Automorphism groups of cyclic orbifolds of lattice VOAs

Ching Hung Lam

Academia Sinica

Based on joint works with Hiroki Shimakura, Koichi Betsumiya and Hsianyang Chen
June 29, 2023

Main question

Let L be an (positive definite) even lattice. One can construct a vertex operator algebra V_{L} from L.

Main question

Let L be an (positive definite) even lattice.
One can construct a vertex operator algebra V_{L} from L.
Let $\left\{h_{1}, \ldots, h_{\ell}\right\}$ be an orthonormal basis of $\mathfrak{h}=\mathbb{C} \otimes_{\mathbb{Z}} L$.
As a vector space,

$$
V_{L}=M(1) \otimes \mathbb{C}\{L\}
$$

where

$$
M(1) \cong \mathbb{C}\left[h_{i}\left(-n_{i}\right) \mid i=1, \ldots, \ell, n_{i} \in \mathbb{Z}_{>0}\right]
$$

and

$$
\mathbb{C}\{L\}=\operatorname{Span}_{\mathbb{C}}\left\{e^{\alpha} \mid \alpha \in L\right\}
$$

is a twisted group algebra of L such that $e^{\alpha} e^{\beta}=(-1)^{\langle\alpha, \beta\rangle} e^{\beta} e^{\alpha}$.
Note: $O(L)$ acts projectively on V_{L}.

Let $g \in O(L)$ be a fixed point free isometry of L ($g x=x$ implies $x=0$).
Then g can be lifted to an automorphism \hat{g} of V_{L}. The lift \hat{g} is not unique but is determined, up to conjugation if g is fixed point free.

Let $g \in O(L)$ be a fixed point free isometry of L ($g x=x$ implies $x=0$).
Then g can be lifted to an automorphism \hat{g} of V_{L}. The lift \hat{g} is not unique but is determined, up to conjugation if g is fixed point free.

Let $V_{L}^{\hat{g}}=\left\{v \in V_{L} \mid \hat{g} v=v\right\}$ be the fixed point subVOA.
Main Question: Try to determine the automorphism group of $V_{L}^{\hat{g}}$.

Let $g \in O(L)$ be a fixed point free isometry of L ($g x=x$ implies $x=0$).
Then g can be lifted to an automorphism \hat{g} of V_{L}.
The lift \hat{g} is not unique but is determined, up to conjugation if g is fixed point free.

Let $V_{L}^{\hat{g}}=\left\{v \in V_{L} \mid \hat{g} v=v\right\}$ be the fixed point subVOA.
Main Question: Try to determine the automorphism group of $V_{L}^{\hat{g}}$.
Important Fact: If $L_{2}=\{x \in L \mid\langle x, x\rangle=2\}=\emptyset$ and g is fixed point free, then $\operatorname{Aut}\left(V_{L}^{\hat{g}}\right)$ is finite.

Let $g \in O(L)$ be a fixed point free isometry of L ($g x=x$ implies $x=0$).
Then g can be lifted to an automorphism \hat{g} of V_{L}.
The lift \hat{g} is not unique but is determined, up to conjugation if g is fixed point free.

Let $V_{L}^{\hat{g}}=\left\{v \in V_{L} \mid \hat{g} v=v\right\}$ be the fixed point subVOA.
Main Question: Try to determine the automorphism group of $V_{L}^{\hat{g}}$.
Important Fact: If $L_{2}=\{x \in L \mid\langle x, x\rangle=2\}=\emptyset$ and g is fixed point free, then $\operatorname{Aut}\left(V_{L}^{\hat{g}}\right)$ is finite.
From now on, we assume $L_{2}=\emptyset$.

$\operatorname{Aut}\left(V_{L}\right)$

For a lattice VOA V_{L}, the weight one subspace $\left(V_{L}\right)_{1}$ forms a Lie algebra with respect to the bracket $[a, b]=a_{(0)} b$.

$\operatorname{Aut}\left(V_{L}\right)$

For a lattice VOA V_{L}, the weight one subspace $\left(V_{L}\right)_{1}$ forms a Lie algebra with respect to the bracket $[a, b]=a_{(0)} b$. Then we have a subgroup

$$
N\left(V_{L}\right)=\left\langle\exp \left(a_{(0)}\right) \mid a \in\left(V_{L}\right)_{1}\right\rangle=\operatorname{Inn}\left(V_{L}\right)
$$

$\operatorname{Aut}\left(V_{L}\right)$

For a lattice VOA V_{L}, the weight one subspace $\left(V_{L}\right)_{1}$ forms a Lie algebra with respect to the bracket $[a, b]=a_{(0)} b$. Then we have a subgroup

$$
N\left(V_{L}\right)=\left\langle\exp \left(a_{(0)}\right) \mid a \in\left(V_{L}\right)_{1}\right\rangle=\operatorname{Inn}\left(V_{L}\right)
$$

Let $\hat{L}=\left\{ \pm e^{\alpha} \mid \alpha \in L\right\}$ be a central extension of L such that $e^{\alpha} e^{\beta}=(-1)^{\langle\alpha \mid \beta\rangle} e^{\beta} e^{\alpha}$ for $\alpha, \beta \in L$.

$\operatorname{Aut}\left(V_{L}\right)$

For a lattice VOA V_{L}, the weight one subspace $\left(V_{L}\right)_{1}$ forms a Lie algebra with respect to the bracket $[a, b]=a_{(0)} b$. Then we have a subgroup

$$
N\left(V_{L}\right)=\left\langle\exp \left(a_{(0)}\right) \mid a \in\left(V_{L}\right)_{1}\right\rangle=\operatorname{Inn}\left(V_{L}\right) .
$$

Let $\hat{L}=\left\{ \pm e^{\alpha} \mid \alpha \in L\right\}$ be a central extension of L such that $e^{\alpha} e^{\beta}=(-1)^{\langle\alpha \mid \beta\rangle} e^{\beta} e^{\alpha}$ for $\alpha, \beta \in L$.
For $\varphi \in \operatorname{Aut}(\hat{L})$, define $\iota(\varphi) \in \operatorname{Aut}(L)$ by $\varphi\left(e^{\alpha}\right) \in\left\{ \pm e^{\iota(\varphi)(\alpha)}\right\}, \alpha \in L$.

$\operatorname{Aut}\left(V_{L}\right)$

For a lattice VOA V_{L}, the weight one subspace $\left(V_{L}\right)_{1}$ forms a Lie algebra with respect to the bracket $[a, b]=a_{(0)} b$. Then we have a subgroup

$$
N\left(V_{L}\right)=\left\langle\exp \left(a_{(0)}\right) \mid a \in\left(V_{L}\right)_{1}\right\rangle=\operatorname{Inn}\left(V_{L}\right)
$$

Let $\hat{L}=\left\{ \pm e^{\alpha} \mid \alpha \in L\right\}$ be a central extension of L such that $e^{\alpha} e^{\beta}=(-1)^{\langle\alpha \mid \beta\rangle} e^{\beta} e^{\alpha}$ for $\alpha, \beta \in L$.
For $\varphi \in \operatorname{Aut}(\hat{L})$, define $\iota(\varphi) \in \operatorname{Aut}(L)$ by $\varphi\left(e^{\alpha}\right) \in\left\{ \pm e^{\iota(\varphi)(\alpha)}\right\}, \alpha \in L$. Set $O(\hat{L})=\{\varphi \in \operatorname{Aut}(\hat{L}) \mid \iota(\varphi) \in O(L)\}$.

$\operatorname{Aut}\left(V_{L}\right)$

For a lattice VOA V_{L}, the weight one subspace $\left(V_{L}\right)_{1}$ forms a Lie algebra with respect to the bracket $[a, b]=a_{(0)} b$. Then we have a subgroup

$$
N\left(V_{L}\right)=\left\langle\exp \left(a_{(0)}\right) \mid a \in\left(V_{L}\right)_{1}\right\rangle=\operatorname{Inn}\left(V_{L}\right)
$$

Let $\hat{L}=\left\{ \pm e^{\alpha} \mid \alpha \in L\right\}$ be a central extension of L such that $e^{\alpha} e^{\beta}=(-1)^{\langle\alpha \mid \beta\rangle} e^{\beta} e^{\alpha}$ for $\alpha, \beta \in L$.
For $\varphi \in \operatorname{Aut}(\hat{L})$, define $\iota(\varphi) \in \operatorname{Aut}(L)$ by $\varphi\left(e^{\alpha}\right) \in\left\{ \pm e^{\iota(\varphi)(\alpha)}\right\}, \alpha \in L$.
Set $O(\hat{L})=\{\varphi \in \operatorname{Aut}(\hat{L}) \mid \iota(\varphi) \in O(L)\}$.
We can identify $O(\hat{L})$ as a subgroup of $\operatorname{Aut}\left(V_{L}\right)$ and there is an exact sequence of [FLM88, Proposition 5.4.1]

$$
1 \rightarrow \operatorname{Hom}(L, \mathbb{Z} / 2 \mathbb{Z}) \rightarrow O(\hat{L}) \xrightarrow{\varphi} O(L) \rightarrow 1
$$

Note that $\operatorname{Hom}\left(L, \mathbb{Z}_{2}\right)=\left\{\exp \left(2 \pi \sqrt{-1} \alpha_{(0)}\right) \mid \alpha \in\left(L^{*} / 2\right) / L^{*}\right\}$ in $\operatorname{Aut}\left(V_{L}\right)$.

It was proved by Dong and Nagatomo

$$
\operatorname{Aut}\left(V_{L}\right)=N\left(V_{L}\right) O(\hat{L}) .
$$

It was proved by Dong and Nagatomo

$$
\operatorname{Aut}\left(V_{L}\right)=N\left(V_{L}\right) O(\hat{L})
$$

When $L(2)=\{x \in L \mid\langle x, x\rangle=2\}=\emptyset$, the normal subgroup $N\left(V_{L}\right)=\{\exp (\lambda \alpha(0)) \mid \alpha \in L, \lambda \in \mathbb{C}\}$ is abelian and we have

$$
N\left(V_{L}\right) \cap O(\hat{L})=\operatorname{Hom}(L, \mathbb{Z} / 2 \mathbb{Z}) \quad \text { and } \quad \operatorname{Aut}\left(V_{L}\right) / N\left(V_{L}\right) \cong O(L)
$$

It was proved by Dong and Nagatomo

$$
\operatorname{Aut}\left(V_{L}\right)=N\left(V_{L}\right) O(\hat{L})
$$

When $L(2)=\{x \in L \mid\langle x, x\rangle=2\}=\emptyset$, the normal subgroup $N\left(V_{L}\right)=\{\exp (\lambda \alpha(0)) \mid \alpha \in L, \lambda \in \mathbb{C}\}$ is abelian and we have

$$
N\left(V_{L}\right) \cap O(\hat{L})=\operatorname{Hom}(L, \mathbb{Z} / 2 \mathbb{Z}) \quad \text { and } \quad \operatorname{Aut}\left(V_{L}\right) / N\left(V_{L}\right) \cong O(L)
$$

In particular, we have an exact sequence

$$
1 \rightarrow N\left(V_{L}\right) \rightarrow \operatorname{Aut}\left(V_{L}\right) \xrightarrow{\varphi} O(L) \rightarrow 1 .
$$

$N_{\text {Aut }\left(V_{L}\right)}(\langle\hat{g}\rangle)$

Theorem

Let L be an even positive definite lattice with $L(2)=\emptyset$. Let g be a fixed point free isometry of L and \hat{g} a lift of g in $O(\hat{L})$. Then we have the following exact sequences.

$$
\begin{aligned}
& 1 \longrightarrow \operatorname{Hom}\left(L /(1-g) L, \mathbb{C}^{*}\right) \longrightarrow N_{\operatorname{Aut}\left(V_{L}\right)}(\langle\hat{g}\rangle) \xrightarrow{\varphi} N_{O(L)}(\langle g\rangle) \longrightarrow 1 ; \\
& 1 \operatorname{Hom}\left(L /(1-g) L, \mathbb{C}^{*}\right) \longrightarrow C_{\operatorname{Aut}\left(V_{L}\right)}(\hat{g}) \xrightarrow{\varphi} C_{O(L)}(g) \longrightarrow 1 .
\end{aligned}
$$

$N_{\text {Aut }\left(V_{L}\right)}(\langle\hat{g}\rangle)$

Theorem

Let L be an even positive definite lattice with $L(2)=\emptyset$. Let g be a fixed point free isometry of L and \hat{g} a lift of g in $O(\hat{L})$. Then we have the following exact sequences.

$$
\begin{aligned}
1 \longrightarrow & \operatorname{Hom}\left(L /(1-g) L, \mathbb{C}^{*}\right) \longrightarrow N_{\operatorname{Aut}\left(V_{L}\right)}(\langle\hat{g}\rangle) \stackrel{\varphi}{\longrightarrow} N_{O(L)}(\langle g\rangle) \longrightarrow 1 ; \\
1 & \operatorname{Hom}\left(L /(1-g) L, \mathbb{C}^{*}\right) \longrightarrow C_{\operatorname{Aut}\left(V_{L}\right)}(\hat{g}) \xrightarrow{\varphi} C_{O(L)}(g) \longrightarrow 1 .
\end{aligned}
$$

It is clear that $N_{\text {Aut }}\left(V_{L}\right)(\langle\hat{g}\rangle)$ acts on $V_{L}^{\hat{g}}$ and there is a group homomorphism $f: N_{\operatorname{Aut}\left(V_{L}\right)}(\langle\hat{g}\rangle) /\langle\hat{g}\rangle \longrightarrow \operatorname{Aut}\left(V_{L}^{\hat{g}}\right)$.

$N_{\text {Aut }\left(V_{L}\right)}(\langle\hat{g}\rangle)$

Theorem

Let L be an even positive definite lattice with $L(2)=\emptyset$. Let g be a fixed point free isometry of L and \hat{g} a lift of g in $O(\hat{L})$. Then we have the following exact sequences.

$$
\begin{aligned}
1 \longrightarrow & \operatorname{Hom}\left(L /(1-g) L, \mathbb{C}^{*}\right) \longrightarrow N_{\operatorname{Aut}\left(V_{L}\right)}(\langle\hat{g}\rangle) \stackrel{\varphi}{\longrightarrow} N_{O(L)}(\langle g\rangle) \longrightarrow 1 ; \\
1 & \operatorname{Hom}\left(L /(1-g) L, \mathbb{C}^{*}\right) \longrightarrow C_{\operatorname{Aut}\left(V_{L}\right)}(\hat{g}) \xrightarrow{\varphi} C_{O(L)}(g) \longrightarrow 1 .
\end{aligned}
$$

It is clear that $N_{\text {Aut }}\left(V_{L}\right)(\langle\hat{g}\rangle)$ acts on $V_{L}^{\hat{g}}$ and there is a group homomorphism $f: N_{\operatorname{Aut}\left(V_{L}\right)}(\langle\hat{g}\rangle) /\langle\hat{g}\rangle \longrightarrow \operatorname{Aut}\left(V_{L}^{\hat{g}}\right)$.
The key question is to determine if f is surjective.

$N_{\text {Aut }\left(V_{L}\right)}(\langle\hat{g}\rangle)$

Theorem

Let L be an even positive definite lattice with $L(2)=\emptyset$. Let g be a fixed point free isometry of L and \hat{g} a lift of g in $O(\hat{L})$. Then we have the following exact sequences.

$$
\begin{aligned}
1 \longrightarrow & \operatorname{Hom}\left(L /(1-g) L, \mathbb{C}^{*}\right) \longrightarrow N_{\operatorname{Aut}\left(V_{L}\right)}(\langle\hat{g}\rangle) \xrightarrow{\varphi} N_{O(L)}(\langle g\rangle) \longrightarrow 1 ; \\
& \longrightarrow \operatorname{Hom}\left(L /(1-g) L, \mathbb{C}^{*}\right) \longrightarrow C_{\operatorname{Aut}\left(V_{L}\right)}(\hat{g}) \xrightarrow{\varphi} C_{O(L)}(g) \longrightarrow 1 .
\end{aligned}
$$

It is clear that $N_{\text {Aut }}\left(V_{L}\right)(\langle\hat{g}\rangle)$ acts on $V_{L}^{\hat{g}}$ and there is a group homomorphism $f: N_{\operatorname{Aut}\left(V_{L}\right)}(\langle\hat{g}\rangle) /\langle\hat{g}\rangle \longrightarrow \operatorname{Aut}\left(V_{L}^{\hat{g}}\right)$.
The key question is to determine if f is surjective.

Definition

An automorphism $h \in \operatorname{Aut}\left(V_{L}^{\hat{g}}\right)$ is said to be an extra automorphism if it is not in the image of f.

Some techniques

Some techniques

Definition

Let V be a VOA and $\tau \in \operatorname{Aut}(V)$. For any V-module $M=\left(M, Y_{M}\right)$, the τ-conjugate ($M \circ \tau, Y_{M \circ \tau}(\cdot, z)$) of M is defined as follows:

$$
M \circ \tau=M \text { as a vector space; }
$$

$$
Y_{M \circ \tau}(a, z)=Y_{M}(\tau a, z) \quad \text { for any } a \in V
$$

Then $\left(M \circ \tau, Y_{M \circ \tau}(\cdot, z)\right)$ is also a V-module.

Some techniques

Definition

Let V be a VOA and $\tau \in \operatorname{Aut}(V)$. For any V-module $M=\left(M, Y_{M}\right)$, the τ-conjugate ($M \circ \tau, Y_{M \circ \tau}(\cdot, z)$) of M is defined as follows:

$$
\begin{aligned}
& M \circ \tau=M \text { as a vector space; } \\
& Y_{M \circ \tau}(a, z)=Y_{M}(\tau a, z) \quad \text { for any } a \in V
\end{aligned}
$$

Then $\left(M \circ \tau, Y_{M \circ \tau}(\cdot, z)\right)$ is also a V-module.
$M \circ \tau$ and M have the same character, i.e., $\operatorname{dim} M_{i}=\operatorname{dim}(M \circ \tau)_{i}, \forall i$

Some techniques

Definition

Let V be a VOA and $\tau \in \operatorname{Aut}(V)$. For any V-module $M=\left(M, Y_{M}\right)$, the τ-conjugate ($M \circ \tau, Y_{M \circ \tau}(\cdot, z)$) of M is defined as follows: $M \circ \tau=M \quad$ as a vector space;

$$
Y_{M \circ \tau}(a, z)=Y_{M}(\tau a, z) \quad \text { for any } a \in V
$$

Then $\left(M \circ \tau, Y_{M \circ \tau}(\cdot, z)\right)$ is also a V-module.
$M \circ \tau$ and M have the same character, i.e., $\operatorname{dim} M_{i}=\operatorname{dim}(M \circ \tau)_{i}, \forall i$ and $M \circ \tau$ is irreducible iff M is.

Some techniques

Definition

Let V be a VOA and $\tau \in \operatorname{Aut}(V)$. For any V-module $M=\left(M, Y_{M}\right)$, the τ-conjugate ($M \circ \tau, Y_{M \circ \tau}(\cdot, z)$) of M is defined as follows: $M \circ \tau=M$ as a vector space;

$$
Y_{M \circ \tau}(a, z)=Y_{M}(\tau a, z) \quad \text { for any } a \in V
$$

Then $\left(M \circ \tau, Y_{M \circ \tau}(\cdot, z)\right)$ is also a V-module.
$M \circ \tau$ and M have the same character, i.e., $\operatorname{dim} M_{i}=\operatorname{dim}(M \circ \tau)_{i}, \forall i$ and $M \circ \tau$ is irreducible iff M is.

That means Aut (V) acts on the set $\operatorname{Irr}(V)$ of irreducible modules of V.

Theorem (Shimakura)

Let $V_{L}(j)=\left\{v \in V_{L} \mid g(v)=e^{2 \pi \sqrt{-1} j / n} v\right\}, n=|g|$ and $0 \leq j \leq n-1$. Let $\tau \in \operatorname{Aut}\left(V_{L}^{\hat{g}}\right)$. Then τ lifts to an automorphism of V_{L} iff

$$
\left\{V_{L}(j) \circ \tau \mid 0 \leq j \leq n-1\right\}=\left\{V_{L}(j) \mid 0 \leq j \leq n-1\right\} .
$$

Theorem (Shimakura)

Let $V_{L}(j)=\left\{v \in V_{L} \mid g(v)=e^{2 \pi \sqrt{-1} j / n} v\right\}, n=|g|$ and $0 \leq j \leq n-1$. Let $\tau \in \operatorname{Aut}\left(V_{L}^{\hat{g}}\right)$. Then τ lifts to an automorphism of V_{L} iff

$$
\left\{V_{L}(j) \circ \tau \mid 0 \leq j \leq n-1\right\}=\left\{V_{L}(j) \mid 0 \leq j \leq n-1\right\} .
$$

Remark: τ is extra if and only if $\left\{V_{L}(j) \circ \tau \mid 0 \leq j \leq n-1\right\} \neq\left\{V_{L}(j) \mid 0 \leq j \leq n-1\right\}$.

The main idea is to study the irreducible modules of $V_{L}^{\hat{g}}$ which have the same properties as $V_{L}(j)$.

The main idea is to study the irreducible modules of $V_{L}^{\hat{g}}$ which have the same properties as $V_{L}(j)$.
There are two types of irreducible $V_{L}^{\hat{\mathrm{g}}}$-modules.

The main idea is to study the irreducible modules of $V_{L}^{\hat{g}}$ which have the same properties as $V_{L}(j)$.
There are two types of irreducible $V_{L}^{\hat{g}}$-modules.
Untwisted type: submodules of V_{L}-modules.

$$
V_{\lambda+L}=M(1) \otimes \operatorname{Span}_{\mathbb{C}}\left\{e^{\alpha} \mid \alpha \in \lambda+L\right\} \text { for } \lambda+L \in \mathcal{D}(L) .
$$

The main idea is to study the irreducible modules of $V_{L}^{\hat{g}}$ which have the same properties as $V_{L}(j)$.
There are two types of irreducible $V_{L}^{\hat{\mathrm{g}}}$-modules.
Untwisted type: submodules of V_{L}-modules.
$V_{\lambda+L}=M(1) \otimes \operatorname{Span}_{\mathbb{C}}\left\{e^{\alpha} \mid \alpha \in \lambda+L\right\}$ for $\lambda+L \in \mathcal{D}(L)$.
If $g(\lambda+L) \neq \lambda+L$, then $V_{\lambda+L}$ is also irreducible as an $V_{L}^{\hat{g}}$-module. Then $V_{\lambda+L}$ is not a simple current module of $V_{L}^{\hat{g}}$.

The main idea is to study the irreducible modules of $V_{L}^{\hat{g}}$ which have the same properties as $V_{L}(j)$.
There are two types of irreducible $V_{L}^{\hat{\mathrm{g}}}$-modules.
Untwisted type: submodules of V_{L}-modules.
$V_{\lambda+L}=M(1) \otimes \operatorname{Span}_{\mathbb{C}}\left\{e^{\alpha} \mid \alpha \in \lambda+L\right\}$ for $\lambda+L \in \mathcal{D}(L)$.
If $g(\lambda+L) \neq \lambda+L$, then $V_{\lambda+L}$ is also irreducible as an $V_{L}^{\hat{g}}$-module. Then $V_{\lambda+L}$ is not a simple current module of $V_{L}^{\hat{g}}$.
Assume that $(1-g) \lambda \in L$, that is, $g(\lambda+L)=\lambda+L$.
Then $V_{\lambda+L}$ is \hat{g}-invariant and \hat{g} acts on $V_{\lambda+L}$. For $0 \leq i \leq p-1$, we denote $V_{\lambda+L}(i)=\left\{v \in V_{\lambda+L} \mid \hat{g}(v)=\exp (2 \pi \sqrt{-1} i / p) v\right\}$, which is an irreducible $V_{L}^{\hat{\mathrm{g}}}$-module.

Twisted type: submodules of twisted V_{L}-modules.
Let $1 \leq s \leq p-1$. Recall from [Le85, DL96] that the irreducible \hat{g}^{s}-twisted module $V_{L}^{T}\left[\hat{g}^{s}\right]$ is given by

$$
V^{T_{\chi}}\left[\hat{g}^{S}\right]=M(1)\left[g^{s}\right] \otimes T,
$$

where $M(1)\left[\hat{g}^{s}\right]$ is the " \hat{g}^{s}-twisted" free bosonic space and T is an irreducible module for a certain " \hat{g}^{5}-twisted" central extension of L.

Twisted type: submodules of twisted V_{L}-modules.
Let $1 \leq s \leq p-1$. Recall from [Le85, DL96] that the irreducible \hat{g}^{s}-twisted module $V_{L}^{T}\left[\hat{g}^{s}\right]$ is given by

$$
V^{T_{x}}\left[\hat{g}^{s}\right]=M(1)\left[g^{s}\right] \otimes T,
$$

where $M(1)\left[\hat{g}^{s}\right]$ is the " \hat{g}^{s}-twisted" free bosonic space and T is an irreducible module for a certain " \hat{g}^{5}-twisted" central extension of L.

All twisted modules are \hat{g}-invariant and we denote

$$
V_{L}^{T}\left[\hat{g}^{s}\right](i)=\left\{v \in V_{L}^{T}\left[\hat{g}^{s}\right] \mid \hat{g}(v)=\exp (2 \pi \sqrt{-1} i / p) v\right\} .
$$

Notice that $V_{L}=\oplus_{j=0}^{n-1} V_{L}(j) \cong \oplus_{j=0}^{n-1} V_{L}(j) \circ \tau$ as a VOA.

Notice that $V_{L}=\oplus_{j=0}^{n-1} V_{L}(j) \cong \oplus_{j=0}^{n-1} V_{L}(j) \circ \tau$ as a VOA.
One approach is to try to embed

$$
\oplus_{j=0}^{n-1} V_{L}(j) \quad \text { and } \quad \oplus_{j=0}^{n-1} V_{L}(j) \circ \tau
$$

into a "bigger" VOA

Notice that $V_{L}=\oplus_{j=0}^{n-1} V_{L}(j) \cong \oplus_{j=0}^{n-1} V_{L}(j) \circ \tau$ as a VOA.
One approach is to try to embed

$$
\oplus_{j=0}^{n-1} V_{L}(j) \quad \text { and } \quad \oplus_{j=0}^{n-1} V_{L}(j) \circ \tau
$$

into a "bigger" VOA
and try to study their relations using the automorphism group of the bigger VOA.

When $|g|=2$, i.e., $g=-1$, the full automorphism group of $V_{L}^{+}=V_{L}^{\hat{g}}$ is determined by Shimakura.

When $|g|=2$, i.e., $g=-1$, the full automorphism group of $V_{L}^{+}=V_{L}^{\hat{g}}$ is determined by Shimakura.

Theorem ([Sh04, Proposition 3.16])
Let L be an even lattice such that $L(2)=\emptyset$.
Aut (V_{L}^{+}) contains an extra automorphism if and only if
L can be constructed by Construction B from some binary code C.

When $|g|=2$, i.e., $g=-1$, the full automorphism group of $V_{L}^{+}=V_{L}^{\hat{g}}$ is determined by Shimakura.

Theorem ([Sh04, Proposition 3.16])
Let L be an even lattice such that $L(2)=\emptyset$.
Aut (V_{L}^{+}) contains an extra automorphism if and only if
L can be constructed by Construction B from some binary code C. Moreover, Aut $\left(V_{L}^{+}\right)$is generated by $O(\hat{L}) /\langle\hat{g}\rangle$ and the triality automorphisms defined as in [FLM88].

When $|g|=2$, i.e., $g=-1$, the full automorphism group of $V_{L}^{+}=V_{L}^{\hat{g}}$ is determined by Shimakura.

Theorem ([Sh04, Proposition 3.16])

Let L be an even lattice such that $L(2)=\emptyset$.
Aut (V_{L}^{+}) contains an extra automorphism if and only if
L can be constructed by Construction B from some binary code C. Moreover, Aut $\left(V_{L}^{+}\right)$is generated by $O(\hat{L}) /\langle\hat{g}\rangle$ and the triality automorphisms defined as in [FLM88].

Let $C<\mathbb{Z}_{2}^{n}$ be doubly even and let $\mathcal{B}=\left\{\alpha_{i} \mid i \in\{1, \ldots, n\}\right\}<\mathbb{R}^{n}$ s.t. $\left\langle\alpha_{i}, \alpha_{j}\right\rangle=2 \delta_{i, j}$. The lattice

$$
L_{B}(C)=\sum_{c \in C} \mathbb{Z} \frac{1}{2} \alpha_{c}+\sum_{i, j \in\{1, \ldots, n\}} \mathbb{Z}\left(\alpha_{i}+\alpha_{j}\right)
$$

is often referred as to the lattice obtained by Construction B from C, where $\alpha_{c}=\sum_{i=1}^{n} c_{i} \alpha_{i}$.

When $|g|=2$, i.e., $g=-1$, the full automorphism group of $V_{L}^{+}=V_{L}^{\hat{g}}$ is determined by Shimakura.

Theorem ([Sh04, Proposition 3.16])

Let L be an even lattice such that $L(2)=\emptyset$.
Aut (V_{L}^{+}) contains an extra automorphism if and only if
L can be constructed by Construction B from some binary code C. Moreover, Aut $\left(V_{L}^{+}\right)$is generated by $O(\hat{L}) /\langle\hat{g}\rangle$ and the triality automorphisms defined as in [FLM88].

Let $C<\mathbb{Z}_{2}^{n}$ be doubly even and let $\mathcal{B}=\left\{\alpha_{i} \mid i \in\{1, \ldots, n\}\right\}<\mathbb{R}^{n}$ s.t. $\left\langle\alpha_{i}, \alpha_{j}\right\rangle=2 \delta_{i, j}$. The lattice

$$
L_{B}(C)=\sum_{c \in C} \mathbb{Z} \frac{1}{2} \alpha_{c}+\sum_{i, j \in\{1, \ldots, n\}} \mathbb{Z}\left(\alpha_{i}+\alpha_{j}\right)
$$

is often referred as to the lattice obtained by Construction B from C, where $\alpha_{c}=\sum_{i=1}^{n} c_{i} \alpha_{i} . \quad\left(\right.$ Note: $\left.\langle\mathcal{B}\rangle_{\mathbb{Z}} \cong A_{1}^{n}\right)$

Extra automorphisms (generalization of FLM triality map)

Extra automorphisms (generalization of FLM triality map)

Let A_{n} be a root lattice of type A_{n}.

Extra automorphisms (generalization of FLM triality map)

Let A_{n} be a root lattice of type A_{n}. (Coxeter number $=$ determinant) Let $h_{A_{n}}$ be an $(n+1)$-cycle in $\operatorname{Weyl}\left(A_{n}\right) \cong \operatorname{Sym}_{n+1}$.

Extra automorphisms (generalization of FLM triality map)

Let A_{n} be a root lattice of type A_{n}. (Coxeter number $=$ determinant)
Let $h_{A_{n}}$ be an $(n+1)$-cycle in $\operatorname{Weyl}\left(A_{n}\right) \cong \operatorname{Sym}_{n+1}$.
Then the action of $h_{A_{n}}$ on $s I_{n+1}(\mathbb{C})$ is given by the conjugation of P, i.e,

$$
h_{A_{n}}: A \rightarrow P^{-1} A P \quad \text { for } A \in s l(n+1, \mathbb{C})
$$

and

$$
B^{-1} P B=\operatorname{diag}\left(\omega, \omega^{2}, \ldots, 1\right)
$$

where

$$
P=\left(\begin{array}{cccc}
0 & 1 & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & 0 & \ddots & 1 \\
1 & 0 & \cdots & 0
\end{array}\right) \text { and } B=\frac{1}{\sqrt{n+1}}\left(\begin{array}{ccccc}
\omega & \omega^{2} & \cdots & \omega^{n} & 1 \\
\omega^{2} & \omega^{4} & \cdots & \omega^{2 n} & 1 \\
\vdots & \ddots & \ddots & \vdots & \vdots \\
\omega^{n} & \omega^{2 n} & \ddots & \omega^{n^{2}} & 1 \\
1 & 1 & \cdots & 1 & 1
\end{array}\right) .
$$

Extra automorphisms (generalization of FLM triality map)

Let A_{n} be a root lattice of type A_{n}. (Coxeter number $=$ determinant)
Let $h_{A_{n}}$ be an $(n+1)$-cycle in $\operatorname{Weyl}\left(A_{n}\right) \cong$ Sym $_{n+1}$.
Then the action of $h_{A_{n}}$ on $s I_{n+1}(\mathbb{C})$ is given by the conjugation of P, i.e,

$$
h_{A_{n}}: A \rightarrow P^{-1} A P \quad \text { for } A \in s l(n+1, \mathbb{C})
$$

and

$$
B^{-1} P B=\operatorname{diag}\left(\omega, \omega^{2}, \ldots, 1\right)
$$

where

$$
P=\left(\begin{array}{cccc}
0 & 1 & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & 0 & \ddots & 1 \\
1 & 0 & \cdots & 0
\end{array}\right) \text { and } B=\frac{1}{\sqrt{n+1}}\left(\begin{array}{ccccc}
\omega & \omega^{2} & \cdots & \omega^{n} & 1 \\
\omega^{2} & \omega^{4} & \cdots & \omega^{2 n} & 1 \\
\vdots & \ddots & \ddots & \vdots & \vdots \\
\omega^{n} & \omega^{2 n} & \ddots & \omega^{\omega^{2}} & 1 \\
1 & 1 & \cdots & 1 & 1
\end{array}\right) .
$$

Define a map $\sigma_{A_{n}}: s l(n+1, \mathbb{C}) \rightarrow s l(n+1, \mathbb{C})$ by $\sigma_{A_{n}}(A)=B^{-1} A B$.

Extra automorphisms (generalization of FLM triality map)

Let A_{n} be a root lattice of type A_{n}. (Coxeter number $=$ determinant)
Let $h_{A_{n}}$ be an $(n+1)$-cycle in $\operatorname{Weyl}\left(A_{n}\right) \cong$ Sym $_{n+1}$.
Then the action of $h_{A_{n}}$ on $s I_{n+1}(\mathbb{C})$ is given by the conjugation of P, i.e,

$$
h_{A_{n}}: A \rightarrow P^{-1} A P \quad \text { for } A \in s l(n+1, \mathbb{C})
$$

and

$$
B^{-1} P B=\operatorname{diag}\left(\omega, \omega^{2}, \ldots, 1\right)
$$

where

$$
P=\left(\begin{array}{cccc}
0 & 1 & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & 0 & \ddots & 1 \\
1 & 0 & \cdots & 0
\end{array}\right) \text { and } B=\frac{1}{\sqrt{n+1}}\left(\begin{array}{ccccc}
\omega & \omega^{2} & \cdots & \omega^{n} & 1 \\
\omega^{2} & \omega^{4} & \cdots & \omega^{2 n} & 1 \\
\vdots & \ddots & \ddots & \vdots & \vdots \\
\omega^{n} & \omega^{2 n} & \ddots & \omega^{\omega^{2}} & 1 \\
1 & 1 & \cdots & 1 & 1
\end{array}\right) .
$$

Define a map $\sigma_{A_{n}}: s l(n+1, \mathbb{C}) \rightarrow s l(n+1, \mathbb{C})$ by $\sigma_{A_{n}}(A)=B^{-1} A B$.

Let $\rho_{A_{n}}=\frac{1}{2}(n-1, n-2, \ldots,-(n-2),-(n-1))$ be the Weyl vector. Define $\eta_{A_{n}}=\exp \left(\frac{1}{n+1}\left(2 \pi i \rho_{A_{n}}(0)\right)\right.$.

Let $\rho_{A_{n}}=\frac{1}{2}(n-1, n-2, \ldots,-(n-2),-(n-1))$ be the Weyl vector.
Define $\eta_{A_{n}}=\exp \left(\frac{1}{n+1}\left(2 \pi i \rho_{A_{n}}(0)\right)\right.$.
Then the action of $\eta_{A_{n}}$ on $s I_{n+1}(\mathbb{C})$ is given by $\eta_{A_{n}}: A \mapsto D A D^{-1}$.

Let $\rho_{A_{n}}=\frac{1}{2}(n-1, n-2, \ldots,-(n-2),-(n-1))$ be the Weyl vector.
Define $\eta_{A_{n}}=\exp \left(\frac{1}{n+1}\left(2 \pi i \rho_{A_{n}}(0)\right)\right.$.
Then the action of $\eta_{A_{n}}$ on $s I_{n+1}(\mathbb{C})$ is given by $\eta_{A_{n}}: A \mapsto D A D^{-1}$.

Lemma

We have $\sigma_{A_{n}} h_{A_{n}} \sigma_{A_{n}}^{-1}=\eta_{A_{n}}$ and $\sigma_{A_{n}} \eta_{A_{n}} \sigma_{A_{n}}^{-1}=h_{A_{n}}^{-1}$ on $s l_{n+1}(\mathbb{C})$.

Let

$$
R=A_{k_{1}} \oplus \cdots \oplus A_{k_{j}}
$$

be an orthogonal sum of simple root lattices of type A.

Let

$$
R=A_{k_{1}} \oplus \cdots \oplus A_{k_{j}}
$$

be an orthogonal sum of simple root lattices of type A. Let L be an even overlattice of R and $\hat{\rho}=\sum_{i=1}^{j} \frac{1}{\left(k_{i}+1\right)} \rho_{A_{k_{i}}}$.

Let

$$
R=A_{k_{1}} \oplus \cdots \oplus A_{k_{j}}
$$

be an orthogonal sum of simple root lattices of type A.
Let L be an even overlattice of R and $\hat{\rho}=\sum_{i=1}^{j} \frac{1}{\left(k_{i}+1\right)} \rho_{A_{k_{i}}}$.
Set

$$
X=L(\hat{\rho})=\{\alpha \in L \mid\langle\alpha, \hat{\rho}\rangle \in \mathbb{Z}\} .
$$

Let

$$
R=A_{k_{1}} \oplus \cdots \oplus A_{k_{j}}
$$

be an orthogonal sum of simple root lattices of type A.
Let L be an even overlattice of R and $\hat{\rho}=\sum_{i=1}^{j} \frac{1}{\left(k_{i}+1\right)} \rho_{A_{k_{i}}}$.
Set

$$
X=L(\hat{\rho})=\{\alpha \in L \mid\langle\alpha, \hat{\rho}\rangle \in \mathbb{Z}\} .
$$

Then $L=\operatorname{Span}_{\mathbb{Z}} X \cup R$.

Let

$$
R=A_{k_{1}} \oplus \cdots \oplus A_{k_{j}}
$$

be an orthogonal sum of simple root lattices of type A.
Let L be an even overlattice of R and $\hat{\rho}=\sum_{i=1}^{j} \frac{1}{\left(k_{i}+1\right)} \rho_{A_{k_{i}}}$.
Set

$$
X=L(\hat{\rho})=\{\alpha \in L \mid\langle\alpha, \hat{\rho}\rangle \in \mathbb{Z}\} .
$$

Then $L=\operatorname{Span}_{\mathbb{Z}} X \cup R$.
Set

$$
h=h_{A_{k_{1}}} \otimes \cdots \otimes h_{A_{k_{j}}}, \eta=\eta_{A_{k_{1}}} \otimes \cdots \otimes \eta_{A_{k_{j}}}, \sigma=\sigma_{A_{k_{1}}} \otimes \cdots \otimes \sigma_{A_{k_{j}}}
$$

Let

$$
R=A_{k_{1}} \oplus \cdots \oplus A_{k_{j}}
$$

be an orthogonal sum of simple root lattices of type A.
Let L be an even overlattice of R and $\hat{\rho}=\sum_{i=1}^{j} \frac{1}{\left(k_{i}+1\right)} \rho_{A_{k_{i}}}$.
Set

$$
X=L(\hat{\rho})=\{\alpha \in L \mid\langle\alpha, \hat{\rho}\rangle \in \mathbb{Z}\} .
$$

Then $L=\operatorname{Span}_{\mathbb{Z}} X \cup R$.
Set

$$
h=h_{A_{k_{1}}} \otimes \cdots \otimes h_{A_{k_{j}}}, \eta=\eta_{A_{k_{1}}} \otimes \cdots \otimes \eta_{A_{k_{j}}}, \sigma=\sigma_{A_{k_{1}}} \otimes \cdots \otimes \sigma_{A_{k_{j}}}
$$

Since they are inner automorphisms, we can extend them to V_{L} by using the same exponential expressions.

Let

$$
R=A_{k_{1}} \oplus \cdots \oplus A_{k_{j}}
$$

be an orthogonal sum of simple root lattices of type A.
Let L be an even overlattice of R and $\hat{\rho}=\sum_{i=1}^{j} \frac{1}{\left(k_{i}+1\right)} \rho_{A_{k_{i}}}$.
Set

$$
X=L(\hat{\rho})=\{\alpha \in L \mid\langle\alpha, \hat{\rho}\rangle \in \mathbb{Z}\} .
$$

Then $L=\operatorname{Span}_{\mathbb{Z}} X \cup R$.
Set

$$
h=h_{A_{k_{1}}} \otimes \cdots \otimes h_{A_{k_{j}}}, \eta=\eta_{A_{k_{1}}} \otimes \cdots \otimes \eta_{A_{k_{j}}}, \sigma=\sigma_{A_{k_{1}}} \otimes \cdots \otimes \sigma_{A_{k_{j}}}
$$

Since they are inner automorphisms, we can extend them to V_{L} by using the same exponential expressions.

Theorem

We have $\sigma\left(V_{X}^{h}\right)=V_{X}^{h}$ and σ induces an automorphism of V_{X}^{h}.

Definition

A lattice X is said to be obtained by Construction B if $X=L(\hat{\rho})=\{\alpha \in L \mid\langle\alpha, \hat{\rho}\rangle \in \mathbb{Z}\}$, where L is an even overlattice of $R=A_{k_{1}} \oplus \cdots \oplus A_{k_{j}}$ and $\hat{\rho}=\sum_{i=1}^{j} \frac{1}{\left(k_{i}+1\right)} \rho_{A_{k_{i}}}$.

Definition

A lattice X is said to be obtained by Construction B if $X=L(\hat{\rho})=\{\alpha \in L \mid\langle\alpha, \hat{\rho}\rangle \in \mathbb{Z}\}$, where L is an even overlattice of $R=A_{k_{1}} \oplus \cdots \oplus A_{k_{j}}$ and $\hat{\rho}=\sum_{i=1}^{j} \frac{1}{\left(k_{i}+1\right)} \rho_{A_{k_{i}}}$.

Theorem

Let $R=\bigoplus_{i=1}^{t} A_{k_{i}-1}$ be a root lattice. Suppose $L=L_{B}(C)$ is constructed by Construction B associated with a subgroup C of $\mathcal{D}(R)$. If \hat{g} is a lift of the fixed-point free isometry of L induced by a Coxeter element of R. Then $V_{L}^{\hat{g}}$ has an extra automorphism.

Proposition

Let U be a rootless even unimodular lattice. Let $h \in O(U)$ and $\hat{h} \in O(\hat{U})$ a standard lift of h. Assume that (1) $V_{U}^{\mathrm{orb}(\hat{h})} \cong V_{U}$ and
(2) the conjugacy class of $\langle\hat{h}\rangle$ in $\operatorname{Aut}\left(V_{U}\right)$ is uniquely determined by $|\hat{h}|$ and the VOA structure of $V_{U}^{\hat{h}}$.
Then there exists $\tau \in \operatorname{Aut}\left(V_{U_{h}}^{\hat{h}}\right)$ such that $V_{U_{h}}(1) \circ \tau$ is of twisted type.

Proposition

Let U be a rootless even unimodular lattice. Let $h \in O(U)$ and $\hat{h} \in O(\hat{U})$ a standard lift of h. Assume that (1) $V_{U}^{\mathrm{orb}(\hat{h})} \cong V_{U}$ and
(2) the conjugacy class of $\langle\hat{h}\rangle$ in $\operatorname{Aut}\left(V_{U}\right)$ is uniquely determined by $|\hat{h}|$ and the VOA structure of $V_{U}^{\hat{h}}$.
Then there exists $\tau \in \operatorname{Aut}\left(V_{U_{h}}^{\hat{h}}\right)$ such that $V_{U_{h}}(1) \circ \tau$ is of twisted type.

Many isometries of the Leech lattice satisfy the above conditions, e.g., $-3 A$.

The converse also holds when g has prime order under some assumptions.

The converse also holds when g has prime order under some assumptions.

Theorem (L-Shimakura)

Let $L_{2}=\emptyset$ and $g \in O(L)$ is fixed point free. Suppose $|g|=p$ is a prime and $V_{L}^{\hat{g}}$ has an extra automorphism.

The converse also holds when g has prime order under some assumptions.

Theorem (L-Shimakura)

Let $L_{2}=\emptyset$ and $g \in O(L)$ is fixed point free. Suppose $|g|=p$ is a prime and $V_{L}^{\hat{g}}$ has an extra automorphism. Then either

- L* has an element λ of norm 2 such that

$$
(1-g) \lambda \in L \quad \text { and } \quad \operatorname{span}_{\mathbb{Z}}\{L, \lambda\}>A_{p-1}^{\operatorname{rank}(L) /(p-1)}
$$

The converse also holds when g has prime order under some assumptions.

Theorem (L-Shimakura)

Let $L_{2}=\emptyset$ and $g \in O(L)$ is fixed point free. Suppose $|g|=p$ is a prime and $V_{L}^{\hat{g}}$ has an extra automorphism. Then either

- L^{*} has an element λ of norm 2 such that $(1-g) \lambda \in L \quad$ and $\quad \operatorname{span}_{\mathbb{Z}}\{L, \lambda\}>A_{p-1}^{\operatorname{rank}(L) /(p-1)}$, (that means L can be obtained by Construction B with $\left.R=A_{p-1}^{\operatorname{rank}(L) /(p-1)}\right)$

The converse also holds when g has prime order under some assumptions.

Theorem (L-Shimakura)

Let $L_{2}=\emptyset$ and $g \in O(L)$ is fixed point free. Suppose $|g|=p$ is a prime and $V_{L}^{\hat{g}}$ has an extra automorphism. Then either

- L^{*} has an element λ of norm 2 such that $(1-g) \lambda \in L \quad$ and $\quad \operatorname{span}_{\mathbb{Z}}\{L, \lambda\}>A_{p-1}^{\operatorname{rank}(L) /(p-1)}$, (that means L can be obtained by Construction B with $\left.R=A_{p-1}^{r a n k(L) /(p-1)}\right)$ or
- L is a coinvariant sublattice of the Leech lattice.

$$
\left(L \cong \Lambda_{g}, g=2 A,-2 A, 3 B, 3 C, 5 B, 5 C, 7 B, 11 A \text { or } 23 A .\right)
$$

Assume that $V_{L}^{\hat{g}}$ has an extra automorphism σ.

Assume that $V_{L}^{\hat{g}}$ has an extra automorphism σ.
Then

$$
\begin{equation*}
V_{L}(1) \circ \sigma \not \approx V_{L}(r) \quad \text { for all } 1 \leq r \leq p-1 \tag{1}
\end{equation*}
$$

Then either Case (1):

$$
V_{L}(1) \circ \sigma \cong V_{\lambda+L}(r)
$$

for some $0 \leq r \leq p-1$ and $\lambda \in \mathcal{D}(L) \backslash\{L\}$ with $(1-g) \lambda \in L$; or
Case (II):

$$
V_{L}(1) \circ \sigma \cong V_{L}^{T}\left[\hat{g}^{s}\right](r)
$$

for some $0 \leq r \leq p-1,1 \leq s \leq p-1$.

For Case I: $V_{L}(1) \circ \sigma \cong V_{\lambda+L}(r)$, we have $\operatorname{dim} V_{\lambda+L}(r)_{1}=\operatorname{dim} V_{L}(1)_{1}$.

For Case I: $V_{L}(1) \circ \sigma \cong V_{\lambda+L}(r)$, we have

$$
\operatorname{dim} V_{\lambda+L}(r)_{1}=\operatorname{dim} V_{L}(1)_{1} .
$$

$\operatorname{dim} V_{\lambda+L}(r)_{1}=|(\lambda+L)(2)| / p$ and $\operatorname{dim} V_{L}(1)_{1}=m /(p-1)$ imply that

$$
\begin{equation*}
|(\lambda+L)(2)|=\frac{p m}{p-1} \tag{2}
\end{equation*}
$$

By the similar argument, we also have

$$
|(q \lambda+L)(2)|=\frac{p m}{p-1} \quad \text { for any } 1 \leq q \leq p-1
$$

For Case I: $V_{L}(1) \circ \sigma \cong V_{\lambda+L}(r)$, we have

$$
\operatorname{dim} V_{\lambda+L}(r)_{1}=\operatorname{dim} V_{L}(1)_{1} .
$$

$\operatorname{dim} V_{\lambda+L}(r)_{1}=|(\lambda+L)(2)| / p$ and $\operatorname{dim} V_{L}(1)_{1}=m /(p-1)$ imply that

$$
\begin{equation*}
|(\lambda+L)(2)|=\frac{p m}{p-1} \tag{2}
\end{equation*}
$$

By the similar argument, we also have

$$
|(q \lambda+L)(2)|=\frac{p m}{p-1} \quad \text { for any } 1 \leq q \leq p-1
$$

Set $N=\operatorname{Span}_{\mathbb{Z}}\{\lambda, L\}$. Then by $L(2)=\emptyset$, we have

$$
|N(2)|=\sum_{i=1}^{p-1}|(i \lambda+L)(2)|=p m
$$

By our assumption, we have $g(\lambda+L)=\lambda+L$.

By our assumption, we have $g(\lambda+L)=\lambda+L$.
Claim: $(\lambda+L)(2)$ contains a base of the root system of type A_{p-1}.

By our assumption, we have $g(\lambda+L)=\lambda+L$.
Claim: $(\lambda+L)(2)$ contains a base of the root system of type A_{p-1}.
Let $v \in(\lambda+L)(2)$. Then $\left\{v, g v, \ldots, g^{p-1} v\right\} \subset(\lambda+L)(2)$ and

$$
\left(v \mid g^{i}(v)\right)=0, \pm 1, \pm 2
$$

By our assumption, we have $g(\lambda+L)=\lambda+L$.
Claim: $(\lambda+L)(2)$ contains a base of the root system of type A_{p-1}.
Let $v \in(\lambda+L)(2)$. Then $\left\{v, g v, \ldots, g^{p-1} v\right\} \subset(\lambda+L)(2)$ and

$$
\left(v \mid g^{i}(v)\right)=0, \pm 1, \pm 2
$$

- Since g is fixed point free, $\left(v \mid \sum_{i=0}^{p-1} g^{i}(v)\right)=0$ and $\quad\left(v \mid g^{i} v\right) \neq 2$.

By our assumption, we have $g(\lambda+L)=\lambda+L$.
Claim: $(\lambda+L)(2)$ contains a base of the root system of type A_{p-1}.
Let $v \in(\lambda+L)(2)$. Then $\left\{v, g v, \ldots, g^{p-1} v\right\} \subset(\lambda+L)(2)$ and

$$
\left(v \mid g^{i}(v)\right)=0, \pm 1, \pm 2
$$

- Since g is fixed point free, $\left(v \mid \sum_{i=0}^{p-1} g^{i}(v)\right)=0$ and $\quad\left(v \mid g^{i} v\right) \neq 2$.
- If $\left(v \mid g^{i}(v)\right)=1$ for $1 \leq i \leq|g|-1$, then $\left(1-g^{i}\right)(v) \in L(2)$, which contradicts that $L(2)=\emptyset$.

Therefore, $\left(v \mid g^{i}(v)\right)=0,-1,-2$.

Suppose $\left(v \mid g^{i}(v)\right)=-2$ for some i. Then $\left(v \mid g^{p-i}(v)\right)=-2$.
$\sum_{j=0}^{p-1}\left\langle v, g^{j} v\right\rangle=0$ implies $\left\langle v, g^{j} v\right\rangle=0$ for all $i \neq j$
and $p-i=i \bmod p$.
That means p is even and $p=2$.

Suppose $\left(v \mid g^{i}(v)\right)=-2$ for some i. Then $\left(v \mid g^{p-i}(v)\right)=-2$.
$\sum_{j=0}^{p-1}\left\langle v, g^{j} v\right\rangle=0$ implies $\left\langle v, g^{j} v\right\rangle=0$ for all $i \neq j$
and $p-i=i \bmod p$.
That means p is even and $p=2$. Hence $\left(v \mid g^{i}(v)\right) \in\{0,-1\}$ if p is odd.

Suppose $\left(v \mid g^{i}(v)\right)=-2$ for some i. Then $\left(v \mid g^{p-i}(v)\right)=-2$.
$\sum_{j=0}^{p-1}\left\langle v, g^{j} v\right\rangle=0$ implies $\left\langle v, g^{j} v\right\rangle=0$ for all $i \neq j$
and $p-i=i \bmod p$.
That means p is even and $p=2$. Hence $\left(v \mid g^{i}(v)\right) \in\{0,-1\}$ if p is odd.
It follows from $\sum_{i=0}^{p-1} g^{i}(v)=0$ that there is a $0<j<p$ such that

$$
\left(v \mid g^{j}(v)\right)=\left(v \mid g^{p-j}(v)\right)=-1 \text { and }\left(v \mid g^{m}(v)\right)=0 \text { for } m \neq j, p-j
$$

Suppose $\left(v \mid g^{i}(v)\right)=-2$ for some i. Then $\left(v \mid g^{p-i}(v)\right)=-2$.
$\sum_{j=0}^{p-1}\left\langle v, g^{j} v\right\rangle=0$ implies $\left\langle v, g^{j} v\right\rangle=0$ for all $i \neq j$
and $p-i=i \bmod p$.
That means p is even and $p=2$. Hence $\left(v \mid g^{i}(v)\right) \in\{0,-1\}$ if p is odd.
It follows from $\sum_{i=0}^{p-1} g^{i}(v)=0$ that there is a $0<j<p$ such that

$$
\left(v \mid g^{j}(v)\right)=\left(v \mid g^{p-j}(v)\right)=-1 \text { and }\left(v \mid g^{m}(v)\right)=0 \text { for } m \neq j, p-j
$$

Hence $\left\{g^{i}(v) \mid 0 \leq i \leq p-1\right\}$ is the union of a base and the negated highest root of type A_{p-1}.

Take $w \in N_{2} \backslash \operatorname{Span}\left\{g^{i} v\right\}$. Then $\left\langle w, g^{i} v\right\rangle=0$.

Suppose $\left(v \mid g^{i}(v)\right)=-2$ for some i. Then $\left(v \mid g^{p-i}(v)\right)=-2$.
$\sum_{j=0}^{p-1}\left\langle v, g^{j} v\right\rangle=0$ implies $\left\langle v, g^{j} v\right\rangle=0$ for all $i \neq j$
and $p-i=i \bmod p$.
That means p is even and $p=2$. Hence $\left(v \mid g^{i}(v)\right) \in\{0,-1\}$ if p is odd.
It follows from $\sum_{i=0}^{p-1} g^{i}(v)=0$ that there is a $0<j<p$ such that

$$
\left(v \mid g^{j}(v)\right)=\left(v \mid g^{p-j}(v)\right)=-1 \text { and }\left(v \mid g^{m}(v)\right)=0 \text { for } m \neq j, p-j
$$

Hence $\left\{g^{i}(v) \mid 0 \leq i \leq p-1\right\}$ is the union of a base and the negated highest root of type A_{p-1}.
Take $w \in N_{2} \backslash \operatorname{Span}\left\{g^{i} v\right\}$. Then $\left\langle w, g^{i} v\right\rangle=0$.
Otherwise, $\left\langle w, g^{i} v\right\rangle=-1$ but $\sum_{j=0}^{|g|-1} g^{j} v=0$; there is an r s.t. $\left\langle w, g^{r} v\right\rangle=1$.

If $V_{L}(1) \circ \sigma \cong V_{L}^{T}\left[\hat{g}^{s}\right](r)$, we analyze $\operatorname{dim}\left(V_{L}^{T}\left[\hat{g}^{s}\right](r)\right)_{1}$.

If $V_{L}(1) \circ \sigma \cong V_{L}^{T}\left[\hat{g}^{s}\right](r)$, we analyze $\operatorname{dim}\left(V_{L}^{T}\left[\hat{g}^{s}\right](r)\right)_{1}$.
By the explicit construction of twisted modules,

If $V_{L}(1) \circ \sigma \cong V_{L}^{T}\left[\hat{g}^{s}\right](r)$, we analyze $\operatorname{dim}\left(V_{L}^{T}\left[\hat{g}^{s}\right](r)\right)_{1}$.
By the explicit construction of twisted modules, one can show that rank $L \leq 24$ and $(1-g) \lambda \in L$ for any $\lambda \in L^{*}$.

If $V_{L}(1) \circ \sigma \cong V_{L}^{T}\left[\hat{g}^{s}\right](r)$, we analyze $\operatorname{dim}\left(V_{L}^{T}\left[\hat{g}^{s}\right](r)\right)_{1}$.
By the explicit construction of twisted modules, one can show that rank $L \leq 24$ and $(1-g) \lambda \in L$ for any $\lambda \in L^{*}$.
Moreover, we get restrictions about L^{*} / L.

If $V_{L}(1) \circ \sigma \cong V_{L}^{T}\left[\hat{g}^{s}\right](r)$, we analyze $\operatorname{dim}\left(V_{L}^{T}\left[\hat{g}^{s}\right](r)\right)_{1}$.
By the explicit construction of twisted modules, one can show that rank $L \leq 24$ and $(1-g) \lambda \in L$ for any $\lambda \in L^{*}$.
Moreover, we get restrictions about L^{*} / L.
These restrictions $(+L(2)=\emptyset)$ are sufficient to prove that L is contained in Leech lattice.

Conjecture

Suppose $L_{2}=\emptyset$ and $g \in O(L)$ is fixed point free. If $V_{L}^{\hat{E}}$ has an extra automorphism, then either

- L can be obtained by Construction B or
- L is a coinvariant sublattice of the Leech lattice.

A counterexample

Let A_{2} be a root lattice of type A_{2}. Let $\rho=(1,0,-1)$ be a Weyl vector of A_{2} and h a Coxeter element of A_{2}.

Set $X=\left\{x \in A_{2} \mid(x, \rho)=0 \bmod 3\right\}$ and $L=X \perp \Lambda$.

A counterexample

Let A_{2} be a root lattice of type A_{2}. Let $\rho=(1,0,-1)$ be a Weyl vector of A_{2} and h a Coxeter element of A_{2}.

Set $X=\left\{x \in A_{2} \mid(x, \rho)=0 \bmod 3\right\}$ and $L=X \perp \Lambda$.
Define $g=h \oplus(-1)$. Then $V_{L}^{\hat{g}}=V_{X}^{h} \otimes V_{\Lambda}^{+}$.

A counterexample

Let A_{2} be a root lattice of type A_{2}. Let $\rho=(1,0,-1)$ be a Weyl vector of A_{2} and h a Coxeter element of A_{2}.

Set $X=\left\{x \in A_{2} \mid(x, \rho)=0 \bmod 3\right\}$ and $L=X \perp \Lambda$.
Define $g=h \oplus(-1)$. Then $V_{L}^{\hat{g}}=V_{X}^{h} \otimes V_{\Lambda}^{+}$.
$V_{L}^{\hat{g}}$ has extra automorphisms since V_{X}^{h} has but L is not mentioned above.

A counterexample

Let A_{2} be a root lattice of type A_{2}. Let $\rho=(1,0,-1)$ be a Weyl vector of A_{2} and h a Coxeter element of A_{2}.

Set $X=\left\{x \in A_{2} \mid(x, \rho)=0 \bmod 3\right\}$ and $L=X \perp \Lambda$.
Define $g=h \oplus(-1)$. Then $V_{L}^{\hat{g}}=V_{X}^{h} \otimes V_{\Lambda}^{+}$.
$V_{L}^{\hat{g}}$ has extra automorphisms since V_{X}^{h} has but L is not mentioned above.
Therefore, we need some indecomposable conditions.

Another example

Assume that g^{i} is fixed point free on L for any $1 \leq i \leq|g|-1$. We call such a $g \in O(L)$ a completely fixed point free isometry of L.

Another example

Assume that g^{i} is fixed point free on L for any $1 \leq i \leq|g|-1$. We call such a $g \in O(L)$ a completely fixed point free isometry of L.

Theorem

Let L be an even with $L_{2}=\emptyset$ and let $g \in O(L)$ be completely fixed point free. Suppose $V_{L}^{\hat{g}}$ has extra automorphisms. Then either (1) the order of g is a prime or

Another example

Assume that g^{i} is fixed point free on L for any $1 \leq i \leq|g|-1$. We call such a $g \in O(L)$ a completely fixed point free isometry of L.

Theorem

Let L be an even with $L_{2}=\emptyset$ and let $g \in O(L)$ be completely fixed point free. Suppose $V_{L}^{\hat{g}}$ has extra automorphisms. Then either (1) the order of g is a prime or
(2) L is isometric to the Leech lattice or some coinvariant sublattices of the Leech lattice.

Sketch of the proof

g is completely fixed point free of order n; the minimal polynomial of g on L is the n-th cyclotomic polynomial $\Phi_{n}(x)$ and the characteristic polynomial of g on L is $\Phi_{n}(x)^{\ell / \varphi(n)}$, where $\ell=\operatorname{rank}(L)$ and φ is the Euler totient function.

Sketch of the proof

g is completely fixed point free of order n; the minimal polynomial of g on L is the n-th cyclotomic polynomial $\Phi_{n}(x)$ and the characteristic polynomial of g on L is $\Phi_{n}(x)^{\ell / \varphi(n)}$, where $\ell=\operatorname{rank}(L)$ and φ is the Euler totient function.
Suppose $V_{L}(1) \circ \sigma \cong V_{\lambda+L}(r)$ for some $\sigma \in V_{L}^{\hat{g}}$. Then g stabilizes $\lambda+L$. Since the characteristic polynomial of g on L is $\Phi_{n}(x)^{\ell / \varphi(n)}$,

$$
\operatorname{dim} V_{L}(j)_{1}= \begin{cases}\frac{\ell}{\varphi(n)}, & \text { if }(j, n)=1 \\ 0, & \text { otherwise }\end{cases}
$$

Hence, $\operatorname{dim} V_{\lambda+L}(r)_{1}=\frac{\ell}{\varphi(n)}$, also.

Moreover, $\operatorname{dim} V_{\lambda+L}(r)_{1}=|(\lambda+L)(2)| / n$ for any $0 \leq r \leq n-1$. Therefore,

$$
\begin{equation*}
|(\lambda+L)(2)|=\frac{n}{\varphi(n)} \cdot \ell \tag{3}
\end{equation*}
$$

Since $\Phi_{n}(g) \lambda=0$ and g stabilizes $\lambda+L$, we have $\Phi_{n}(1) \lambda \in L$. Recall that

$$
\Phi_{n}(1)= \begin{cases}1 & \text { if } n \text { is not a prime power } \\ p & \text { if } n=p^{t}\end{cases}
$$

Now set $N=\operatorname{Span}_{\mathbb{Z}}\{L, \lambda\}$. Then we have $|N / L|=1$ or $|N / L|=p$. By our assumption, $|N / L|>1$; hence $n=p^{t}$ and $|N / L|=p$.

Since g stabilizes $\lambda+L, g$ also acts on N. Let \hat{g} be a lift of g on V_{N}. Now assume that $n=p^{t}$ and $m=n / p=p^{t-1}$. Let $h=g^{m}$. Then h is fixed point free of order p on L. Moreover, we have

- $|N(2)|=\sum_{i=1}^{p-1}|(i \lambda+L)(2)|=(p-1) \frac{p^{t} \ell}{p^{t-1}(p-1)}=p \ell$.
- $h(\lambda+L)=\lambda+L$.

Lemma

The sublattice of N spanned by $N(2)$ is isometric to the orthogonal sum of k copies of A_{p-1}, where $k=\ell /(p-1)$. Therefore, N can be obtained by construction A from a certain code C over \mathbb{Z}_{p} and L can be obtained by construction B from the same code C.

There is a standard lift \hat{h} of h and an automorphism $\sigma \in V_{L}^{\hat{h}}$ such that $V_{L} \circ \sigma \cong V_{N}^{\hat{h}}$ as $V_{L}^{\hat{h}}$-modules.

There is a standard lift \hat{h} of h and an automorphism $\sigma \in V_{L}^{\hat{h}}$ such that $V_{L} \circ \sigma \cong V_{N}^{\hat{h}}$ as $V_{L}^{\hat{h}}$-modules.
By adjusting the lift \hat{g} of g, we may also assume $\hat{h}=\hat{g}^{m}$, where $m=n / p$. In this case, we have

$$
\begin{gathered}
V_{L}(1 ; \hat{h}) \circ \sigma \cong V_{\lambda+L}^{\hat{h}} ; \\
V_{L}(j ; \hat{h})=\left\{v \in V_{L} \left\lvert\, \hat{h} v=e^{2 \pi \sqrt{-1} \frac{j}{p}} v\right.\right\} \text { and } V_{\lambda+L}^{\hat{h}}=\bigoplus_{i=1}^{m-1} V_{\lambda+L}(i p ; \hat{g}) .
\end{gathered}
$$

There is a standard lift \hat{h} of h and an automorphism $\sigma \in V_{L}^{\hat{h}}$ such that $V_{L} \circ \sigma \cong V_{N}^{\hat{h}}$ as $V_{L}^{\hat{h}}$-modules.
By adjusting the lift \hat{g} of g, we may also assume $\hat{h}=\hat{g}^{m}$, where $m=n / p$. In this case, we have

$$
V_{L}(1 ; \hat{h}) \circ \sigma \cong V_{\lambda+L}^{\hat{h}}
$$

$$
V_{L}(j ; \hat{h})=\left\{v \in V_{L} \left\lvert\, \hat{h} v=e^{2 \pi \sqrt{-1} \frac{j}{p}} v\right.\right\} \text { and } V_{\lambda+L}^{\hat{h}}=\bigoplus_{i=1}^{m-1} V_{\lambda+L}(i p ; \hat{g})
$$

Since $V_{L}(1) \circ \sigma \cong V_{\lambda+L}(r)$ and n is the smallest integer such that $V_{L}(1)^{\boxtimes n} \cong V_{L}(0)$, we have

$$
V_{\lambda+L}(r)^{\boxtimes s} \cong V_{s \lambda+L}(s r) \nsubseteq V_{L}(0) \text { if } s<n .
$$

Therefore, $V_{\lambda+L}(r)^{\boxtimes s} \cong V_{s \lambda+L}(s r) \cong V_{L}(0)$ if and only if $p \mid s$ and $s r \equiv 0 \bmod n$.
Thus, $(m, r)=1$.

On the other hand,

$$
V_{L}(1 ; \hat{h}) \circ \sigma=\bigoplus_{i=1}^{m-1} V_{L}(1+i p ; \hat{g}) \circ \sigma=\bigoplus_{i=1}^{m-1} V_{\lambda+L}(r+i r p ; \hat{g}) .
$$

Therefore, we have $r \equiv 0 \bmod p$ and thus $(p, m)=1$; nevertheless, $n=p^{t}$ is a prime power and thus $m=n / p=1$ and $n=p$ is a prime number.

General cases: g is fixed point free of order n and $L_{2}=\emptyset$

General cases: g is fixed point free of order n and $L_{2}=\emptyset$

Case 1: $V_{L}(1) \circ \tau \cong V_{\lambda+L}(r)$ for some $\lambda+L \in \mathcal{D}(L) \backslash\{L\}$ and $\tau \in \operatorname{Aut}\left(V_{L}^{\hat{g}}\right)$.

General cases: g is fixed point free of order n and $L_{2}=\emptyset$

Case 1: $V_{L}(1) \circ \tau \cong V_{\lambda+L}(r)$ for some $\lambda+L \in \mathcal{D}(L) \backslash\{L\}$ and $\tau \in \operatorname{Aut}\left(V_{L}^{\hat{g}}\right)$.
Set $N=\operatorname{Span}\{L, \lambda\}$. Then N is also an even lattice since $V_{L}(1)$ has integral weights.
Moreover, $(1-g) \lambda \in L$; therefore, g stabilizes each coset $i \lambda+L$ for $i \in \mathbb{Z}$. In particular, g acts on N.

General cases: g is fixed point free of order n and $L_{2}=\emptyset$

Case 1: $V_{L}(1) \circ \tau \cong V_{\lambda+L}(r)$ for some $\lambda+L \in \mathcal{D}(L) \backslash\{L\}$ and $\tau \in \operatorname{Aut}\left(V_{L}^{\hat{\tilde{E}}}\right)$.
Set $N=\operatorname{Span}\{L, \lambda\}$. Then N is also an even lattice since $V_{L}(1)$ has integral weights.
Moreover, $(1-g) \lambda \in L$; therefore, g stabilizes each coset $i \lambda+L$ for $i \in \mathbb{Z}$. In particular, g acts on N.

Let \hat{g} be a lift of g on V_{N}. Then \hat{g} also acts on $V_{\lambda+L}$ and we use $V_{\lambda+L}(j)$ to denote the eigenspace $V_{\lambda+L}(j)=\left\{x \in V_{\lambda+L} \mid \hat{g} x=e^{2 \pi \sqrt{-1 j} / n} x\right\}$.

General cases: g is fixed point free of order n and $L_{2}=\emptyset$

Case 1: $V_{L}(1) \circ \tau \cong V_{\lambda+L}(r)$ for some $\lambda+L \in \mathcal{D}(L) \backslash\{L\}$ and $\tau \in \operatorname{Aut}\left(V_{L}^{\hat{\tilde{g}}}\right)$.
Set $N=\operatorname{Span}\{L, \lambda\}$. Then N is also an even lattice since $V_{L}(1)$ has integral weights.
Moreover, $(1-g) \lambda \in L$; therefore, g stabilizes each coset $i \lambda+L$ for $i \in \mathbb{Z}$. In particular, g acts on N.

Let \hat{g} be a lift of g on V_{N}. Then \hat{g} also acts on $V_{\lambda+L}$ and we use $V_{\lambda+L}(j)$ to denote the eigenspace $V_{\lambda+L}(j)=\left\{x \in V_{\lambda+L} \mid \hat{g} x=e^{2 \pi \sqrt{-1 j / n} x\} . ~}\right.$
Then we have

$$
\begin{equation*}
V_{L}(i) \circ \tau \cong V_{\lambda+L}(r)^{\boxtimes i}=V_{i \lambda+L}(r i) . \tag{4}
\end{equation*}
$$

Now suppose $[N: L]=m \geqslant 1$. Since $1+g+\cdots+g^{n-1}=0$ and $(1-g) \lambda \in L, n \lambda \in L$ and thus m divides n.
Set $k=n / m$ and let $h=g^{k}$. We also denote $\hat{h}=\hat{g}^{k}$.

Lemma

We have $(r, k)=1$.

Proof.

Since $V_{L}(1) \circ \tau \cong V_{\lambda+L}(r), V_{\lambda+L}(r)$ is also a simple current modules and has order n with respect to the fusion product. By (4),

$$
V_{\lambda+L}(r)^{\boxtimes i}=V_{i \lambda+L}(r i)
$$

Suppose $V_{\lambda+L}(r)^{\boxtimes j} \cong V_{L}(0)$. Then

$$
j \lambda \in L, i . e, m \text { divides } j, \quad r j=0 \quad \bmod n .
$$

That $V_{\lambda+L}(r)$ has order n implies $(r, k)=1$.

Lemma

The automorphism $\tau \in \operatorname{Aut}\left(V_{L}^{\hat{g}}\right)$ stabilizes the orbifold subVOA $V_{L}^{\hat{h}}$. In particular, τ can be lift to an automorphism of $V_{L}^{\hat{h}}$.

Proof.

Since $\hat{h}=\hat{g}^{k}$ on V_{L}, \hat{h} has order m on V_{L} and $V_{L}^{\hat{h}}=\oplus_{i=0}^{k-1} V_{L}(m i)$; note that $e^{2 \pi \sqrt{-1} m i / n}$ are k-th roots of unity for $0 \leq i \leq k-1$. By (4), we have

$$
V_{L}(m i) \circ \tau \cong\left(V_{L}(1) \circ \tau\right)^{\boxtimes m i} \cong V_{m i \lambda+L}(m i j)=V_{L}(m i j) \subset V_{L}^{\hat{h}}
$$

Therefore, $V_{L}^{\hat{h}} \circ \tau \cong V_{L}^{\hat{h}}$ as desired.

Lemma

There exists a lift $\tilde{h} \in \operatorname{Aut}\left(V_{N}\right)$ of h such that $\left.\tilde{h}\right|_{V_{L}}=\left.\hat{h}\right|_{V_{L}}$ and $V_{N}^{\tilde{h}} \cong V_{L} \circ \tau$.

Proof.

Since $[N: L]=m$, there is $\mu \in L^{*}$ such that $\langle\mu, \lambda\rangle \equiv 1 / m \bmod \mathbb{Z}$. Then $\tilde{h}=\hat{g}^{k} \cdot \sigma_{r \mu}$ will be the desired automorphism, where $\sigma_{r \mu}=\exp \left(-2 \pi \sqrt{-1} r \mu_{(0)}\right)$.

Let $R=\operatorname{Span}_{\mathbb{Z}}\left\{N_{2}\right\}$. Then R is a root lattice associated with a simple laced root system. Moreover, g acts on R since g must preserve N_{2}. Let $R=R_{1} \oplus \cdots \oplus R_{t}$ be the sum of simple root lattices.
Then $\left(V_{N}\right)_{1}=\left(V_{R}\right)_{1} \oplus \mathbb{C} R^{\perp}$ and $\operatorname{dim}\left(V_{N}^{\tilde{h}}\right)_{1}=\operatorname{dim}\left(V_{R}^{\tilde{h}}\right)_{1}+\operatorname{dim}\left(\mathbb{C} R^{\perp}\right)^{h}$.
Since \tilde{h} is regular on $\left(V_{R}\right)_{1}, \operatorname{dim}\left(V_{R}^{\tilde{h}}\right)_{1} \leq \operatorname{dim} \mathbb{C} R$. Moreover, we have $\operatorname{dim}\left(V_{N}^{\tilde{h}}\right)_{1}=\operatorname{dim}\left(V_{L}\right)_{1}=\operatorname{rank}(L)=\operatorname{dim} \mathbb{C} R+\operatorname{dim} \mathbb{C} R^{\perp}$.
Therefore, we have $\operatorname{dim}\left(V_{R}^{\tilde{h}}\right)_{1}=\operatorname{dim} \mathbb{C} R$ and $\operatorname{dim}\left(\mathbb{C} R^{\perp}\right)^{h}=\operatorname{dim}\left(\mathbb{C} R^{\perp}\right)$.

Proposition

The isometry h preserves all irreducible components of R and h acts trivially on R^{\perp}. Moreover, the order of $\left.\tilde{h}\right|_{\left(V_{R_{i}}\right)_{1}}$ is the Coxeter number of R_{i}.

Remark: $\left.\tilde{h}\right|_{\left(V_{R_{i}}\right)_{1}}$ is conjugate to a lift of a Coxeter element of R_{i}.

Lemma

All irreducible components of R are of type A.

Proof.

Let $\alpha \in R_{i}$ be a root. Since $L_{2}=\emptyset, \alpha \notin L$.
Consider the set $\left\{\alpha, h \alpha, \ldots, h^{s-1} \alpha\right\}$. Then we have $\left\langle\alpha, \sum_{i=1}^{s-1} h^{i} \alpha\right\rangle=-2$.
Moreover, $\left\langle\alpha, h^{i} \alpha\right\rangle \in\{0,-1,-2\}$ for all $1 \leq i \leq s-1$.
Suppose $\left\langle\alpha, h^{i} \alpha\right\rangle=-2$ for some i. Then $\left\langle\alpha, h^{s-i} \alpha\right\rangle=-2$ and $\left\langle\alpha, h^{j} \alpha\right\rangle=0$ for any $j \neq i$ and $i=s-i$,
that implies s is even and $i=s / 2$. In particular, $\left\{\alpha, h \alpha, \ldots, h^{s-1} \alpha\right\}$ spans a lattice of type $A_{1}^{s / 2}$ in R_{i} and h induces a cyclic permutation on $A_{1}^{s / 2}$. It is not possible except for the case that $R_{i}=A_{1}$.

Assume that $\operatorname{rank}\left(R_{i}\right) \geqslant 1$. Then $\left\langle\alpha, h^{i} \alpha\right\rangle \in\{0,-1\}$. Then $\left\langle\alpha, h^{i} \alpha\right\rangle=\left\langle\alpha, h^{s-i} \alpha\right\rangle=-1$ and $\left\langle\alpha, h^{j} \alpha\right\rangle=0$ for any $j \neq i, s-1 \bmod s$.

In this case, R_{i} is an orthogonal sum of simple root lattice of type A.

Lemma

We have $|g|_{\tilde{R}}\left|=|h|_{\tilde{R}}\right|$. Moreover, g preserves every irreducible component of R and $|g|_{R_{i}}\left|=|h|_{R_{i}}\right|$ for each irreducible component R_{i} of R.

Proof.

Suppose $|g|_{\tilde{R}}\left|\geqslant|h|_{\tilde{R}}\right|$.
Then there exists a root $\alpha \in R$ such that the set $\left\{\alpha, h \alpha, \ldots, h^{s-1} \alpha\right\}$ is a proper subset of $\left\{\alpha, g \alpha, \ldots, g^{t-1} \alpha\right\}$, where s and t are the smallest positive integers such that $h^{s} \alpha=\alpha$ and $g^{t} \alpha=\alpha$.

Since $\sum_{i=0}^{t-1} g^{i} \alpha=0$ and $\left\{\alpha, h \alpha, \ldots, h^{s-1} \alpha\right\}$ spans a lattice of type A_{s-1}, the sublattice spanned by $\left\{\alpha, g \alpha, \ldots, g^{t-1} \alpha\right\}$ is isometric to A_{s-1}^{a},

Lemma

We have $|g|_{\tilde{R}}\left|=|h|_{\tilde{R}}\right|$. Moreover, g preserves every irreducible component of R and $|g|_{R_{i}}\left|=|h|_{R_{i}}\right|$ for each irreducible component R_{i} of R.

Proof.

Suppose $|g|_{\tilde{R}}\left|\geq|h|_{\tilde{R}}\right|$.
Then there exists a root $\alpha \in R$ such that the set $\left\{\alpha, h \alpha, \ldots, h^{s-1} \alpha\right\}$ is a proper subset of $\left\{\alpha, g \alpha, \ldots, g^{t-1} \alpha\right\}$, where s and t are the smallest positive integers such that $h^{s} \alpha=\alpha$ and $g^{t} \alpha=\alpha$.
Since $\sum_{i=0}^{t-1} g^{i} \alpha=0$ and $\left\{\alpha, h \alpha, \ldots, h^{s-1} \alpha\right\}$ spans a lattice of type A_{s-1}, the sublattice spanned by $\left\{\alpha, g \alpha, \ldots, g^{t-1} \alpha\right\}$ is isometric to A_{s-1}^{a}, where $a=t / s$ and g induces a cyclic permutation on these a-copies of A_{s-1}.

Such a case is not possible.

Lemma

We have $G C D(m, k)=1$ and $\left.g\right|_{N^{n}}$ has order k.

Proof.

Suppose $\left.g\right|_{N^{h}}$ has order q. Then q divides k. Moreover,

$$
m k=|g|=L C M\left(|g|_{\tilde{R}}\left|,|g|_{N^{n}}\right|\right)=\frac{m q}{(m, q)}
$$

Since $q \mid k$, we have $m k / q=\frac{m}{(m, q)}$. Then $(m, q)=1$ and $k=q$ as desired.

Lemma

We have $L=\tilde{R}^{\prime} \perp A n n_{L}\left(R^{\prime}\right)$.

Thank You

T. Arakawa, C.H. Lam and H. Yamada, Zhu's algebras, C_{2}-algebras and C_{2}-cofiniteness of parafermion vertex operator algebras, $A d v$. Math., 264 (2014), 261-295

R R.E. Borcherds, Vertex algebras, Kac-Moody algebras, and the Monster, Proc. Nat'l. Acad. Sci. U.S.A. 83 (1986), 3068-3071.
固 A. M. Cohen and R. L. Griess, Jr. , On finite simple subgroups of the complex Lie group of type E_{8}, Proc. Symp. Pure Math., 47, 1987, 367-405.
R.Y. Chen and C.H. Lam, Quantum dimensions and fusion rules of the VOA $V_{L_{\mathcal{C D}}}^{\tau}$, J. Algebra 459 (2016), 309-349.

圊 H.Y. Chen, C.H. Lam and H. Shimakura, On \mathbb{Z}_{3}-orbifold construction of the Moonshine vertex operator algebra, Math. Z. 288 (2018), no. 1-2, 75-100; arXiv:1606.05961
S. Carnahan and M. Miyamoto, Regularity of fixed-point vertex operator subalgebras; arXiv:1603.05645.
(C. Dong, Vertex algebras associated with even lattices, J. Algebra 161 (1993), 245-265.
C. Dong and J. Lepowsky, The algebraic structure of relative twisted vertex operators, J. Pure Appl. Algebra 110 (1996), 259-295.

囦 C. Dong, H. Li, and G. Mason, Simple Currents and Extensions of Vertex Operator Algebras, Comm. Math. Phys. 180 (1996), 671-707.
C. Dong, H. Li, and G. Mason, Modular-invariance of trace functions in orbifold theory and generalized Moonshine, Comm. Math. Phys. 214 (2000), 1-56.
C. Dong and G. Mason, Holomorphic vertex operator algebras of small central charge, Pacific J. Math. 213 (2004), 253-266.
C. Dong and G. Mason, Rational vertex operator algebras and the effective central charge, Int. Math. Res. Not. (2004), 2989-3008.

嗇 C. Dong and K. Nagatomo, Automorphism groups and twisted modules for lattice vertex operator algebras, in Recent developments in quantum affine algebras and related topics (Raleigh, NC, 1998),

117-133, Contemp. Math., 248, Amer. Math. Soc., Providence, RI, 1999.
C. Dong and L. Ren, Representations of the parafermion vertex operator algebras; arXiv:1411.6085.
C. Dong and Q. Wang, The structure of parafermion vertex operator algebras: general case, Comm. Math. Phys. 299 (2010), no. 3, 783-792.
图 J. van Ekeren, S. Möller and N. Scheithauer, Construction and Classification of Holomorphic Vertex Operator Algebras, J. Reine Angew. Math., Published Online.

- J. van Ekeren, S. Möller and N. Scheithauer, Dimension Formulae in Genus Zero and Uniqueness of Vertex Operator Algebras, to appear in Int. Math. Res. Not. ; arXiv:1704.00478.
I.B. Frenkel, Y. Huang and J. Lepowsky, On axiomatic approaches to vertex operator algebras and modules, Mem. Amer. Math. Soc. 104 (1993), viii+64 pp.

庫 I. Frenkel, J. Lepowsky and A. Meurman, Vertex operator algebras and the Monster, Pure and Appl. Math., Vol.134, Academic Press, Boston, 1988.
I. Frenkel and Y. Zhu, Vertex operator algebras associated to representations of affine and Virasoro algebras, Duke Math. J. 66 (1992), 123-168.

R R. L. Griess, Jr., A vertex operator algebra related to E_{8} with automorphism group $\mathrm{O}^{+}(10,2)$. The Monster and Lie algebras (Columbus, OH, 1996), 43-58, Ohio State Univ. Math. Res. Inst. Publ., 7, de Gruyter, Berlin, 1998.
R. L. Griess, Jr. and C. H. Lam, A moonshine path for 5 A node and associated lattices of ranks 8 and 16, J. Algebra, 331(2011), 338-361.
目 S. Helgason, Differential geometry, Lie groups, and symmetric spaces. Pure and Applied Mathematics. 80. Academic Press, New York-London (1978)
G. Höhn, On the Genus of the Moonshine Module, preprint.

G．Höhn and N．R．Scheithauer，A generalized Kac－Moody algebra of rank 14，J．Algebra，404，（2014），222－239．
圊 Y．Z．Huang and J．Lepowsky，A theory of tensor product for module category of a vertex operator algebra，III，J．Pure Appl．Algebra， 100 （1995），141－171．
围 V．G．Kac，Infinite－dimensional Lie algebras，Third edition，Cambridge University Press，Cambridge， 1990.
R．Kawasetsu，C．H．Lam and X．Lin， \mathbb{Z}_{2}－orbifold construction associated with (-1)－isometry and uniqueness of holomorphic vertex operator algebras of central charge 24，Proc．Amer．Math．Soc．146， No． 5 （2018），1937－1950．

M．Krauel and M．Miyamoto，A modular invariance property of multivariable trace functions for regular vertex operator algebras，J． Algebra 444 （2015），124－142．
固 C．H．Lam，Orbifold vertex operator algebras associated with coinvariant lattices of Leech lattice，preprint．

C．H．Lam，Automorphism group of an orbifold vertex operator algebra associated with the Leech lattice，to appear in the Proceedings of the Conference on Vertex Operator Algebras，Number Theory and Related Topics，Contemporary Mathematics．

囯 C．H．Lam，Some observations about the automorphism groups of certain orbifold vertex operator algebras，to appear in RIMS Kôkyûroku Bessatsu．

目 C．H．Lam and M．Miyamoto，Niemeier Lattices，Coxeter elements and McKay＇s E_{8} observation on the Monster simple group，Intern．Math． Res．Notices，Vol 2006 （2006）．

固 C．H．Lam and H．Shimakura，Construction of holomorphic vertex operator algebras of central charge 24 using the Leech lattice and level p lattices，Bull．Inst．Math．Acad．Sin．（N．S．），Vol． 12 No． 1 （2017）， 39－70．

C．H．Lam and H．Shimakura，Reverse orbifold construction and uniqueness of holomorphic vertex operator algebras；arXiv：1606．08979．

C．H．Lam and H．Shimakura，On orbifold constructions associated with the Leech lattice vertex operator algebra，to appear in Mathematical Proceedings of the Cambridge Philosophical Society．
© C．H．Lam and H．Shimakura，Inertia subgroups and uniqueness of holomorphic vertex operator algebras；arXiv：1804．02521．
，C．H．Lam and H．Yamauchi，On 3－transposition groups generated by σ－involutions associated to $c=4 / 5$ Virasoro vectors，J．Algebra， 416 （2014），84－121．
國 J．Lepowsky，Calculus of twisted vertex operators，Proc．Natl．Acad． Sci．USA 82 （1985），8295－8299．
置 H．Li，Symmetric invariant bilinear forms on vertex operator algebras， J．Pure Appl．Algebra， 96 （1994），279－297．

目 H．Li，Extension of vertex operator algebras by a self－dual simple module，J．Algebra 187 （1997），236－267．

目 X．J．Lin，Mirror extensions of rational vertex operator algebras，Trans． Amer．Math．Soc． 369 （2017），no．6，3821－3840．

目 M. Miyamoto, C_{2}-cofiniteness of cyclic-orbifold models, Comm. Math. Phys. 335 (2015), 1279-1286.
R. Miyamoto and K. Tanabe, Uniform product of $A_{g, n}(V)$ for an orbifold model V and G-twisted Zhu algebra, J. Algebra 274 (2004), 80-96.
R R. Scharlau and B. Blaschke, Reflective integral lattices, J. Algebra 181 (1996), 934-961.
R. Scharlau and B.B. Venkov, Classifying lattices using modular forms- a preliminary report; in: M. Ozeki, E. Bannai, M. Harada (eds.): Codes, Lattices, Modular Forms and Vertex Operator Algebras, Conference Yamagata University, October 2-4, 2000 (Proceedings 2001).
(R. Sakuma and H. Yamauchi, Vertex operator algebra with two Miyamoto involutions generating S_{3}, J. Algebra 267 (2003), no. 1, 272-297.

A．N．Schellekens，Meromorphic $c=24$ conformal field theories， Comm．Math．Phys． 153 （1993），159－185．

圊 H．Shimakura，The automorphism group of the vertex operator algebra V_{L}^{+}for an even lattice L without roots，J．Algebra 280 （2004），29－57．

目 H．Shimakura，Lifts of automorphisms of vertex operator algebras in simple current extensions，Math．Z． 256 （2007），no．3，491－508．
围 H．Shimakura，Automorphism groups of the holomorphic vertex operator algebras associated with Niemeier lattices and the －1－isometries ；arXiv：1811．05119．
图 R．A．Wilson，The finite simple groups，Graduate Texts in Mathematics，251，Springer－Verlag London，Ltd．，London， 2009.

