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Motivations



History on W -algebras

Let Vir be the Virasoro algebra, which is an infinite-dimensional
Lie algebra

Vir =
⊕
n∈Z

CLn ⊕ CC

with the defining relations

[Lm,Ln] = (m − n)Lm+n +
m3 − m

12
δm+n,0C, [Ln,C] = 0.

The Virasoro algebra plays an important role in the 2d CFTs
and also has a rich mathematical structure in the rep theory.

In the classification of 2d CFTs, Zamolodchikov found a
generalization of Vir, called the W3-algebra, which is generated
by Ln, Sn, and Ln satisfies the Virasoro relations. However
[Sm,Sn] contains infinite sum of quadratic forms of Ln and thus
W3 is not just a Lie algebra – W3 forms a vertex algebra. 2



Fateev and Lukyanov also found a family of generalizations of
W3-algebra: Wn-algebras (=WAn−1), WBn, WCn, ... etc.

Feigin and Frenkel gave mathematical definitions of these
algebras: let g be a simple Lie algebra and V k (g) the affine
vertex algebra of g at level k . Then the (principal) W -algebra of
g at level k is defined by the Drinfeld-Sokolov reduction

W k (g) = H0
DS(V

k (g)).

By construction, the W -algebras are vertex algebras. For
g = sln, W k (sln) is isomorphic to the Wn-algebra. In particular,
W k (sl2) is isomorphic to the Virasoro (vertex) algebra of the
central charge c(k) = 1 − 6(k + 1)2/(k + 2).
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Feigin and Semikhatov also found a family of genralizations of
V k (sl2), called the W (2)

n -algebras. For n = 2, W (2)
2 = V k (sl2)

and W (2)
3 is isomorphic to the Bershadosky-Polyakov algebra,

which is geberated by en,hn, fn,Ln, and [em, fn] contains a linear
term of Ln and infinite sum of quadratic forms of hn, and thus
not a Lie algebra. W (2)

n don’t appear as examples of W k (g).

Kac, Roan and Wakimoto found generalizations of W k (g) by
generalizing the DS-reductions: let g be a simple Lie
(super)algebra and f an (even) nilpotent element in g. Then

W k (g, f ) := H0
DS,f (V

k (g)),

the W -algebra associated to g, f at level k .

• W k (g,0) = V k (g).
• W k (g, fprin) = W k (g), where fprin is a principal nilp ele.
• W k (sln, fsub) = W (2)

n , where fsub is a subregular nilp ele. 4



Madsen-Ragoucy observations

I’d like to introduce Madsen-Ragoucy observations. Let f be a
nilpotent element in sl3. Then the Jordan form has only 0 in the
diagonal entries and thus is one of the followings: 0 1 0

0 0 1
0 0 0

 ,

 0 1 0
0 0 0
0 0 0

 ,

 0 0 0
0 0 0
0 0 0

 ,

which corresponds to the partitions (3), (2,1), (13) of 3, called
principal, subregular, zero, respectively. Thus we obtain two
families of W -algebras from V k (sl3):

• W k (sl3, fprin) = the Zamolodchikov W3-algebra.
• W k (sl3, fsub) = the Bershadosky-Polyakov (BP) algebra.
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Madsen and Ragoucy suggested the W3-algebra is obtained
from the BP-algebra by a quantum Hamiltonian reduction
commuting the following diagram:

V k (sl3)
HDS,fprin

(?)
//

HDS,fsub
(?)

&&

Wk (sl3, fprin)

Wk (sl3, fsub)

∃quantum Hamiltonian reduction

88

Now we have questions: 1) Is this true? 2) Generalizations?

Answer for 1) is (of course) true.

Our goal is to prove the Madsen-Ragoucy observations and to
find generalizations by using reduction by stages.
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Slodowy slices

Vertex algebras have canonical filtrations (Li filtrations) and the
associated graded spaces become commutative vertex
algebras equipped with additional Poisson (λ-)brackets (=
Poisson vertex algebras). In case of W -algebras,

grW k (g, f ) ≃ C[J∞Sf ],

where Sf is the Slodowy slice at f in g

Sf := f + ge ⊂ g ≃ g∗.

The Jacobson-Morozov theorem implies the existence of an
sl2-triple {e,h, f} in g containing our choice of f . Then e is
chosen from the sl2-triple.

Thus Sf is a classical analog of the W -algebra W k (g, f ). 7



Recall that g∗ is a Poisson variety equipped with the
Kirillov-Kostant Poisson structure. The Slodowy slice is also a
Poisson variety and transversal to the coadjoint orbits in g∗.

The Poisson structure of Sf is obtained by a moment map. I’ll
sketch a construction of Sf by the moment map: there exists a
nilpotent subalgebra m ⊂ g and let M = exp(m) a unipotent Lie
subgroup of an algebraic group G such that LieG = g. Define a
Hamiltonian M-action on g∗ by the moment map

µ : g∗ ≃ g → m∗, u 7→ (a 7→ (a|u − f )).

Then
Sf ≃ µ−1(0)/M =: g∗//M.

The RHS is called the Hailtonian reduction of g∗ and has a
canonical Poisson structure induced from g∗.
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Reduction by stages

Let X be a Poisson variety with a Hamiltonian M2-action and
M1 a normal Lie subgroup of M2. Then we obtain two Poisson
varieties X//M1, X//M2 from X by using the Hamiltonian
reductions. But, under suitable assumptions, we may define a
Hamiltonian M2//M1-action on X//M1 such that the following
diagram commutes:

X
//M2

//

//M1
&&

X//M2

X//M1

//(M2//M1)

88

This procedure is called the reduction by stages since we
obtain X//M2 by stages. We will apply for X = g∗.
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Morgan conjectures

Morgan applied the reduction by stages for the Slodowy slices.

Conjecture (Morgan, PhD thesis)
Let g = sln and O1, O2 nilpotent orbits in sln at f1, f2 such that
O1 < O2 (i.e. O1 ⊂ O2). Then Sf2 is obtained as a Hamiltonian
reduction of Sf1 .

Theorem (Morgan)
This is true for n = 3.

sl∗3
//

&&

Sfprin

Sfsub

∃ Hamiltonian reduction

88

This is a classical analog of the Madsen-Ragoucy observations. 10



Reduction by stages for Slodowy
slices



Gan-Ginzburg theory

Let g be a simple Lie algebra, f a nilpotent element and
x a semisimple element such that
(1) ad x defines a Z-grading on g =

⊕
j∈Z gj

(2) f ∈ g−2

(3) ad f : gj → gj−2 is injective for j ≥ 1 and surjective for j ≤ 1.
Then (f , x) is called a good pair. For example, we may choose
x = h in the sl2-triple {e,h, f}. Thanks to the good condition,

⟨a,b⟩ := (f |[a,b]) = ([f ,a]|b), a,b ∈ g1

defines a symplectic structure on g1. Let l be a Lagrangian in g1

(= a maximal isotropic subspace in g1) and m a nilpotent
subalgebra

m = l⊕ g≥2.
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Let M = exp(m) be a unipotent Lie subgroup of an algebraic
group G with LieG = g. Define a Hamiltonian M-action on g∗ by

µ : g∗ ≃ g → m∗, u 7→ (a 7→ (a|u − f )).

Define an affine morphism

α : M × Sf → µ−1(0), (g,u) 7→ Adg(u).

Theorem (Gan-Ginzburg)
α is an isomorphism.

Therefore M × Sf ≃ µ−1(0) so that

Sf ≃ µ−1(0)/M = g∗//M.
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Reduction by stages for Slodowy slices

Let h be a Cartan subalgebra of g,
f1, f2 nilpotent elements of g s.t. f0 := f2 − f1 is nilpotent,
x1, x2 semisimple elements in h s.t. (f1, x1), (f2, x2) are good
pairs. Set x0 := x2 − x1. We have

l1, l2: Lagrangian subspaces,
m1, m2: nilpotent subalgebras as in Gan-Ginzburg theory.

Then Sf1 ≃ µ−1
1 (0)/M1 and Sf2 ≃ µ−1

2 (0)/M2.

Suppose the following conditions (⋆):
1) m1 ⊂ m2 and there exists a Lie subalgebra m0 of m2 s.t.

m2 = m1 ⊕m0 and m1 is an ideal of m2.
2) m0 is h-invariant.
3) [f1, x0] = [f1,m0] = 0.
4) [x1, f0] = [x1,m0] = 0.

13



Recall

α1 : M1 × Sf1
∼−→ µ−1

1 (0), α2 : M2 × Sf2
∼−→ µ−1

2 (0).

Define a Hamiltonian M0-action on Sf1 by the moment map

µ0 : Sf1 → m∗
0, u = f1 + u′ 7→ (a 7→ (a|u − f2) = (a|u′ − f0)).

Define an affine morphism

α0 : M1 × µ−1
0 (0) → µ−1

2 (0), (g,u) 7→ Adg(u).

Claim
α0 is an isomorphism.

Therefore M2 × Sf2
GG≃ µ−1

2 (0)
Claim≃ M1 × µ−1

0 (0)

/M1⇝ M0 × Sf2 ≃ µ−1
0 (0).

Hence Sf2 ≃ µ−1
0 (0)/M0 = Sf1//M0.

14



Theorem (G.-Juillard)
Under the assumption (⋆), we have Sf2 ≃ Sf1//M0.

Examples:

• Let g = sln, a1,a2 ∈ N such that 1 ≤ a1 < a2 ≤ n and
f1 = (a1,1n−a1), f2 = (a2,1n−a2). These are called
hook-type nilpotent elements

Now Of1 < Of2 and f1, f2 satisfies the condition (⋆). Thus
Sf2 ≃ Sf1//M0.

• Let g = sl4, f1 = (2,12) and f2 = (22). Then f1, f2 satisfies
the condition (⋆).

15



• Let g = so2n+1, f1 is subregular and f2 is principal. Then
f1, f2 satisfies the condition (⋆).

• Let g = sp2n, f1 = (22,12n−4) (short nilpotent) and f2 is
principal. Then f1, f2 satisfies the condition (⋆).

• Let g = G2, f1 is Ã1 and f2 is subregular. Then f1, f2
satisfies the condition (⋆).

• (Maybe) more...
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Reduction by stages for finite
W -algebras



Reduction by stages for finite W -algebras

Let χ(u) = (f |u), Iχ = (u − χ(u) |u ∈ m) be a two-sided ideal in
U(g) and Qχ = U(g)/Iχ. Then

U(g, f ) := Qadm
χ

has an associative algebra structure induced from U(g) and is
called the finite W -algebra associated to g, f . There exists the
Kazhdan filtration on U(g, f ) such that

grU(g, f ) ≃ C[Sf ],

so U(g, f ) is a quantization of Sf .

Theorem (G.-J.)
Under the assumption (⋆), U(g, f2) is obtained by a quantum
Hamiltonian reduction of U(g, f1). 17



Skryabin equivalence by stages

A g-module E is called Whittaker for χ if u − χ(u) acts on E
locally nilpotently for all u ∈ m.

Let g−modχ be the category of finitely generated Whittaker
g-modules for χ and U(g, f )−mod the category of finitely
generated U(g, f )-modules. For E ∈ g−modχ,

Wh(E) := {m ∈ E | (u − χ(u))m = 0,u ∈ m}

becomes a U(g, f )-module, while for V ∈ U(g, f )−mod,

Ind(V ) := Qχ ⊗
U(g,f )

V

becomes a Whittaker g-module.
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Moreover,

g−modχ
Wh
⇄
Ind

U(g, f )−mod

gives a quasi-inverse equivalence of categories and is called
the Skryabin equivalence.

Theorem (G.-J.)
Under the assumption (⋆), the following diagram commutes

g−modχ2

Wh2
//

Wh1

''

U(g, f2)−mod
Ind2

oo

Ind0
ww

U(g, f1)−modχ0

Ind1

gg Wh0

77

and each⇄ are quasi-inverse equivalences. 19



Reduction by stages for affine
W -algebras



Reduction by stages for affine W -algebras

Theorem (Madsen-Ragoucy, G.-J.)
Under the assumption (⋆) with l1 = l2 = 0,

W k (g, f2) ≃ H0
DS,f0(W

k (g, f1)).

Conjecture (G.-J.)
Theorem is also true for l1, l2 ̸= 0.
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Why l1 = l2 = 0 ?

The main difficulty is the convergence of spectral sequences of
a double complex: let

W k (g, f1) = H0(V k (g)⊗ F (m1),d1),

W k (g, f2) = H0(V k (g)⊗ F (m2),d2),

where F (m) is the (dimm)-tensor products of bc-system vertex
superalgebras. Under the assumption (⋆), we have

V k (g)⊗ F (m2) ≃ V k (g)⊗ F (m1)⊗ F (m0),

d2 = d1 + d0, d2
2 = d2

1 = d2
0 = 0.

Then Theorem is equivalent to the isomorphism of the total
complex cohomology with the double complex cohomology.
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Lemma (Kac-Wakimoto)
If l = 0, there exists a complex decomposition

V k (g)⊗ F (m) = C+ ⊗ C−

such that C± =
⊕∞

n=0 C±n
± and H•(C−) = C. Thus

H0(C+ ⊗ C−) ≃ H0(C+) = KerC0
+
d ⊂ C0

+.

Therefore W k (g, f ) is a vertex subalgebra of C0
+. Under the

assumption (⋆), we have

W k (g, f1) ⊂ C0
+,1, W k (g, f2) ⊂ C0

+,2.

Moreover we have a natural morphism

H0(W k (g, f1)⊗ F (m0),d0) → W k (g, f2). 22



Claim
C0
+,1 ⊗ F (m0) is closed under the action of d2 and there exists a

complex decomposition

C0
+,1 ⊗ F (m0) = C̃−

1 ⊗ C0
+,2

such that H•(C̃−
1 ) = C. Thus

W k (g, f2) = H0(C0
+,1 ⊗ F (m0),d2).

Now we define a filtration on C0
+,1 ⊗ F (m0) such that the

associated spectral sequences imply the isomorphism of the
natural morphism.
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