}^{\psi}(\mathfrak{g})$.

 \mathfrak{g} a simple, finite-dimensional Lie (super)algebra.

 $\mathcal{W}^k(\mathfrak{g}, f)$ universal \mathcal{W} -algebra associated to \mathfrak{g} and an even nilpotent $f \in \mathfrak{g}$.

Simple quotient $\mathcal{W}_k(\mathfrak{g}, f)$.

For this talk: We will replace k with the shifted level $\psi = k + h^{\vee}$.

 $\mathcal{W}^{\psi}(\mathfrak{g}, f)$ will always denote $\mathcal{W}^{k}(\mathfrak{g}, f)$ with $k = \psi - h^{\vee}$.

 $\mathcal{W}_{\psi}(\mathfrak{g}, f)$ the simple quotient of $\mathcal{W}_{\psi}(\mathfrak{g}, f)$.

If $f = f_{\text{prin}}$ is a principal nilpotent, write $\mathcal{W}^{\psi}(\mathfrak{g}, f) = \mathcal{W}^{\psi}(\mathfrak{g})$.

 \mathfrak{g} a simple, finite-dimensional Lie (super)algebra.

 $\mathcal{W}^k(\mathfrak{g}, f)$ universal \mathcal{W} -algebra associated to \mathfrak{g} and an even nilpotent $f \in \mathfrak{g}$.

Simple quotient $\mathcal{W}_k(\mathfrak{g}, f)$.

For this talk: We will replace k with the shifted level $\psi = k + h^{\vee}$.

 $\mathcal{W}^{\psi}(\mathfrak{g}, f)$ will always denote $\mathcal{W}^{k}(\mathfrak{g}, f)$ with $k = \psi - h^{\vee}$.

 $\mathcal{W}_{\psi}(\mathfrak{g}, f)$ the simple quotient of $\mathcal{W}_{\psi}(\mathfrak{g}, f)$.

If $f = f_{\mathsf{prin}}$ is a principal nilpotent, write $\mathcal{W}^\psi(\mathfrak{g}, f) = \mathcal{W}^\psi(\mathfrak{g}).$

 \mathfrak{g} a simple, finite-dimensional Lie (super)algebra.

 $\mathcal{W}^k(\mathfrak{g}, f)$ universal \mathcal{W} -algebra associated to \mathfrak{g} and an even nilpotent $f \in \mathfrak{g}$.

Simple quotient $\mathcal{W}_k(\mathfrak{g}, f)$.

For this talk: We will replace k with the shifted level $\psi = k + h^{\vee}$.

 $\mathcal{W}^{\psi}(\mathfrak{g}, f)$ will always denote $\mathcal{W}^{k}(\mathfrak{g}, f)$ with $k = \psi - h^{\vee}$.

 $\mathcal{W}_{\psi}(\mathfrak{g}, f)$ the simple quotient of $\mathcal{W}_{\psi}(\mathfrak{g}, f)$.

If $f = f_{prin}$ is a principal nilpotent, write $\mathcal{W}^{\psi}(\mathfrak{g}, f) = \mathcal{W}^{\psi}(\mathfrak{g})$.

2. Feigin-Frenkel duality

Thm: (Feigin, Frenkel, 1991) Let \mathfrak{g} be a simple Lie algebra. Then

$$\mathcal{W}^{\psi}(\mathfrak{g}) \cong \mathcal{W}^{\psi'}({}^{L}\mathfrak{g}), \qquad r^{\vee}\psi\psi' = 1.$$

Here ${}^{L}\mathfrak{g}$ is the Langlands dual Lie algebra, and r^{\vee} is the lacity of \mathfrak{g} .

Similar result holds for $\mathfrak{g} = \mathfrak{osp}_{1|2n}$.

Thm: (Creutzig, Genra)

 $\mathcal{W}^{\psi}(\mathfrak{osp}_{1|2n}) \cong \mathcal{W}^{\psi'}(\mathfrak{osp}_{1|2n}), \qquad 4\psi\psi' = 1.$

2. Feigin-Frenkel duality

Thm: (Feigin, Frenkel, 1991) Let \mathfrak{g} be a simple Lie algebra. Then

$$\mathcal{W}^{\psi}(\mathfrak{g}) \cong \mathcal{W}^{\psi'}({}^{L}\mathfrak{g}), \qquad r^{\vee}\psi\psi' = 1.$$

Here ${}^{L}\mathfrak{g}$ is the Langlands dual Lie algebra, and r^{\vee} is the lacity of \mathfrak{g} . Similar result holds for $\mathfrak{g} = \mathfrak{osp}_{1|2n}$.

Thm: (Creutzig, Genra)

 $\mathcal{W}^{\psi}(\mathfrak{osp}_{1|2n}) \cong \mathcal{W}^{\psi'}(\mathfrak{osp}_{1|2n}), \qquad 4\psi\psi' = 1.$

2. Feigin-Frenkel duality

Thm: (Feigin, Frenkel, 1991) Let \mathfrak{g} be a simple Lie algebra. Then

$$\mathcal{W}^{\psi}(\mathfrak{g}) \cong \mathcal{W}^{\psi'}({}^{L}\mathfrak{g}), \qquad r^{\vee}\psi\psi' = 1.$$

Here ${}^{L}\mathfrak{g}$ is the Langlands dual Lie algebra, and r^{\vee} is the lacity of \mathfrak{g} .

Similar result holds for $\mathfrak{g} = \mathfrak{osp}_{1|2n}$.

Thm: (Creutzig, Genra)

$$\mathcal{W}^{\psi}(\mathfrak{osp}_{1|2n}) \cong \mathcal{W}^{\psi'}(\mathfrak{osp}_{1|2n}), \qquad 4\psi\psi' = 1.$$

3. Coset construction of principal \mathcal{W} -algebras

Thm: (Arakawa, Creutzig, L., 2018) Let \mathfrak{g} be simple and simply-laced. We have diagonal embedding

 $V^{k+1}(\mathfrak{g}) \hookrightarrow V^k(\mathfrak{g}) \otimes L_1(\mathfrak{g}), \qquad u \mapsto u \otimes 1 + 1 \otimes u, \qquad u \in \mathfrak{g}.$

Set

$$\mathcal{C}^{k}(\mathfrak{g}) = \mathsf{Com}(V^{k+1}(\mathfrak{g}), V^{k}(\mathfrak{g}) \otimes L_{1}(\mathfrak{g})).$$

We have an isomorphism of 1-parameter VOAs

$$C^k(\mathfrak{g})\cong \mathcal{W}^\psi(\mathfrak{g}), \qquad \psi=rac{k+h^ee}{k+h^ee+1}.$$

Coset realization for B (and C) is different.

Thm: (Creutzig, Genra, and Creutzig-L., 2021) We have an isomorphism of 1-parameter VOAs

 $\operatorname{Com}(V^{k}(\mathfrak{sp}_{2n}), V^{k}(\mathfrak{osp}_{1|2n})) \cong \mathcal{W}^{\psi}(\mathfrak{so}_{2n+1}), \qquad \psi = \frac{2k+2n+1}{2(1+k+n)}.$

3. Coset construction of principal \mathcal{W} -algebras

Thm: (Arakawa, Creutzig, L., 2018) Let \mathfrak{g} be simple and simply-laced. We have diagonal embedding

 $V^{k+1}(\mathfrak{g}) \hookrightarrow V^k(\mathfrak{g}) \otimes L_1(\mathfrak{g}), \qquad u \mapsto u \otimes 1 + 1 \otimes u, \qquad u \in \mathfrak{g}.$

Set

$$\mathcal{C}^{k}(\mathfrak{g}) = \mathsf{Com}(V^{k+1}(\mathfrak{g}), V^{k}(\mathfrak{g}) \otimes L_{1}(\mathfrak{g})).$$

We have an isomorphism of 1-parameter VOAs

$$\mathcal{C}^k(\mathfrak{g})\cong\mathcal{W}^\psi(\mathfrak{g}),\qquad \psi=rac{k+h^ee}{k+h^ee+1}.$$

Coset realization for B (and C) is different.

Thm: (Creutzig, Genra, and Creutzig-L., 2021) We have an isomorphism of 1-parameter VOAs

 $\operatorname{Com}(V^{k}(\mathfrak{sp}_{2n}), V^{k}(\mathfrak{osp}_{1|2n})) \cong \mathcal{W}^{\psi}(\mathfrak{so}_{2n+1}), \qquad \psi = \frac{2k+2n+1}{2(1+k+n)}.$

3. Coset construction of principal \mathcal{W} -algebras

Thm: (Arakawa, Creutzig, L., 2018) Let \mathfrak{g} be simple and simply-laced. We have diagonal embedding

 $V^{k+1}(\mathfrak{g}) \hookrightarrow V^k(\mathfrak{g}) \otimes L_1(\mathfrak{g}), \qquad u \mapsto u \otimes 1 + 1 \otimes u, \qquad u \in \mathfrak{g}.$

Set

$$\mathcal{C}^{k}(\mathfrak{g}) = \mathsf{Com}(V^{k+1}(\mathfrak{g}), V^{k}(\mathfrak{g}) \otimes L_{1}(\mathfrak{g})).$$

We have an isomorphism of 1-parameter VOAs

$$\mathcal{C}^k(\mathfrak{g})\cong\mathcal{W}^\psi(\mathfrak{g}),\qquad \psi=rac{k+h^ee}{k+h^ee+1}.$$

Coset realization for B (and C) is different.

Thm: (Creutzig, Genra, and Creutzig-L., 2021) We have an isomorphism of 1-parameter VOAs

$$\operatorname{Com}(V^{k}(\mathfrak{sp}_{2n}), V^{k}(\mathfrak{osp}_{1|2n})) \cong \mathcal{W}^{\psi}(\mathfrak{so}_{2n+1}), \qquad \psi = \frac{2k+2n+1}{2(1+k+n)}.$$

4. What are trialities of \mathcal{W} -algebras?

Let $f \in \mathfrak{g}$ be a nilpotent, and complete f to a copy $\{f, h, e\}$ of \mathfrak{sl}_2 in \mathfrak{g} .

Let $\mathfrak{a} \subseteq \mathfrak{g}$ denote the centralizer of this \mathfrak{sl}_2 in \mathfrak{g} .

Then $\mathcal{W}^{\psi}(\mathfrak{g}, f)$ has affine subVOA $V^{\psi'}(\mathfrak{a})$, for some level ψ' .

By the affine coset, we mean $\mathcal{C}^{\psi}(\mathfrak{g}, f) := \operatorname{Com}(V^{\psi'}(\mathfrak{a}), \mathcal{W}^{\psi}(\mathfrak{g}, f)).$

Sometimes we also take invariants under some group of **outer automorphisms**.

Trialities are isomorphisms between three different affine cosets

$$\mathcal{C}^{\psi}(\mathfrak{g},f)\cong \mathcal{C}^{\psi'}(\mathfrak{g}',f')\cong \mathcal{C}^{\psi''}(\mathfrak{g}'',f'').$$

Let $f \in \mathfrak{g}$ be a nilpotent, and complete f to a copy $\{f, h, e\}$ of \mathfrak{sl}_2 in \mathfrak{g} .

Let $\mathfrak{a}\subseteq\mathfrak{g}$ denote the centralizer of this \mathfrak{sl}_2 in $\mathfrak{g}.$

Then $\mathcal{W}^{\psi}(\mathfrak{g}, f)$ has affine subVOA $V^{\psi'}(\mathfrak{a})$, for some level ψ' .

By the affine coset, we mean $\mathcal{C}^{\psi}(\mathfrak{g}, f) := \operatorname{Com}(V^{\psi'}(\mathfrak{a}), \mathcal{W}^{\psi}(\mathfrak{g}, f)).$

Sometimes we also take invariants under some group of **outer automorphisms**.

Trialities are isomorphisms between three different affine cosets

$$\mathcal{C}^{\psi}(\mathfrak{g},f)\cong\mathcal{C}^{\psi'}(\mathfrak{g}',f')\cong\mathcal{C}^{\psi''}(\mathfrak{g}'',f'').$$

Let $f \in \mathfrak{g}$ be a nilpotent, and complete f to a copy $\{f, h, e\}$ of \mathfrak{sl}_2 in \mathfrak{g} .

Let $\mathfrak{a} \subseteq \mathfrak{g}$ denote the centralizer of this \mathfrak{sl}_2 in \mathfrak{g} .

Then $\mathcal{W}^{\psi}(\mathfrak{g}, f)$ has affine subVOA $V^{\psi'}(\mathfrak{a})$, for some level ψ' .

By the affine coset, we mean $C^{\psi}(\mathfrak{g}, f) := \operatorname{Com}(V^{\psi'}(\mathfrak{a}), W^{\psi}(\mathfrak{g}, f)).$

Sometimes we also take invariants under some group of **outer automorphisms**.

Trialities are isomorphisms between three different affine cosets

$$\mathcal{C}^{\psi}(\mathfrak{g},f)\cong\mathcal{C}^{\psi'}(\mathfrak{g}',f')\cong\mathcal{C}^{\psi''}(\mathfrak{g}'',f'').$$

Let $f \in \mathfrak{g}$ be a nilpotent, and complete f to a copy $\{f, h, e\}$ of \mathfrak{sl}_2 in \mathfrak{g} .

Let $\mathfrak{a} \subseteq \mathfrak{g}$ denote the centralizer of this \mathfrak{sl}_2 in \mathfrak{g} .

Then $\mathcal{W}^{\psi}(\mathfrak{g}, f)$ has affine subVOA $V^{\psi'}(\mathfrak{a})$, for some level ψ' .

By the affine coset, we mean $\mathcal{C}^{\psi}(\mathfrak{g}, f) := \mathsf{Com}(V^{\psi'}(\mathfrak{a}), \mathcal{W}^{\psi}(\mathfrak{g}, f)).$

Sometimes we also take invariants under some group of **outer** automorphisms.

Trialities are isomorphisms between three different affine cosets

$$\mathcal{C}^{\psi}(\mathfrak{g},f)\cong\mathcal{C}^{\psi'}(\mathfrak{g}',f')\cong\mathcal{C}^{\psi''}(\mathfrak{g}'',f'').$$

Let $f \in \mathfrak{g}$ be a nilpotent, and complete f to a copy $\{f, h, e\}$ of \mathfrak{sl}_2 in \mathfrak{g} .

Let $\mathfrak{a} \subseteq \mathfrak{g}$ denote the centralizer of this \mathfrak{sl}_2 in \mathfrak{g} .

Then $\mathcal{W}^{\psi}(\mathfrak{g}, f)$ has affine subVOA $V^{\psi'}(\mathfrak{a})$, for some level ψ' .

By the affine coset, we mean $\mathcal{C}^{\psi}(\mathfrak{g}, f) := \operatorname{Com}(V^{\psi'}(\mathfrak{a}), \mathcal{W}^{\psi}(\mathfrak{g}, f)).$

Sometimes we also take invariants under some group of **outer automorphisms**.

Trialities are isomorphisms between three different affine cosets

$$\mathcal{C}^{\psi}(\mathfrak{g},f)\cong\mathcal{C}^{\psi'}(\mathfrak{g}',f')\cong\mathcal{C}^{\psi''}(\mathfrak{g}'',f'').$$

Let $f \in \mathfrak{g}$ be a nilpotent, and complete f to a copy $\{f, h, e\}$ of \mathfrak{sl}_2 in \mathfrak{g} .

Let $\mathfrak{a} \subseteq \mathfrak{g}$ denote the centralizer of this \mathfrak{sl}_2 in \mathfrak{g} .

Then $\mathcal{W}^{\psi}(\mathfrak{g}, f)$ has affine subVOA $V^{\psi'}(\mathfrak{a})$, for some level ψ' .

By the affine coset, we mean $\mathcal{C}^{\psi}(\mathfrak{g}, f) := \operatorname{Com}(V^{\psi'}(\mathfrak{a}), \mathcal{W}^{\psi}(\mathfrak{g}, f)).$

Sometimes we also take invariants under some group of **outer automorphisms**.

Trialities are isomorphisms between three different affine cosets

$$\mathcal{C}^{\psi}(\mathfrak{g},f)\cong\mathcal{C}^{\psi'}(\mathfrak{g}',f')\cong\mathcal{C}^{\psi''}(\mathfrak{g}'',f'').$$

5. Hook-type W-algebras in type A

Recall: For $n \ge 1$, write

$$\mathfrak{sl}_{n+m} = \mathfrak{sl}_n \oplus \mathfrak{gl}_m \oplus \left(\mathbb{C}^n \otimes (\mathbb{C}^m)^*\right) \oplus \left((\mathbb{C}^n)^* \otimes \mathbb{C}^m\right).$$

Let $f_n \in \mathfrak{sl}_{n+m}$ be the nilpotent which is **principal** in \mathfrak{sl}_n and **trivial** in \mathfrak{gl}_m .

 f_n corresponds to the **hook-type partition** $n + 1 + \cdots + 1$.

Then $\psi = k + n + m$, and we define

$$\mathcal{W}^{\psi}(n,m) := \mathcal{W}^{\psi}(\mathfrak{sl}_{n+m},f_n),$$

5. Hook-type W-algebras in type A

Recall: For $n \ge 1$, write

$$\mathfrak{sl}_{n+m} = \mathfrak{sl}_n \oplus \mathfrak{gl}_m \oplus \left(\mathbb{C}^n \otimes (\mathbb{C}^m)^*\right) \oplus \left((\mathbb{C}^n)^* \otimes \mathbb{C}^m\right).$$

Let $f_n \in \mathfrak{sl}_{n+m}$ be the nilpotent which is **principal** in \mathfrak{sl}_n and **trivial** in \mathfrak{gl}_m .

 f_n corresponds to the **hook-type partition** $n + 1 + \cdots + 1$.

Then $\psi = k + n + m$, and we define

$$\mathcal{W}^{\psi}(n,m) := \mathcal{W}^{\psi}(\mathfrak{sl}_{n+m},f_n),$$

5. Hook-type W-algebras in type A

Recall: For $n \ge 1$, write

$$\mathfrak{sl}_{n+m} = \mathfrak{sl}_n \oplus \mathfrak{gl}_m \oplus \left(\mathbb{C}^n \otimes (\mathbb{C}^m)^*\right) \oplus \left((\mathbb{C}^n)^* \otimes \mathbb{C}^m\right).$$

Let $f_n \in \mathfrak{sl}_{n+m}$ be the nilpotent which is **principal** in \mathfrak{sl}_n and **trivial** in \mathfrak{gl}_m .

 f_n corresponds to the **hook-type partition** $n + 1 + \cdots + 1$.

Then $\psi = k + n + m$, and we define

$$\mathcal{W}^{\psi}(n,m) := \mathcal{W}^{\psi}(\mathfrak{sl}_{n+m},f_n),$$

5. Hook-type \mathcal{W} -algebras in type A

Recall: For $n \ge 1$, write

$$\mathfrak{sl}_{n+m} = \mathfrak{sl}_n \oplus \mathfrak{gl}_m \oplus \left(\mathbb{C}^n \otimes (\mathbb{C}^m)^*\right) \oplus \left((\mathbb{C}^n)^* \otimes \mathbb{C}^m\right).$$

Let $f_n \in \mathfrak{sl}_{n+m}$ be the nilpotent which is **principal** in \mathfrak{sl}_n and **trivial** in \mathfrak{gl}_m .

 f_n corresponds to the **hook-type partition** $n + 1 + \cdots + 1$.

Then $\psi = k + n + m$, and we define

$$\mathcal{W}^{\psi}(n,m) := \mathcal{W}^{\psi}(\mathfrak{sl}_{n+m},f_n),$$

6. Features of $\mathcal{W}^{\psi}(n,m)$

For $m\geq 2$, $\mathcal{W}^\psi(n,m)$ has affine subalgebra $V^{\psi-m-1}(\mathfrak{gl}_m)=\mathcal{H}\otimes V^{\psi-m-1}(\mathfrak{sl}_m).$

Additional **even** generators are in weights 2, 3, ..., *n* together with 2m **even** fields in weight $\frac{n+1}{2}$ which transform under \mathfrak{gl}_m as $\mathbb{C}^m \oplus (\mathbb{C}^m)^*$.

We define the case $\mathcal{W}^{\psi}(0,m)$ separately as follows.

1. For $m \ge 2$,

$$\mathcal{W}^{\psi}(0,m) = V^{\psi-m}(\mathfrak{sl}_m) \otimes \mathcal{S}(m),$$

where S(m) is the rank $m \beta \gamma$ -system.

2. $\mathcal{W}^{\psi}(0,1) = \mathcal{S}(1).$ 3. $\mathcal{W}^{\psi}(0,0) \cong \mathbb{C}.$

6. Features of $\mathcal{W}^{\psi}(n,m)$

For $m\geq$ 2, $\mathcal{W}^{\psi}(n,m)$ has affine subalgebra

$$V^{\psi-m-1}(\mathfrak{gl}_m)=\mathcal{H}\otimes V^{\psi-m-1}(\mathfrak{sl}_m).$$

Additional **even** generators are in weights 2, 3, ..., *n* together with 2m **even** fields in weight $\frac{n+1}{2}$ which transform under \mathfrak{gl}_m as $\mathbb{C}^m \oplus (\mathbb{C}^m)^*$.

We define the case $\mathcal{W}^{\psi}(0,m)$ separately as follows.

1. For $m \ge 2$,

$$\mathcal{W}^{\psi}(0,m) = V^{\psi-m}(\mathfrak{sl}_m) \otimes \mathcal{S}(m),$$

where S(m) is the rank $m \beta \gamma$ -system.

2. $W^{\psi}(0,1) = S(1).$ 3. $W^{\psi}(0,0) \cong \mathbb{C}.$

6. Features of $\mathcal{W}^{\psi}(n,m)$

For $m \ge 2$, $\mathcal{W}^{\psi}(n, m)$ has affine subalgebra $V^{\psi-m-1}(\mathfrak{gl}_m) = \mathcal{H} \otimes V^{\psi-m-1}(\mathfrak{sl}_m).$

Additional **even** generators are in weights 2, 3, ..., n together with 2m **even** fields in weight $\frac{n+1}{2}$ which transform under \mathfrak{gl}_m as $\mathbb{C}^m \oplus (\mathbb{C}^m)^*$.

We define the case $\mathcal{W}^{\psi}(0,m)$ separately as follows.

1. For $m \ge 2$,

$$\mathcal{W}^{\psi}(0,m) = V^{\psi-m}(\mathfrak{sl}_m) \otimes \mathcal{S}(m),$$

where S(m) is the rank $m \beta \gamma$ -system.

2. $\mathcal{W}^{\psi}(0,1) = \mathcal{S}(1).$ 3. $\mathcal{W}^{\psi}(0,0) \cong \mathbb{C}.$

For
$$n + m \ge 2$$
 and $n \ne m$, write
 $\mathfrak{sl}_{n|m} = \mathfrak{sl}_n \oplus \mathfrak{gl}_m \oplus \left(\mathbb{C}^n \otimes (\mathbb{C}^m)^*\right) \oplus \left((\mathbb{C}^n)^* \otimes \mathbb{C}^m\right).$

Nilpotent $f_n \in \mathfrak{sl}_n$ is principal in \mathfrak{sl}_n and trivial in \mathfrak{gl}_m .

Define shifted level $\psi = k + n - m$, and let

$$\mathcal{V}^{\psi}(n,m) = \mathcal{W}^{\psi}(\mathfrak{sl}_{n|m},f_n),$$

which has level $k = \psi - n + m$.

Case $n=m\geq 2$ slightly different: $\mathcal{V}^\psi(n,n)=\mathcal{W}^\psi(\mathfrak{psl}_{n\mid n},f_n)$

For $n + m \ge 2$ and $n \ne m$, write

$$\mathfrak{sl}_{n|m} = \mathfrak{sl}_n \oplus \mathfrak{gl}_m \oplus \left(\mathbb{C}^n \otimes (\mathbb{C}^m)^*\right) \oplus \left((\mathbb{C}^n)^* \otimes \mathbb{C}^m\right).$$

Nilpotent $f_n \in \mathfrak{sl}_n$ is **principal** in \mathfrak{sl}_n and **trivial** in \mathfrak{gl}_m .

Define shifted level $\psi = k + n - m$, and let

$$\mathcal{V}^{\psi}(n,m) = \mathcal{W}^{\psi}(\mathfrak{sl}_{n|m},f_n),$$

which has level $k = \psi - n + m$.

Case $n = m \ge 2$ slightly different: $\mathcal{V}^{\psi}(n, n) = \mathcal{W}^{\psi}(\mathfrak{psl}_{n|n}, f_n)$.

For $n + m \ge 2$ and $n \ne m$, write

$$\mathfrak{sl}_{n|m} = \mathfrak{sl}_n \oplus \mathfrak{gl}_m \oplus \left(\mathbb{C}^n \otimes (\mathbb{C}^m)^*\right) \oplus \left((\mathbb{C}^n)^* \otimes \mathbb{C}^m\right).$$

Nilpotent $f_n \in \mathfrak{sl}_n$ is **principal** in \mathfrak{sl}_n and **trivial** in \mathfrak{gl}_m .

Define shifted level $\psi = k + n - m$, and let

$$\mathcal{V}^{\psi}(n,m)=\mathcal{W}^{\psi}(\mathfrak{sl}_{n|m},f_n),$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

which has level $k = \psi - n + m$.

Case $n = m \ge 2$ slightly different: $\mathcal{V}^{\psi}(n, n) = \mathcal{W}^{\psi}(\mathfrak{psl}_{n|n}, f_n)$.

For $n + m \ge 2$ and $n \ne m$, write

$$\mathfrak{sl}_{n|m} = \mathfrak{sl}_n \oplus \mathfrak{gl}_m \oplus \left(\mathbb{C}^n \otimes (\mathbb{C}^m)^*\right) \oplus \left((\mathbb{C}^n)^* \otimes \mathbb{C}^m\right).$$

Nilpotent $f_n \in \mathfrak{sl}_n$ is **principal** in \mathfrak{sl}_n and **trivial** in \mathfrak{gl}_m .

Define shifted level $\psi = k + n - m$, and let

$$\mathcal{V}^{\psi}(n,m)=\mathcal{W}^{\psi}(\mathfrak{sl}_{n|m},f_n),$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

which has level $k = \psi - n + m$.

Case $n = m \ge 2$ slightly different: $\mathcal{V}^{\psi}(n, n) = \mathcal{W}^{\psi}(\mathfrak{psl}_{n|n}, f_n)$.

8. Hook-type *W*-superalgebras of type *A*

For $m \geq 2$, $\mathcal{V}^{\psi}(n, m)$ has affine subalgebra $V^{-\psi-m+1}(\mathfrak{gl}_m), \qquad m \neq n,$ $V^{-\psi-n+1}(\mathfrak{sl}_n), \qquad m = n.$

Additional **even** generators in weights 2, 3, ..., *n*, together with 2*m* **odd** fields in weight $\frac{n+1}{2}$ transforming under \mathfrak{gl}_m as $\mathbb{C}^m \oplus (\mathbb{C}^m)^*$.

We define the cases $\mathcal{V}^{\psi}(0, m)$ and $\mathcal{V}^{\psi}(1, 1)$ separately as follows. 1. For $m \geq 2$,

$$\mathcal{V}^{\psi}(0,m) = V^{-\psi-m}(\mathfrak{sl}_m) \otimes \mathcal{F}(2m),$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where $\mathcal{F}(2m)$ is the rank 2m free fermion algebra.

2. $\mathcal{V}^\psi(1,1)=\mathcal{A}(1)$, rank one symplectic fermion algebra.

- 3. $\mathcal{V}^{\psi}(0,1) = \mathcal{F}(2).$
- 4. $\mathcal{V}^{\psi}(0,0)\cong\mathcal{V}^{\psi}(1,0)\cong\mathbb{C}.$

8. Hook-type *W*-superalgebras of type *A*

For $m \geq 2$, $\mathcal{V}^{\psi}(n, m)$ has affine subalgebra $V^{-\psi-m+1}(\mathfrak{gl}_m), \qquad m \neq n,$ $V^{-\psi-n+1}(\mathfrak{sl}_n), \qquad m = n.$

Additional **even** generators in weights 2, 3, ..., *n*, together with 2m **odd** fields in weight $\frac{n+1}{2}$ transforming under \mathfrak{gl}_m as $\mathbb{C}^m \oplus (\mathbb{C}^m)^*$.

We define the cases $\mathcal{V}^{\psi}(0,m)$ and $\mathcal{V}^{\psi}(1,1)$ separately as follows. 1. For $m \geq 2$,

$$\mathcal{V}^{\psi}(0,m) = V^{-\psi-m}(\mathfrak{sl}_m) \otimes \mathcal{F}(2m),$$

(日)((1))

where $\mathcal{F}(2m)$ is the rank 2m free fermion algebra.

2. $\mathcal{V}^\psi(1,1)=\mathcal{A}(1)$, rank one symplectic fermion algebra.

- 3. $\mathcal{V}^{\psi}(0,1) = \mathcal{F}(2).$
- 4. $\mathcal{V}^{\psi}(0,0) \cong \mathcal{V}^{\psi}(1,0) \cong \mathbb{C}.$

8. Hook-type *W*-superalgebras of type *A*

For $m \geq 2$, $\mathcal{V}^{\psi}(n, m)$ has affine subalgebra $V^{-\psi-m+1}(\mathfrak{gl}_m), \qquad m \neq n,$ $V^{-\psi-n+1}(\mathfrak{sl}_n), \qquad m = n.$

Additional **even** generators in weights 2, 3, ..., *n*, together with 2m odd fields in weight $\frac{n+1}{2}$ transforming under \mathfrak{gl}_m as $\mathbb{C}^m \oplus (\mathbb{C}^m)^*$.

We define the cases $\mathcal{V}^{\psi}(0, m)$ and $\mathcal{V}^{\psi}(1, 1)$ separately as follows. 1. For m > 2,

$$\mathcal{V}^{\psi}(0,m) = V^{-\psi-m}(\mathfrak{sl}_m) \otimes \mathcal{F}(2m),$$

(日)((1))

where $\mathcal{F}(2m)$ is the rank 2m free fermion algebra.

- 2. $\mathcal{V}^{\psi}(1,1) = \mathcal{A}(1)$, rank one symplectic fermion algebra.
- 3. $\mathcal{V}^{\psi}(0,1) = \mathcal{F}(2).$
- 4. $\mathcal{V}^{\psi}(0,0) \cong \mathcal{V}^{\psi}(1,0) \cong \mathbb{C}.$

9. Trialities in type A

Consider the affine cosets

 $\mathcal{C}^{\psi}(n,m) = \operatorname{Com}(V^{\psi-m-1}(\mathfrak{gl}_m), \mathcal{W}^{\psi}(n,m)),$

$$\mathcal{D}^{\psi}(n,m) = \operatorname{Com}(V^{-\psi-m+1}(\mathfrak{gl}_m), \mathcal{V}^{\psi}(n,m)), \qquad n \neq m,$$

$$\mathcal{D}^{\psi}(n,n) = \operatorname{Com}(V^{-\psi-n+1}(\mathfrak{sl}_n), \mathcal{V}^{\psi}(n,n))^{U(1)}.$$

Thm: (Creutzig-L., 2020) Let $n \ge m$ be non-negative integers. We have isomorphisms of 1-parameter VOAs

$$\mathcal{D}^\psi(n,m)\cong \mathcal{C}^{\psi^{-1}}(n-m,m)\cong \mathcal{D}^{\psi'}(m,n), \qquad rac{1}{\psi}+rac{1}{\psi'}=1.$$

Originally conjectured in physics by Gaiotto and Rapčák (2017).

9. Trialities in type A

Consider the affine cosets

 $\mathcal{C}^{\psi}(n,m) = \operatorname{Com}(V^{\psi-m-1}(\mathfrak{gl}_m), \mathcal{W}^{\psi}(n,m)),$

$$\mathcal{D}^{\psi}(n,m) = \operatorname{Com}(V^{-\psi-m+1}(\mathfrak{gl}_m), \mathcal{V}^{\psi}(n,m)), \qquad n \neq m,$$

$$\mathcal{D}^{\psi}(n,n) = \operatorname{Com}(V^{-\psi-n+1}(\mathfrak{sl}_n), \mathcal{V}^{\psi}(n,n))^{U(1)}.$$

Thm: (Creutzig-L., 2020) Let $n \ge m$ be non-negative integers. We have isomorphisms of 1-parameter VOAs

$$\mathcal{D}^{\psi}(n,m) \cong \mathcal{C}^{\psi^{-1}}(n-m,m) \cong \mathcal{D}^{\psi'}(m,n), \qquad \frac{1}{\psi} + \frac{1}{\psi'} = 1.$$

Originally conjectured in physics by Gaiotto and Rapčák (2017).
9. Trialities in type A

Consider the affine cosets

 $\mathcal{C}^{\psi}(n,m) = \operatorname{Com}(V^{\psi-m-1}(\mathfrak{gl}_m), \mathcal{W}^{\psi}(n,m)),$

$$\mathcal{D}^{\psi}(n,m) = \operatorname{Com}(V^{-\psi-m+1}(\mathfrak{gl}_m), \mathcal{V}^{\psi}(n,m)), \qquad n \neq m,$$

$$\mathcal{D}^{\psi}(n,n) = \mathsf{Com}(V^{-\psi-n+1}(\mathfrak{sl}_n),\mathcal{V}^{\psi}(n,n))^{U(1)}.$$

Thm: (Creutzig-L., 2020) Let $n \ge m$ be non-negative integers. We have isomorphisms of 1-parameter VOAs

$$\mathcal{D}^{\psi}(n,m)\cong \mathcal{C}^{\psi^{-1}}(n-m,m)\cong \mathcal{D}^{\psi'}(m,n), \qquad rac{1}{\psi}+rac{1}{\psi'}=1.$$

Originally conjectured in physics by Gaiotto and Rapčák (2017).

 $\mathcal{D}^{\psi}(n,0) \cong \mathcal{C}^{\psi^{-1}}(n,0)$ recovers **Feigin-Frenkel duality** in type *A*.

Isomorphisms $\mathcal{D}^{\psi}(n,m) \cong \mathcal{C}^{\psi^{-1}}(n-m,m)$ are of **Feigin-Frenkel type**.

 $\mathcal{D}^\psi(n,0)\cong\mathcal{D}^{\psi'}(0,n)$ recovers the coset realization of $\mathcal{W}^\psi(\mathfrak{sl}_n).$

Isomorphisms $\mathcal{D}^{\psi}(n,m) \cong \mathcal{D}^{\psi'}(m,n)$ are of **coset realization type**.

One more example:

$$\mathcal{D}^{\psi}(n,1) \cong \mathcal{C}^{\psi^{-1}}(n-1,1) \cong \mathcal{D}^{\psi'}(1,n),$$

 $\mathcal{D}^{\psi}(n,0) \cong \mathcal{C}^{\psi^{-1}}(n,0)$ recovers **Feigin-Frenkel duality** in type *A*. Isomorphisms $\mathcal{D}^{\psi}(n,m) \cong \mathcal{C}^{\psi^{-1}}(n-m,m)$ are of **Feigin-Frenkel type**.

 $\mathcal{D}^\psi(n,0)\cong\mathcal{D}^{\psi'}(0,n)$ recovers the coset realization of $\mathcal{W}^\psi(\mathfrak{sl}_n).$

Isomorphisms $\mathcal{D}^{\psi}(n,m) \cong \mathcal{D}^{\psi'}(m,n)$ are of **coset realization type**.

One more example:

$$\mathcal{D}^{\psi}(n,1)\cong \mathcal{C}^{\psi^{-1}}(n-1,1)\cong \mathcal{D}^{\psi'}(1,n),$$

 $\mathcal{D}^{\psi}(n,0) \cong \mathcal{C}^{\psi^{-1}}(n,0)$ recovers **Feigin-Frenkel duality** in type *A*. Isomorphisms $\mathcal{D}^{\psi}(n,m) \cong \mathcal{C}^{\psi^{-1}}(n-m,m)$ are of **Feigin-Frenkel type**.

 $\mathcal{D}^{\psi}(n,0)\cong\mathcal{D}^{\psi'}(0,n)$ recovers the coset realization of $\mathcal{W}^{\psi}(\mathfrak{sl}_n).$

Isomorphisms $\mathcal{D}^{\psi}(n,m) \cong \mathcal{D}^{\psi'}(m,n)$ are of **coset realization type**.

One more example:

$$\mathcal{D}^{\psi}(n,1)\cong \mathcal{C}^{\psi^{-1}}(n-1,1)\cong \mathcal{D}^{\psi'}(1,n),$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\mathcal{D}^{\psi}(n,0) \cong \mathcal{C}^{\psi^{-1}}(n,0)$ recovers **Feigin-Frenkel duality** in type *A*.

Isomorphisms $\mathcal{D}^{\psi}(n,m) \cong \mathcal{C}^{\psi^{-1}}(n-m,m)$ are of **Feigin-Frenkel type**.

 $\mathcal{D}^{\psi}(n,0)\cong\mathcal{D}^{\psi'}(0,n)$ recovers the coset realization of $\mathcal{W}^{\psi}(\mathfrak{sl}_n).$

Isomorphisms $\mathcal{D}^{\psi}(n,m) \cong \mathcal{D}^{\psi'}(m,n)$ are of **coset realization type**.

One more example:

$$\mathcal{D}^{\psi}(n,1) \cong \mathcal{C}^{\psi^{-1}}(n-1,1) \cong \mathcal{D}^{\psi'}(1,n),$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\mathcal{D}^{\psi}(n,0) \cong \mathcal{C}^{\psi^{-1}}(n,0)$ recovers **Feigin-Frenkel duality** in type *A*.

Isomorphisms $\mathcal{D}^{\psi}(n,m) \cong \mathcal{C}^{\psi^{-1}}(n-m,m)$ are of **Feigin-Frenkel type**.

 $\mathcal{D}^{\psi}(n,0)\cong\mathcal{D}^{\psi'}(0,n)$ recovers the coset realization of $\mathcal{W}^{\psi}(\mathfrak{sl}_n).$

Isomorphisms $\mathcal{D}^{\psi}(n,m) \cong \mathcal{D}^{\psi'}(m,n)$ are of **coset realization type**.

One more example:

$$\mathcal{D}^{\psi}(\mathsf{n},1)\cong\mathcal{C}^{\psi^{-1}}(\mathsf{n}-1,1)\cong\mathcal{D}^{\psi'}(1,\mathsf{n}),$$

Step 1: In the $\psi \to \infty$ limit, both $C^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$ become GL_m -orbifolds of certain free field algebras.

Using classical invariant theory, it is shown that

- 1. $C^{\psi}(n, m)$ has generating type W(2, 3, ..., (m+1)(m+n+1) 1),
- 2. $\mathcal{D}^\psi(n,m)$ has generating type $\mathcal{W}(2,3,\ldots,(m+1)(n+1)-1).$

Step 2: Universal two-parameter \mathcal{W}_{∞} -algebra $\mathcal{W}(c, \lambda)$ serves is a **classifying object** for VOAs of type $\mathcal{W}(2, 3, ..., N)$ for some *N*.

 $\mathcal{W}(c,\lambda)$ is freely generated of type $\mathcal{W}(2,3,\ldots)$, and is defined over the polynomial ring $\mathbb{C}[c,\lambda] \cong \mathcal{W}(c,\lambda)[0]$.

Step 1: In the $\psi \to \infty$ limit, both $C^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$ become GL_m -orbifolds of certain free field algebras.

Using classical invariant theory, it is shown that

- 1. $C^{\psi}(n,m)$ has generating type $\mathcal{W}(2,3,\ldots,(m+1)(m+n+1)-1),$
- 2. $\mathcal{D}^{\psi}(n,m)$ has generating type $\mathcal{W}(2,3,\ldots,(m+1)(n+1)-1)$.

Step 2: Universal two-parameter \mathcal{W}_{∞} -algebra $\mathcal{W}(c, \lambda)$ serves is a **classifying object** for VOAs of type $\mathcal{W}(2, 3, ..., N)$ for some *N*.

 $\mathcal{W}(c,\lambda)$ is freely generated of type $\mathcal{W}(2,3,\ldots)$, and is defined over the polynomial ring $\mathbb{C}[c,\lambda] \cong \mathcal{W}(c,\lambda)[0]$.

Step 1: In the $\psi \to \infty$ limit, both $C^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$ become GL_m -orbifolds of certain free field algebras.

Using classical invariant theory, it is shown that

- 1. $C^{\psi}(n,m)$ has generating type $\mathcal{W}(2,3,\ldots,(m+1)(m+n+1)-1),$
- 2. $\mathcal{D}^{\psi}(n,m)$ has generating type $\mathcal{W}(2,3,\ldots,(m+1)(n+1)-1)$.

Step 2: Universal two-parameter \mathcal{W}_{∞} -algebra $\mathcal{W}(c, \lambda)$ serves is a **classifying object** for VOAs of type $\mathcal{W}(2, 3, ..., N)$ for some N.

 $\mathcal{W}(c,\lambda)$ is freely generated of type $\mathcal{W}(2,3,\ldots)$, and is defined over the polynomial ring $\mathbb{C}[c,\lambda] \cong \mathcal{W}(c,\lambda)[0]$.

Step 1: In the $\psi \to \infty$ limit, both $C^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$ become GL_m -orbifolds of certain free field algebras.

Using classical invariant theory, it is shown that

- 1. $C^{\psi}(n,m)$ has generating type $\mathcal{W}(2,3,\ldots,(m+1)(m+n+1)-1),$
- 2. $\mathcal{D}^{\psi}(n,m)$ has generating type $\mathcal{W}(2,3,\ldots,(m+1)(n+1)-1)$.

Step 2: Universal two-parameter \mathcal{W}_{∞} -algebra $\mathcal{W}(c, \lambda)$ serves is a **classifying object** for VOAs of type $\mathcal{W}(2, 3, ..., N)$ for some N.

 $\mathcal{W}(c,\lambda)$ is freely generated of type $\mathcal{W}(2,3,\ldots)$, and is defined over the polynomial ring $\mathbb{C}[c,\lambda] \cong \mathcal{W}(c,\lambda)[0]$.

Let $I \subseteq \mathbb{C}[c, \lambda]$ be a prime ideal.

 $I \cdot \mathcal{W}(c, \lambda)$ the VOA ideal generated by I.

Quotient

$$\mathcal{W}^{l}(c,\lambda) = \mathcal{W}(c,\lambda)/(l \cdot \mathcal{W}(c,\lambda))$$

is a VOA over $R = \mathbb{C}[c, \lambda]/I$.

 $\mathcal{W}^{I}(c,\lambda)$ is simple for a generic ideal *I*, but for certain special ideals *I*, $\mathcal{W}^{I}(c,\lambda)$ is not simple.

Let $W_I(c, \lambda)$ be simple graded quotient of $W^I(c, \lambda)$.

Thm: (L., 2017) All simple, one-parameter VOAs of type W(2, 3, ..., N) satisfying mild hypotheses, are of this form.

Let $I \subseteq \mathbb{C}[c, \lambda]$ be a prime ideal.

 $I \cdot \mathcal{W}(c, \lambda)$ the VOA ideal generated by I.

Quotient

$$\mathcal{W}^{I}(c,\lambda) = \mathcal{W}(c,\lambda)/(I \cdot \mathcal{W}(c,\lambda))$$

is a VOA over $R = \mathbb{C}[c, \lambda]/I$.

 $\mathcal{W}^{I}(c,\lambda)$ is simple for a generic ideal *I*, but for certain special ideals *I*, $\mathcal{W}^{I}(c,\lambda)$ is not simple.

Let $W_I(c, \lambda)$ be simple graded quotient of $W^I(c, \lambda)$.

Thm: (L., 2017) All simple, one-parameter VOAs of type $\mathcal{W}(2, 3, \dots, N)$ satisfying mild hypotheses, are of this form.

Let $I \subseteq \mathbb{C}[c, \lambda]$ be a prime ideal.

 $I \cdot \mathcal{W}(c, \lambda)$ the VOA ideal generated by I.

Quotient

$$\mathcal{W}^{I}(\boldsymbol{c},\lambda)=\mathcal{W}(\boldsymbol{c},\lambda)/(I\cdot\mathcal{W}(\boldsymbol{c},\lambda))$$

is a VOA over $R = \mathbb{C}[c, \lambda]/I$.

 $\mathcal{W}^{I}(c,\lambda)$ is simple for a generic ideal *I*, but for certain special ideals *I*, $\mathcal{W}^{I}(c,\lambda)$ is not simple.

Let $W_I(c, \lambda)$ be simple graded quotient of $W^I(c, \lambda)$.

Thm: (L., 2017) All simple, one-parameter VOAs of type $\mathcal{W}(2, 3, \dots, N)$ satisfying mild hypotheses, are of this form.

Let $I \subseteq \mathbb{C}[c, \lambda]$ be a prime ideal.

 $I \cdot \mathcal{W}(c, \lambda)$ the VOA ideal generated by I.

Quotient

$$\mathcal{W}^{\prime}(c,\lambda) = \mathcal{W}(c,\lambda)/(I \cdot \mathcal{W}(c,\lambda))$$

is a VOA over $R = \mathbb{C}[c, \lambda]/I$.

 $\mathcal{W}^{I}(c,\lambda)$ is simple for a generic ideal *I*, but for certain special ideals *I*, $\mathcal{W}^{I}(c,\lambda)$ is not simple.

Let $W_I(c, \lambda)$ be simple graded quotient of $W'(c, \lambda)$.

Thm: (L., 2017) All simple, one-parameter VOAs of type W(2, 3, ..., N) satisfying mild hypotheses, are of this form.

Let $I \subseteq \mathbb{C}[c, \lambda]$ be a prime ideal.

 $I \cdot \mathcal{W}(c, \lambda)$ the VOA ideal generated by I.

Quotient

$$\mathcal{W}'(c,\lambda) = \mathcal{W}(c,\lambda)/(I \cdot \mathcal{W}(c,\lambda))$$

is a VOA over $R = \mathbb{C}[c, \lambda]/I$.

 $\mathcal{W}^{I}(c,\lambda)$ is simple for a generic ideal *I*, but for certain special ideals *I*, $\mathcal{W}^{I}(c,\lambda)$ is not simple.

Let $\mathcal{W}_{l}(c,\lambda)$ be simple graded quotient of $\mathcal{W}'(c,\lambda)$.

Thm: (L., 2017) All simple, one-parameter VOAs of type W(2, 3, ..., N) satisfying mild hypotheses, are of this form.

Let $I \subseteq \mathbb{C}[c, \lambda]$ be a prime ideal.

 $I \cdot \mathcal{W}(c, \lambda)$ the VOA ideal generated by I.

Quotient

$$\mathcal{W}'(c,\lambda) = \mathcal{W}(c,\lambda)/(I \cdot \mathcal{W}(c,\lambda))$$

is a VOA over $R = \mathbb{C}[c, \lambda]/I$.

 $\mathcal{W}^{I}(c,\lambda)$ is simple for a generic ideal *I*, but for certain special ideals *I*, $\mathcal{W}^{I}(c,\lambda)$ is not simple.

Let $\mathcal{W}_{l}(c,\lambda)$ be simple graded quotient of $\mathcal{W}'(c,\lambda)$.

Thm: (L., 2017) All simple, one-parameter VOAs of type $\mathcal{W}(2, 3, \ldots, N)$ satisfying mild hypotheses, are of this form.

Let $I \subseteq \mathbb{C}[c, \lambda]$ be a prime ideal.

 $I \cdot \mathcal{W}(c, \lambda)$ the VOA ideal generated by I.

Quotient

$$\mathcal{W}'(c,\lambda) = \mathcal{W}(c,\lambda)/(I \cdot \mathcal{W}(c,\lambda))$$

is a VOA over $R = \mathbb{C}[c, \lambda]/I$.

 $\mathcal{W}^{I}(c,\lambda)$ is simple for a generic ideal *I*, but for certain special ideals *I*, $\mathcal{W}^{I}(c,\lambda)$ is not simple.

Let $\mathcal{W}_{l}(c,\lambda)$ be simple graded quotient of $\mathcal{W}'(c,\lambda)$.

Thm: (L., 2017) All simple, one-parameter VOAs of type $\mathcal{W}(2, 3, \ldots, N)$ satisfying mild hypotheses, are of this form.

Then $\mathcal{C}^{\psi}(n,m)$ and $\mathcal{D}^{\psi}(n,m)$ are of the form $\mathcal{W}_{I}(c,\lambda)$ for some I.

Step 3: Explicit truncation curves for $C^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$.

 $\mathcal{W}^\psi(n,m)$ is an extension $V^{\psi-m+1}(\mathfrak{gl}_m)\otimes\mathcal{W}_l(c,\lambda)$ for some l

Extension is generated by 2m fields in weight $\frac{n+1}{2}$ which transform as $\mathbb{C}^m \oplus (\mathbb{C}^m)^*$ under \mathfrak{gl}_m .

Existence of such an extension uniquely and explicitly determines *I*.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Same method works for $\mathcal{V}^{\psi}(n,m)$.

Then $\mathcal{C}^{\psi}(n,m)$ and $\mathcal{D}^{\psi}(n,m)$ are of the form $\mathcal{W}_{I}(c,\lambda)$ for some I.

Step 3: Explicit truncation curves for $C^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$.

 $\mathcal{W}^\psi(n,m)$ is an extension $V^{\psi-m+1}(\mathfrak{gl}_m)\otimes\mathcal{W}_l(c,\lambda)$ for some l

Extension is generated by 2m fields in weight $\frac{n+1}{2}$ which transform as $\mathbb{C}^m \oplus (\mathbb{C}^m)^*$ under \mathfrak{gl}_m .

Existence of such an extension uniquely and explicitly determines *I*.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Same method works for $\mathcal{V}^{\psi}(n,m)$.

Then $\mathcal{C}^{\psi}(n,m)$ and $\mathcal{D}^{\psi}(n,m)$ are of the form $\mathcal{W}_{I}(c,\lambda)$ for some *I*.

Step 3: Explicit truncation curves for $C^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$.

$\mathcal{W}^\psi(n,m)$ is an extension $V^{\psi-m+1}(\mathfrak{gl}_m)\otimes\mathcal{W}_l(c,\lambda)$ for some l

Extension is generated by 2m fields in weight $\frac{n+1}{2}$ which transform as $\mathbb{C}^m \oplus (\mathbb{C}^m)^*$ under \mathfrak{gl}_m .

Existence of such an extension uniquely and explicitly determines *I*.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Same method works for $\mathcal{V}^{\psi}(n,m)$.

Then $\mathcal{C}^{\psi}(n,m)$ and $\mathcal{D}^{\psi}(n,m)$ are of the form $\mathcal{W}_{I}(c,\lambda)$ for some *I*.

Step 3: Explicit truncation curves for $C^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$.

 $\mathcal{W}^{\psi}(n,m)$ is an extension $V^{\psi-m+1}(\mathfrak{gl}_m)\otimes\mathcal{W}_l(c,\lambda)$ for some l

Extension is generated by 2m fields in weight $\frac{n+1}{2}$ which transform as $\mathbb{C}^m \oplus (\mathbb{C}^m)^*$ under \mathfrak{gl}_m .

Existence of such an extension uniquely and explicitly determines 1.

Same method works for $\mathcal{V}^{\psi}(n,m)$.

Then $\mathcal{C}^{\psi}(n,m)$ and $\mathcal{D}^{\psi}(n,m)$ are of the form $\mathcal{W}_{I}(c,\lambda)$ for some *I*.

Step 3: Explicit truncation curves for $C^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$.

 $\mathcal{W}^{\psi}(n,m)$ is an extension $V^{\psi-m+1}(\mathfrak{gl}_m)\otimes\mathcal{W}_l(c,\lambda)$ for some l

Extension is generated by 2m fields in weight $\frac{n+1}{2}$ which transform as $\mathbb{C}^m \oplus (\mathbb{C}^m)^*$ under \mathfrak{gl}_m .

Existence of such an extension uniquely and explicitly determines I.

Same method works for $\mathcal{V}^{\psi}(n,m)$.

Then $\mathcal{C}^{\psi}(n,m)$ and $\mathcal{D}^{\psi}(n,m)$ are of the form $\mathcal{W}_{I}(c,\lambda)$ for some *I*.

Step 3: Explicit truncation curves for $C^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$.

 $\mathcal{W}^{\psi}(n,m)$ is an extension $V^{\psi-m+1}(\mathfrak{gl}_m)\otimes\mathcal{W}_l(c,\lambda)$ for some l

Extension is generated by 2m fields in weight $\frac{n+1}{2}$ which transform as $\mathbb{C}^m \oplus (\mathbb{C}^m)^*$ under \mathfrak{gl}_m .

Existence of such an extension uniquely and explicitly determines I.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Same method works for $\mathcal{V}^{\psi}(n, m)$.

Then $\mathcal{C}^{\psi}(n,m)$ and $\mathcal{D}^{\psi}(n,m)$ are of the form $\mathcal{W}_{I}(c,\lambda)$ for some I.

Step 3: Explicit truncation curves for $C^{\psi}(n, m)$ and $\mathcal{D}^{\psi}(n, m)$.

 $\mathcal{W}^{\psi}(n,m)$ is an extension $V^{\psi-m+1}(\mathfrak{gl}_m)\otimes\mathcal{W}_l(c,\lambda)$ for some l

Extension is generated by 2m fields in weight $\frac{n+1}{2}$ which transform as $\mathbb{C}^m \oplus (\mathbb{C}^m)^*$ under \mathfrak{gl}_m .

Existence of such an extension uniquely and explicitly determines *I*.

Same method works for $\mathcal{V}^{\psi}(n, m)$.

Nontrivial pointwise isomorphisms among simple algebras $C_{\psi}(n, m)$ correspond to **intersection points** of truncation curves.

Thm: (Creutzig, L. 2020) We have $C_{\psi}(n,m) \cong \mathcal{W}_{\phi}(\mathfrak{sl}_s)$ where

1.
$$\psi = \frac{m+n+s}{n}$$
, $\phi = \frac{m+s}{m+n+s}$,
2. $\psi = \frac{m+n}{n+s}$, $\phi = \frac{s-m}{s+n}$,
3. $\psi = \frac{m+n-s}{n-s}$, $\phi = \frac{m+n-s}{n-s}$.

 $C_{\psi}(1,1)$ is just **parafermion algebra** $N_k(\mathfrak{sl}_2)$ for $k = \psi - 2$. (Dong, Lam, Yamada, Wang, and others).

Family (1) says for $k \in \mathbb{N}$,

$$N_k(\mathfrak{sl}_2) \cong \mathcal{W}_{\phi}(\mathfrak{sl}_s), \qquad \phi = \frac{1+s}{2+s}.$$

First proven by Arakawa, Lam, Yamada (2019), The second se

Nontrivial pointwise isomorphisms among simple algebras $C_{\psi}(n, m)$ correspond to **intersection points** of truncation curves.

Thm: (Creutzig, L. 2020) We have $\mathcal{C}_{\psi}(n,m) \cong \mathcal{W}_{\phi}(\mathfrak{sl}_s)$ where

1.
$$\psi = \frac{m+n+s}{n}$$
, $\phi = \frac{m+s}{m+n+s}$,
2. $\psi = \frac{m+n}{n+s}$, $\phi = \frac{s-m}{s+n}$,
3. $\psi = \frac{m+n-s}{n-s}$, $\phi = \frac{m+n-s}{n-s}$.

 $C_{\psi}(1,1)$ is just **parafermion algebra** $N_k(\mathfrak{sl}_2)$ for $k = \psi - 2$. (Dong, Lam, Yamada, Wang, and others).

Family (1) says for $k \in \mathbb{N}$,

$$N_k(\mathfrak{sl}_2) \cong \mathcal{W}_{\phi}(\mathfrak{sl}_s), \qquad \phi = \frac{1+s}{2+s}.$$

Nontrivial pointwise isomorphisms among simple algebras $C_{\psi}(n, m)$ correspond to **intersection points** of truncation curves.

Thm: (Creutzig, L. 2020) We have $C_{\psi}(n, m) \cong W_{\phi}(\mathfrak{sl}_s)$ where

1.
$$\psi = \frac{m+n+s}{n}$$
, $\phi = \frac{m+s}{m+n+s}$,
2. $\psi = \frac{m+n}{n+s}$, $\phi = \frac{s-m}{s+n}$,
3. $\psi = \frac{m+n-s}{n-s}$, $\phi = \frac{m+n-s}{n-s}$.

 $C_{\psi}(1,1)$ is just **parafermion algebra** $N_k(\mathfrak{sl}_2)$ for $k = \psi - 2$. (Dong, Lam, Yamada, Wang, and others).

Family (1) says for $k \in \mathbb{N}$,

$$N_k(\mathfrak{sl}_2) \cong \mathcal{W}_{\phi}(\mathfrak{sl}_s), \qquad \phi = \frac{1+s}{2+s}$$

Nontrivial pointwise isomorphisms among simple algebras $C_{\psi}(n, m)$ correspond to **intersection points** of truncation curves.

Thm: (Creutzig, L. 2020) We have $\mathcal{C}_{\psi}(n,m) \cong \mathcal{W}_{\phi}(\mathfrak{sl}_s)$ where

1.
$$\psi = \frac{m+n+s}{n}$$
, $\phi = \frac{m+s}{m+n+s}$,
2. $\psi = \frac{m+n}{n+s}$, $\phi = \frac{s-m}{s+n}$,
3. $\psi = \frac{m+n-s}{n-s}$, $\phi = \frac{m+n-s}{n-s}$.

 $C_{\psi}(1,1)$ is just **parafermion algebra** $N_k(\mathfrak{sl}_2)$ for $k = \psi - 2$. (Dong, Lam, Yamada, Wang, and others).

Family (1) says for $k \in \mathbb{N}$,

$$N_k(\mathfrak{sl}_2) \cong \mathcal{W}_{\phi}(\mathfrak{sl}_s), \qquad \phi = \frac{1+s}{2+s}$$

First proven by Arakawa, Lam, Yamada (2019)

We consider 8 families Lie (super)algebras \mathfrak{g} of type B, C, D or $\mathfrak{osp}_{\mathfrak{s}|2r}$, with following properties:

- 1. We have a decomposition $\mathfrak{g} = \mathfrak{a} \oplus \mathfrak{b} \oplus \rho_{\mathfrak{a}} \otimes \rho_{\mathfrak{b}}$,
- 2. \mathfrak{a} and \mathfrak{b} are Lie sub(super)algebras of \mathfrak{g} ,
- 3. $\mathfrak{b} = \mathfrak{so}_{2m+1}$ or \mathfrak{sp}_{2m} ,
- 4. $\mathfrak{a} = \mathfrak{so}_{2n+1}$, \mathfrak{sp}_{2n} , \mathfrak{so}_{2n} , or $\mathfrak{osp}_{1|2n}$.
- 5. $\rho_{\mathfrak{a}}$, $\rho_{\mathfrak{b}}$ transform as the standard representations of \mathfrak{a} , \mathfrak{b} , respectively.

Consider $\mathcal{W}^{\psi}(\mathfrak{g}, f_{\mathfrak{b}})$, where $f_{\mathfrak{b}} \in \mathfrak{g}$ is the nilpotent which is **principal** in \mathfrak{b} and **trivial** in \mathfrak{a} .

Affine cosets are quotients of universal 2-parameter algebra $\mathcal{W}^{\text{ev}}(c,\lambda)$ of type $\mathcal{W}(2,4,6,\ldots)$ constructed by Kanade-L. (2019).

We consider 8 families Lie (super)algebras \mathfrak{g} of type B, C, D or $\mathfrak{osp}_{\mathfrak{s}|2r}$, with following properties:

- 1. We have a decomposition $\mathfrak{g} = \mathfrak{a} \oplus \mathfrak{b} \oplus \rho_{\mathfrak{a}} \otimes \rho_{\mathfrak{b}}$,
- 2. \mathfrak{a} and \mathfrak{b} are Lie sub(super)algebras of \mathfrak{g} ,
- 3. $\mathfrak{b} = \mathfrak{so}_{2m+1}$ or \mathfrak{sp}_{2m} ,
- 4. $\mathfrak{a} = \mathfrak{so}_{2n+1}$, \mathfrak{sp}_{2n} , \mathfrak{so}_{2n} , or $\mathfrak{osp}_{1|2n}$.
- 5. $\rho_{\mathfrak{a}}$, $\rho_{\mathfrak{b}}$ transform as the standard representations of \mathfrak{a} , \mathfrak{b} , respectively.

Consider $\mathcal{W}^{\psi}(\mathfrak{g}, f_{\mathfrak{b}})$, where $f_{\mathfrak{b}} \in \mathfrak{g}$ is the nilpotent which is **principal** in \mathfrak{b} and **trivial** in \mathfrak{a} .

Affine cosets are quotients of universal 2-parameter algebra $\mathcal{W}^{\text{ev}}(c,\lambda)$ of type $\mathcal{W}(2,4,6,\ldots)$ constructed by Kanade-L. (2019).

We consider 8 families Lie (super)algebras \mathfrak{g} of type B, C, D or $\mathfrak{osp}_{\mathfrak{s}|2r}$, with following properties:

- 1. We have a decomposition $\mathfrak{g} = \mathfrak{a} \oplus \mathfrak{b} \oplus \rho_{\mathfrak{a}} \otimes \rho_{\mathfrak{b}}$,
- 2. \mathfrak{a} and \mathfrak{b} are Lie sub(super)algebras of \mathfrak{g} ,
- 3. $\mathfrak{b} = \mathfrak{so}_{2m+1}$ or \mathfrak{sp}_{2m} ,
- 4. $\mathfrak{a} = \mathfrak{so}_{2n+1}$, \mathfrak{sp}_{2n} , \mathfrak{so}_{2n} , or $\mathfrak{osp}_{1|2n}$.
- 5. $\rho_{\mathfrak{a}}$, $\rho_{\mathfrak{b}}$ transform as the standard representations of \mathfrak{a} , \mathfrak{b} , respectively.

Consider $\mathcal{W}^{\psi}(\mathfrak{g}, f_{\mathfrak{b}})$, where $f_{\mathfrak{b}} \in \mathfrak{g}$ is the nilpotent which is **principal** in \mathfrak{b} and **trivial** in \mathfrak{a} .

Affine cosets are quotients of universal 2-parameter algebra $\mathcal{W}^{\text{ev}}(c,\lambda)$ of type $\mathcal{W}(2,4,6,\ldots)$ constructed by Kanade-L. (2019).

We consider 8 families Lie (super)algebras \mathfrak{g} of type B, C, D or $\mathfrak{osp}_{\mathfrak{s}|2r}$, with following properties:

- 1. We have a decomposition $\mathfrak{g} = \mathfrak{a} \oplus \mathfrak{b} \oplus \rho_{\mathfrak{a}} \otimes \rho_{\mathfrak{b}}$,
- 2. \mathfrak{a} and \mathfrak{b} are Lie sub(super)algebras of \mathfrak{g} ,
- 3. $\mathfrak{b} = \mathfrak{so}_{2m+1}$ or \mathfrak{sp}_{2m} ,
- 4. $\mathfrak{a} = \mathfrak{so}_{2n+1}$, \mathfrak{sp}_{2n} , \mathfrak{so}_{2n} , or $\mathfrak{osp}_{1|2n}$.
- 5. $\rho_{\mathfrak{a}}$, $\rho_{\mathfrak{b}}$ transform as the standard representations of \mathfrak{a} , \mathfrak{b} , respectively.

Consider $\mathcal{W}^{\psi}(\mathfrak{g}, f_{\mathfrak{b}})$, where $f_{\mathfrak{b}} \in \mathfrak{g}$ is the nilpotent which is **principal** in \mathfrak{b} and **trivial** in \mathfrak{a} .

Affine cosets are quotients of universal 2-parameter algebra $\mathcal{W}^{\text{ev}}(c,\lambda)$ of type $\mathcal{W}(2,4,6,\ldots)$ constructed by Kanade-L. (2019).

Need families of VOAs that are quotients of a universal object.

Example: Rectangular W-algebras in type A (Arakawa, Molev, 2017) and some variants.

Consider \mathfrak{gl}_{nm} equipped with the nilpotent element f_{n^m} corresponding to the tableau with *m* blocks of height *n*.

 $W^{\psi}(\mathfrak{gl}_{nm}, f_{n^m})$ is called rectangular; it is freely generated of type $W(1^{m^2}, 2^{m^2}, \dots, n^{m^2})$.

Weight one fields generate $V^{n\psi-nm}(\mathfrak{gl}_m)$ and m^2 fields of weight d for $2 \leq d \leq n$ transform as adjoint \mathfrak{gl}_m -module.

Natural generalization of principal W-algebra, which is case m = 1.

Need families of VOAs that are quotients of a universal object.

Example: Rectangular W-algebras in type A (Arakawa, Molev, 2017) and some variants.

Consider \mathfrak{gl}_{nm} equipped with the nilpotent element f_{n^m} corresponding to the tableau with *m* blocks of height *n*.

 $W^{\psi}(\mathfrak{gl}_{nm}, f_{n^m})$ is called rectangular; it is freely generated of type $W(1^{m^2}, 2^{m^2}, \dots, n^{m^2})$.

Weight one fields generate $V^{m\psi-nm}(\mathfrak{gl}_m)$ and m^2 fields of weight d for $2 \leq d \leq n$ transform as adjoint \mathfrak{gl}_m -module.

Natural generalization of principal W-algebra, which is case m = 1.

Need families of VOAs that are quotients of a universal object.

Example: Rectangular W-algebras in type A (Arakawa, Molev, 2017) and some variants.

Consider \mathfrak{gl}_{nm} equipped with the nilpotent element f_{n^m} corresponding to the tableau with *m* blocks of height *n*.

 $W^{\psi}(\mathfrak{gl}_{nm}, f_{n^m})$ is called rectangular; it is freely generated of type $W(1^{m^2}, 2^{m^2}, \dots, n^{m^2})$.

Weight one fields generate $V^{n\psi-nm}(\mathfrak{gl}_m)$ and m^2 fields of weight d for $2 \leq d \leq n$ transform as adjoint \mathfrak{gl}_m -module.

Natural generalization of principal W-algebra, which is case m = 1.

Need families of VOAs that are quotients of a universal object.

Example: Rectangular W-algebras in type A (Arakawa, Molev, 2017) and some variants.

Consider \mathfrak{gl}_{nm} equipped with the nilpotent element f_{n^m} corresponding to the tableau with *m* blocks of height *n*.

 $\mathcal{W}^{\psi}(\mathfrak{gl}_{nm}, f_{n^m})$ is called rectangular; it is freely generated of type $\mathcal{W}(1^{m^2}, 2^{m^2}, \dots, n^{m^2})$.

Weight one fields generate $V^{m\psi-nm}(\mathfrak{gl}_m)$ and m^2 fields of weight d for $2 \leq d \leq n$ transform as adjoint \mathfrak{gl}_m -module.

Natural generalization of principal W-algebra, which is case m = 1.
16. How does this generalize?

Need families of VOAs that are quotients of a universal object.

Example: Rectangular W-algebras in type A (Arakawa, Molev, 2017) and some variants.

Consider \mathfrak{gl}_{nm} equipped with the nilpotent element f_{n^m} corresponding to the tableau with *m* blocks of height *n*.

 $\mathcal{W}^{\psi}(\mathfrak{gl}_{nm}, f_{n^m})$ is called rectangular; it is freely generated of type $\mathcal{W}(1^{m^2}, 2^{m^2}, \dots, n^{m^2}).$

Weight one fields generate $V^{n\psi-nm}(\mathfrak{gl}_m)$ and m^2 fields of weight d for $2 \le d \le n$ transform as adjoint \mathfrak{gl}_m -module.

Natural generalization of principal W-algebra, which is case m = 1.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

16. How does this generalize?

Need families of VOAs that are quotients of a universal object.

Example: Rectangular W-algebras in type A (Arakawa, Molev, 2017) and some variants.

Consider \mathfrak{gl}_{nm} equipped with the nilpotent element f_{n^m} corresponding to the tableau with *m* blocks of height *n*.

 $\mathcal{W}^{\psi}(\mathfrak{gl}_{nm}, f_{n^m})$ is called rectangular; it is freely generated of type $\mathcal{W}(1^{m^2}, 2^{m^2}, \dots, n^{m^2}).$

Weight one fields generate $V^{n\psi-nm}(\mathfrak{gl}_m)$ and m^2 fields of weight d for $2 \le d \le n$ transform as adjoint \mathfrak{gl}_m -module.

Natural generalization of principal W-algebra, which is case m = 1.

Now consider \mathfrak{gl}_{nm+r} equipped with the nilpotent element f_{n^m} which is **rectangular** in \mathfrak{gl}_{nm} and **trivial** in \mathfrak{gl}_r .

Embedding
$$V^{n\psi-nm-r}(\mathfrak{gl}_m)\otimes V^{\psi-r-m}(\mathfrak{gl}_r)\hookrightarrow \mathcal{W}^{\psi}(\mathfrak{gl}_{nm+r}, f_{n^m}).$$

Using large level limit together with classical invariant theory, coset

$$\mathsf{Com}(V^{\psi-r-m}(\mathfrak{gl}_r),\mathcal{W}^{\psi}(\mathfrak{gl}_{nm+r},f_{n^m}))$$

has strong generating type $\mathcal{W}(1^{m^2}, 2^{m^2}, \dots, n^{m^2}, (n+1)^{m^2}, \dots, N^{m^2})$ for some N.

Similar statement holds for superalgebra $W^{\psi}(\mathfrak{gl}_{nm|r}, f_{n^m})$.

Expectation: For each $m \in \mathbb{N}$, there exists a 2-parameter VOA $\mathcal{W}^{\mathfrak{gl}_m}(c,\lambda)$ which is freely generated of type $\mathcal{W}(1^{m^2}, 2^{m^2}, \dots)$, such that all of these VOAs arise as one-parameter quotients.

In the case m = 1, we should just recover $\mathcal{H} \otimes \mathcal{W}(\underline{\varsigma}, \lambda)$

Now consider \mathfrak{gl}_{nm+r} equipped with the nilpotent element f_{n^m} which is **rectangular** in \mathfrak{gl}_{nm} and **trivial** in \mathfrak{gl}_r .

Embedding
$$V^{n\psi-nm-r}(\mathfrak{gl}_m)\otimes V^{\psi-r-m}(\mathfrak{gl}_r)\hookrightarrow \mathcal{W}^{\psi}(\mathfrak{gl}_{nm+r}, f_{n^m}).$$

Using large level limit together with classical invariant theory, coset

$$\mathsf{Com}(V^{\psi-r-m}(\mathfrak{gl}_r),\mathcal{W}^{\psi}(\mathfrak{gl}_{nm+r},f_{n^m}))$$

has strong generating type $\mathcal{W}(1^{m^2}, 2^{m^2}, \dots, n^{m^2}, (n+1)^{m^2}, \dots, N^{m^2})$ for some N.

Similar statement holds for superalgebra $\mathcal{W}^{\psi}(\mathfrak{gl}_{nm|r}, f_{n^m})$.

Expectation: For each $m \in \mathbb{N}$, there exists a 2-parameter VOA $\mathcal{W}^{\mathfrak{gl}_m}(c,\lambda)$ which is freely generated of type $\mathcal{W}(1^{m^2}, 2^{m^2}, \dots)$, such that all of these VOAs arise as one-parameter quotients.

In the case m = 1, we should just recover $\mathcal{H} \otimes \mathcal{W}(\underline{\varsigma}, \lambda)$

Now consider \mathfrak{gl}_{nm+r} equipped with the nilpotent element f_{n^m} which is **rectangular** in \mathfrak{gl}_{nm} and **trivial** in \mathfrak{gl}_r .

Embedding
$$V^{n\psi-nm-r}(\mathfrak{gl}_m)\otimes V^{\psi-r-m}(\mathfrak{gl}_r)\hookrightarrow \mathcal{W}^{\psi}(\mathfrak{gl}_{nm+r}, f_{n^m}).$$

Using large level limit together with classical invariant theory, coset

$$\mathsf{Com}(V^{\psi-r-m}(\mathfrak{gl}_r),\mathcal{W}^{\psi}(\mathfrak{gl}_{nm+r},f_{n^m}))$$

has strong generating type $\mathcal{W}(1^{m^2}, 2^{m^2}, \dots, n^{m^2}, (n+1)^{m^2}, \dots, N^{m^2})$ for some N.

Similar statement holds for superalgebra $W^{\psi}(\mathfrak{gl}_{nm|r}, f_{n^m})$.

Expectation: For each $m \in \mathbb{N}$, there exists a 2-parameter VOA $\mathcal{W}^{\mathfrak{gl}_m}(c,\lambda)$ which is freely generated of type $\mathcal{W}(1^{m^2}, 2^{m^2}, \dots)$, such that all of these VOAs arise as one-parameter quotients.

In the case m = 1, we should just recover $\mathcal{H} \otimes_{\mathcal{W}} (\boldsymbol{\varsigma}_{\lambda}) \otimes_{\mathcal{V}} (\boldsymbol{\varsigma}_$

Now consider \mathfrak{gl}_{nm+r} equipped with the nilpotent element f_{n^m} which is **rectangular** in \mathfrak{gl}_{nm} and **trivial** in \mathfrak{gl}_r .

$$\mathsf{Embedding} \ V^{n\psi-nm-r}(\mathfrak{gl}_m) \otimes V^{\psi-r-m}(\mathfrak{gl}_r) \hookrightarrow \mathcal{W}^{\psi}(\mathfrak{gl}_{nm+r}, f_{n^m}).$$

Using large level limit together with classical invariant theory, coset

$$\mathsf{Com}(V^{\psi-r-m}(\mathfrak{gl}_r),\mathcal{W}^{\psi}(\mathfrak{gl}_{nm+r},f_{n^m}))$$

has strong generating type $\mathcal{W}(1^{m^2}, 2^{m^2}, \dots, n^{m^2}, (n+1)^{m^2}, \dots, N^{m^2})$ for some N.

Similar statement holds for superalgebra $\mathcal{W}^{\psi}(\mathfrak{gl}_{nm|r}, f_{n^m})$.

Expectation: For each $m \in \mathbb{N}$, there exists a 2-parameter VOA $\mathcal{W}^{\mathfrak{gl}_m}(c,\lambda)$ which is freely generated of type $\mathcal{W}(1^{m^2}, 2^{m^2}, \dots)$, such that all of these VOAs arise as one-parameter quotients.

In the case m = 1, we should just recover $\mathcal{H} \otimes \mathcal{W}(\underline{\varsigma}, \lambda)$

Now consider \mathfrak{gl}_{nm+r} equipped with the nilpotent element f_{n^m} which is **rectangular** in \mathfrak{gl}_{nm} and **trivial** in \mathfrak{gl}_r .

$$\mathsf{Embedding} \ V^{n\psi-nm-r}(\mathfrak{gl}_m) \otimes V^{\psi-r-m}(\mathfrak{gl}_r) \hookrightarrow \mathcal{W}^{\psi}(\mathfrak{gl}_{nm+r}, f_{n^m}).$$

Using large level limit together with classical invariant theory, coset

$$\mathsf{Com}(V^{\psi-r-m}(\mathfrak{gl}_r),\mathcal{W}^{\psi}(\mathfrak{gl}_{nm+r},f_{n^m}))$$

has strong generating type $\mathcal{W}(1^{m^2}, 2^{m^2}, \dots, n^{m^2}, (n+1)^{m^2}, \dots, N^{m^2})$ for some N.

Similar statement holds for superalgebra $\mathcal{W}^{\psi}(\mathfrak{gl}_{nm|r}, f_{n^m})$.

Expectation: For each $m \in \mathbb{N}$, there exists a 2-parameter VOA $\mathcal{W}^{\mathfrak{gl}_m}(c,\lambda)$ which is freely generated of type $\mathcal{W}(1^{m^2}, 2^{m^2}, \dots)$, such that all of these VOAs arise as one-parameter quotients.

In the case m = 1, we should just recover $\mathcal{H} \otimes \mathcal{W}(\boldsymbol{\varsigma}, \boldsymbol{\lambda})$

Now consider \mathfrak{gl}_{nm+r} equipped with the nilpotent element f_{n^m} which is **rectangular** in \mathfrak{gl}_{nm} and **trivial** in \mathfrak{gl}_r .

$$\mathsf{Embedding} \ V^{n\psi-nm-r}(\mathfrak{gl}_m) \otimes V^{\psi-r-m}(\mathfrak{gl}_r) \hookrightarrow \mathcal{W}^{\psi}(\mathfrak{gl}_{nm+r}, f_{n^m}).$$

Using large level limit together with classical invariant theory, coset

$$\mathsf{Com}(V^{\psi-r-m}(\mathfrak{gl}_r),\mathcal{W}^{\psi}(\mathfrak{gl}_{nm+r},f_{n^m}))$$

has strong generating type $\mathcal{W}(1^{m^2}, 2^{m^2}, \dots, n^{m^2}, (n+1)^{m^2}, \dots, N^{m^2})$ for some N.

Similar statement holds for superalgebra $\mathcal{W}^{\psi}(\mathfrak{gl}_{nm|r}, f_{n^m})$.

Expectation: For each $m \in \mathbb{N}$, there exists a 2-parameter VOA $\mathcal{W}^{\mathfrak{gl}_m}(c,\lambda)$ which is freely generated of type $\mathcal{W}(1^{m^2}, 2^{m^2}, \dots)$, such that all of these VOAs arise as one-parameter quotients.

In the case m = 1, we should just recover $\mathcal{H} \otimes \mathcal{W}(c, \lambda)$.

To construct $\mathcal{W}^{\mathfrak{gl}_m}(c,\lambda)$ from first principles is difficult.

One model for $\mathcal{W}^{\mathfrak{gl}_m}(c,\lambda)$ is obtained by taking n=1.

Then for each $r, m \in \mathbb{N}$, $\mathcal{W}^{\psi}(\mathfrak{gl}_{nm+r}, f_{n^m}) = V^{\ell}(\mathfrak{gl}_{m+r})$ for $\ell = \psi - m - r$, and above coset is $\operatorname{Com}(V^{\ell}(\mathfrak{gl}_r), V^{\ell}(\mathfrak{gl}_{m+r}))$.

It is possible to replace r with a complex parameter to construct a VOA with two parameters r and ℓ .

This should be isomorphic to $\mathcal{W}^{\mathfrak{gl}_m}(c,\lambda)$ after a suitable change of parameters.

Note: For each fixed r, $Com(V^{\ell}(\mathfrak{gl}_r), V^{\ell}(\mathfrak{gl}_{m+r}))$ is an extension of a Heisenberg algebra tensored with m commuting quotients of $\mathcal{W}(c, \lambda)$.

To construct $\mathcal{W}^{\mathfrak{gl}_m}(c,\lambda)$ from first principles is difficult.

One model for $W^{\mathfrak{gl}_m}(c,\lambda)$ is obtained by taking n=1.

Then for each $r, m \in \mathbb{N}$, $\mathcal{W}^{\psi}(\mathfrak{gl}_{nm+r}, f_{n^m}) = V^{\ell}(\mathfrak{gl}_{m+r})$ for $\ell = \psi - m - r$, and above coset is $\operatorname{Com}(V^{\ell}(\mathfrak{gl}_r), V^{\ell}(\mathfrak{gl}_{m+r}))$.

It is possible to replace r with a complex parameter to construct a VOA with two parameters r and ℓ .

This should be isomorphic to $\mathcal{W}^{\mathfrak{gl}_m}(c,\lambda)$ after a suitable change of parameters.

Note: For each fixed r, $Com(V^{\ell}(\mathfrak{gl}_r), V^{\ell}(\mathfrak{gl}_{m+r}))$ is an extension of a Heisenberg algebra tensored with m commuting quotients of $\mathcal{W}(c, \lambda)$.

To construct $\mathcal{W}^{\mathfrak{gl}_m}(c,\lambda)$ from first principles is difficult.

One model for $W^{\mathfrak{gl}_m}(c,\lambda)$ is obtained by taking n=1.

Then for each $r, m \in \mathbb{N}$, $\mathcal{W}^{\psi}(\mathfrak{gl}_{nm+r}, f_{n^m}) = V^{\ell}(\mathfrak{gl}_{m+r})$ for $\ell = \psi - m - r$, and above coset is $\operatorname{Com}(V^{\ell}(\mathfrak{gl}_r), V^{\ell}(\mathfrak{gl}_{m+r}))$.

It is possible to replace r with a complex parameter to construct a VOA with two parameters r and ℓ .

This should be isomorphic to $\mathcal{W}^{\mathfrak{gl}_m}(c,\lambda)$ after a suitable change of parameters.

Note: For each fixed r, $Com(V^{\ell}(\mathfrak{gl}_r), V^{\ell}(\mathfrak{gl}_{m+r}))$ is an extension of a Heisenberg algebra tensored with m commuting quotients of $\mathcal{W}(c, \lambda)$.

To construct $\mathcal{W}^{\mathfrak{gl}_m}(c,\lambda)$ from first principles is difficult.

One model for $W^{\mathfrak{gl}_m}(c,\lambda)$ is obtained by taking n=1.

Then for each $r, m \in \mathbb{N}$, $\mathcal{W}^{\psi}(\mathfrak{gl}_{nm+r}, f_{n^m}) = V^{\ell}(\mathfrak{gl}_{m+r})$ for $\ell = \psi - m - r$, and above coset is $\operatorname{Com}(V^{\ell}(\mathfrak{gl}_r), V^{\ell}(\mathfrak{gl}_{m+r}))$.

It is possible to replace r with a complex parameter to construct a VOA with two parameters r and ℓ .

This should be isomorphic to $\mathcal{W}^{\mathfrak{gl}_m}(c,\lambda)$ after a suitable change of parameters.

Note: For each fixed r, $Com(V^{\ell}(\mathfrak{gl}_r), V^{\ell}(\mathfrak{gl}_{m+r}))$ is an extension of a Heisenberg algebra tensored with m commuting quotients of $\mathcal{W}(c, \lambda)$.

To construct $\mathcal{W}^{\mathfrak{gl}_m}(c,\lambda)$ from first principles is difficult.

One model for $W^{\mathfrak{gl}_m}(c,\lambda)$ is obtained by taking n=1.

Then for each $r, m \in \mathbb{N}$, $\mathcal{W}^{\psi}(\mathfrak{gl}_{nm+r}, f_{n^m}) = V^{\ell}(\mathfrak{gl}_{m+r})$ for $\ell = \psi - m - r$, and above coset is $\operatorname{Com}(V^{\ell}(\mathfrak{gl}_r), V^{\ell}(\mathfrak{gl}_{m+r}))$.

It is possible to replace r with a complex parameter to construct a VOA with two parameters r and ℓ .

This should be isomorphic to $W^{\mathfrak{gl}_m}(c,\lambda)$ after a suitable change of parameters.

Note: For each fixed r, $Com(V^{\ell}(\mathfrak{gl}_r), V^{\ell}(\mathfrak{gl}_{m+r}))$ is an extension of a Heisenberg algebra tensored with m commuting quotients of $\mathcal{W}(c, \lambda)$.

To construct $\mathcal{W}^{\mathfrak{gl}_m}(c,\lambda)$ from first principles is difficult.

One model for $W^{\mathfrak{gl}_m}(c,\lambda)$ is obtained by taking n=1.

Then for each $r, m \in \mathbb{N}$, $\mathcal{W}^{\psi}(\mathfrak{gl}_{nm+r}, f_{n^m}) = V^{\ell}(\mathfrak{gl}_{m+r})$ for $\ell = \psi - m - r$, and above coset is $\operatorname{Com}(V^{\ell}(\mathfrak{gl}_r), V^{\ell}(\mathfrak{gl}_{m+r}))$.

It is possible to replace r with a complex parameter to construct a VOA with two parameters r and ℓ .

This should be isomorphic to $W^{\mathfrak{gl}_m}(c,\lambda)$ after a suitable change of parameters.

Note: For each fixed r, $Com(V^{\ell}(\mathfrak{gl}_r), V^{\ell}(\mathfrak{gl}_{m+r}))$ is an extension of a Heisenberg algebra tensored with *m* commuting quotients of $W(c, \lambda)$.

To construct $\mathcal{W}^{\mathfrak{gl}_m}(c,\lambda)$ from first principles is difficult.

One model for $W^{\mathfrak{gl}_m}(c,\lambda)$ is obtained by taking n=1.

Then for each $r, m \in \mathbb{N}$, $\mathcal{W}^{\psi}(\mathfrak{gl}_{nm+r}, f_{n^m}) = V^{\ell}(\mathfrak{gl}_{m+r})$ for $\ell = \psi - m - r$, and above coset is $\operatorname{Com}(V^{\ell}(\mathfrak{gl}_r), V^{\ell}(\mathfrak{gl}_{m+r}))$.

It is possible to replace r with a complex parameter to construct a VOA with two parameters r and ℓ .

This should be isomorphic to $W^{\mathfrak{gl}_m}(c,\lambda)$ after a suitable change of parameters.

Note: For each fixed r, $Com(V^{\ell}(\mathfrak{gl}_r), V^{\ell}(\mathfrak{gl}_{m+r}))$ is an extension of a Heisenberg algebra tensored with *m* commuting quotients of $W(c, \lambda)$.

Therefore we expect $\mathcal{W}^{\mathfrak{gl}_m}(c,\lambda)$ to be such an extension, $\mathfrak{s} = \mathfrak{S}_{\mathfrak{QQ}}$

We expect similar 2-parameter VOAs $\mathcal{W}^{\mathfrak{so}_n}(c,\lambda)$ of type $\mathcal{W}(1^{d_1}, 2^{d_2}, 3^{d_1}, 4^{d_2}, \dots), \quad d_1 = \dim \wedge^2(\mathbb{C}^n), \quad d_2 = \dim \operatorname{Sym}^2(\mathbb{C}^n).$ (Currently under construction with Flor Orosz Hunziker).

Expected to be extensions of tensor products of quotients of $\mathcal{W}^{\mathrm{ev}}(c,\lambda).$

This is because $\operatorname{Com}(V^k(\mathfrak{so}_n), V^k(\mathfrak{so}_{n+1}))$ is a quotient of $\mathcal{W}^{\operatorname{ev}}(c, \lambda)$ for all $n \geq 1$.

In type C the story is different because $\operatorname{Com}(V^k(\mathfrak{sp}_{2n}), V^k(\mathfrak{sp}_{2n+2}))$ has a copy of $V^k(\mathfrak{sp}_2)$, and has strong generating type $\mathcal{W}(1^3, 2, 3^3, 4, 5^3, \dots)$.

We expect similar 2-parameter VOAs $\mathcal{W}^{\mathfrak{so}_n}(c,\lambda)$ of type $\mathcal{W}(1^{d_1}, 2^{d_2}, 3^{d_1}, 4^{d_2}, \dots), \quad d_1 = \dim \wedge^2(\mathbb{C}^n), \quad d_2 = \dim \operatorname{Sym}^2(\mathbb{C}^n).$

(Currently under construction with Flor Orosz Hunziker).

Expected to be extensions of tensor products of quotients of $\mathcal{W}^{\mathsf{ev}}(c,\lambda).$

This is because $\operatorname{Com}(V^k(\mathfrak{so}_n), V^k(\mathfrak{so}_{n+1}))$ is a quotient of $\mathcal{W}^{\operatorname{ev}}(c, \lambda)$ for all $n \geq 1$.

In type C the story is different because $\operatorname{Com}(V^k(\mathfrak{sp}_{2n}), V^k(\mathfrak{sp}_{2n+2}))$ has a copy of $V^k(\mathfrak{sp}_2)$, and has strong generating type $\mathcal{W}(1^3, 2, 3^3, 4, 5^3, \dots)$.

We expect similar 2-parameter VOAs $\mathcal{W}^{\mathfrak{so}_n}(c,\lambda)$ of type $\mathcal{W}(1^{d_1}, 2^{d_2}, 3^{d_1}, 4^{d_2}, \ldots), \quad d_1 = \dim \wedge^2(\mathbb{C}^n), \quad d_2 = \dim \operatorname{Sym}^2(\mathbb{C}^n).$ (Currently under construction with Flor Orosz Hunziker).

Expected to be extensions of tensor products of quotients of $\mathcal{W}^{\mathsf{ev}}(c,\lambda)$.

This is because $\operatorname{Com}(V^k(\mathfrak{so}_n), V^k(\mathfrak{so}_{n+1}))$ is a quotient of $\mathcal{W}^{\operatorname{ev}}(c, \lambda)$ for all $n \geq 1$.

In type C the story is different because $\operatorname{Com}(V^k(\mathfrak{sp}_{2n}), V^k(\mathfrak{sp}_{2n+2}))$ has a copy of $V^k(\mathfrak{sp}_2)$, and has strong generating type $\mathcal{W}(1^3, 2, 3^3, 4, 5^3, \dots)$.

We expect similar 2-parameter VOAs $\mathcal{W}^{\mathfrak{so}_n}(c,\lambda)$ of type $\mathcal{W}(1^{d_1}, 2^{d_2}, 3^{d_1}, 4^{d_2}, \ldots), \quad d_1 = \dim \wedge^2(\mathbb{C}^n), \quad d_2 = \dim \operatorname{Sym}^2(\mathbb{C}^n).$ (Currently under construction with Flor Orosz Hunziker).

Expected to be extensions of tensor products of quotients of $\mathcal{W}^{\mathsf{ev}}(c,\lambda)$.

This is because $\operatorname{Com}(V^k(\mathfrak{so}_n), V^k(\mathfrak{so}_{n+1}))$ is a quotient of $\mathcal{W}^{\operatorname{ev}}(c, \lambda)$ for all $n \geq 1$.

In type C the story is different because $\operatorname{Com}(V^k(\mathfrak{sp}_{2n}), V^k(\mathfrak{sp}_{2n+2}))$ has a copy of $V^k(\mathfrak{sp}_2)$, and has strong generating type $\mathcal{W}(1^3, 2, 3^3, 4, 5^3, \dots)$.

We expect similar 2-parameter VOAs $\mathcal{W}^{\mathfrak{so}_n}(c,\lambda)$ of type $\mathcal{W}(1^{d_1}, 2^{d_2}, 3^{d_1}, 4^{d_2}, \ldots), \quad d_1 = \dim \wedge^2(\mathbb{C}^n), \quad d_2 = \dim \operatorname{Sym}^2(\mathbb{C}^n).$ (Currently under construction with Flor Orosz Hunziker).

Expected to be extensions of tensor products of quotients of $\mathcal{W}^{\mathsf{ev}}(c,\lambda)$.

This is because $\operatorname{Com}(V^k(\mathfrak{so}_n), V^k(\mathfrak{so}_{n+1}))$ is a quotient of $\mathcal{W}^{\operatorname{ev}}(c, \lambda)$ for all $n \geq 1$.

In type C the story is different because $\operatorname{Com}(V^k(\mathfrak{sp}_{2n}), V^k(\mathfrak{sp}_{2n+2}))$ has a copy of $V^k(\mathfrak{sp}_2)$, and has strong generating type $\mathcal{W}(1^3, 2, 3^3, 4, 5^3, \dots)$.

Vladimir Kovalchuk is (nearly) finished proving that this is a universal object, which we denote by $\mathcal{W}^{\mathfrak{sp}_2}$.

Similar to, but more involved, than construction of $\mathcal{W}(c, \lambda)$. Expect it has exactly 2 free parameters c, k.

In addition to generators X, Y, H of $V^k(\mathfrak{sp}_2)$, we have:

- 1. Fields L, W^4, W^6, \ldots which are \mathfrak{sp}_2 -trivial,
- 2. Fields X^{2i+1} , Y^{2i+1} , h^{2i+1} for all $i \ge 1$, which transform as adjoint \mathfrak{sp}_2 -module.

We assume:

1.
$$W^{2i+2} = W^4_{(1)} W^{2i}$$
 for $i \ge 2$,
2. $Z^{2i+3} = W^4_{(1)} Z^{2i+1}$ for all $i \ge 1$ and $Z = X, Y, H$.

Write down most general OPE algebra that is compatible with \mathfrak{sp}_2 -symmetry, with undermined structure constants.

Vladimir Kovalchuk is (nearly) finished proving that this is a universal object, which we denote by $\mathcal{W}^{\mathfrak{sp}_2}$.

Similar to, but more involved, than construction of $\mathcal{W}(c, \lambda)$. Expect it has exactly 2 free parameters c, k.

In addition to generators X, Y, H of $V^k(\mathfrak{sp}_2)$, we have:

- 1. Fields L, W^4, W^6, \ldots which are \mathfrak{sp}_2 -trivial,
- Fields X²ⁱ⁺¹, Y²ⁱ⁺¹, h²ⁱ⁺¹ for all i ≥ 1, which transform as adjoint sp₂-module.

We assume:

1.
$$W^{2i+2} = W^4_{(1)} W^{2i}$$
 for $i \ge 2$,
2. $Z^{2i+3} = W^4_{(1)} Z^{2i+1}$ for all $i \ge 1$ and $Z = X, Y, H$.

Write down most general OPE algebra that is compatible with \mathfrak{sp}_2 -symmetry, with undermined structure constants.

Structure constants are determined by imposing Jacobi identities. a source state of the state of

Vladimir Kovalchuk is (nearly) finished proving that this is a universal object, which we denote by $\mathcal{W}^{\mathfrak{sp}_2}$.

Similar to, but more involved, than construction of $\mathcal{W}(c, \lambda)$. Expect it has exactly 2 free parameters c, k.

In addition to generators X, Y, H of $V^k(\mathfrak{sp}_2)$, we have:

- 1. Fields L, W^4, W^6, \ldots which are \mathfrak{sp}_2 -trivial,
- 2. Fields $X^{2i+1}, Y^{2i+1}, h^{2i+1}$ for all $i \ge 1$, which transform as adjoint \mathfrak{sp}_2 -module.

We assume:

1.
$$W^{2i+2} = W^4_{(1)} W^{2i}$$
 for $i \ge 2$,
2. $Z^{2i+3} = W^4_{(1)} Z^{2i+1}$ for all $i \ge 1$ and $Z = X, Y, H$.

Write down most general OPE algebra that is compatible with \mathfrak{sp}_2 -symmetry, with undermined structure constants.

Vladimir Kovalchuk is (nearly) finished proving that this is a universal object, which we denote by $\mathcal{W}^{\mathfrak{sp}_2}$.

Similar to, but more involved, than construction of $\mathcal{W}(c, \lambda)$. Expect it has exactly 2 free parameters c, k.

In addition to generators X, Y, H of $V^k(\mathfrak{sp}_2)$, we have:

- 1. Fields L, W^4, W^6, \ldots which are \mathfrak{sp}_2 -trivial,
- 2. Fields X^{2i+1} , Y^{2i+1} , h^{2i+1} for all $i \ge 1$, which transform as adjoint \mathfrak{sp}_2 -module.

We assume:

1.
$$W^{2i+2} = W^4_{(1)}W^{2i}$$
 for $i \ge 2$,
2. $Z^{2i+3} = W^4_{(1)}Z^{2i+1}$ for all $i \ge 1$ and $Z = X, Y, H$.

Write down most general OPE algebra that is compatible with \mathfrak{sp}_2 -symmetry, with undermined structure constants.

Vladimir Kovalchuk is (nearly) finished proving that this is a universal object, which we denote by $\mathcal{W}^{\mathfrak{sp}_2}$.

Similar to, but more involved, than construction of $\mathcal{W}(c, \lambda)$. Expect it has exactly 2 free parameters c, k.

In addition to generators X, Y, H of $V^k(\mathfrak{sp}_2)$, we have:

- 1. Fields L, W^4, W^6, \ldots which are \mathfrak{sp}_2 -trivial,
- 2. Fields X^{2i+1} , Y^{2i+1} , h^{2i+1} for all $i \ge 1$, which transform as adjoint \mathfrak{sp}_2 -module.

We assume:

1.
$$W^{2i+2} = W^4_{(1)} W^{2i}$$
 for $i \ge 2$,
2. $Z^{2i+3} = W^4_{(1)} Z^{2i+1}$ for all $i \ge 1$ and $Z = X, Y, H$.

Write down most general OPE algebra that is compatible with \mathfrak{sp}_2 -symmetry, with undermined structure constants.

Vladimir Kovalchuk is (nearly) finished proving that this is a universal object, which we denote by $\mathcal{W}^{\mathfrak{sp}_2}$.

Similar to, but more involved, than construction of $\mathcal{W}(c, \lambda)$. Expect it has exactly 2 free parameters c, k.

In addition to generators X, Y, H of $V^k(\mathfrak{sp}_2)$, we have:

- 1. Fields L, W^4, W^6, \ldots which are \mathfrak{sp}_2 -trivial,
- 2. Fields X^{2i+1} , Y^{2i+1} , h^{2i+1} for all $i \ge 1$, which transform as adjoint \mathfrak{sp}_2 -module.

We assume:

1.
$$W^{2i+2} = W^4_{(1)} W^{2i}$$
 for $i \ge 2$,
2. $Z^{2i+3} = W^4_{(1)} Z^{2i+1}$ for all $i \ge 1$ and $Z = X, Y, H$.

Write down most general OPE algebra that is compatible with \mathfrak{sp}_2 -symmetry, with undermined structure constants.

Let $\mathfrak{g} = \mathfrak{so}_{4n}$ which has a subalgebra $\mathfrak{sp}_{2n} \oplus \mathfrak{sp}_2$ and decomposes as $\mathfrak{so}_{4n} \cong \mathfrak{sp}_{2n} \oplus \mathfrak{sp}_2 \oplus (\rho_{\omega_2} \otimes \mathbb{C}^3).$

Note: As a \mathfrak{sp}_{2n} -module,

$$\wedge^2(\mathbb{C}^{2n})\cong\mathbb{C}\oplus\rho_{\omega_2},$$

so dim $\rho_{\omega_2} = n(2n-1) - 1$.

Let $f_{\mathfrak{sp}_{2n}}$ be the nilpotent which is principal in \mathfrak{sp}_{2n} .

 $\mathcal{W}^{\psi}(\mathfrak{so}_{4n}, f_{\mathfrak{sp}_{2n}})$ is analogous to $\mathcal{W}^{\psi}(\mathfrak{gl}_{nm}, f_{n^m})$, where

- 1. Principal part \mathfrak{gl}_n is replaced with \mathfrak{sp}_{2n} .
- 2. Rectangular part \mathfrak{gl}_m is replaced with \mathfrak{sp}_2 .

 $\mathcal{W}^{\psi}(\mathfrak{so}_{4n}, f_{\mathfrak{sp}_{2n}})$ is freely generated of type $\mathcal{W}(1^3, 2, 3^3, 4, \dots, (2n-1)^3, 2n)$

Let $\mathfrak{g} = \mathfrak{so}_{4n}$ which has a subalgebra $\mathfrak{sp}_{2n} \oplus \mathfrak{sp}_2$ and decomposes as $\mathfrak{so}_{4n} \cong \mathfrak{sp}_{2n} \oplus \mathfrak{sp}_2 \oplus (\rho_{\omega_2} \otimes \mathbb{C}^3).$

Note: As a \mathfrak{sp}_{2n} -module,

$$\wedge^2(\mathbb{C}^{2n})\cong\mathbb{C}\oplus\rho_{\omega_2},$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

so dim $\rho_{\omega_2} = n(2n-1) - 1$.

Let $f_{\mathfrak{sp}_{2n}}$ be the nilpotent which is principal in \mathfrak{sp}_{2n} .

 $\mathcal{W}^\psi(\mathfrak{so}_{4n}, \mathit{f}_{\mathfrak{sp}_{2n}})$ is analogous to $\mathcal{W}^\psi(\mathfrak{gl}_{nm}, \mathit{f}_{n^m})$, where

- 1. Principal part \mathfrak{gl}_n is replaced with \mathfrak{sp}_{2n} .
- 2. Rectangular part \mathfrak{gl}_m is replaced with \mathfrak{sp}_2 .

 $\mathcal{W}^{\psi}(\mathfrak{so}_{4n}, f_{\mathfrak{sp}_{2n}})$ is freely generated of type $\mathcal{W}(1^3, 2, 3^3, 4, \dots, (2n-1)^3, 2n)$

Let $\mathfrak{g} = \mathfrak{so}_{4n}$ which has a subalgebra $\mathfrak{sp}_{2n} \oplus \mathfrak{sp}_2$ and decomposes as $\mathfrak{so}_{4n} \cong \mathfrak{sp}_{2n} \oplus \mathfrak{sp}_2 \oplus (\rho_{\omega_2} \otimes \mathbb{C}^3).$

Note: As a \mathfrak{sp}_{2n} -module,

$$\wedge^2(\mathbb{C}^{2n})\cong\mathbb{C}\oplus\rho_{\omega_2},$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

so dim $\rho_{\omega_2} = n(2n-1) - 1$.

Let $f_{\mathfrak{sp}_{2n}}$ be the nilpotent which is principal in \mathfrak{sp}_{2n} .

W^ψ(so_{4n}, f<sub>sp_{2n}) is analogous to W^ψ(gl_{nm}, f_{n^m}), where
1. Principal part gl_n is replaced with sp_{2n}.
2. Rectangular part gl_m is replaced with sp₂.
</sub>

 $\mathcal{W}^{\psi}(\mathfrak{so}_{4n}, f_{\mathfrak{sp}_{2n}})$ is freely generated of type $\mathcal{W}(1^3, 2, 3^3, 4, \dots, (2n-1)^3, 2n)$

Let $\mathfrak{g} = \mathfrak{so}_{4n}$ which has a subalgebra $\mathfrak{sp}_{2n} \oplus \mathfrak{sp}_2$ and decomposes as $\mathfrak{so}_{4n} \cong \mathfrak{sp}_{2n} \oplus \mathfrak{sp}_2 \oplus (\rho_{\omega_2} \otimes \mathbb{C}^3).$

Note: As a \mathfrak{sp}_{2n} -module,

$$\wedge^2(\mathbb{C}^{2n})\cong\mathbb{C}\oplus\rho_{\omega_2},$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

so dim $\rho_{\omega_2} = n(2n-1) - 1$.

Let $f_{\mathfrak{sp}_{2n}}$ be the nilpotent which is principal in \mathfrak{sp}_{2n} .

 $\mathcal{W}^{\psi}(\mathfrak{so}_{4n}, f_{\mathfrak{sp}_{2n}})$ is analogous to $\mathcal{W}^{\psi}(\mathfrak{gl}_{nm}, f_{n^m})$, where

- 1. Principal part \mathfrak{gl}_n is replaced with \mathfrak{sp}_{2n} .
- 2. Rectangular part \mathfrak{gl}_m is replaced with \mathfrak{sp}_2 .

 $\mathcal{W}^\psi(\mathfrak{so}_{4n}, f_{\mathfrak{sp}_{2n}})$ is freely generated of type $\mathcal{W}(1^3, 2, 3^3, 4, \dots, (2n-1)^3, 2n)$

Let $\mathfrak{g} = \mathfrak{so}_{4n}$ which has a subalgebra $\mathfrak{sp}_{2n} \oplus \mathfrak{sp}_2$ and decomposes as $\mathfrak{so}_{4n} \cong \mathfrak{sp}_{2n} \oplus \mathfrak{sp}_2 \oplus (\rho_{\omega_2} \otimes \mathbb{C}^3).$

Note: As a \mathfrak{sp}_{2n} -module,

$$\wedge^2(\mathbb{C}^{2n})\cong\mathbb{C}\oplus\rho_{\omega_2},$$

- ロ ト - 4 回 ト - 4 □ - 4

so dim $\rho_{\omega_2} = n(2n-1) - 1$.

Let $f_{\mathfrak{sp}_{2n}}$ be the nilpotent which is principal in \mathfrak{sp}_{2n} .

 $\mathcal{W}^{\psi}(\mathfrak{so}_{4n}, f_{\mathfrak{sp}_{2n}})$ is analogous to $\mathcal{W}^{\psi}(\mathfrak{gl}_{nm}, f_{n^m})$, where

- 1. Principal part \mathfrak{gl}_n is replaced with \mathfrak{sp}_{2n} .
- 2. Rectangular part \mathfrak{gl}_m is replaced with \mathfrak{sp}_2 .

 $\mathcal{W}^{\psi}(\mathfrak{so}_{4n}, f_{\mathfrak{sp}_{2n}})$ is freely generated of type $\mathcal{W}(1^3, 2, 3^3, 4, \dots, (2n-1)^3, 2n).$

Let $\mathfrak{g}=\mathfrak{sp}_{2(2n+1)}$ which has a subalgebra $\mathfrak{so}_{2n+1}\oplus\mathfrak{sp}_2$ and decomposes as

$$\mathfrak{sp}_{2(2n+1)} \cong \mathfrak{so}_{2n+1} \oplus \mathfrak{sp}_2 \oplus (\rho_{2\omega_1} \otimes \mathbb{C}^3).$$

Note: As a \mathfrak{so}_{2n+1} -module,

$$\operatorname{Sym}^2(\mathbb{C}^{2n+1})\cong\mathbb{C}\oplus\rho_{2\omega_1},$$

so dim $\rho_{2\omega_1} = (2n+1)(n+1) - 1$.

Let $f_{\mathfrak{so}_{2n+1}}$ be the nilpotent which is principal in \mathfrak{so}_{2n+1} .

 $\mathcal{W}^{\psi}(\mathfrak{sp}_{2(2n+1)}, f_{\mathfrak{so}_{2n+1}})$ is analogous to $\mathcal{W}^{\psi}(\mathfrak{gl}_{nm}, f_{n^m})$, where

- 1. Principal part \mathfrak{gl}_n is replaced with \mathfrak{so}_{2n+1} .
- 2. Rectangular part \mathfrak{gl}_m is replaced with \mathfrak{sp}_2 .

 $\mathcal{W}^{\psi}(\mathfrak{sp}_{2(2n+1)}, f_{\mathfrak{so}_{2n+1}})$ is freely generated of type $\mathcal{W}(1^3, 2, 3^3, 4, \dots, (2n-1)^3 \, 2n) \, \mathbb{C}_{\mathfrak{so}_{2n+1}} = 222 \, \mathbb{C}_{\mathfrak{so}_{2n+1}}$

Let $\mathfrak{g} = \mathfrak{sp}_{2(2n+1)}$ which has a subalgebra $\mathfrak{so}_{2n+1} \oplus \mathfrak{sp}_2$ and decomposes as

$$\mathfrak{sp}_{2(2n+1)} \cong \mathfrak{so}_{2n+1} \oplus \mathfrak{sp}_2 \oplus (\rho_{2\omega_1} \otimes \mathbb{C}^3).$$

Note: As a \mathfrak{so}_{2n+1} -module,

$$\operatorname{Sym}^2(\mathbb{C}^{2n+1})\cong\mathbb{C}\oplus\rho_{2\omega_1},$$

so dim $\rho_{2\omega_1} = (2n+1)(n+1) - 1$.

 $\mathcal{W}(1^3, 2, 3^3, 4, \dots, (2n-1)^3, 2n)_{\text{B}} \to \text{B} \to \text{B}$

Let $\mathfrak{g}=\mathfrak{sp}_{2(2n+1)}$ which has a subalgebra $\mathfrak{so}_{2n+1}\oplus\mathfrak{sp}_2$ and decomposes as

$$\mathfrak{sp}_{2(2n+1)} \cong \mathfrak{so}_{2n+1} \oplus \mathfrak{sp}_2 \oplus (\rho_{2\omega_1} \otimes \mathbb{C}^3).$$

Note: As a \mathfrak{so}_{2n+1} -module,

$$\operatorname{Sym}^2(\mathbb{C}^{2n+1})\cong\mathbb{C}\oplus\rho_{2\omega_1},$$

so dim $\rho_{2\omega_1} = (2n+1)(n+1) - 1$.

Let $f_{\mathfrak{so}_{2n+1}}$ be the nilpotent which is principal in \mathfrak{so}_{2n+1} .

W^ψ(sp_{2(2n+1)}, f<sub>so_{2n+1}) is analogous to W^ψ(gl_{nm}, f_{n^m}), where
1. Principal part gl_n is replaced with so_{2n+1}.
2. Rectangular part gl_m is replaced with sp₂.
</sub>

 $\mathcal{W}^\psi(\mathfrak{sp}_{2(2n+1)}, f_{\mathfrak{so}_{2n+1}})$ is freely generated of type

 $\mathcal{W}(1^3, 2, 3^3, 4, \dots, (2n-1)^3, 2n)$

Let $\mathfrak{g}=\mathfrak{sp}_{2(2n+1)}$ which has a subalgebra $\mathfrak{so}_{2n+1}\oplus\mathfrak{sp}_2$ and decomposes as

$$\mathfrak{sp}_{2(2n+1)} \cong \mathfrak{so}_{2n+1} \oplus \mathfrak{sp}_2 \oplus (\rho_{2\omega_1} \otimes \mathbb{C}^3).$$

Note: As a \mathfrak{so}_{2n+1} -module,

$$\operatorname{Sym}^2(\mathbb{C}^{2n+1})\cong\mathbb{C}\oplus\rho_{2\omega_1},$$

so dim $\rho_{2\omega_1} = (2n+1)(n+1) - 1$.

Let $f_{\mathfrak{so}_{2n+1}}$ be the nilpotent which is principal in \mathfrak{so}_{2n+1} .

 $\mathcal{W}^{\psi}(\mathfrak{sp}_{2(2n+1)}, f_{\mathfrak{so}_{2n+1}})$ is analogous to $\mathcal{W}^{\psi}(\mathfrak{gl}_{nm}, f_{n^m})$, where

- 1. Principal part \mathfrak{gl}_n is replaced with \mathfrak{so}_{2n+1} .
- 2. Rectangular part \mathfrak{gl}_m is replaced with \mathfrak{sp}_2 .

 $\mathcal{W}^{\psi}(\mathfrak{sp}_{2(2n+1)}, f_{\mathfrak{so}_{2n+1}})$ is freely generated of type

 $\mathcal{W}(1^3, 2, 3^3, 4, \dots, (2n-1)^3, 2n)$

Let $\mathfrak{g}=\mathfrak{sp}_{2(2n+1)}$ which has a subalgebra $\mathfrak{so}_{2n+1}\oplus\mathfrak{sp}_2$ and decomposes as

$$\mathfrak{sp}_{2(2n+1)} \cong \mathfrak{so}_{2n+1} \oplus \mathfrak{sp}_2 \oplus (\rho_{2\omega_1} \otimes \mathbb{C}^3).$$

Note: As a \mathfrak{so}_{2n+1} -module,

$$\operatorname{Sym}^2(\mathbb{C}^{2n+1})\cong\mathbb{C}\oplus\rho_{2\omega_1},$$

so dim $\rho_{2\omega_1} = (2n+1)(n+1) - 1$.

Let $f_{\mathfrak{so}_{2n+1}}$ be the nilpotent which is principal in \mathfrak{so}_{2n+1} .

- $\mathcal{W}^{\psi}(\mathfrak{sp}_{2(2n+1)}, f_{\mathfrak{so}_{2n+1}})$ is analogous to $\mathcal{W}^{\psi}(\mathfrak{gl}_{nm}, f_{n^m})$, where
 - 1. Principal part \mathfrak{gl}_n is replaced with \mathfrak{so}_{2n+1} .
 - 2. Rectangular part \mathfrak{gl}_m is replaced with \mathfrak{sp}_2 .

 $\mathcal{W}^{\psi}(\mathfrak{sp}_{2(2n+1)}, f_{\mathfrak{so}_{2n+1}})$ is freely generated of type $\mathcal{W}(1^3, 2, 3^3, 4, \dots, (2n-1)^3, 2n)$.
More generally, we have 8 families of \mathcal{W} -(super)algebras that are analogues of "rectangular with tail" algebras $\mathcal{W}^{\psi}(\mathfrak{gl}_{nm+r}, f_{n^m})$:

- 1. Principal part \mathfrak{gl}_n is replaced with either \mathfrak{sp}_{2n} or \mathfrak{so}_{2n+1} ,
- 2. Rectangular part \mathfrak{gl}_m is replaced with \mathfrak{sp}_2 ,
- Tail part gl_r is replaced with g, either so_{2r}, so_{2r+1}, sp_{2r}, osp_{1|2r}.

Example: $\mathfrak{g} = \mathfrak{so}_{4n+2r}$, where $f_{\mathfrak{sp}_{2n}}$ is as above inside \mathfrak{so}_{4n} . Then $\mathcal{W}^{\psi}(\mathfrak{so}_{4n+2r}, f_{\mathfrak{sp}_{2n}})$ has affine subVOA

 $V^{\ell_1}(\mathfrak{sp}_2) \otimes V^{\ell_2}(\mathfrak{so}_{2r}), \qquad \ell_1 = n\psi - r - 2n, \qquad \ell_2 = \psi - 2r - 2.$

Then $\operatorname{Com}(V^{\ell_2}(\mathfrak{so}_{2r}), \mathcal{W}^{\psi}(\mathfrak{so}_{4n+2r}, f_{\operatorname{sp}_{2n}}))^{\mathbb{Z}_2}$ is a quotient of $\mathcal{W}^{\operatorname{sp}_2}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

More generally, we have 8 families of \mathcal{W} -(super)algebras that are analogues of "rectangular with tail" algebras $\mathcal{W}^{\psi}(\mathfrak{gl}_{nm+r}, f_{n^m})$:

- 1. Principal part \mathfrak{gl}_n is replaced with either \mathfrak{sp}_{2n} or \mathfrak{so}_{2n+1} ,
- 2. Rectangular part \mathfrak{gl}_m is replaced with \mathfrak{sp}_2 ,
- Tail part gl_r is replaced with g, either so_{2r}, so_{2r+1}, sp_{2r}, osp_{1|2r}.

Example: $\mathfrak{g} = \mathfrak{so}_{4n+2r}$, where $f_{\mathfrak{sp}_{2n}}$ is as above inside \mathfrak{so}_{4n} . Then $\mathcal{W}^{\psi}(\mathfrak{so}_{4n+2r}, f_{\mathfrak{sp}_{2n}})$ has affine subVOA

 $V^{\ell_1}(\mathfrak{sp}_2)\otimes V^{\ell_2}(\mathfrak{so}_{2r}), \qquad \ell_1=n\psi-r-2n, \qquad \ell_2=\psi-2r-2.$

Then $\operatorname{Com}(V^{\ell_2}(\mathfrak{so}_{2r}), \mathcal{W}^{\psi}(\mathfrak{so}_{4n+2r}, f_{\operatorname{sp}_{2n}}))^{\mathbb{Z}_2}$ is a quotient of $\mathcal{W}^{\operatorname{sp}_2}$.

・ロト・4回ト・モート・モー・ショーのへで

More generally, we have 8 families of \mathcal{W} -(super)algebras that are analogues of "rectangular with tail" algebras $\mathcal{W}^{\psi}(\mathfrak{gl}_{nm+r}, f_{n^m})$:

- 1. Principal part \mathfrak{gl}_n is replaced with either \mathfrak{sp}_{2n} or \mathfrak{so}_{2n+1} ,
- 2. Rectangular part \mathfrak{gl}_m is replaced with \mathfrak{sp}_2 ,
- Tail part gl_r is replaced with g, either so_{2r}, so_{2r+1}, sp_{2r}, osp_{1|2r}.

Example: $\mathfrak{g} = \mathfrak{so}_{4n+2r}$, where $f_{\mathfrak{sp}_{2n}}$ is as above inside \mathfrak{so}_{4n} . Then $\mathcal{W}^{\psi}(\mathfrak{so}_{4n+2r}, f_{\mathfrak{sp}_{2n}})$ has affine subVOA

 $V^{\ell_1}(\mathfrak{sp}_2)\otimes V^{\ell_2}(\mathfrak{so}_{2r}), \qquad \ell_1=n\psi-r-2n, \qquad \ell_2=\psi-2r-2.$

Then $\operatorname{Com}(V^{\ell_2}(\mathfrak{so}_{2r}), \mathcal{W}^{\psi}(\mathfrak{so}_{4n+2r}, f_{\operatorname{sp}_{2n}}))^{\mathbb{Z}_2}$ is a quotient of $\mathcal{W}^{\operatorname{sp}_2}$.

Note: These 8 families are the type C analogues of the Gaiotto-Rapčák Y-algebras.

Kovalchuk has computed their truncation curves.

Intersection points are all rational, leading to interesting coincidences.

Strong uniqueness theorem: all \mathcal{W} -algebras in these families are uniquely determined up to isomorphism by:

- 1. Structure of $\mathcal{W}^{\mathfrak{sp}_2}$
- 2. Action of "tail" Lie (super)algebra on extension fields.

Observation: There are no trialities: all VOAs in these 8 families are distinct as 1-parameter VOAs.

Note: These 8 families are the type C analogues of the Gaiotto-Rapčák Y-algebras.

Kovalchuk has computed their truncation curves.

Intersection points are all rational, leading to interesting coincidences.

Strong uniqueness theorem: all $\mathcal W\text{-}\mathsf{algebras}$ in these families are uniquely determined up to isomorphism by:

- 1. Structure of $\mathcal{W}^{\mathfrak{sp}_2}$
- 2. Action of "tail" Lie (super)algebra on extension fields.

Observation: There are no trialities: all VOAs in these 8 families are distinct as 1-parameter VOAs.

Note: These 8 families are the type C analogues of the Gaiotto-Rapčák Y-algebras.

Kovalchuk has computed their truncation curves.

Intersection points are all rational, leading to interesting coincidences.

Strong uniqueness theorem: all \mathcal{W} -algebras in these families are uniquely determined up to isomorphism by:

- 1. Structure of $\mathcal{W}^{\mathfrak{sp}_2}$
- 2. Action of "tail" Lie (super)algebra on extension fields.

Observation: There are no trialities: all VOAs in these 8 families are distinct as 1-parameter VOAs.

Note: These 8 families are the type C analogues of the Gaiotto-Rapčák Y-algebras.

Kovalchuk has computed their truncation curves.

Intersection points are all rational, leading to interesting coincidences.

Strong uniqueness theorem: all $\mathcal W\text{-}\mathsf{algebras}$ in these families are uniquely determined up to isomorphism by:

- 1. Structure of $\mathcal{W}^{\mathfrak{sp}_2}$
- 2. Action of "tail" Lie (super)algebra on extension fields.

Observation: There are no trialities: all VOAs in these 8 families are distinct as 1-parameter VOAs.

Note: These 8 families are the type C analogues of the Gaiotto-Rapčák Y-algebras.

Kovalchuk has computed their truncation curves.

Intersection points are all rational, leading to interesting coincidences.

Strong uniqueness theorem: all $\mathcal W\text{-}\mathsf{algebras}$ in these families are uniquely determined up to isomorphism by:

- 1. Structure of $\mathcal{W}^{\mathfrak{sp}_2}$
- 2. Action of "tail" Lie (super)algebra on extension fields.

Observation: There are no trialities: all VOAs in these 8 families are distinct as 1-parameter VOAs.

Note: These 8 families are the type C analogues of the Gaiotto-Rapčák Y-algebras.

Kovalchuk has computed their truncation curves.

Intersection points are all rational, leading to interesting coincidences.

Strong uniqueness theorem: all $\mathcal W\text{-}\mathsf{algebras}$ in these families are uniquely determined up to isomorphism by:

- 1. Structure of $\mathcal{W}^{\mathfrak{sp}_2}$
- 2. Action of "tail" Lie (super)algebra on extension fields.

Observation: There are no trialities: all VOAs in these 8 families are distinct as 1-parameter VOAs.

25. Motivation: diagonal cosets in type A

For $\mathfrak{g} = \mathfrak{sl}_n$, we have homomorphism

$$V^{k+1}(\mathfrak{sl}_n) \to V^k(\mathfrak{sl}_n) \otimes L_1(\mathfrak{sl}_n).$$

Fermion algebra F(2n) is an extension of $L_1(\mathfrak{sl}_n)$, can replace above by

$$V^{k+1}(\mathfrak{sl}_n) \to V^k(\mathfrak{sl}_n) \otimes F(2n).$$

Thm: (Kac, Wakimoto, 1989) If k is admissible, this descends to $L_{k+1}(\mathfrak{sl}_n) \to L_k(\mathfrak{sl}_n) \otimes F(2n).$

Thm: (Arakawa, Creutzig, L. 2018) If k is admissible,

 $\operatorname{Com}(L_{k+1}(\mathfrak{sl}_n), L_k(\mathfrak{sl}_n) \otimes F(2n)) \cong \mathcal{W}_{\phi}(\mathfrak{sl}_n), \quad \phi = \frac{k+n}{k+n+1}$ which is lisse and rational.

25. Motivation: diagonal cosets in type A

For $\mathfrak{g} = \mathfrak{sl}_n$, we have homomorphism

$$V^{k+1}(\mathfrak{sl}_n) \to V^k(\mathfrak{sl}_n) \otimes L_1(\mathfrak{sl}_n).$$

Fermion algebra F(2n) is an extension of $L_1(\mathfrak{sl}_n)$, can replace above by

$$V^{k+1}(\mathfrak{sl}_n) \to V^k(\mathfrak{sl}_n) \otimes F(2n).$$

Thm: (Kac, Wakimoto, 1989) If k is admissible, this descends to $L_{k+1}(\mathfrak{sl}_n) \to L_k(\mathfrak{sl}_n) \otimes F(2n).$

Thm: (Arakawa, Creutzig, L. 2018) If k is admissible,

 $\operatorname{Com}(L_{k+1}(\mathfrak{sl}_n), L_k(\mathfrak{sl}_n) \otimes F(2n)) \cong \mathcal{W}_{\phi}(\mathfrak{sl}_n), \quad \phi = \frac{k+n}{k+n+1}$ which is lisse and rational.

25. Motivation: diagonal cosets in type A

For $\mathfrak{g} = \mathfrak{sl}_n$, we have homomorphism

$$V^{k+1}(\mathfrak{sl}_n) \to V^k(\mathfrak{sl}_n) \otimes L_1(\mathfrak{sl}_n).$$

Fermion algebra F(2n) is an extension of $L_1(\mathfrak{sl}_n)$, can replace above by

$$V^{k+1}(\mathfrak{sl}_n) \to V^k(\mathfrak{sl}_n) \otimes F(2n).$$

Thm: (Kac, Wakimoto, 1989) If k is admissible, this descends to

$$L_{k+1}(\mathfrak{sl}_n) \to L_k(\mathfrak{sl}_n) \otimes F(2n).$$

Thm: (Arakawa, Creutzig, L. 2018) If k is admissible,

$$\operatorname{Com}(L_{k+1}(\mathfrak{sl}_n), L_k(\mathfrak{sl}_n) \otimes F(2n)) \cong \mathcal{W}_{\phi}(\mathfrak{sl}_n), \quad \phi = \frac{k+n}{k+n+1}$$
which is lisse and rational.

In type B, we can similarly consider the embedding

$$V^{k+1}(\mathfrak{so}_{2n+1}) \to V^k(\mathfrak{so}_{2n+1}) \otimes F(2n+1),$$

which descends to

$$L_{k+1}(\mathfrak{so}_{2n+1}) \rightarrow L_k(\mathfrak{so}_{2n+1}) \otimes F(2n+1),$$

when k is admissible.

Thm: (Creutzig, Genra, and Creutzig-L. 2021). For k admissible,

 $\operatorname{Com}(L_{k+1}(\mathfrak{so}_{2n+1}), L_k(\mathfrak{so}_{2n+1}) \otimes F(2n+1)) \cong \mathcal{W}_{\psi'}(\mathfrak{osp}_{1|2n}),$

where $k = -2\psi - 2n + 1$ and $\frac{1}{\psi} + \frac{1}{\psi'} = 2$.

Conj: These algebras are lisse and rational.

In type B, we can similarly consider the embedding

$$V^{k+1}(\mathfrak{so}_{2n+1}) \to V^k(\mathfrak{so}_{2n+1}) \otimes F(2n+1),$$

which descends to

$$L_{k+1}(\mathfrak{so}_{2n+1}) \to L_k(\mathfrak{so}_{2n+1}) \otimes F(2n+1),$$

when k is admissible.

Thm: (Creutzig, Genra, and Creutzig-L. 2021). For k admissible,

$$\mathsf{Com}(L_{k+1}(\mathfrak{so}_{2n+1}), L_k(\mathfrak{so}_{2n+1}) \otimes F(2n+1)) \cong \mathcal{W}_{\psi'}(\mathfrak{osp}_{1|2n}),$$

where $k = -2\psi - 2n + 1$ and $\frac{1}{\psi} + \frac{1}{\psi'} = 2$.

Conj: These algebras are lisse and rational.

In type B, we can similarly consider the embedding

$$V^{k+1}(\mathfrak{so}_{2n+1}) \to V^k(\mathfrak{so}_{2n+1}) \otimes F(2n+1),$$

which descends to

$$L_{k+1}(\mathfrak{so}_{2n+1}) \rightarrow L_k(\mathfrak{so}_{2n+1}) \otimes F(2n+1),$$

when k is admissible.

Thm: (Creutzig, Genra, and Creutzig-L. 2021). For k admissible,

$$\operatorname{Com}(L_{k+1}(\mathfrak{so}_{2n+1}),L_k(\mathfrak{so}_{2n+1})\otimes F(2n+1))\cong \mathcal{W}_{\psi'}(\mathfrak{osp}_{1|2n}),$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where $k = -2\psi - 2n + 1$ and $\frac{1}{\psi} + \frac{1}{\psi'} = 2$.

Conj: These algebras are lisse and rational.

We have conformal embedding

 $L_1(\mathfrak{sp}_{2k}) \otimes L_k(\mathfrak{sp}_2) \to F(4k),$

where F(4k) is the algebra of 4k free fermions.

The images of $L_1(\mathfrak{sp}_{2k})$ and $L_k(\mathfrak{sp}_2)$ form a dual pair inside F(4k).

For $k \in \mathbb{N}$ and $\ell \in \mathbb{C}$, consider the diagonal coset

$$\mathcal{C}_{k}^{\ell} = \mathsf{Com}(V^{\ell-1}(\mathfrak{sp}_{2k}), V^{\ell}(\mathfrak{sp}_{2k}) \otimes F(4k)),$$

which contains subalgebra $L_k(\mathfrak{sp}_2)$.

 C_k^ℓ has the same strong generating type as $\mathcal{F}(4k)^{\operatorname{Sp}_{2k}}$, which is of type $\mathcal{W}(1^3, 2, 3^3, 4, \cdots)$ by classical invariant theory.

We have conformal embedding

$$L_1(\mathfrak{sp}_{2k})\otimes L_k(\mathfrak{sp}_2) \to F(4k),$$

where F(4k) is the algebra of 4k free fermions.

The images of $L_1(\mathfrak{sp}_{2k})$ and $L_k(\mathfrak{sp}_2)$ form a dual pair inside F(4k).

For $k \in \mathbb{N}$ and $\ell \in \mathbb{C}$, consider the diagonal coset

$$\mathcal{C}_k^\ell = \operatorname{Com}(V^{\ell-1}(\mathfrak{sp}_{2k}), V^\ell(\mathfrak{sp}_{2k}) \otimes F(4k)),$$

which contains subalgebra $L_k(\mathfrak{sp}_2)$.

 C_k^ℓ has the same strong generating type as $\mathcal{F}(4k)^{\operatorname{Sp}_{2k}}$, which is of type $\mathcal{W}(1^3, 2, 3^3, 4, \cdots)$ by classical invariant theory.

We have conformal embedding

$$L_1(\mathfrak{sp}_{2k}) \otimes L_k(\mathfrak{sp}_2) \to F(4k),$$

where F(4k) is the algebra of 4k free fermions.

The images of $L_1(\mathfrak{sp}_{2k})$ and $L_k(\mathfrak{sp}_2)$ form a dual pair inside F(4k).

For $k \in \mathbb{N}$ and $\ell \in \mathbb{C}$, consider the diagonal coset

$$\mathcal{C}_k^\ell = \operatorname{Com}(V^{\ell-1}(\mathfrak{sp}_{2k}), V^\ell(\mathfrak{sp}_{2k}) \otimes F(4k)),$$

which contains subalgebra $L_k(\mathfrak{sp}_2)$.

 C_k^ℓ has the same strong generating type as $\mathcal{F}(4k)^{\operatorname{Sp}_{2k}}$, which is of type $\mathcal{W}(1^3, 2, 3^3, 4, \cdots)$ by classical invariant theory.

We have conformal embedding

$$L_1(\mathfrak{sp}_{2k}) \otimes L_k(\mathfrak{sp}_2) \to F(4k),$$

where F(4k) is the algebra of 4k free fermions.

The images of $L_1(\mathfrak{sp}_{2k})$ and $L_k(\mathfrak{sp}_2)$ form a dual pair inside F(4k).

For $k \in \mathbb{N}$ and $\ell \in \mathbb{C}$, consider the diagonal coset

$$\mathcal{C}_k^\ell = \operatorname{Com}(V^{\ell-1}(\mathfrak{sp}_{2k}), V^\ell(\mathfrak{sp}_{2k}) \otimes F(4k)),$$

which contains subalgebra $L_k(\mathfrak{sp}_2)$.

 C_k^ℓ has the same strong generating type as $\mathcal{F}(4k)^{\operatorname{Sp}_{2k}}$, which is of type $\mathcal{W}(1^3, 2, 3^3, 4, \cdots)$ by classical invariant theory.

We have conformal embedding

$$L_1(\mathfrak{sp}_{2k})\otimes L_k(\mathfrak{sp}_2) \to F(4k),$$

where F(4k) is the algebra of 4k free fermions.

The images of $L_1(\mathfrak{sp}_{2k})$ and $L_k(\mathfrak{sp}_2)$ form a dual pair inside F(4k).

For $k \in \mathbb{N}$ and $\ell \in \mathbb{C}$, consider the diagonal coset

$$\mathcal{C}_k^\ell = \operatorname{Com}(V^{\ell-1}(\mathfrak{sp}_{2k}), V^\ell(\mathfrak{sp}_{2k}) \otimes F(4k)),$$

which contains subalgebra $L_k(\mathfrak{sp}_2)$.

 C_k^ℓ has the same strong generating type as $\mathcal{F}(4k)^{\operatorname{Sp}_{2k}}$, which is of type $\mathcal{W}(1^3, 2, 3^3, 4, \cdots)$ by classical invariant theory.

Thm: C_k^{ℓ} is an extension of the product of universal \mathcal{W} -algebras $\mathcal{W}^{\phi_1}(\mathfrak{sp}_{2k}) \otimes \mathcal{W}^{\phi_2}(\mathfrak{sp}_{2k})$ where $\phi_1 = -(k+1) + \frac{1+\ell+k}{1+2\ell+2k}, \qquad \phi_2 = -(k+1) + \frac{\ell+k}{1+2\ell+2k}.$

If $\ell - 1$ is admissible for \mathfrak{sp}_{2k} , we have an embedding $L_{\ell}(\mathfrak{sp}_{2k}) \to L_{\ell-1}(\mathfrak{sp}_{2k}) \otimes F(4k).$

Moreover, for admissible $\ell - 1$, we have

 $\mathsf{Com}(L_{\ell}(\mathfrak{sp}_{2k}), L_{\ell-1}(\mathfrak{sp}_{2k}) \otimes F(4k)) \cong \mathcal{C}_{k,\ell},$

where $C_{k,\ell}$ is the simple quotient of C_k^{ℓ} .

Thm: C_k^{ℓ} is an extension of the product of universal \mathcal{W} -algebras $\mathcal{W}^{\phi_1}(\mathfrak{sp}_{2k}) \otimes \mathcal{W}^{\phi_2}(\mathfrak{sp}_{2k})$ where $\phi_1 = -(k+1) + \frac{1+\ell+k}{1+2\ell+2k}, \qquad \phi_2 = -(k+1) + \frac{\ell+k}{1+2\ell+2k}.$

If $\ell - 1$ is admissible for \mathfrak{sp}_{2k} , we have an embedding $L_{\ell}(\mathfrak{sp}_{2k}) \to L_{\ell-1}(\mathfrak{sp}_{2k}) \otimes F(4k).$

Moreover, for admissible $\ell - 1$, we have

 $\operatorname{Com}(L_{\ell}(\mathfrak{sp}_{2k}), L_{\ell-1}(\mathfrak{sp}_{2k}) \otimes F(4k)) \cong \mathcal{C}_{k,\ell},$

where $C_{k,\ell}$ is the simple quotient of C_k^{ℓ} .

Thm: C_k^{ℓ} is an extension of the product of universal \mathcal{W} -algebras $\mathcal{W}^{\phi_1}(\mathfrak{sp}_{2k}) \otimes \mathcal{W}^{\phi_2}(\mathfrak{sp}_{2k})$ where $\phi_1 = -(k+1) + \frac{1+\ell+k}{1+2\ell+2k}, \qquad \phi_2 = -(k+1) + \frac{\ell+k}{1+2\ell+2k}.$

If $\ell - 1$ is admissible for \mathfrak{sp}_{2k} , we have an embedding $L_{\ell}(\mathfrak{sp}_{2k}) \to L_{\ell-1}(\mathfrak{sp}_{2k}) \otimes F(4k).$

Moreover, for admissible $\ell - 1$, we have

 $\operatorname{Com}(L_{\ell}(\mathfrak{sp}_{2k}), L_{\ell-1}(\mathfrak{sp}_{2k}) \otimes F(4k)) \cong \mathcal{C}_{k,\ell},$ where $\mathcal{C}_{k,\ell}$ is the simple quotient of \mathcal{C}_{k}^{ℓ} .

Thm: C_k^{ℓ} is an extension of the product of universal \mathcal{W} -algebras $\mathcal{W}^{\phi_1}(\mathfrak{sp}_{2k}) \otimes \mathcal{W}^{\phi_2}(\mathfrak{sp}_{2k})$ where $\phi_1 = -(k+1) + \frac{1+\ell+k}{1+2\ell+2k}, \qquad \phi_2 = -(k+1) + \frac{\ell+k}{1+2\ell+2k}.$

If $\ell - 1$ is admissible for \mathfrak{sp}_{2k} , we have an embedding $L_{\ell}(\mathfrak{sp}_{2k}) \to L_{\ell-1}(\mathfrak{sp}_{2k}) \otimes F(4k).$

Moreover, for admissible $\ell - 1$, we have

 $\mathsf{Com}(L_{\ell}(\mathfrak{sp}_{2k}), L_{\ell-1}(\mathfrak{sp}_{2k}) \otimes F(4k)) \cong \mathcal{C}_{k,\ell},$

where $C_{k,\ell}$ is the simple quotient of C_k^{ℓ} .

Thm: C_k^{ℓ} is an extension of the product of universal \mathcal{W} -algebras $\mathcal{W}^{\phi_1}(\mathfrak{sp}_{2k}) \otimes \mathcal{W}^{\phi_2}(\mathfrak{sp}_{2k})$ where $\phi_1 = -(k+1) + \frac{1+\ell+k}{1+2\ell+2k}, \qquad \phi_2 = -(k+1) + \frac{\ell+k}{1+2\ell+2k}.$

If $\ell - 1$ is admissible for \mathfrak{sp}_{2k} , we have an embedding $L_{\ell}(\mathfrak{sp}_{2k}) \rightarrow L_{\ell-1}(\mathfrak{sp}_{2k}) \otimes F(4k).$

Moreover, for admissible $\ell - 1$, we have

 $\mathsf{Com}(L_\ell(\mathfrak{sp}_{2k}), L_{\ell-1}(\mathfrak{sp}_{2k}) \otimes F(4k)) \cong \mathcal{C}_{k,\ell},$

where $C_{k,\ell}$ is the simple quotient of C_k^{ℓ} .

Recall: $\mathfrak{sp}_{2(2n+1)}$ has a subalgebra $\mathfrak{so}_{2n+1} \oplus \mathfrak{sp}_2$, and $\mathfrak{sp}_{2(2n+1)} \cong \mathfrak{so}_{2n+1} \oplus \mathfrak{sp}_2 \oplus (\rho_{2\omega_1} \otimes \mathbb{C}^3).$

Consider $\mathcal{W}^{\psi}(\mathfrak{osp}_{1|2(2n+1)+2m}, f_{\mathfrak{so}_{2n+1}})$, where $f_{\mathfrak{so}_{2n+1}}$ a principal nilpotent in

 $\mathfrak{so}_{2n+1} \subseteq \mathfrak{sp}_{2(2n+1)} \subseteq \mathfrak{sp}_{2(2n+1)+2m} \subseteq \mathfrak{osp}_{1|2(2n+1)+2m}.$

For
$$a \in \mathbb{N}$$
, let
 $\psi = \frac{3+2a+2m}{2}, \qquad k = a+n+2an+2mn.$

Affine subalgebra of $\mathcal{W}^{\psi}(\mathfrak{osp}_{1|2(2n+1)+2m}, f_{\mathfrak{so}_{2n+1}})$ is $V^{k}(\mathfrak{sp}_{2}) \otimes V^{a}(\mathfrak{osp}_{1|2m}).$

Recall: $\mathfrak{sp}_{2(2n+1)}$ has a subalgebra $\mathfrak{so}_{2n+1} \oplus \mathfrak{sp}_2$, and $\mathfrak{sp}_{2(2n+1)} \cong \mathfrak{so}_{2n+1} \oplus \mathfrak{sp}_2 \oplus (\rho_{2\omega_1} \otimes \mathbb{C}^3).$

Consider $W^{\psi}(\mathfrak{osp}_{1|2(2n+1)+2m}, f_{\mathfrak{so}_{2n+1}})$, where $f_{\mathfrak{so}_{2n+1}}$ a principal nilpotent in

$$\mathfrak{so}_{2n+1} \subseteq \mathfrak{sp}_{2(2n+1)} \subseteq \mathfrak{sp}_{2(2n+1)+2m} \subseteq \mathfrak{osp}_{1|2(2n+1)+2m}.$$

For
$$a \in \mathbb{N}$$
, let

$$\psi = \frac{3+2a+2m}{2}, \qquad k = a+n+2an+2mn.$$

Affine subalgebra of $\mathcal{W}^{\psi}(\mathfrak{osp}_{1|2(2n+1)+2m}, f_{\mathfrak{so}_{2n+1}})$ is $V^{k}(\mathfrak{sp}_{2}) \otimes V^{a}(\mathfrak{osp}_{1|2m}).$

Recall: $\mathfrak{sp}_{2(2n+1)}$ has a subalgebra $\mathfrak{so}_{2n+1} \oplus \mathfrak{sp}_2$, and $\mathfrak{sp}_{2(2n+1)} \cong \mathfrak{so}_{2n+1} \oplus \mathfrak{sp}_2 \oplus (\rho_{2\omega_1} \otimes \mathbb{C}^3).$

Consider $W^{\psi}(\mathfrak{osp}_{1|2(2n+1)+2m}, f_{\mathfrak{so}_{2n+1}})$, where $f_{\mathfrak{so}_{2n+1}}$ a principal nilpotent in

$$\mathfrak{so}_{2n+1} \subseteq \mathfrak{sp}_{2(2n+1)} \subseteq \mathfrak{sp}_{2(2n+1)+2m} \subseteq \mathfrak{osp}_{1|2(2n+1)+2m}.$$

For
$$a \in \mathbb{N}$$
, let $\psi = rac{3+2a+2m}{2}, \qquad k = a+n+2an+2mn.$

Affine subalgebra of $\mathcal{W}^{\psi}(\mathfrak{osp}_{1|2(2n+1)+2m}, f_{\mathfrak{so}_{2n+1}})$ is $V^{k}(\mathfrak{sp}_{2}) \otimes V^{a}(\mathfrak{osp}_{1|2m}).$

Recall: $\mathfrak{sp}_{2(2n+1)}$ has a subalgebra $\mathfrak{so}_{2n+1} \oplus \mathfrak{sp}_2$, and $\mathfrak{sp}_{2(2n+1)} \cong \mathfrak{so}_{2n+1} \oplus \mathfrak{sp}_2 \oplus (\rho_{2\omega_1} \otimes \mathbb{C}^3).$

Consider $W^{\psi}(\mathfrak{osp}_{1|2(2n+1)+2m}, f_{\mathfrak{so}_{2n+1}})$, where $f_{\mathfrak{so}_{2n+1}}$ a principal nilpotent in

$$\mathfrak{so}_{2n+1} \subseteq \mathfrak{sp}_{2(2n+1)} \subseteq \mathfrak{sp}_{2(2n+1)+2m} \subseteq \mathfrak{osp}_{1|2(2n+1)+2m}.$$

For
$$a \in \mathbb{N}$$
, let $\psi = rac{3+2a+2m}{2}, \qquad k = a+n+2an+2mn.$

Affine subalgebra of $\mathcal{W}^{\psi}(\mathfrak{osp}_{1|2(2n+1)+2m}, f_{\mathfrak{so}_{2n+1}})$ is $V^k(\mathfrak{sp}_2) \otimes V^a(\mathfrak{osp}_{1|2m}).$

This is one of the 8 families mentioned earlier, and

$$\mathsf{Com}(V^a(\mathfrak{osp}_{1|2m}), \mathcal{W}^\psi(\mathfrak{osp}_{1|2(2n+1)+2m}, f_{\mathfrak{so}_{2n+1}})^{\mathbb{Z}_2}$$

is a 1-parameter quotient of $\mathcal{W}^{\mathfrak{sp}_2}$.

Assuming the uniqueness of $\mathcal{W}^{\mathfrak{sp}_2}$ as a 2-parameter VOA, such quotients are classified by their truncation curves.

Conj: For all $a, k \in \mathbb{N}$, $\mathcal{W}_{\psi}(\mathfrak{osp}_{1|2(2n+1)+2m}, f_{\mathfrak{so}_{2n+1}})$ has affine subalgebra

 $L_k(\mathfrak{sp}_2)\otimes L_a(\mathfrak{osp}_{1|2m}).$

This is one of the 8 families mentioned earlier, and

$$\mathsf{Com}(V^{\mathsf{a}}(\mathfrak{osp}_{1|2m}), \mathcal{W}^{\psi}(\mathfrak{osp}_{1|2(2n+1)+2m}, f_{\mathfrak{so}_{2n+1}})^{\mathbb{Z}_2}$$

is a 1-parameter quotient of $\mathcal{W}^{\mathfrak{sp}_2}$.

Assuming the uniqueness of $\mathcal{W}^{\mathfrak{sp}_2}$ as a 2-parameter VOA, such quotients are classified by their truncation curves.

Conj: For all $a, k \in \mathbb{N}$, $\mathcal{W}_{\psi}(\mathfrak{osp}_{1|2(2n+1)+2m}, f_{\mathfrak{so}_{2n+1}})$ has affine subalgebra

 $L_k(\mathfrak{sp}_2)\otimes L_a(\mathfrak{osp}_{1|2m}).$

This is one of the 8 families mentioned earlier, and

$$\mathsf{Com}(V^{\mathsf{a}}(\mathfrak{osp}_{1|2m}), \mathcal{W}^{\psi}(\mathfrak{osp}_{1|2(2n+1)+2m}, f_{\mathfrak{so}_{2n+1}})^{\mathbb{Z}_2}$$

is a 1-parameter quotient of $\mathcal{W}^{\mathfrak{sp}_2}$.

Assuming the uniqueness of $\mathcal{W}^{\mathfrak{sp}_2}$ as a 2-parameter VOA, such quotients are classified by their truncation curves.

Conj: For all $a, k \in \mathbb{N}$, $\mathcal{W}_{\psi}(\mathfrak{osp}_{1|2(2n+1)+2m}, f_{\mathfrak{so}_{2n+1}})$ has affine subalgebra

 $L_k(\mathfrak{sp}_2) \otimes L_a(\mathfrak{osp}_{1|2m}).$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Kovalchuk's formulas for truncation curves imply

$$\begin{split} & \text{Com}(L_a(\mathfrak{osp}_{1|2m}),\mathcal{W}_\psi(\mathfrak{osp}_{1|2(2n+1)+2m},f_{\mathfrak{so}_{2n+1}})^{\mathbb{Z}_2}\cong \mathcal{C}_{k,r},\\ & \text{with } r=-(k+1)+\frac{3+2a+2m}{2}. \end{split}$$

 $\mathcal{C}_{k,r}$ should be an extension of $\mathcal{W}_{\phi_1}(\mathfrak{sp}_{2k})\otimes\mathcal{W}_{\phi_2}(\mathfrak{sp}_{2k})$ with

$$\phi_1 = \frac{3+2k+2m-2n-4an-4mn}{4(1+k+m-n-2an-2mn)},$$

$$\phi_2 = \frac{1+2k+m(2-4n)-2n-4an}{4(1+k+m-n-2an-2mn)}.$$

This suggest that $\mathcal{W}_{\psi}(\mathfrak{osp}_{1|2(2n+1)+2m}, f_{\mathfrak{so}_{2n+1}})$ should be lisse and rational for a, n sufficiently large.

Kovalchuk's formulas for truncation curves imply

$$\operatorname{Com}(L_{a}(\mathfrak{osp}_{1|2m}), \mathcal{W}_{\psi}(\mathfrak{osp}_{1|2(2n+1)+2m}, f_{\mathfrak{so}_{2n+1}})^{\mathbb{Z}_{2}} \cong \mathcal{C}_{k,r},$$

with $r = -(k+1) + \frac{3+2a+2m}{2}$.

 $\mathcal{C}_{k,r}$ should be an extension of $\mathcal{W}_{\phi_1}(\mathfrak{sp}_{2k})\otimes\mathcal{W}_{\phi_2}(\mathfrak{sp}_{2k})$ with

$$\phi_1 = \frac{3+2k+2m-2n-4an-4mn}{4(1+k+m-n-2an-2mn)},$$

$$\phi_2 = \frac{1 + 2k + m(2 - 4n) - 2n - 4an}{4(1 + k + m - n - 2an - 2mn)}$$

This suggest that $\mathcal{W}_{\psi}(\mathfrak{osp}_{1|2(2n+1)+2m}, f_{\mathfrak{so}_{2n+1}})$ should be lisse and rational for a, n sufficiently large.

Kovalchuk's formulas for truncation curves imply

$$\operatorname{Com}(L_{a}(\mathfrak{osp}_{1|2m}), \mathcal{W}_{\psi}(\mathfrak{osp}_{1|2(2n+1)+2m}, f_{\mathfrak{so}_{2n+1}})^{\mathbb{Z}_{2}} \cong \mathcal{C}_{k,r},$$

h r = (k + 1) + ^{3+2a+2m}

with $r = -(k+1) + \frac{3+2a+2m}{2}$.

 $\mathcal{C}_{k,r}$ should be an extension of $\mathcal{W}_{\phi_1}(\mathfrak{sp}_{2k})\otimes\mathcal{W}_{\phi_2}(\mathfrak{sp}_{2k})$ with

$$\phi_1 = \frac{3+2k+2m-2n-4an-4mn}{4(1+k+m-n-2an-2mn)},$$

$$\phi_2 = \frac{1+2k+m(2-4n)-2n-4an}{4(1+k+m-n-2an-2mn)}$$

This suggest that $\mathcal{W}_{\psi}(\mathfrak{osp}_{1|2(2n+1)+2m}, f_{\mathfrak{so}_{2n+1}})$ should be lisse and rational for a, n sufficiently large.