
Unitary representations of minimal W -algebras

Victor Kac

§1.Two Equivalent Definitions of a Vertex Algebra

A vertex algebra is a vector superspace V = V0 ⊕ V1 with a vac-

uum vector 1 ∈ V0 and a translation operator T ∈ (End V )0

endowed with a product with values in V ((z)), written as Y (a, z) =∑
n∈Z a(n)z

−n−1, a(n) ∈ End V , satisfying the following axioms

(a, b ∈ V ):

• vacuum: Y (1, z) = IV , Y (a, z)1 = a + zV [[z]];

• translation invariance: [T, Y (a, z)] = d
dzY (a, z), T · 1 = 0;

• locality : (z − w)N [Y (a, z), Y (b, w)] = 0 for some N ∈ Z+.
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Note that a(n)b is a product V ⊗ V → V for each n ∈ Z, such that

a(n)b = 0 for n >> 0. The product a(−1)b is denoted by : ab : and is

called the normally ordered product .

One has

a(−n−1)b =
1

n!
: (T n(a)b) : for n ≥ 0.

Define the λ-bracket V ⊗ V → V [λ] by

[aλb] =
∑
n∈Z+

λn

n!
(a(n)b).

It satisfies the following axioms of a Lie conformal superalgebra

(a, b, c ∈ V )

• sesquilinearity : [Taλb] = −λ[aλb], [aλTb] = (T + λ)[aλb];

• skew skymmetry : [bλa] = −(−1)p(a)p(b)[a−λ−Tb];

• Jacobi identity : [aλ[bµc]] = [[aλb]λ+µc] + (−1)p(a)p(b)[bµ[aλc]].
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An equivalent definition of a vertex algebra [BK03]

A vertex algebra is a quintuple (V,1, T, [.λ.], ::), where

(1) (V, T, [.λ.]) is a Lie conformal superalgebra

(2) (V,1, T, ::) is a unital differential superalgebra (with derivation

T ) satisfying

• quasicommutativity : : ab : −(−1)p(a)p(b) : ba :=
∫ 0

−T [aλb]dλ,

• quasiassociativity :

:: ab : c : − : a : bc ::

= :

(∫ T

0

dλ|a
)
[bλc] : +(−1)p(a)p(b) :

(∫ T

0

dλb

)
[aλc] :;

(3) the λ-bracket [.λ.] and the product :: are related by the noncom-

mutative Wick formula

[aλ : bc :] =: [aλb]c : +(−1)p(a)p(b) : b[aλc] : +

∫ λ

0

[[aλb]µc]dµ.

If the “quantum corrections” (red terms) are removed, we get axioms

of a Poisson vertex algebra .
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Given a Lie conformal superalgebra R, its universal enveloping ver-

tex algebra V (R) is defined in the same way as for Lie superalgebras:

R V (R)

V

φ

ψ

PBW Theorem. Let a1, a2, . . . be a basis of R over C. Then the

ordered monomials : ai1ai2ai3 . . . ais : form a basis of V (R). Here

the normally ordered product is from right to left and ir < ir+1 if

both air and air+1 are odd and ≤ otherwise.

Remark. Let R be a Lie conformal superalgebra. Then S(R) is a

Poisson vertex algebra. Its quantization is the universal enveloping

vertex algebra V (R) of R.
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Basic examples.

(a) Let g be a Lie superalgebra with a non-degenerate invariant su-

persymmetric bilinear form (.|.). The current Lie conformal su-

peralgebra of level k ∈ C is:

Curkg = C[T ]⊗ g

with the (non-linear) λ-bracket (a, b ∈ g):

[aλb] = [a, b] + λk(a|b)1.

Its universal enveloping vertex algebra V k(g) is called the uni-

versal affine vertex algebra of level k. Its quasiclassical limit is

the PVA Vk(g)

If g is a simple finite-dimensional Lie superalgebra and k ̸= −h∨

(12 eigenvalue of the Casimir operator on g), then V k(g) has a

unique simple quotient Vk(g).
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(b) Let A be a vector superspace with a superskewsymmetric bilinear

form ⟨., .⟩. The fermionic Lie conformal superalgebra

C[T ]⊗ A

with the λ-bracket (φ, ψ ∈ A)

[φλψ] = ⟨φ, ψ⟩1.

The universal enveloping vertex algebra F (A) is called the fermionic

vertex algera based on A. It is simple.

The corresponding to Curkg Poisson vertex algebra is denoted by

Vk(g).

6



Note. Lie conformal superalgebras encode an important class of

infinite-dimensional Lie superalgebras. Namely, given a Lie confor-

mal superalgebra R, the corresponding Lie superalgebra is

LieR = span{a(n)|a ∈ R, n ∈ Z}/⟨(Ta)(n) = −na(n−1)⟩

with bracket

[a(m), b(n)] =
∑
j∈Z+

(
m

j

)
(a(j)b)(m+n−j).

Example 1. Curkg corresponds to the affine Lie superalgebra ĝ

with bracket (a, b ∈ g, m, n ∈ Z)

[am, bn] = [a, b]m+n + kmδm,−n(a|b), where am = a(m).

Example 2. Virasoro Lie conformal algebra Vir = C[T ]L with

λ-bracket [LλL] = (T + 2λ)L+ λ3

12c corresponds to Virasoro algebra

(m,n ∈ Z)

[Lm, Ln] = (m− n)Lm+n + δm,−n
m3 −m

12
c, where Lm = L(m+1).
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§2.Classical and quantum affine Hamiltoninan reduction

Classical affine Hamiltonian reduction of a PVA V is associated to

the data:

φ : V0 → V a PVA homomorphism, I0 ⊂ V0 a PVA ideal.

Construction:

W(V , φ, I0) = (V/Vφ(I0))adλφ(V0). (1)

The classical affine W -algebra Wk(g, s) is obtained by CHR from

the affine PVA Vk(g). From now on g is a simple finite-dimensional

Lie superalgebra g = g0⊕ g1 with a non-degenerate supersymmetric

invariant bilinear form and reductive g0, and s = ⟨e, 2x, f⟩ ⊂ g0 is

an sl2 triple. Let

g =
⊕
j∈1

2Z

gj (2)

be the ad x-eigenspace decomposition.
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Let V0 = V(g>0)
φ→ Vk(g) and I0 be the differential ideal of V0,

generated by {m− (f |m)|m ∈ g≥1}.

Then Wk(g, s), as defined by (1), is

(Vk(g)/Vk(g)I0)
adλV0. (3)

The quantum affine W -algebra W k(g, s) is a quantization of the

PVA Wk(g, s).

In the case when the PVA V is a Poisson algebra, i.e. the λ-bracket

is a Lie bracket and T = 0, CHR is given again by (1), and we obtain

the Slodowy slice e + gf (Gan-Ginzburg):

Wfin(g, s) = (S(g)/S(g){m− (f |m)|m ∈ g≥1})ad g>0.

This Poisson algebra is easy to quantize, just replace S(g) by U(g):

Wfin(g, s) = (U(g)/U(g){m− (f |m)|m ∈ g≥1})ad g>0.

Unfortunately this approach doesn’t work for PVA, and one should

turn to BRST (Feigh-Frenkel 90, principal s; Kac-Roan-Wakimoto

03, arbitrary s).
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Consider the following vertex algebra

Ck(g, s) = V k(g)⊗ F ch ⊗ F ne, (4)

where F ch = F (Π(g<0 + g>0)), F
ne = F (g1/2), the corresponding

superskewsymmetric bilinear forms being pairing between g<0 and

g>0 using (.|.) and ⟨a, b⟩ne = (f |[a, b]) on g1/2.

Define Z-grading Ck(g, s) =
⊕

j∈ZC
k
j by

deg V k(g) = 0 = degF ne, deg g>0 = − deg g<0 = 1,

and let

d =
∑
j∈S>0

((−1)p(uj) : φjuj : +(f |uj)φj) +
∑
j∈S1/2

: φjΦj :

+
1

2

∑
i,j∈S>0

(−1)p(uj) : φiφjφ[uj ,ui] : .
(5)

Here {uj}j∈S>0 is a basis of g>0, compatible with the grading (2),

{uj} the dual basis of g<0, {φj} and {φj} are the corresponding

bases of Πg>0 and Πg<0, and {Φj}j∈S1/2 the corresponding basis of

g1/2.
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The element d is an odd element of the vertex algebra Ck(g, s) of

degree -1, and a direct calculation gives

[dλd] = 0. (6)

In particular, d(0)d = 0. Hence

d2(0) = 0.

Moreover, for any a in a VA, a(0) is a derviation. Hence (C
k(g, s), d(0))

is a homology complex.

Definition. W k(g, s) is the 0th homology of this complex, called

the quantum affine W -algebra, associated with (g, s, k).

This definition is motivated by

Theorem. [DSK06] Replacing in the above construction the vertex

algebra by the corresponding Poisson vertex algebra (taking quasi-

classical limit) produces the classical affine W -algebra Wk(g, s).
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Theorem. [KW04] Assume that k ̸= −h∨.

(a) The vertex algebra Ck(g, s) is conformal with the Virasoro ele-

ment

L = LSug + Tx + Lch + Lne,

which is d(0)-closed.

(b) For a ∈ g let

J (a) = a +
∑
j∈S>0

: φjφ[uj ,a] :∈ Ck(g, s).

Then for each a ∈ gf−j (j ≥ 0) there exists a d(0)-closed element

J{a} ∈ Ck(g, s) of conformal weight 1 + j, such that J{a} − J (a)

is a linear combination of normally ordered products of elements

J (b), b ∈ g−s, 0 ≤ s < j, the elements Φj, j ∈ S1/2, and of their

derivatives (images under powers of T ).
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(c) The homology classes of the elements J{ai}, where {ai} is a ba-

sis of gf , compatible with the gradation (2), strongly generate

W k(g, s) and obey the PBW theorem.

(d) Hj(C
k(g, s), d0) = 0 if j ̸= 0.

(e) The central charge of L is

ck(g, x) = sdim g0 −
1

2
sdim g1

2
− 12

k + h∨
|ρ− (k + h∨)x|2.

(f) The vertex algebraW k(g, s) is realized as a subalgebra of V αk(g≤0)⊗
F ne, where αk is a 2-cocycle on g≤0 given by

αk(u, v) = (k+h∨)(u|v)−1

2
κ0(u, v), κ0 is the Killing form. (7)
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§3.Minimal quantum affine W -algebra

The 1
2Z-gradation (2) of g, defined by ad x, is called minimal if it

is of the form

g = Cf ⊕ g−1
2
⊕ g0 ⊕ g1

2
⊕ Ce. (8)

They correspond to the nilpotent orbit of f in a simple component of

g0 of minimal dimension (with the exception of g = osp(3|n), n ≥ 2,

and component = so3). The central charge is (we assume k ̸= −h∨):

ck(g, x) =
k sdim g

k + h∨
− 6k + h∨ − 4, (9)

if the root θ of e is normalized by (θ|θ) = 2, which we shall assume.

Then x = 1
2θ, and we have an orthogonal decomposition:

g0 = Cx⊕ g♮,

and the centralizer of f is

gf = Cf ⊕ g−1
2
⊕ g♮.
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Hence a minimalW -algebra is generated by the Virasoro element L,

the elements J{u}, u ∈ g♮, of conformal weight 1, andG{v}, v ∈ g−1
2
,

of conformal weight 3
2. The λ-brackets between them are

[LλL] = (T + 2λ)L +
ck(g, x)

2
λ3;

[LλJ
{u}] = (T + λ)J{u};

[LλG
{v}] = (T +

3

2
λ)G{v};

[J
{u}
λ G{v}] = G{u,v};

[J
{u}
λ J{v}] = J{[u,v]} + λβk(u, v), where

βk(u, v) = (k +
1

2
h∨)(u|v)− 1

2
κ0(u, v); (10)

[G
{u}

λG
{v}] = −2(k + h∨)⟨u, v⟩neL + ⟨u, v⟩ne

d=dim g♮∑
i=1

: J{ui}J{ui} :

+2

d∑
i,j=1

⟨[ui, u], [v, uj]⟩ne : J{ui}J{uj} : +2(k + 1)(T + 2λ)J{[[e,u],v]}♮

+2λ

d∑
i,j=1

⟨[ui, u], [v, uj]⟩neJ{ui,uj} + 2p(k)λ2⟨u, v⟩ne,

where {ui} and {ui} are dual bases of g♮ and p(k) is a mysterious

monic quadratic polynomial in k.
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By abuse of notation we denote the W -algebra W k(g, s), where s =

{e, 2x, f} with ad x defining a minimal gradation (8), by W k
min(g),

and its simple quotient by Wmin
k (g).

There are one, two, or three minimal gradations of g, but at most

one corresponds to unitary W -algebras.

Remarks.

(a) Wmin
k (g) collapses to its affine part iff p(k) = 0 [A K MF P P].

(b) Negatives of the roots of p(k) are singularities of the R-matrix of

Y (g) in (the adjoint representation) ⊕C [K MF P].
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§4.Unitary representation of vertex algebras

Joint work with P. Moseneder Frajria and P. Papi

We shall assume that the vertex algebra V in question is confor-

mal , i.e. there exists a Virasoro vector L ∈ V , i.e. Y (L, z) =∑
n∈ZLnz

−n−2, where Ln satisfy relations of the Virasoro algebra,

L−1 = T , and L0 is diagonalizable with the eigenspace decomposi-

tion

V =
⊕
n∈1

2Z+

Vn, dimVn <∞, V0 = C1. (11)

Let ϕ be a conjugate linear involution of V , and let

g(a) = e−π
√
−1(12p(a)+∆a)ϕ(a), a ∈ V∆a, (12)

where p(a) = 0, 1 ∈ Z is the parity of a.

A Hermitian form H(., .) on V is called ϕ-invariant if for all a ∈ V

one has

H(u, Y (a, z)v) = H(Y (A(z)a, z−1)u, v),

where A(z) = ezL1z−2L0g, u, v ∈ V.
(13)

The definition for u, v in a V -module M is similar.
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Comments.

• Formula (13) with g(a) = (−1)∆a first appeared in [Borcherds

86] for the construction of the coadjoint module for V purely even

and Z-grading.

• If (11) is compatible with parity, then g(a) = (−1)∆a+2∆2
aϕ(a)

(Dong-Lin)

• If a ∈ V is quasiprimary , i.e. L1(a) = 0, then (13) means that

a∗n = (ga)−n,

where Y (a, z) =
∑

n∈Z−∆a
anz

−n−∆a. For example,

L∗
n = L−n.

• Formula ⟨Y M ′
(a, z)m′,m⟩ = ⟨m′, Y M(A(z)a, z−1)m⟩ defines a

V -module structure on M ′.
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Theorem A.

(a) Let ϕ be a conjugate linear involution of the Lie superalgebra g,

such that

ϕ(e) = e, ϕ(f ) = f, ϕ(x) = x. (14)

Then ϕ descends to a conjugate linear involution of the W -

algebra W k(g, s), k ∈ R.

(b) There exists a unique ϕ-invariant Hermitiain form H(., .) on

W k(g, s), such that H(1, 1) = 1.

We denote byWk(g, s) the quotient ofW
k(g, s) by the kernel of the

form H(., .). It is a simple vertex algebra. We shall assume that

k ̸= −h∨. The vertex algebra Wk(g, s) is called unitary if H is

positive definite.
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§5.Theorems on unitarity of minimal W -algebras

Theorem B. IfWmin
k (g) is a unitary simple minimal quantum affine

W -algebra with non-collapsing level (i.e. Wmin
k (g) is not an affine

vertex algebra), then

(a) the parity of g is compatible with its ad x-gradation,

(b) the conjugate linear involution ϕ is almost compact , i.e. (14)

holds and ϕ|g♮ is a compact conjugate linear involution. Such a

conjugate linear involution exists and is essentially unique.

From part (a) of Theorem B it follows that a minimal simple W -

algebra Wmin
k (g) with non-collapsing k can be unitary only for the

following g:

psl(2|2), spo(2|m) for m ≥ 0, D(2, 1; a) for a ∈ R, F (4), G(3)
(15a)

sl(2|m) for m ≥ 3, osp(4|m) for m > 2 even. (15b)
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It is not hard to show that (15b) doesn’t give unitary non-collapsing

W -algebras (in the first case only k = −1 is unitary level, but it is

collapsing; in the second case no k is unitary).

The remaining cases (15a) are very interesting, and include all ver-

tex algebras corresponding to superconformal algebras ( ⇐⇒ Lie

conformal superalgebras with linear λ-bracket):

(a) Wmin
k (spo(2|N)) corresponds to Virasoro algebra for N = 0,

Neveu-Schwarz algebra for N = 1, N = 2 superconformal alge-

bra for N = 2, N = 3 superconformal algebra for N = 3 after

tensoring with one fermion;

(b) Wmin
k (psl(2|2)) corresponds to N = 4 superconformal algebra;

(c) Wmin
k (D(2, 1; a)) corresponds to the big N = 4 superconformal

algebra after tensoring with four fermions and one boson.

(N is the number of linearly independent elements of theW -algebra

of conformal weight 3
2.)
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The cases where N = 0, 1, 2 (in the language of Lie superalgebras)

were extensively studied in the mid 80’s. Putting k = 1
p − 1 in all

three cases, we obtain from (9) the following formulas for central

charges of W k
min(g), respectively:

ck = 1− 6

p(p + 1)
for Virasoro (N = 0) (16)

ck =
3

2

(
1− 8

p(p + 2)

)
for Neveu-Schwarz (N = 1) (17)

ck = 3

(
1− 2

p

)
for N = 2. (18)

Theorem. (Many authors, mid 80’s) The complete list of unitary

N = 0, 1, and 2 minimal W -algebras is given by (16), (17), (18)

respectively for integers p ≥ 2, or for ck ≥ 1, 3
2 or 3 respectively.

(These are all Wmin
k (g) with g♮ abelian.)
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We shall assume that g♮ is not abelian. If g is from the list (15a),

then g♮ is semisimple: g♮ =
⊕s

i=1 g
♮
i, where g♮i are simple and s =

1 or 2. Let Mi(k) be the level of the affine subalgebra of Wmin
k (g),

generated by the J{u} with u ∈ g♮i.

Table 1.

g g♮ h∨ Mi(k) χi

psl(2|2) sl2 0 −k − 1 -1

spo(2|3) sl2
1
2 −4k − 2 -2

spo(2|m), m > 4 som 2− m
2 −2k − 1 -1

D(2, 1; a) sl2 ⊕ sl2 0 −(1 + a)k − 1, −1+a
a k − 1 -1, -1

F (4) so7 -2 −3
2k − 1 -1

G(3) G2 −3
2 −4

3k − 1 -1
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Theorem C. The complete list of nontrivial unitary vertex algebras

Wmin
−k (g) with g0 non-abelian is as follows:

• g = psl(2|2) : k ∈ N + 1

• g = spo(2|3) : k ∈ 1
4(N + 2)

• g = spo(2|m), m > 4 : k ∈ 1
2(N + 1)

• g = D(2, 1; mn ), m, n coprime ∈ N : k ∈ mn
m+nN, k ̸= 1

2

• g = F (4) : k ∈ 2
3(N + 1)

• g = G(3) : k ∈ 3
4(N + 1)

That these conditions on k are necessary for unitarity follows from

Mi(k) ∈ Z+ for all i and looking at Table 1.

Definition. The set of k above is called the unitary range for

Wmin
k (g).
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In order to prove that these conditions are sufficient, we use the KW

realization of W k
min(g) in V

αk(g≤0) ⊗ F ne, where αk is the cocycle

given by (7). Using the obvious homomorphism g≤0 → g0, we obtain

a vertex algebra homomorphism

Ψ : W k
min(g) → Vαk(g0)⊗ F ne. (19)

Explicitly, it is given on the generators of W k
min(g) by

Ψ(J{a}) = a +
1

2

∑
j∈S1

2

: ΦjΦ[uj ,a], a ∈ g♮ (20)

Ψ(G{v}) =
∑
j∈S1

2

: [v, uj]Φ
j : −(k + 1)

∑
j∈S1

2

(v|uj)TΦj

+
1

3

∑
i,j∈S1

2

: ΦiΦjΦ[uj ,[ui,v]] :, v ∈ g−1
2
,

Ψ(L) =
1

2(k + h∨)

∑
j∈S0

: uju
j : +

k + 1

k + h∨
Tx

+
1

2

∑
j∈S1

2

: (TΦj)Φj :, where ⟨Φi,Φj⟩ne = δij.
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Note that the level of the affine vertex superalgebra of V αk(g0), gen-

erated by g♮i is equal to

Mi(k) + χi, (21)

where the Mi(k) and χi are integers given in Table 1. But for the

numbersMi(k) ∈ Z+, one of the numbers (21) is negative if and only

if k is a collapsing level, when we have unitary. Hence we may assume

that the numbers (21) are nonnegative, hence we have unitarity on

the right of (19), since F ne is unitary.

Unfortunately, the map Ψ is not an isometry, due to the term k+1
k+h∨Tx

in (20).
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Example. g = sl2, then W
k
min(g) = Vir and Ψ(L) = 1

2 : a
2 : +γTa

(quantum Miura map) where [aλa] = λ · 1 is the free boson LCA

and γ ∈ C. Hence

Ψ(Ln) =
1

2

∑
j∈Z

: a−jaj+n : −γ(n + 1)an, γ ∈ C.

But a∗n = −an, hence Ψ(Ln)
∗ ̸= Ψ(L−n). However the Fairlie

modification restores isometry:

L̃n =
1

2

∑
j∈Z

: a−jaj+n : +iλnan for n ̸= 0,

L̃0 =
1

2
(λ2 + µ2) +

∑
j≥1

a−jaj,

which produces a unitary representation of the Virasoro Lie algebra,

provided that λ, µ ∈ R, with central charge 1 + 12λ2:
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1 2

1
24

Region of

unitarity

c

h

Extend, using positivity of the determinant of the Hermitian form,

to get unitarity in the region h ≥ 0, c ≥ 1.
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In order to generalize Fairlie’s modification, note that the FFR (20)

is actually

Ψ : W k
min(g) → B ⊗ Vαk(g

♮)⊗ F ne, (22)

where B is a free boson associated to the LCA C[T ]x with [xλx] =
1
2(k+h

∨)λ. We modify the RHS of (22), replacingB by its irreducible

highest weight module M with highest weight ∈ iR, and modifying

Ψ as follows:

Ψmod : J
{u}
n 7→ Ψ(J{u})n (unmodified), (23)

Ψmod : G
{v}
n 7→ Ψ(G{v})n − (k + 1)(Φ[e,v])n,

Ψmod : Ln 7→ Ψ(L)n +
k + 1

k + h∨
xMn − (k + 1)2

4(k + h∨)
1n.

These formulas define an irreducible highest weight module over

W k
min(g), which is unitary if Vαk(g

♮) is unitary.
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Irreducible highest weight modules over W k
min(g) are parametrized

by pairs ν, l0, where ν ∈ (h♮)∗ and l0 ∈ C is the lowest eigenvalue of

L0, and denoted by LW (ν, l0). Unitarity of this module implies the

following conditions:

(a) k must be in the unitary range, hence Mi(k) ∈ Z+,

(b) ν ∈ P̂+
k = {ν dominant integral for g♮ and ν(θ∨i ) ≤Mi(k)},

(c) l0 is a nonnegative real number,

(d) l0 ≥ A(ν) := (ν|ν+2ρ♮)
2(k+h∨) + (ξ|ν)

k+h∨((ξ|ν)− k − 1), where ξ ∈ (h♮)∗ is

the highest weight of the g♮-module g−1
2
.

Note that Wmin
k (g) = LW (0, 0).
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Definition. ν ∈ P̂+
k is called an extremal weight if ν + ξ ̸∈ P̂+

k .

Equivalently, if (ν + ξ)(θ∨i ) =Mi(k) + χi < 0 for some i.

Proposition. If the module LW (ν, l0) is unitary, then conditions

(a), (b), (c), (d) hold and also

(e) l0 = A(ν) if ν is extremal.

Theorem D. If conditions (a), (b), (c), (d) hold and ν is not ex-

tremal, then the module LW (ν, l0) is unitary. Consequently the ver-

tex algebraWmin
k (g) is nontrivial unitary iff k is in the unitary range

for Wmin
k (g).
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Conclusion. The unitary W k
min(g)-modules LW (ν, l0) are con-

tained in the following list:

• k is in the unitary range,

• ν ∈ P̂+
k ,

• l0 ≥ A(ν) if ν is not extremal,

• l0 = A(ν) if ν is extremal.

It is still an open problem whether the “extremal” modulesLW (ν,A(ν))

are unitary.

Conjecture 1. They are unitary.

Remark. The answer coincides with Eguchi-Taormina for N = 4

and with Miki for N = 3, but they don’t provide a proof.

Theorem E. [joint with D. Adamovic] All these W k
min(g)-modules

descend to Wmin
k (g).

Conjecture 2. A QFT type vertex algebra is unitary iff it has a

unitary module.

Conjecture 3. If V is a unitary vertex algebra of CFT type, then

every of its unitary modules descends to its irreducible quotient.
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Sketch of proof of the theorems. The necessary conditions

of unitarity follow from conditions of unitarity of the affine vertex

subalgebra Vβk(g
♮) and the condition ∥G{a}

−1
2
Vν,l0∥2 ≥ 0.

Using the generalized Fairlie modification we show that LW (ν, l0)

is unitary, provided that ν is not extremal (recall that the levels of

Vαk(g
♮) are, by (21), Mi(k) + χi), and l0 ≥ B(ν) for some B(ν) >

A(ν).

To prove unitarity for l0 ≥ A(ν) it suffices to show that the de-

terminant of the Hermitian form is positive for l0 > A(ν). It is a

polynomial P (l0), whose factors are explicitly known [KW04], and

miraculously, P (l0) > 0 for l0 > A(ν).

Hence we can go down from B(ν) all the way to A(ν).

Finally, ν = 0 is an extremal weight iff Mi(k) + χi < 0 for some

i. This happens iff k is a collapsing level, in which case we do have

unitarity.
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§6.Characters of unitary W k
min(g) modules

The characters of the unitary irreducible highest weight W k
min(g)-

modules (=Wmin
k (g)-modules) are computed by making use of the

quantum Hamiltonian reduction (QHR). Given a ĝ-module M , its

QHR is the W k(g, s)-module H0(M), the 0th homology of the com-

plex

(M ⊗ F ch ⊗ F ne, d(0)).

Since M is a V k(g)-module, M ⊗ F ch ⊗ F ne is a Ck(g, s)-module.

The functor H0 maps Verma modules to Verma modules [KW04],

and irreducible ĝ-modules to irreducibleW k
min(g)-modules or 0 [Arakawa

05].
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The highest weights of irreducible highest weight V k(g)-modules

L(Λ) are

Λ = ν̂h = kΛ0 + ν + hθ, ν ∈ P̂ k
+, h ∈ R≥0.

Then H0(L(Λ)) = LW (ν, l0), where

l0 = l(h) :=
(ν̂h|ν̂h + 2ρ̂)

2(k + h∨)
− h.

Thus, if

ch L(ν̂h) =
∑
λ

cλch M(λ),

then

ch LW (ν, l0) =
∑
λ

cλch M
W (λ),

where M(λ) is a V k(g)-Verma module, and MW (λ) is a W k
min(g)-

Verma module.

Thus, the problem reduces to the computation of characters of the

ĝ-modules L(ν̂h). There are two cases to consider:

(1) typical (massive), which happens if l0 > A(k, ν);

(2) maximally atypical (massless), which happens if l0 = A(k, ν).
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Let Ŵ ♮ be the affine Weyl group for the Lie algebra g♮, and Π1 be

the set of simple isotropic roots of g. Then

Case 1: ch L(ν̂h) =
∑

w∈Ŵ ♮(detw)ch M(w.ν̂h).

Case 2: chL(ν̂h) =
∑

w∈Ŵ ♮

∑
γ∈Z+Π1

(−1)γ(detw)chM(w.(ν̂h−
γ)), where (−1)γ := (−1)n1+n2+... for γ =

∑
i niγi, Π1 = {γi}i.

Proof of Case 1 is easy. Case 2 is a special case of the KW84-

conjecture, proved in all the above cases in [GK2015], except for

g = D(2, 1; a), ν ̸= 0.
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