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W-Algebras

Given a simple finite-dimensional Lie algebra g, a nilpotent element f ∈ g
and k ∈ C, the W-algebra Wk(g, f ) is the homology of certain complex
involving the universal affine vertex algebra Vk(g) [Kac, Roan, Wakimoto, ’03].

▶ Ubiquitous: 4d-2d, corners, higher-spin gravity, geometric Langlands.
▶ Mysterious: OPEs? Representation theory?

Rational W-algebras
▶ Have many well-understood examples, appear in applications.
▶ If C2-cofinite, category of modules is modular tensor [Huang, ’08]

Nonrational W-algebras
▶ Have very few well-understood examples, still appear in applications.
▶ Not even clear which module category is the ‘right’ one

(Khazdan-Lusztig? Weight modules? Fin.dim. weight-spaces?).
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Goal

Better understand the structure and representation theory of W-algebras.
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Partial Ordering of W-algebras

For a given g, there are many possible choices for f but Wk(g, f ) actually
only depends on the nilpotent orbit of g containing f up to isomorphism.

Partial ordering on nilpotent orbits→ partial ordering on W-algebras.

Stick to the nice case g = sln+1 from now on.
▶ Let f ∈ sln+1 be nilpotent and consider its Jordan normal form JNF(f ).
▶ The unique non-increasing sequence of block sizes in JNF(f ) is a

partition of n+ 1, call it λ(f ).
▶ Any matrix conjugate to f has the same JNF as f . So nilpotent orbits

are labelled by partitions λ = (λ1, λ2, . . . ) ∈ P(n+ 1).

λ ≤ λ′ ↔
k∑

i=1

λi ≤
k∑

i=1

λ′i ∀k ≥ 1.

We say that Wk(sln+1, f ) ≥Wk(sln+1, f ′) if λ(f ) ≤ λ(f ′).

Zachary Fehily 4 / 23



Partial Ordering of W-algebras

For a given g, there are many possible choices for f but Wk(g, f ) actually
only depends on the nilpotent orbit of g containing f up to isomorphism.

Partial ordering on nilpotent orbits→ partial ordering on W-algebras.

Stick to the nice case g = sln+1 from now on.
▶ Let f ∈ sln+1 be nilpotent and consider its Jordan normal form JNF(f ).
▶ The unique non-increasing sequence of block sizes in JNF(f ) is a

partition of n+ 1, call it λ(f ).
▶ Any matrix conjugate to f has the same JNF as f . So nilpotent orbits

are labelled by partitions λ = (λ1, λ2, . . . ) ∈ P(n+ 1).

λ ≤ λ′ ↔
k∑

i=1

λi ≤
k∑

i=1

λ′i ∀k ≥ 1.

We say that Wk(sln+1, f ) ≥Wk(sln+1, f ′) if λ(f ) ≤ λ(f ′).

Zachary Fehily 4 / 23



Partial Ordering of W-algebras

For a given g, there are many possible choices for f but Wk(g, f ) actually
only depends on the nilpotent orbit of g containing f up to isomorphism.

Partial ordering on nilpotent orbits→ partial ordering on W-algebras.

Stick to the nice case g = sln+1 from now on.
▶ Let f ∈ sln+1 be nilpotent and consider its Jordan normal form JNF(f ).

▶ The unique non-increasing sequence of block sizes in JNF(f ) is a
partition of n+ 1, call it λ(f ).

▶ Any matrix conjugate to f has the same JNF as f . So nilpotent orbits
are labelled by partitions λ = (λ1, λ2, . . . ) ∈ P(n+ 1).

λ ≤ λ′ ↔
k∑

i=1

λi ≤
k∑

i=1

λ′i ∀k ≥ 1.

We say that Wk(sln+1, f ) ≥Wk(sln+1, f ′) if λ(f ) ≤ λ(f ′).

Zachary Fehily 4 / 23



Partial Ordering of W-algebras

For a given g, there are many possible choices for f but Wk(g, f ) actually
only depends on the nilpotent orbit of g containing f up to isomorphism.

Partial ordering on nilpotent orbits→ partial ordering on W-algebras.

Stick to the nice case g = sln+1 from now on.
▶ Let f ∈ sln+1 be nilpotent and consider its Jordan normal form JNF(f ).
▶ The unique non-increasing sequence of block sizes in JNF(f ) is a

partition of n+ 1, call it λ(f ).

▶ Any matrix conjugate to f has the same JNF as f . So nilpotent orbits
are labelled by partitions λ = (λ1, λ2, . . . ) ∈ P(n+ 1).

λ ≤ λ′ ↔
k∑

i=1

λi ≤
k∑

i=1

λ′i ∀k ≥ 1.

We say that Wk(sln+1, f ) ≥Wk(sln+1, f ′) if λ(f ) ≤ λ(f ′).

Zachary Fehily 4 / 23



Partial Ordering of W-algebras

For a given g, there are many possible choices for f but Wk(g, f ) actually
only depends on the nilpotent orbit of g containing f up to isomorphism.

Partial ordering on nilpotent orbits→ partial ordering on W-algebras.

Stick to the nice case g = sln+1 from now on.
▶ Let f ∈ sln+1 be nilpotent and consider its Jordan normal form JNF(f ).
▶ The unique non-increasing sequence of block sizes in JNF(f ) is a

partition of n+ 1, call it λ(f ).
▶ Any matrix conjugate to f has the same JNF as f . So nilpotent orbits

are labelled by partitions λ = (λ1, λ2, . . . ) ∈ P(n+ 1).

λ ≤ λ′ ↔
k∑

i=1

λi ≤
k∑

i=1

λ′i ∀k ≥ 1.

We say that Wk(sln+1, f ) ≥Wk(sln+1, f ′) if λ(f ) ≤ λ(f ′).

Zachary Fehily 4 / 23



Partial Ordering of W-algebras

For a given g, there are many possible choices for f but Wk(g, f ) actually
only depends on the nilpotent orbit of g containing f up to isomorphism.

Partial ordering on nilpotent orbits→ partial ordering on W-algebras.

Stick to the nice case g = sln+1 from now on.
▶ Let f ∈ sln+1 be nilpotent and consider its Jordan normal form JNF(f ).
▶ The unique non-increasing sequence of block sizes in JNF(f ) is a

partition of n+ 1, call it λ(f ).
▶ Any matrix conjugate to f has the same JNF as f . So nilpotent orbits

are labelled by partitions λ = (λ1, λ2, . . . ) ∈ P(n+ 1).

λ ≤ λ′ ↔
k∑

i=1

λi ≤
k∑

i=1

λ′i ∀k ≥ 1.

We say that Wk(sln+1, f ) ≥Wk(sln+1, f ′) if λ(f ) ≤ λ(f ′).

Zachary Fehily 4 / 23



New f , Same Old g

The size of the nilpotent orbit governs how much of Vk(g) is ‘carved’ out to
construct Wk(g, f ).

Suppose f , f ′ ∈ g are nilpotent with λ(f ) ≤ λ(f ′) (so
more is carved out for f ′ than for f hence Wk(g, f ) ≥Wk(g, f ′)).

Partial Reduction
Is there a way to ‘reduce’ from Wk(g, f ) to Wk(g, f ′) like quantum
hamiltonian reduction? Strong signs pointing to yes, e.g. [Genra, Juillard, ’23]

Inverse Reduction
Can we reconstruct Wk(g, f ′) from Wk(g, f ) along with some other easy to
understand pieces?

Concretely, we are looking for embeddings

Wk(g, f ) ↪→Wk(g, f ′)⊗ V

where V is some manageable VOA. This idea goes back to work by
[Semikhatov, ’94] and [Adamović, ’17] who both considered the following example:
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[Semikhatov, ’94] and [Adamović, ’17] who both considered the following example:

Zachary Fehily 5 / 23



New f , Same Old g

The size of the nilpotent orbit governs how much of Vk(g) is ‘carved’ out to
construct Wk(g, f ). Suppose f , f ′ ∈ g are nilpotent with λ(f ) ≤ λ(f ′) (so
more is carved out for f ′ than for f hence Wk(g, f ) ≥Wk(g, f ′)).

Partial Reduction
Is there a way to ‘reduce’ from Wk(g, f ) to Wk(g, f ′) like quantum
hamiltonian reduction? Strong signs pointing to yes, e.g. [Genra, Juillard, ’23]

Inverse Reduction
Can we reconstruct Wk(g, f ′) from Wk(g, f ) along with some other easy to
understand pieces?

Concretely, we are looking for embeddings

Wk(g, f ) ↪→Wk(g, f ′)⊗ V

where V is some manageable VOA. This idea goes back to work by
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Inverse Reduction for sl2

There is one non-affine sl2 W-algebra: Wk(sl2,
(

0 0
1 0

)
) is the Virasoro vertex

algebra Virk which is generated by its conformal field L(z).

Inverse Reduction [Adamović, ’17]

For V, choose the half lattice vertex algebra Π (generators denoted
c(z), d(z) and emc(z) for m ∈ Z). Then, Vk(sl2) ↪→ Virk ⊗Π given by

h(z) 7→ 2a+(z) e(z) 7→ ec(z)

f (z) 7→ :
(
(k+ 2)L(z)− (k+ 1)∂a−(z)− a−(z)a−(z)

)
e−c(z):

where a±(z) = ± k
4 c(z) +

1
2d(z). This descends to an embedding of simple

quotients if and only if k+ 1 /∈ Z≥1.

Zachary Fehily 6 / 23



Inverse Reduction for sl2

There is one non-affine sl2 W-algebra: Wk(sl2,
(

0 0
1 0

)
) is the Virasoro vertex

algebra Virk which is generated by its conformal field L(z).

Inverse Reduction [Adamović, ’17]
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More Inverse Reductions

Can brute force all inverse reductions for sl3
[Adamović, Kawasetsu, Ridout, ’20 / Adamović, Creutzig, Genra , ’21]:

Wk(sl3,
(

0 0 0
0 0 0
1 0 0

)
) ↪→Wk(sl3,

(
0 0 0
1 0 0
0 1 0

)
)⊗Π,

Vk(sl3) ↪→Wk(sl3,
(

0 0 0
0 0 0
1 0 0

)
)⊗Π⊗ B.

Also descend to simple quotients for certain known k.

Payoff
These known inverse reductions proven to be very useful in analysing the
representation theory and important-to-physics data for the
W-algebras/affine VOAs involved.

Questions
Where does these come from? Why Π and B?
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Even More Inverse Reductions? sl4

Surely there’s a better way than brute force.
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Wakimoto Realisation of Vk(g)

This free-field realisation requires two pieces: A Heisenberg vertex algebra
H(g) with generating fields {ai(z)}ri=1 and a βγ-ghost system Bα with
generating fields {βα(z), γα(z)} for each positive root α ∈ ∆+.

ai(z)aj(w) ∼
2(k+ h∨)Ai,j1(w)

(z − w)2 βα(z)γα′(w) ∼ −δα,α
′1(w)

z − w
.

where [A] is the Cartan matrix of g. The Wakimoto realisation is an
embedding Vk(g) ↪→ H(g)⊗

⊗
α∈∆+

Bα. Can be described explicitly, but
is very complicated in general.

Question
Can we describe the image of the embedding another way?

Zachary Fehily 9 / 23
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Screening Operators

Let’s stick to sln+1. Denote the positive roots by {αi,j | 1 ≤ i ≤ j ≤ n}.
Define fields

Si(z) = :

(
βαi,i(z) +

i−1∑
j=1

γαi−j,i−1(z)βαi−j,i(z)

)
e

−1
k+h∨ ai(z):.

and consider the operators Si(0) =
∫
Si(z) dz on H(sln+1)⊗

⊗
α∈∆+

Bα.

It
turns out that the image of the Wakimoto realisation embedding is
[Feigin, Frenkel, ’90]

r⋂
i=1

ker Si(0) ≃ Vk(sln+1).

Actually, this only works for generic k. But that’s typically enough to do
what we want to do since the set of generic levels is Zariski dense in C.
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Screening Operators for W-Algebras

There is a Wakimoto-style realisation for W-algebras too: For sln+1, choose
f and pick a ‘nice’ h. Then there is a subset ∆0

+ ⊂ ∆+ such that

Wk(sln+1, f ) ↪→ H(sln+1)⊗
⊗

α∈∆0
+

Bα.

Even have screening operators related to Si(z). Call them Qi(z) [Genra, ’16]:

r⋂
i=1

ker Qi
(0) ≃Wk(sln+1, f ).

Again, this only works for generic k.

Idea
Let’s see if we can relate the free-field realisations, and therefore the
W-algebras.
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Explaining sl2 and Foreshadowing

We have free-field realisations for both of these vertex algebras:

Vk(sl2) ↪→ H(sl2)⊗ B Wk(sl2,
(

0 0
1 0

)
) ≃ Virk ↪→ H(sl2)

▶ It turns out we can embed B into Π (described by a screening operator
T(0), more on that later), called bosonisation.

▶ Compose that with the Wakimoto realisation for sl2 to obtain an
embedding Vk(sl2) ↪→ H(sl2)⊗Π, call it ψ

▶ Cook up an isomorphism H(sl2)⊗Π ≃ H̃(sl2)⊗ Π̃ such that tilded
VOAs are isomorphic to their untilded versions. Get embedding ψ̃.

▶ Virk embeds into H̃(sl2), call the embedding ϕ.
▶ If done carefully, the only fields in H̃(sl2) that appear in the image of
ψ̃ are in the image of ϕ. This defines an inverse reduction.

▶ This also works for the sl3 inverse reduction and defines one relating
the principal and subregular sln+1 W-algebras [ZF, ’21].
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Making New Inverse Reductions

Let g = sln+1.

The Second Biggest W-algebra
Let f = fθ = Mn+1,1. The minimal W-algebra Wk(sln+1, fθ) is the ‘closest’
W-algebra to Vk(sln+1).

For the minimal W-algebra, ∆0
+ = {αi,j | 1 ≤ i ≤ j ≤ n− 1}. Screening

operators are (zero modes of):

Qi(z) =

{
Si(z), i = 1, . . . n− 1,
:γα1,n−1(z)e

−1
k+h∨ an(z):, i = n.

Not unique: choosing a different f conjugate to fθ gives a different set of
screening operators but an isomorphic W-algebra.
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One Difference and Overcoming

Observation
Ignoring the differing domains, the only difference in the screening
operators for Vk(sln+1) and Wk(sln+1, fθ) is in the n’th ones:

Qn(z) = :γα1,n−1(z)e
−1

k+h∨ an(z):
vs.

Sn(z) = :

(
βαn,n(z) +

n−1∑
j=1

γαn−j,n−1(z)βαn−j,n(z)

)
e

−1
k+h∨ an(z):.

But we see something familiar the j = n− 1 term in the sum: γα1,n−1(z).

Question
Can we ‘free’ it by bosonising a ghost system?
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Tildefication
Let’s bosonise Bα1,n by embedding it into Π:

βα1,n(z) 7→ ec(z), γα1,n(z) 7→
1
2
:(c(z) + d(z)) e−c(z):.

Payoff
The screening operator Sn(z) becomes:

Sn(z) = :

(
βαn,n(z) +

n−1∑
j=1

γαn−j,n−1(z)βαn−j,n(z)

)
e

−1
k+h∨ an(z):

↓

:γ̃α1,n−1(z)e
−1

k+h∨ ãn(z):

where ãn(z) = an(z)− (k+ h∨)c(z) and

γ̃α1,n−1(z) = γα1,n−1(z) + (some other fields).
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Not So Fast

So by combining the Wakimoto realisation with bosonisation, the n’th
screening operator for Vk(sln+1) looks like that of Wk(sln+1, fθ) with tildes.

Two Problems
▶ γ̃α1,n−1(z) has nontrivial OPEs with fields that it shouldn’t, so we need

to reshuffle the rest of the fields so that the ghost fields all split into
pairs.

▶ If we’re reshuffling ghost fields, that will change the form of Si(z) (for
i < n) since it contains ghost fields.
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Splitting Ghosts

Define:

β̃α(z)= βα(z)−
1
2

∑
α′,α′′∈∆+\θ
α′+α′′=θ+α

:βα′(z)βα′′(z)e−c(z):

γ̃α(z)= γα(z) +
∑

α′∈∆+\θ
α′=θ−α

:βα′(z)e−c(z):

+
∑

α′′,α′′′∈∆+\θ
−α′′+α′′′=θ−α

:γα′′(z)βα′′′(z)e−c(z):

▶ β̃α(z)γ̃α′(w) ∼ −δα,α′1(w)(z − w)−1

▶ A Miracle?: Replacing all fields in Si(z) with their tilded versions and
substituting the above gives Si(z) back again (for i < n).
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Rearranging Screening Operators
Take the Wakimoto realisation of Vk(sln+1), bosonise Bα1,n , replace fields
with their tilded versions to obtain an embedding

Vk(sln+1)
Wakimoto
↪→ H(sln+1)⊗

⊗
α∈∆+

Bα

←
↩ Bosonisation

H(sln+1)⊗
⊗

α∈∆+\θ

Bα ⊗Π

≃
Tildefication

˜H(sln+1)⊗
⊗

α∈∆+\θ

B̃α ⊗ Π̃

with screening operators description

Vk(sln+1) ≃
n⋂

i=1

ker Q̃i
(0)︸ ︷︷ ︸

screening operators for Wk(sln+1, fθ)

∩ ker T(0)︸ ︷︷ ︸
screening operator for bosonisation

Zachary Fehily 18 / 23



Rearranging Screening Operators
Take the Wakimoto realisation of Vk(sln+1), bosonise Bα1,n , replace fields
with their tilded versions to obtain an embedding

Vk(sln+1)
Wakimoto
↪→ H(sln+1)⊗

⊗
α∈∆+

Bα

←
↩ Bosonisation

H(sln+1)⊗
⊗

α∈∆+\θ

Bα ⊗Π

≃
Tildefication

˜H(sln+1)⊗
⊗

α∈∆+\θ

B̃α ⊗ Π̃

with screening operators description

Vk(sln+1) ≃
n⋂

i=1

ker Q̃i
(0)︸ ︷︷ ︸

screening operators for Wk(sln+1, fθ)

∩ ker T(0)︸ ︷︷ ︸
screening operator for bosonisation

Zachary Fehily 18 / 23



Inverse Reduction

Result [ZF, ’Soon]

For k generic, there exists an embedding

Vk(sln+1) ↪→Wk(sln+1, fθ)⊗Π⊗ B⊗(n−1)

with known screening operator (coming from bosonisation). Generic k can
be upgraded to noncritical k with a little extra work.

Zachary Fehily 19 / 23



Where To From Here

It turns out that the above argument for the minimal to affine inverse
reduction can be easily adapted to find even more inverse reductions:

Hook-Types
Recall that sln+1 W-algebras are labelled by partitions of n+ 1. If that
partition is of the form

· · ·

...

we call the W-algebra hook-type . This includes the principal/regular,
subregular and minimal sln+1 W-algebras, as well as the affine sln+1 VOA.
There are n+ 1 of these, choose a corresponding nilpotent element f (m).
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Inverse Reduction for Hook-Types

Remarkably, an almost identical argument to that for the minimal-to-affine
slm inverse reduction gives:

Result [ZF, ’Soon]

For k generic, there exists an embedding

Wk(sln+1, f (m)) ↪→Wk(sln+1, f (m−1))⊗Π⊗ B⊗(m−2)

with known screening operator (coming from bosonisation). Generic k can
be upgraded to noncritical k with a little extra work.

▶ All known sln+1 inverse reductions are examples of the above.
▶ Tildefication is also a recipe to make the inverse reduction explicit.
▶ Can compose these embeddings to realise Vk(sln+1) in terms of any

hook-type sln+1 W-algebra.
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The Path of Hooks

Now have a traversable path in the
poset of W-algebras for sln+1 using
partial and inverse reduction.

Can construct modules for any
hook-type W-algebra (or affine VOA)
by taking a module for a ‘smaller’
hook-type W-algebra and tensoring
with modules for the bosonic ghost
systems and half lattices.

When do these inverse reduction
embeddings descend to embeddings
of simple quotients? Know sl2, sl3
and m = 2 for general sln+1
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Lingering Questions and Future Directions

▶ When else can we construct inverse reductions and why?
▶ What about examples outside of type A?
▶ Why do we need to bosonise? Some kind of localisation?
▶ Is there something geometric underlying all of this, since the

Wakimoto realisation is very geometric?
▶ Representation theory (W-algebra modules by restriction, embeddings

of simple quotients, highest-weight theory, . . . )
▶ Physics (modular-invariant partition functions, fusion, correlation

functions, conformal blocks . . . )
▶ Mathematics (finite W-algebras/shifted Yangians, Slodowy slices and

geometric representation theory, . . . )
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