Reduction by stages on W-algebras

Naoki Genra, Thibault Juillard

Representation Theory XVIII, Inter-University Centre
Dubrovnik, Croatia, Jun. 27, 2023



Motivations



History on W-algebras

Let Vir be the Virasoro algebra, which is an infinite-dimensional

Lie algebra
vir= L, & CC
nez
with the defining relations
m3 —

12

The Virasoro algebra plays an important role in the 2d CFTs
and also has a rich mathematical structure in the rep theory.

In the classification of 2d CFTs, Zamolodchikov found a
generalization of Vir, called the Ws-algebra, which is generated

by Ln, Sp, and L, satisfies the Virasoro relations. However

[Sm, Sp] contains infinite sum of quadratic forms of L, and thus

W; is not just a Lie algebra — W3 forms a vertex algebra. 2



Fateev and Lukyanov also found a family of generalizations of
Ws-algebra: Wy-algebras (=WA,_1), WB,, WC,, ... etc.

Feigin and Frenkel gave mathematical definitions of these
algebras: let g be a simple Lie algebra and V(g) the affine
vertex algebra of g at level k. Then the (principal) W-algebra of
g at level k is defined by the Drinfeld-Sokolov reduction

W¥(g) = Hps(V*(g))-

By construction, the W-algebras are vertex algebras. For

g = slp, WX(sl,) is isomorphic to the W,-algebra. In particular,
W¥(sl,) is isomorphic to the Virasoro (vertex) algebra of the
central charge c(k) =1 — 6(k + 1)2/(k + 2).



Feigin and Semikhatov also found a family of genralizations of
Vk(sl,), called the W\?-algebras. For n = 2, W2(2) = VA (slp)
and Wéz) is isomorphic to the Bershadosky-Polyakov algebra,
which is geberated by ey, hy, fn, Ln, and [em, f,] contains a linear
term of L, and infinite sum of quadratic forms of h,, and thus
not a Lie algebra. W,(,z) don’t appear as examples of W¥(g).

Kac, Roan and Wakimoto found generalizations of W (g) by
generalizing the DS-reductions: let g be a simple Lie
(super)algebra and f an (even) nilpotent element in g. Then

Wk(& f) := Hg&,(vk(g)),

the W-algebra associated to g, f at level k.
« WK(g,0) = V¥(g).
« WX(g, fin) = WX(g), where £, is a principal nilp ele.
o WK(slp, fiup) = W'® where f., is a subregular nilp ele.



Madsen-Ragoucy observations

I'd like to introduce Madsen-Ragoucy observations. Let f be a
nilpotent element in sl3. Then the Jordan form has only 0 in the
diagonal entries and thus is one of the followings:

010 0 1]0 0l0 0
00 1/], 0 0|0 |, ololo |,
000 ooﬂ ooﬂ

which corresponds to the partitions (3), (2, 1), (12) of 3, called
principal, subregular, zero, respectively. Thus we obtain two
families of W-algebras from V¥ (sl3):

« WHK(sl3, f,in) = the Zamolodchikov Ws-algebra.
« WK(sl3, f,) = the Bershadosky-Polyakov (BP) algebra.



Madsen and Ragoucy suggested the Ws-algebra is obtained
from the BP-algebra by a quantum Hamiltonian reduction
commuting the following diagram:

Hps 10 ()

VK (sl3) WH(sl3, forin)
P

el
-
-
~
Hps, fsub( ) ~ 7 Fquantum Hamiltonian reduction
-

Wk (5[3, fsub)

Now we have questions: 1) Is this true? 2) Generalizations?

Answer for 1) is (of course) true.

Our goal is to prove the Madsen-Ragoucy observations and to
find generalizations by using reduction by stages.



Slodowy slices

Vertex algebras have canonical filtrations (Li filtrations) and the
associated graded spaces become commutative vertex
algebras equipped with additional Poisson (\-)brackets (=
Poisson vertex algebras). In case of W-algebras,

grWH (g, f) = ClUS,
where S is the Slodowy slice at fin g
S=Ff+g°Cg~g"

The Jacobson-Morozov theorem implies the existence of an
slo-triple {e, h, f} in g containing our choice of f. Then e is
chosen from the sl-triple.

Thus Sy is a classical analog of the W-algebra W (g, f). 7



Recall that g* is a Poisson variety equipped with the
Kirillov-Kostant Poisson structure. The Slodowy slice is also a
Poisson variety and transversal to the coadjoint orbits in g*.

The Poisson structure of Sy is obtained by a moment map. Ill
sketch a construction of Sy by the moment map: there exists a
nilpotent subalgebra m C g and let M = exp(m) a unipotent Lie
subgroup of an algebraic group G such that Lie G = g. Define a
Hamiltonian M-action on g* by the moment map

prgt~g—-m*, u~— (a— (au-—f)).

Then
S~ p(0)/M =: g*//M.

The RHS is called the Hailtonian reduction of g* and has a
canonical Poisson structure induced from g*.



Reduction by stages

Let X be a Poisson variety with a Hamiltonian M»-action and
M; a normal Lie subgroup of M>. Then we obtain two Poisson
varieties X //M;, X //M, from X by using the Hamiltonian
reductions. But, under suitable assumptions, we may define a
Hamiltonian M, //M;-action on X //M; such that the following
diagram commutes:

[/ M2

X X/ Mz

M . /) (Magy )

X/ My

This procedure is called the reduction by stages since we
obtain X//M. by stages. We will apply for X = g*.



Morgan conjectures

Morgan applied the reduction by stages for the Slodowy slices.

Conjecture (Morgan, PhD thesis)

Let g = sl, and O4, O» nilpotent orbits in sl, at fi, > such that
01 < O (i.e. Oy C Oy). Then S, is obtained as a Hamiltonian
reduction of Sy,.

Theorem (Morgan)
This is true for n = 3.

*
5[3 Sfprin
e
~
-~
-
\ _ 7 Hamiltonian reduction
-~
stub

This is a classical analog of the Madsen-Ragoucy observations. 10



Reduction by stages for Slodowy
slices




Gan-Ginzburg theory

Let g be a simple Lie algebra, f a nilpotent element and

x a semisimple element such that

(1) ad x defines a Z-grading on g = B, 9;

(2)fego

(38) ad f: g; — gj_» is injective for j > 1 and surjective for j < 1.
Then (f, x) is called a good pair. For example, we may choose
x = hin the sl,-triple {e, h, f}. Thanks to the good condition,

(a,b) := (flla,b]) = ([f,a]|b), abc g

defines a symplectic structure on g¢. Let [ be a Lagrangian in g4
(= a maximal isotropic subspace in g{) and m a nilpotent
subalgebra
m=1[D g>o.
11



Let M = exp(m) be a unipotent Lie subgroup of an algebraic
group G with Lie G = g. Define a Hamiltonian M-action on g* by

p:g-~g—-m*, u—(a—(au-r)).
Define an affine morphism

a: MxS;— p'(0), (g,u)— Adg(u).

Theorem (Gan-Ginzburg)
« is an isomorphism.

Therefore M x Sy ~ 1~ 1(0) so that

St = p~'(0)/M = g*//M.

12



Reduction by stages for Slodowy slices

Let h be a Cartan subalgebra of g,

fi, i nilpotent elements of g s.t. fy := >, — f4 is nilpotent,
X1, Xo semisimple elements in § s.t. (f1, x1), (£, x2) are good
pairs. Set xg := xo — x;. We have

l1, [o: Lagrangian subspaces,
my, my: nilpotent subalgebras as in Gan-Ginzburg theory.

Then Sy, ~ iy '(0)/My and Sp, ~ 11, ' (0)/Mo.

Suppose the following conditions (*):

1) my C my and there exists a Lie subalgebra mg of m» s.t.
mo = my & mg and my is an ideal of mo.

2) my is h-invariant.

3) [f1, xo] = [f1,me] = 0.

4) [x1, fo] = [x1,mp] = 0. .



Recall

aq: My x Sf1 = ,u171(0), as: Mo x sz = M51(0)

Define a Hamiltonian Mp-action on S, by the moment map

po: S, —mg, u=f+u —(a—(au—5h)=(au - fh)).

Define an affine morphism

ag: My x ,u61(0) — M;(O), (9, u) — Adg(u).

Claim
ap IS an isomorphism.
Therefore My x S, = 115" (0) =" My x 115 '(0)

M. -
/M-g Mo X sz = M01(0).

Hence Sy, ~ 115 ' (0)/Mo = Sy, // Mo.

14



Theorem (G.-Juillard)
Under the assumption (x), we have S¢, ~ S¢, // My.

Examples:

* Letg =sl, aj,a € Nsuchthat 1 < a; <a, <nand
fi = (ay,1"2), f, = (a, 1"~%). These are called
hook-type nilpotent elements

HEEEN
Now Oy, < Oy, and fi, > satisfies the condition (x). Thus
Sy, ~ Sy, [/ M.

* Let g =sly, f; = (2,12) and f, = (22). Then f,, f, satisfies
the condition (x).

15



Let g = soo.1, f1 is subregular and £ is principal. Then
fi, > satisfies the condition (x).

Let g = spop, fi = (22,127~4) (short nilpotent) and % is
principal. Then f;, f, satisfies the condition (x).

Let g = Go, f; is Ay and £, is subregular. Then f;, %
satisfies the condition (x).

(Maybe) more...

16



Reduction by stages for finite
W-algebras




Reduction by stages for finite |/-algebras

Let x(u) = (f|lu), I, = (u— x(u) | u € m) be a two-sided ideal in
U(g) and Q, = U(g)/h- Then

U(g, f) = Q™

has an associative algebra structure induced from U(g) and is
called the finite W-algebra associated to g, f. There exists the
Kazhdan filtration on U(g, f) such that

grU(g, f) ~ C[S4],

so U(g, f) is a quantization of Sy.

Theorem (G.-J.)
Under the assumption (x), U(g, f>) is obtained by a quantum

Hamiltonian reduction of U(g, f1). -



Skryabin equivalence by stages

A g-module E is called Whittaker for y if u — x(u) acts on E
locally nilpotently for all u € m.

Let g—mod, be the category of finitely generated Whittaker
g-modules for x and U(g, f)—mod the category of finitely
generated U(g, f)-modules. For E € g—mod,,

Wh(E) :={me E | (u— x(u))m=0,u € m}
becomes a U(g, f)-module, while for V € U(g, f)—mod,

Ind(V) := Q, U%f) %

becomes a Whittaker g-module.

18



Moreover,

Wh
g—mod, = U(g, f)—mod
Ind
gives a quasi-inverse equivalence of categories and is called

the Skryabin equivalence.

Theorem (G.-J.)
Under the assumption (x), the following diagram commutes

Wh;
g—mod,, U(g, f») —mod

Indy

Wh; Whq

k %

U(g, f;)—mod,,

and each = are quasi-inverse equivalences.

19



Reduction by stages for affine
W-algebras




Reduction by stages for affine W-algebras

Theorem (Madsen-Ragoucy, G.-J.)
Under the assumption (x) with [{ = [, = 0,

WK(g. ) = His o (WH(a. £)).

Conjecture (G.-J.)
Theorem is also true for [4, o # 0.

20



The main difficulty is the convergence of spectral sequences of
a double complex: let

WX(a, ) = H(V¥(g) ® F(my), ),
W¥(g. k) = HY(V¥(g) ® F(m2), dy),

where F(m) is the (dim m)-tensor products of bc-system vertex
superalgebras. Under the assumption (), we have

V¥(g) ® F(mgz) =~ V¥(g) ® F(my) ® F(mo),
do=dy+dy, d5=0d?=0Z=0.

Then Theorem is equivalent to the isomorphism of the total
complex cohomology with the double complex cohomology.
21



Lemma (Kac-Wakimoto)
Iftl =0, there exists a complex decomposition

VE(g) ® F(m) = Cy ® C_
such that Cx = @, Ci" and H*(C_) = C. Thus
H(C, ® C_)~ H°(C,) = Kergod C ch.
Therefore W (g, f) is a vertex subalgebra of C%. Under the
assumption (x), we have
W (g, f) c CY4, WX(g, k) c CY,.
Moreover we have a natural morphism

HO(W¥(g, fy) ® F(mo), do) — W*(g, f). 22



Claim

C?r 1 ® F(mp) is closed under the action of d» and there exists a

complex decomposition

CY, ® F(mg) = C; ® C2,

such that H*(C;) = C. Thus
Wk(gv f2) = HO(C<O#,1 ® F(mO)a d2)
Now we define a filtration on C | @ F(mj) such that the

associated spectral sequences imply the isomorphism of the
natural morphism.
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