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Main question

Let L be an (positive definite) even lattice.
One can construct a vertex operator algebra VL from L.

Let {h1, . . . , hℓ} be an orthonormal basis of h = C⊗Z L.
As a vector space,

VL = M(1)⊗ C{L}

where
M(1) ∼= C[hi (−ni ) | i = 1, . . . , ℓ, ni ∈ Z>0]

and
C{L} = SpanC{eα|α ∈ L}

is a twisted group algebra of L such that eαeβ = (−1)⟨α,β⟩eβeα.

Note: O(L) acts projectively on VL.
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Let g ∈ O(L) be a fixed point free isometry of L (gx = x implies x = 0).

Then g can be lifted to an automorphism ĝ of VL.
The lift ĝ is not unique but is determined, up to conjugation if g is fixed
point free.

Let V ĝ
L = {v ∈ VL | ĝ v = v} be the fixed point subVOA.

Main Question: Try to determine the automorphism group of V ĝ
L .

Important Fact: If L2 = {x ∈ L|⟨x , x⟩ = 2} = ∅ and g is fixed point free,

then Aut (V ĝ
L ) is finite.

From now on, we assume L2 = ∅.
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The lift ĝ is not unique but is determined, up to conjugation if g is fixed
point free.

Let V ĝ
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Aut (VL)

For a lattice VOA VL, the weight one subspace (VL)1 forms a Lie algebra
with respect to the bracket [a, b] = a(0)b.

Then we have a subgroup

N(VL) =
〈
exp(a(0)) | a ∈ (VL)1

〉
= Inn (VL).

Let L̂ = {±eα | α ∈ L} be a central extension of L such that
eαeβ = (−1)⟨α|β⟩eβeα for α, β ∈ L.
For φ ∈ Aut (L̂), define ι(φ) ∈ Aut (L) by φ(eα) ∈ {±eι(φ)(α)}, α ∈ L.

Set O(L̂) = {φ ∈ Aut (L̂) | ι(φ) ∈ O(L)}.
We can identify O(L̂) as a subgroup of Aut (VL) and there is an exact
sequence of [FLM88, Proposition 5.4.1]

1 → Hom(L,Z/2Z) → O(L̂)
φ→ O(L) → 1.

Note that Hom(L,Z2) = {exp(2π
√
−1α(0)) | α ∈ (L∗/2)/L∗} in Aut (VL).
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It was proved by Dong and Nagatomo

Aut (VL) = N(VL)O(L̂).

When L(2) = {x ∈ L | ⟨x , x⟩ = 2} = ∅, the normal subgroup
N(VL) = {exp(λα(0)) | α ∈ L, λ ∈ C} is abelian and we have

N(VL) ∩ O(L̂) = Hom(L,Z/2Z) and Aut (VL)/N(VL) ∼= O(L).

In particular, we have an exact sequence

1 → N(VL) → Aut (VL)
φ→ O(L) → 1.
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NAut (VL)(⟨ĝ⟩)

Theorem

Let L be an even positive definite lattice with L(2) = ∅. Let g be a fixed
point free isometry of L and ĝ a lift of g in O(L̂). Then we have the
following exact sequences.

1 −→ Hom(L/(1− g)L,C∗) −→ NAut (VL)(⟨ĝ⟩)
φ−→ NO(L)(⟨g⟩) −→ 1;

1 −→ Hom(L/(1− g)L,C∗) −→ CAut (VL)(ĝ)
φ−→ CO(L)(g) −→ 1.

It is clear that NAut (VL)(⟨ĝ⟩) acts on V ĝ
L and there is a group

homomorphism f : NAut (VL)(⟨ĝ⟩)/⟨ĝ⟩ −→ Aut (V ĝ
L ).

The key question is to determine if f is surjective.

Definition

An automorphism h ∈ Aut (V ĝ
L ) is said to be an extra automorphism if it

is not in the image of f .
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Some techniques

Definition

Let V be a VOA and τ ∈ Aut (V ). For any V -module M = (M,YM),
the τ -conjugate (M ◦ τ,YM◦τ (·, z)) of M is defined as follows:

M ◦ τ = M as a vector space;

YM◦τ (a, z) = YM(τa, z) for any a ∈ V .

Then (M ◦ τ,YM◦τ (·, z)) is also a V -module.

M ◦ τ and M have the same character, i.e., dimMi = dim(M ◦ τ)i , ∀i
and M ◦ τ is irreducible iff M is.

That means Aut (V ) acts on the set Irr(V ) of irreducible modules of V .
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Theorem (Shimakura)

Let VL(j) = {v ∈ VL | g(v) = e2π
√
−1j/nv}, n = |g | and 0 ≤ j ≤ n − 1.

Let τ ∈ Aut (V ĝ
L ). Then τ lifts to an automorphism of VL iff

{VL(j) ◦ τ | 0 ≤ j ≤ n − 1} = {VL(j) | 0 ≤ j ≤ n − 1}.

Remark: τ is extra if and only if
{VL(j) ◦ τ | 0 ≤ j ≤ n − 1} ≠ {VL(j) | 0 ≤ j ≤ n − 1}.
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The main idea is to study the irreducible modules of V ĝ
L

which have the same properties as VL(j).

There are two types of irreducible V ĝ
L -modules.

Untwisted type: submodules of VL-modules.

Vλ+L = M(1)⊗ SpanC{eα | α ∈ λ+ L} for λ+ L ∈ D(L).

If g(λ+ L) ̸= λ+ L, then Vλ+L is also irreducible as an V ĝ
L -module. Then

Vλ+L is not a simple current module of V ĝ
L .

Assume that (1− g)λ ∈ L, that is, g(λ+ L) = λ+ L.
Then Vλ+L is ĝ -invariant and ĝ acts on Vλ+L. For 0 ≤ i ≤ p − 1, we
denote Vλ+L(i) = {v ∈ Vλ+L | ĝ(v) = exp(2π

√
−1i/p)v},

which is an irreducible V ĝ
L -module.
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If g(λ+ L) ̸= λ+ L, then Vλ+L is also irreducible as an V ĝ
L -module. Then

Vλ+L is not a simple current module of V ĝ
L .

Assume that (1− g)λ ∈ L, that is, g(λ+ L) = λ+ L.
Then Vλ+L is ĝ -invariant and ĝ acts on Vλ+L. For 0 ≤ i ≤ p − 1, we
denote Vλ+L(i) = {v ∈ Vλ+L | ĝ(v) = exp(2π

√
−1i/p)v},

which is an irreducible V ĝ
L -module.
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Twisted type: submodules of twisted VL-modules.

Let 1 ≤ s ≤ p − 1. Recall from [Le85, DL96] that the irreducible
ĝ s -twisted module V T

L [ĝ s ] is given by

V Tχ [ĝ s ] = M(1)[g s ]⊗ T ,

where M(1)[ĝ s ] is the “ĝ s -twisted” free bosonic space and T is an
irreducible module for a certain “ĝ s -twisted” central extension of L.

All twisted modules are ĝ -invariant and we denote

V T
L [ĝ s ](i) = {v ∈ V T

L [ĝ s ] | ĝ(v) = exp(2π
√
−1i/p)v}.
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Notice that VL = ⊕n−1
j=0VL(j) ∼= ⊕n−1

j=0VL(j) ◦ τ as a VOA.

One approach is to try to embed

⊕n−1
j=0VL(j) and ⊕n−1

j=0 VL(j) ◦ τ

into a “bigger” VOA
and try to study their relations using the automorphism group of the
bigger VOA.
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When |g | = 2, i.e., g = −1, the full automorphism group of V+
L = V ĝ

L is
determined by Shimakura.

Theorem ([Sh04, Proposition 3.16])

Let L be an even lattice such that L(2) = ∅.
Aut (V+

L ) contains an extra automorphism if and only if
L can be constructed by Construction B from some binary code C .
Moreover, Aut (V+

L ) is generated by O(L̂)/⟨ĝ⟩ and the triality
automorphisms defined as in [FLM88].

Let C < Zn
2 be doubly even and let B = {αi | i ∈ {1, . . . , n}} < Rn s.t.

⟨αi , αj⟩ = 2δi ,j . The lattice

LB(C ) =
∑
c∈C

Z
1

2
αc +

∑
i ,j∈{1,...,n}

Z(αi + αj)

is often referred as to the lattice obtained by Construction B from C ,
where αc =

∑n
i=1 ciαi . (Note: ⟨B⟩Z ∼= An

1 )
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automorphisms defined as in [FLM88].

Let C < Zn
2 be doubly even and let B = {αi | i ∈ {1, . . . , n}} < Rn s.t.

⟨αi , αj⟩ = 2δi ,j . The lattice

LB(C ) =
∑
c∈C

Z
1

2
αc +

∑
i ,j∈{1,...,n}

Z(αi + αj)

is often referred as to the lattice obtained by Construction B from C ,
where αc =

∑n
i=1 ciαi . (Note: ⟨B⟩Z ∼= An

1 )

C.H. Lam (A.S.) Orbifold VOAs June 29, 2023 12 / 40



Extra automorphisms (generalization of FLM triality map)

Let An be a root lattice of type An. (Coxeter number = determinant )

Let hAn be an (n + 1)-cycle in Weyl(An) ∼= Symn+1.
Then the action of hAn on sln+1(C) is given by the conjugation of P,i.e,

hAn : A → P−1AP for A ∈ sl(n + 1,C),

and
B−1PB = diag(ω, ω2, ..., 1)

where

P =


0 1 · · · 0

.

.

.
. . .

. . .
.
.
.

0 0
. . . 1

1 0 · · · 0

 and B =
1√
n + 1


ω ω2 · · · ωn 1

ω2 ω4 · · · ω2n 1

.

.

.
. . .

. . .
.
.
.

.

.

.

ωn ω2n
. . . ωn2 1

1 1 · · · 1 1

 .

Define a map σAn : sl(n + 1,C) → sl(n + 1,C) by σAn(A) = B−1AB.
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Let ρAn =
1
2(n − 1, n − 2, . . . ,−(n − 2),−(n − 1)) be the Weyl vector.

Define ηAn = exp( 1
n+1(2πiρAn(0)).

Then the action of ηAn on sln+1(C) is given by ηAn : A 7→ DAD−1.

Lemma

We have σAnhAnσ
−1
An

= ηAn and σAnηAnσ
−1
An

= h−1
An

on sln+1(C).
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Let
R = Ak1 ⊕ · · · ⊕ Akj

be an orthogonal sum of simple root lattices of type A.

Let L be an even overlattice of R and ρ̂ =
∑j

i=1
1

(ki+1)ρAki
.

Set
X = L(ρ̂) = {α ∈ L | ⟨α, ρ̂⟩ ∈ Z}.

Then L = SpanZX ∪ R.
Set

h = hAk1
⊗ · · · ⊗ hAkj

, η = ηAk1
⊗ · · · ⊗ ηAkj

, σ = σAk1
⊗ · · · ⊗ σAkj

.

Since they are inner automorphisms, we can extend them to VL by using
the same exponential expressions.

Theorem

We have σ(V h
X ) = V h

X and σ induces an automorphism of V h
X .
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Definition

A lattice X is said to be obtained by Construction B if
X = L(ρ̂) = {α ∈ L | ⟨α, ρ̂⟩ ∈ Z}, where L is an even overlattice of
R = Ak1 ⊕ · · · ⊕ Akj and ρ̂ =

∑j
i=1

1
(ki+1)ρAki

.

Theorem

Let R =
⊕t

i=1 Aki−1 be a root lattice. Suppose L = LB(C ) is constructed
by Construction B associated with a subgroup C of D(R). If ĝ is a lift of
the fixed-point free isometry of L induced by a Coxeter element of R.
Then V ĝ

L has an extra automorphism.
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Proposition

Let U be a rootless even unimodular lattice. Let h ∈ O(U) and ĥ ∈ O(Û)

a standard lift of h. Assume that (1) V
orb(ĥ)
U

∼= VU and

(2) the conjugacy class of ⟨ĥ⟩ in Aut (VU) is uniquely determined by |ĥ|
and the VOA structure of V ĥ

U .

Then there exists τ ∈ Aut (V ĥ
Uh
) such that VUh

(1) ◦ τ is of twisted type.

Many isometries of the Leech lattice satisfy the above conditions, e.g.,
−3A.
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−3A.
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The converse also holds when g has prime order under some assumptions.

Theorem (L-Shimakura)

Let L2 = ∅ and g ∈ O(L) is fixed point free. Suppose |g | = p is a prime

and V ĝ
L has an extra automorphism. Then either

L∗ has an element λ of norm 2 such that
(1− g)λ ∈ L and spanZ{L, λ} > A

rank(L)/(p−1)
p−1 ,

(that means L can be obtained by Construction B with

R = A
rank(L)/(p−1)
p−1 ) or

L is a coinvariant sublattice of the Leech lattice.
(L ∼= Λg , g = 2A,−2A, 3B, 3C , 5B, 5C , 7B, 11A or 23A.)
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Assume that V ĝ
L has an extra automorphism σ.

Then
VL(1) ◦ σ ̸∼= VL(r) for all 1 ≤ r ≤ p − 1. (1)

Then either Case (I):

VL(1) ◦ σ ∼= Vλ+L(r)

for some 0 ≤ r ≤ p − 1 and λ ∈ D(L) \ {L} with (1− g)λ ∈ L; or

Case (II):
VL(1) ◦ σ ∼= V T

L [ĝ s ](r)

for some 0 ≤ r ≤ p − 1, 1 ≤ s ≤ p − 1.
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For Case I: VL(1) ◦ σ ∼= Vλ+L(r), we have

dimVλ+L(r)1 = dimVL(1)1.

dimVλ+L(r)1 = |(λ+ L)(2)|/p and dimVL(1)1 = m/(p − 1) imply that

|(λ+ L)(2)| = pm

p − 1
. (2)

By the similar argument, we also have

|(qλ+ L)(2)| = pm

p − 1
for any 1 ≤ q ≤ p − 1.

Set N = SpanZ{λ, L}. Then by L(2) = ∅, we have

|N(2)| =
p−1∑
i=1

|(iλ+ L)(2)| = pm.
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By our assumption, we have g(λ+ L) = λ+ L.

Claim: (λ+ L)(2) contains a base of the root system of type Ap−1.

Let v ∈ (λ+ L)(2). Then {v , gv , ..., gp−1v} ⊂ (λ+ L)(2) and

(v |g i (v)) = 0,±1,±2.

Since g is fixed point free, (v |
∑p−1

i=0 g i (v)) = 0
and (v |g iv) ̸= 2.

If (v |g i (v)) = 1 for 1 ≤ i ≤ |g | − 1, then (1− g i )(v) ∈ L(2),
which contradicts that L(2) = ∅.

Therefore, (v |g i (v)) = 0,−1,−2.
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Suppose (v |g i (v)) = −2 for some i . Then (v |gp−i (v)) = −2.∑p−1
j=0 ⟨v , g jv⟩ = 0 implies ⟨v , g jv⟩ = 0 for all i ̸= j

and p − i = i mod p.

That means p is even and p = 2.

Hence (v |g i (v)) ∈ {0,−1} if p is odd.

It follows from
∑p−1

i=0 g i (v) = 0 that there is a 0 < j < p such that

(v |g j(v)) = (v |gp−j(v)) = −1 and (v |gm(v)) = 0 for m ̸= j , p − j .

Hence {g i (v) | 0 ≤ i ≤ p − 1} is the union of a base and the negated
highest root of type Ap−1.

Take w ∈ N2 \ Span{g iv}. Then ⟨w , g iv⟩ = 0.

Otherwise, ⟨w , g iv⟩ = −1 but
∑|g |−1

j=0 g jv = 0; there is an r s.t.
⟨w , g rv⟩ = 1.
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If VL(1) ◦ σ ∼= V T
L [ĝ s ](r), we analyze dim(V T

L [ĝ s ](r))1.

By the explicit construction of twisted modules, one can show that
rank L ≤ 24 and (1− g)λ ∈ L for any λ ∈ L∗.
Moreover, we get restrictions about L∗/L.

These restrictions (+L(2) = ∅) are sufficient to prove that
L is contained in Leech lattice.
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L [ĝ s ](r), we analyze dim(V T
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Conjecture

Suppose L2 = ∅ and g ∈ O(L) is fixed point free.

If V ĝ
L has an extra automorphism, then either

L can be obtained by Construction B or

L is a coinvariant sublattice of the Leech lattice.
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A counterexample

Let A2 be a root lattice of type A2. Let ρ = (1, 0,−1) be a Weyl vector of
A2 and h a Coxeter element of A2.

Set X = {x ∈ A2|(x , ρ) = 0 mod 3} and L = X ⊥ Λ.

Define g = h ⊕ (−1). Then V ĝ
L = V h

X ⊗ V+
Λ .

V ĝ
L has extra automorphisms since V h

X has but L is not mentioned above.

Therefore, we need some indecomposable conditions.
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Another example

Assume that g i is fixed point free on L for any 1 ≤ i ≤ |g | − 1. We call
such a g ∈ O(L) a completely fixed point free isometry of L.

Theorem

Let L be an even with L2 = ∅ and let g ∈ O(L) be completely fixed point

free. Suppose V ĝ
L has extra automorphisms. Then either

(1) the order of g is a prime or

(2) L is isometric to the Leech lattice or some coinvariant sublattices of
the Leech lattice.
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Sketch of the proof
g is completely fixed point free of order n; the minimal polynomial of g on
L is the n-th cyclotomic polynomial Φn(x) and
the characteristic polynomial of g on L is Φn(x)

ℓ/φ(n),
where ℓ = rank(L) and φ is the Euler totient function.

Suppose VL(1) ◦ σ ∼= Vλ+L(r) for some σ ∈ V ĝ
L . Then g stabilizes λ+ L.

Since the characteristic polynomial of g on L is Φn(x)
ℓ/φ(n),

dimVL(j)1 =

{
ℓ

φ(n) , if (j , n) = 1,

0, otherwise.

Hence, dimVλ+L(r)1 =
ℓ

φ(n) , also.
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Moreover, dimVλ+L(r)1 = |(λ+ L)(2)|/n for any 0 ≤ r ≤ n − 1.
Therefore,

|(λ+ L)(2)| = n

φ(n)
· ℓ. (3)

Since Φn(g)λ = 0 and g stabilizes λ+ L, we have Φn(1)λ ∈ L.
Recall that

Φn(1) =

{
1 if n is not a prime power

p if n = pt .

Now set N = SpanZ{L, λ}. Then we have |N/L| = 1 or |N/L| = p.

By our assumption, |N/L| > 1; hence n = pt and |N/L| = p.
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Since g stabilizes λ+ L, g also acts on N. Let ĝ be a lift of g on VN .

Now assume that n = pt and m = n/p = pt−1. Let h = gm.
Then h is fixed point free of order p on L. Moreover, we have

|N(2)| =
∑p−1

i=1 |(iλ+ L)(2)| = (p − 1) ptℓ
pt−1(p−1)

= pℓ.

h(λ+ L) = λ+ L.

Lemma

The sublattice of N spanned by N(2) is isometric to the orthogonal sum of
k copies of Ap−1, where k = ℓ/(p − 1). Therefore, N can be obtained by
construction A from a certain code C over Zp and L can be obtained by
construction B from the same code C .
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There is a standard lift ĥ of h and an automorphism σ ∈ V ĥ
L such that

VL ◦ σ ∼= V ĥ
N as V ĥ

L -modules.

By adjusting the lift ĝ of g , we may also assume ĥ = ĝm, where m = n/p .

In this case, we have
VL(1; ĥ) ◦ σ ∼= V ĥ

λ+L;

VL(j ; ĥ) = {v ∈ VL | ĥv = e2π
√
−1 j

p v} and V ĥ
λ+L =

⊕m−1
i=1 Vλ+L(ip; ĝ).

Since VL(1) ◦ σ ∼= Vλ+L(r) and n is the smallest integer such that
VL(1)

⊠n ∼= VL(0), we have

Vλ+L(r)
⊠s ∼= Vsλ+L(sr) ≇ VL(0) if s < n.

Therefore, Vλ+L(r)
⊠s ∼= Vsλ+L(sr) ∼= VL(0)

if and only if p|s and sr ≡ 0 mod n.
Thus, (m, r) = 1.
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There is a standard lift ĥ of h and an automorphism σ ∈ V ĥ
L such that

VL ◦ σ ∼= V ĥ
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On the other hand,

VL(1; ĥ) ◦ σ =
m−1⊕
i=1

VL(1 + ip; ĝ) ◦ σ =
m−1⊕
i=1

Vλ+L(r + irp; ĝ).

Therefore, we have r ≡ 0 mod p and thus (p,m) = 1;
nevertheless, n = pt is a prime power and thus m = n/p = 1 and n = p is
a prime number.
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General cases: g is fixed point free of order n and L2 = ∅

Case 1: VL(1) ◦ τ ∼= Vλ+L(r) for some λ+ L ∈ D(L) \ {L} and

τ ∈ Aut (V ĝ
L ).

Set N = Span{L, λ}. Then N is also an even lattice since VL(1) has
integral weights.
Moreover, (1− g)λ ∈ L; therefore, g stabilizes each coset iλ+ L for i ∈ Z.
In particular, g acts on N.

Let ĝ be a lift of g on VN . Then ĝ also acts on Vλ+L and
we use Vλ+L(j) to denote the eigenspace

Vλ+L(j) = {x ∈ Vλ+L | ĝ x = e2π
√
−1j/nx}.

Then we have
VL(i) ◦ τ ∼= Vλ+L(r)

⊠i = Viλ+L(ri). (4)
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Now suppose [N : L] = m ⪈ 1. Since 1 + g + · · ·+ gn−1 = 0 and
(1− g)λ ∈ L, nλ ∈ L and thus m divides n.
Set k = n/m and let h = gk . We also denote ĥ = ĝk .

Lemma

We have (r , k) = 1.

Proof.

Since VL(1) ◦ τ ∼= Vλ+L(r), Vλ+L(r) is also a simple current modules and
has order n with respect to the fusion product. By (4),

Vλ+L(r)
⊠i = Viλ+L(ri)

Suppose Vλ+L(r)
⊠j ∼= VL(0). Then

jλ ∈ L, i .e, m divides j , rj = 0 mod n.

That Vλ+L(r) has order n implies (r , k) = 1.
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Lemma

The automorphism τ ∈ Aut (V ĝ
L ) stabilizes the orbifold subVOA V ĥ

L .

In particular, τ can be lift to an automorphism of V ĥ
L .

Proof.

Since ĥ = ĝk on VL, ĥ has order m on VL and V ĥ
L = ⊕k−1

i=0 VL(mi); note

that e2π
√
−1mi/n are k-th roots of unity for 0 ≤ i ≤ k − 1. By (4), we have

VL(mi) ◦ τ ∼= (VL(1) ◦ τ)⊠mi ∼= Vmiλ+L(mij) = VL(mij) ⊂ V ĥ
L .

Therefore, V ĥ
L ◦ τ ∼= V ĥ

L as desired.
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Lemma

There exists a lift h̃ ∈ Aut (VN) of h such that h̃|VL
= ĥ|VL

and

V h̃
N
∼= VL ◦ τ .

Proof.

Since [N : L] = m, there is µ ∈ L∗ such that ⟨µ, λ⟩ ≡ 1/m mod Z.
Then h̃ = ĝk · σrµ will be the desired automorphism, where
σrµ = exp(−2π

√
−1rµ(0)).
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Let R = SpanZ{N2}. Then R is a root lattice associated with a simple
laced root system. Moreover, g acts on R since g must preserve N2.
Let R = R1 ⊕ · · · ⊕ Rt be the sum of simple root lattices.
Then (VN)1 = (VR)1 ⊕ CR⊥ and dim(V h̃

N)1 = dim(V h̃
R )1 + dim(CR⊥)h.

Since h̃ is regular on (VR)1, dim(V h̃
R )1 ≤ dimCR. Moreover, we have

dim(V h̃
N)1 = dim(VL)1 = rank(L) = dimCR + dimCR⊥.

Therefore, we have dim(V h̃
R )1 = dimCR and dim(CR⊥)h = dim(CR⊥).

Proposition

The isometry h preserves all irreducible components of R and h acts
trivially on R⊥. Moreover, the order of h̃|(VRi

)1 is the Coxeter number of
Ri .

Remark: h̃|(VRi
)1 is conjugate to a lift of a Coxeter element of Ri .
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Lemma

All irreducible components of R are of type A.

Proof.

Let α ∈ Ri be a root. Since L2 = ∅, α /∈ L.
Consider the set {α, hα, . . . , hs−1α}. Then we have ⟨α,

∑s−1
i=1 h

iα⟩ = −2.
Moreover, ⟨α, hiα⟩ ∈ {0,−1,−2} for all 1 ≤ i ≤ s − 1.
Suppose ⟨α, hiα⟩ = −2 for some i . Then ⟨α, hs−iα⟩ = −2 and
⟨α, hjα⟩ = 0 for any j ̸= i and i = s − i ,
that implies s is even and i = s/2. In particular, {α, hα, . . . , hs−1α} spans

a lattice of type A
s/2
1 in Ri and h induces a cyclic permutation on A

s/2
1 .

It is not possible except for the case that Ri = A1.

Assume that rank(Ri ) ⪈ 1. Then ⟨α, hiα⟩ ∈ {0,−1}. Then
⟨α, hiα⟩ = ⟨α, hs−iα⟩ = −1 and ⟨α, hjα⟩ = 0 for any j ̸= i , s − 1 mod s.

In this case, Ri is an orthogonal sum of simple root lattice of type A.
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Lemma

We have |g |R̃ | = |h|R̃ |. Moreover, g preserves every irreducible component
of R and |g |Ri

| = |h|Ri
| for each irreducible component Ri of R.

Proof.

Suppose |g |R̃ | ⪈ |h|R̃ |.
Then there exists a root α ∈ R such that the set {α, hα, . . . , hs−1α} is a
proper subset of {α, gα, . . . , g t−1α}, where s and t are the smallest
positive integers such that hsα = α and g tα = α.

Since
∑t−1

i=0 g
iα = 0 and {α, hα, . . . , hs−1α} spans a lattice of type As−1,

the sublattice spanned by {α, gα, . . . , g t−1α} is isometric to Aa
s−1,

where
a = t/s and g induces a cyclic permutation on these a-copies of As−1.

Such a case is not possible.
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Lemma

We have GCD(m, k) = 1 and g |Nh has order k .

Proof.

Suppose g |Nh has order q. Then q divides k. Moreover,

mk = |g | = LCM(|g |R̃ |, |g |Nh |) =
mq

(m, q)
.

Since q|k , we have mk/q = m
(m,q) . Then (m, q) = 1 and k = q as

desired.

Lemma

We have L = R̃ ′ ⊥ AnnL(R
′).
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