The Path of Hooks

Zachary Fehily
University of Melbourne
Representation Theory XVIII

W-Algebras

Given a simple finite-dimensional Lie algebra \mathfrak{g}, a nilpotent element $f \in \mathfrak{g}$ and $\mathrm{k} \in \mathbb{C}$, the W -algebra $\mathrm{W}^{\mathrm{k}}(\mathfrak{g}, f)$ is the homology of certain complex involving the universal affine vertex algebra $\vee^{\mathrm{k}}(\mathfrak{g})$ [Kac, Roan, Wakimoto, '03].

W-Algebras

Given a simple finite-dimensional Lie algebra \mathfrak{g}, a nilpotent element $f \in \mathfrak{g}$ and $\mathrm{k} \in \mathbb{C}$, the W -algebra $\mathrm{W}^{\mathrm{k}}(\mathfrak{g}, f)$ is the homology of certain complex involving the universal affine vertex algebra $V^{\mathrm{k}}(\mathfrak{g})$ [Kac, Roan, Wakimoto, '03].

- Ubiquitous: 4d-2d, corners, higher-spin gravity, geometric Langlands.

W-Algebras

Given a simple finite-dimensional Lie algebra \mathfrak{g}, a nilpotent element $f \in \mathfrak{g}$ and $\mathrm{k} \in \mathbb{C}$, the W -algebra $\mathrm{W}^{\mathrm{k}}(\mathfrak{g}, f)$ is the homology of certain complex involving the universal affine vertex algebra $V^{\mathrm{k}}(\mathfrak{g})$ [Kac, Roan, Wakimoto, '03].

- Ubiquitous: 4d-2d, corners, higher-spin gravity, geometric Langlands.
- Mysterious: OPEs? Representation theory?

W-Algebras

Given a simple finite-dimensional Lie algebra \mathfrak{g}, a nilpotent element $f \in \mathfrak{g}$ and $\mathrm{k} \in \mathbb{C}$, the W -algebra $\mathrm{W}^{\mathrm{k}}(\mathfrak{g}, f)$ is the homology of certain complex involving the universal affine vertex algebra $\mathrm{V}^{\mathrm{k}}(\mathfrak{g})$ [Kac, Roan, Wakimoto, $\left.{ }^{\circ} 03\right]$.

- Ubiquitous: 4d-2d, corners, higher-spin gravity, geometric Langlands.
- Mysterious: OPEs? Representation theory?

Rational W-algebras

- Have many well-understood examples, appear in applications.
- If C_{2}-cofinite, category of modules is modular tensor [Huang, '08]

W-Algebras

Given a simple finite-dimensional Lie algebra \mathfrak{g}, a nilpotent element $f \in \mathfrak{g}$ and $\mathrm{k} \in \mathbb{C}$, the W -algebra $\mathrm{W}^{\mathrm{k}}(\mathfrak{g}, f)$ is the homology of certain complex involving the universal affine vertex algebra $V^{\mathrm{k}}(\mathfrak{g})$ [Kac, Roan, Wakimoto, '03].

- Ubiquitous: 4d-2d, corners, higher-spin gravity, geometric Langlands.
- Mysterious: OPEs? Representation theory?

Rational W-algebras

- Have many well-understood examples, appear in applications.
- If C_{2}-cofinite, category of modules is modular tensor [Huang, '08]

Nonrational W-algebras

- Have very few well-understood examples, still appear in applications.
- Not even clear which module category is the 'right' one (Khazdan-Lusztig? Weight modules? Fin.dim. weight-spaces?).

Goal

Better understand the structure and representation theory of W-algebras.

Partial Ordering of W-algebras

For a given \mathfrak{g}, there are many possible choices for f but $\mathrm{W}^{\mathrm{k}}(\mathfrak{g}, f)$ actually only depends on the nilpotent orbit of \mathfrak{g} containing f up to isomorphism.

Partial Ordering of W-algebras

For a given \mathfrak{g}, there are many possible choices for f but $\mathrm{W}^{\mathrm{k}}(\mathfrak{g}, f)$ actually only depends on the nilpotent orbit of \mathfrak{g} containing f up to isomorphism.

Partial ordering on nilpotent orbits \rightarrow partial ordering on W -algebras.

Partial Ordering of W-algebras

For a given \mathfrak{g}, there are many possible choices for f but $\mathrm{W}^{\mathrm{k}}(\mathfrak{g}, f)$ actually only depends on the nilpotent orbit of \mathfrak{g} containing f up to isomorphism.

Partial ordering on nilpotent orbits \rightarrow partial ordering on W -algebras.
Stick to the nice case $\mathfrak{g}=\mathfrak{s l}_{n+1}$ from now on.

- Let $f \in \mathfrak{s l}_{n+1}$ be nilpotent and consider its Jordan normal form $\operatorname{JNF}(f)$.

Partial Ordering of W-algebras

For a given \mathfrak{g}, there are many possible choices for f but $\mathrm{W}^{\mathrm{k}}(\mathfrak{g}, f)$ actually only depends on the nilpotent orbit of \mathfrak{g} containing f up to isomorphism.

Partial ordering on nilpotent orbits \rightarrow partial ordering on W-algebras.
Stick to the nice case $\mathfrak{g}=\mathfrak{s l}_{n+1}$ from now on.

- Let $f \in \mathfrak{s l}_{n+1}$ be nilpotent and consider its Jordan normal form $\operatorname{JNF}(f)$.
- The unique non-increasing sequence of block sizes in $\operatorname{JNF}(f)$ is a partition of $n+1$, call it $\lambda(f)$.

Partial Ordering of W-algebras

For a given \mathfrak{g}, there are many possible choices for f but $\mathrm{W}^{\mathrm{k}}(\mathfrak{g}, f)$ actually only depends on the nilpotent orbit of \mathfrak{g} containing f up to isomorphism.

Partial ordering on nilpotent orbits \rightarrow partial ordering on W-algebras.
Stick to the nice case $\mathfrak{g}=\mathfrak{s l}_{n+1}$ from now on.

- Let $f \in \mathfrak{s l}_{n+1}$ be nilpotent and consider its Jordan normal form $\operatorname{JNF}(f)$.
- The unique non-increasing sequence of block sizes in $\operatorname{JNF}(f)$ is a partition of $n+1$, call it $\lambda(f)$.
- Any matrix conjugate to f has the same JNF as f. So nilpotent orbits are labelled by partitions $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right) \in \mathcal{P}(n+1)$.

Partial Ordering of W-algebras

For a given \mathfrak{g}, there are many possible choices for f but $\mathrm{W}^{\mathrm{k}}(\mathfrak{g}, f)$ actually only depends on the nilpotent orbit of \mathfrak{g} containing f up to isomorphism.

Partial ordering on nilpotent orbits \rightarrow partial ordering on W-algebras.
Stick to the nice case $\mathfrak{g}=\mathfrak{s l}_{n+1}$ from now on.

- Let $f \in \mathfrak{s l}_{n+1}$ be nilpotent and consider its Jordan normal form $\operatorname{JNF}(f)$.
- The unique non-increasing sequence of block sizes in $\operatorname{JNF}(f)$ is a partition of $n+1$, call it $\lambda(f)$.
- Any matrix conjugate to f has the same JNF as f. So nilpotent orbits are labelled by partitions $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right) \in \mathcal{P}(n+1)$.

$$
\lambda \leq \lambda^{\prime} \quad \leftrightarrow \quad \sum_{i=1}^{k} \lambda_{i} \leq \sum_{i=1}^{k} \lambda_{i}^{\prime} \quad \forall k \geq 1 .
$$

We say that $\mathrm{W}^{\mathrm{k}}\left(\mathfrak{s l}_{n+1}, f\right) \geq \mathrm{W}^{\mathrm{k}}\left(\mathfrak{s l}_{n+1}, f^{\prime}\right)$ if $\lambda(f) \leq \lambda\left(f^{\prime}\right)$.

New f, Same Old \mathfrak{g}

The size of the nilpotent orbit governs how much of $\mathrm{V}^{\mathrm{k}}(\mathfrak{g})$ is 'carved' out to construct $\mathrm{W}^{\mathrm{k}}(\mathfrak{g}, f)$.

New f, Same Old \mathfrak{g}

The size of the nilpotent orbit governs how much of $\mathrm{V}^{\mathrm{k}}(\mathfrak{g})$ is 'carved' out to construct $\mathrm{W}^{\mathrm{k}}(\mathfrak{g}, f)$. Suppose $f, f^{\prime} \in \mathfrak{g}$ are nilpotent with $\lambda(f) \leq \lambda\left(f^{\prime}\right)$ (so more is carved out for f^{\prime} than for f hence $\mathrm{W}^{\mathrm{k}}(\mathfrak{g}, f) \geq \mathrm{W}^{\mathrm{k}}\left(\mathfrak{g}, f^{\prime}\right)$).

New f, Same Old \mathfrak{g}

The size of the nilpotent orbit governs how much of $\mathrm{V}^{\mathrm{k}}(\mathfrak{g})$ is 'carved' out to construct $\mathrm{W}^{\mathrm{k}}(\mathfrak{g}, f)$. Suppose $f, f^{\prime} \in \mathfrak{g}$ are nilpotent with $\lambda(f) \leq \lambda\left(f^{\prime}\right)$ (so more is carved out for f^{\prime} than for f hence $\mathrm{W}^{\mathrm{k}}(\mathfrak{g}, f) \geq \mathrm{W}^{\mathrm{k}}\left(\mathfrak{g}, f^{\prime}\right)$).

Partial Reduction

Is there a way to 'reduce' from $\mathrm{W}^{\mathrm{k}}(\mathfrak{g}, f)$ to $\mathrm{W}^{\mathrm{k}}\left(\mathfrak{g}, f^{\prime}\right)$ like quantum hamiltonian reduction? Strong signs pointing to yes, e.g. [Genra, Juillard, '23]

New f, Same Old \mathfrak{g}

The size of the nilpotent orbit governs how much of $\mathrm{V}^{\mathrm{k}}(\mathfrak{g})$ is 'carved' out to construct $\mathrm{W}^{\mathrm{k}}(\mathfrak{g}, f)$. Suppose $f, f^{\prime} \in \mathfrak{g}$ are nilpotent with $\lambda(f) \leq \lambda\left(f^{\prime}\right)$ (so more is carved out for f^{\prime} than for f hence $\mathrm{W}^{\mathrm{k}}(\mathfrak{g}, f) \geq \mathrm{W}^{\mathrm{k}}\left(\mathfrak{g}, f^{\prime}\right)$).

Partial Reduction

Is there a way to 'reduce' from $\mathrm{W}^{\mathrm{k}}(\mathfrak{g}, f)$ to $\mathrm{W}^{\mathrm{k}}\left(\mathfrak{g}, f^{\prime}\right)$ like quantum hamiltonian reduction? Strong signs pointing to yes, e.g. [Genra, Juillard, '23]

Inverse Reduction

Can we reconstruct $\mathrm{W}^{\mathrm{k}}\left(\mathfrak{g}, f^{\prime}\right)$ from $\mathrm{W}^{\mathrm{k}}(\mathfrak{g}, f)$ along with some other easy to understand pieces?

New f, Same Old \mathfrak{g}

The size of the nilpotent orbit governs how much of $\mathrm{V}^{\mathrm{k}}(\mathfrak{g})$ is 'carved' out to construct $\mathrm{W}^{\mathrm{k}}(\mathfrak{g}, f)$. Suppose $f, f^{\prime} \in \mathfrak{g}$ are nilpotent with $\lambda(f) \leq \lambda\left(f^{\prime}\right)$ (so more is carved out for f^{\prime} than for f hence $\mathrm{W}^{\mathrm{k}}(\mathfrak{g}, f) \geq \mathrm{W}^{\mathrm{k}}\left(\mathfrak{g}, f^{\prime}\right)$).

Partial Reduction

Is there a way to 'reduce' from $\mathrm{W}^{\mathrm{k}}(\mathfrak{g}, f)$ to $\mathrm{W}^{\mathrm{k}}\left(\mathfrak{g}, f^{\prime}\right)$ like quantum hamiltonian reduction? Strong signs pointing to yes, e.g. [Genra, Juillard, '23]

Inverse Reduction

Can we reconstruct $\mathrm{W}^{\mathrm{k}}\left(\mathfrak{g}, f^{\prime}\right)$ from $\mathrm{W}^{\mathrm{k}}(\mathfrak{g}, f)$ along with some other easy to understand pieces?

Concretely, we are looking for embeddings

$$
\mathrm{W}^{\mathrm{k}}(\mathfrak{g}, f) \hookrightarrow \mathrm{W}^{\mathrm{k}}\left(\mathfrak{g}, f^{\prime}\right) \otimes \mathrm{V}
$$

where V is some manageable VOA. This idea goes back to work by [Semikhatov, '94] and [Adamovic, ' 17$]$ who both considered the following example:

Inverse Reduction for $\mathfrak{s l}_{2}$

There is one non-affine $\mathfrak{s l}_{2} \mathrm{~W}$-algebra: $\mathrm{W}^{\mathrm{k}}\left(\mathfrak{s l}_{2},\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)\right.$ o $)$) is the Virasoro vertex algebra $\mathrm{Vir}^{\mathrm{k}}$ which is generated by its conformal field $L(z)$.

Inverse Reduction for $\mathfrak{s l}_{2}$

There is one non-affine $\mathfrak{s l}_{2} \mathrm{~W}$-algebra: $\mathrm{W}^{\mathrm{k}}\left(\mathfrak{s l}_{2},\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)\right.$ or $)$) is the Virasoro vertex algebra $\mathrm{Vir}^{\mathrm{k}}$ which is generated by its conformal field $L(z)$.

Inverse Reduction [Adamovié, '17]

For V, choose the half lattice vertex algebra Π (generators denoted $c(z), d(z)$ and $\mathrm{e}^{m c}(z)$ for $\left.m \in \mathbb{Z}\right)$. Then, $\mathrm{V}^{\mathrm{k}}\left(\mathfrak{s l}_{2}\right) \hookrightarrow \mathrm{Vir}^{\mathrm{k}} \otimes \Pi$ given by

$$
\begin{gathered}
h(z) \mapsto 2 a^{+}(z) \quad e(z) \mapsto \mathrm{e}^{c}(z) \\
f(z) \mapsto:\left((\mathrm{k}+2) L(z)-(\mathrm{k}+1) \partial a^{-}(z)-a^{-}(z) a^{-}(z)\right) \mathrm{e}^{-c}(z):
\end{gathered}
$$

where $a^{ \pm}(z)= \pm \frac{\mathrm{k}}{4} c(z)+\frac{1}{2} d(z)$. This descends to an embedding of simple quotients if and only if $k+1 \notin \mathbb{Z}_{\geq 1}$.

More Inverse Reductions

Can brute force all inverse reductions for $\mathfrak{S l}_{3}$
[Adamović, Kawasetsu, Ridout, '20 / Adamović, Creutzig, Genra , '21]:

$$
\begin{gathered}
\mathrm{W}^{\mathrm{k}}\left(\mathfrak{s l}_{3},\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)\right) \hookrightarrow \mathrm{W}^{\mathrm{k}}\left(\mathfrak{s l}_{3},\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)\right) \otimes \Pi, \\
\mathrm{V}^{\mathrm{k}}\left(\mathfrak{s l}_{3}\right) \hookrightarrow \mathrm{W}^{\mathrm{k}}\left(\mathfrak{s l}_{3},\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0
\end{array}\right)\right) \otimes \Pi \otimes \mathrm{B}
\end{gathered}
$$

Also descend to simple quotients for certain known k.

More Inverse Reductions

Can brute force all inverse reductions for $\mathfrak{s l}_{3}$
[Adamović, Kawasetsu, Ridout, '20 / Adamović, Creutzig, Genra , '21]:

$$
\begin{gathered}
\mathrm{W}^{\mathrm{k}}\left(\mathfrak{s l}_{3},\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)\right) \hookrightarrow \mathrm{W}^{\mathrm{k}}\left(\mathfrak{s l}_{3},\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)\right) \otimes \Pi \\
\mathrm{V}^{\mathrm{k}}\left(\mathfrak{s l}_{3}\right) \hookrightarrow \mathrm{W}^{\mathrm{k}}\left(\mathfrak{s l}_{3},\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0
\end{array}\right)\right) \otimes \Pi \otimes \mathrm{B}
\end{gathered}
$$

Also descend to simple quotients for certain known k .

Payoff

These known inverse reductions proven to be very useful in analysing the representation theory and important-to-physics data for the W-algebras/affine VOAs involved.

More Inverse Reductions

Can brute force all inverse reductions for $\mathfrak{s l}_{3}$
[Adamović, Kawasetsu, Ridout, '20 / Adamović, Creutzig, Genra , '21]:

$$
\begin{gathered}
\mathrm{W}^{\mathrm{k}}\left(\mathfrak{s l}_{3},\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)\right) \hookrightarrow \mathrm{W}^{\mathrm{k}}\left(\mathfrak{s l}_{3},\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)\right) \otimes \Pi \\
\mathrm{V}^{\mathrm{k}}\left(\mathfrak{s l}_{3}\right) \hookrightarrow \mathrm{W}^{\mathrm{k}}\left(\mathfrak{s l}_{3},\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0
\end{array}\right)\right) \otimes \Pi \otimes \mathrm{B}
\end{gathered}
$$

Also descend to simple quotients for certain known k .

Payoff

These known inverse reductions proven to be very useful in analysing the representation theory and important-to-physics data for the W-algebras/affine VOAs involved.

Questions

Where does these come from? Why Π and B?

Even More Inverse Reductions? $\mathfrak{s l}_{4}$

$$
\begin{aligned}
& j(z) j(w) \sim \frac{(3 k+8) \mathbf{1}(w)}{4(z-w)^{2}}, \quad j(z) g^{ \pm}(w) \sim \frac{ \pm G^{ \pm}(w)}{(z-w)}, \\
& g^{+}(z) g^{-}(w) \sim \frac{(\mathrm{k}+2)(2 \mathrm{k}+5)(3 \mathrm{k}+8) \mathbf{1}(w)}{(z-w)^{4}}+\frac{4(\mathrm{k}+2)(2 \mathrm{k}+5) j(w)}{(z-w)^{3}}-\frac{(\mathrm{k}+2)((\mathrm{k}+4) \tilde{T}(w)-6 \cdot j(w) j(w):-2(2 \mathrm{k}+5) \partial j(w))}{(z-w)^{2}} \\
& +(\mathrm{k}+2)\left(W(w)+\frac{8(11 \mathrm{k}+32)}{3(3 \mathrm{k}+8)^{2}}: j(w)^{3}:-\frac{4(\mathrm{k}+4)}{3 \mathrm{k}+8}: \bar{T}(w) j(w):+6: j(w) \partial j(w):\right. \\
& \left.-\frac{1}{2}(\mathbf{k}+4) \partial \tilde{T}(w)+\frac{4\left(3 \mathbf{k}^{2}+17 \mathbf{k}+26\right)}{3(3 \mathbf{k}+8)} \partial^{2} j(w)\right)(z-w)^{-1}, \\
& w(z) g^{\perp}(w) \sim \pm \frac{2(k+4)(3 k+7)(5 k+16) g^{\perp}(w)}{(3 k+8)^{2}(z-w)^{3}}+\left(\pm \frac{3(k+4)(5 k+16)}{2(3 k+8)} d g^{\perp}(w)-\frac{6(k+4)(5 k+16)}{(3 k+8)^{2}} j(w) g^{\perp}(w):\right)(z-w)^{-2} \\
& +\left(-\frac{8(\mathbf{k}+3)(\mathbf{k}+4)}{(\mathbf{k}+2)(3 \mathrm{k}+8)} \cdot j(w) \partial g^{ \pm}(w):-\frac{4(\mathrm{k}+4)\left(3 \mathbf{k}^{2}+15 \mathrm{k}+16\right)}{(\mathrm{k}+2)(3 \mathrm{k}+8)^{2}}: \partial j(w) g^{ \pm}(w): \pm \frac{(\mathbf{k}+3)(\mathrm{k}+4)}{\mathrm{k}+2} \partial^{2} g^{ \pm}(w)\right. \\
& w(z) W(w) \sim 2(k+4 \\
& +\left(-\frac{5}{\text { generating fields }}\right. \\
& +\frac{8(k+4)^{3}(5 k+16)}{(3 k+8)\left(20 \mathbf{k}^{2}+93 k+102\right)}: \tilde{T}_{\perp}(w) \tilde{T}_{\perp}(w):+4(k+4) \Lambda(w) \mid(z-w)^{-2} \\
& \left.+\frac{8(k+4)^{3}(5 k+16)}{(3 k+8)\left(20 k^{2}+93 k+102\right)}: \partial \widetilde{T}_{\perp}(w) T_{\perp}(w):+2(k+4) \partial \Lambda(w)\right)(z-w)^{-1}, \\
& \text { where } \tilde{T}(z)=T_{(3,1)}(z)-\partial j(z), \tilde{T}_{1}(z)=\tilde{T}(z)-\frac{2}{3 k+\beta} ; j(z) j(z) \text { : and } \\
& (\mathrm{k}+2)^{2} \Lambda(z)=g^{+}(z) g^{-}(z):-\frac{\mathrm{k}+2}{2} \partial W(z)-\frac{4(\mathrm{k}+2)}{3 \mathrm{k}+8}: W(z) j(z):+\frac{3(\mathrm{k}+2)^{2}(\mathrm{k}+4)\left(6 \mathrm{k}^{2}+33 \mathrm{k}+46\right)}{2(3 \mathrm{k}+8)\left(20 \mathrm{k}^{2}+93 \mathrm{k}+102\right)} \partial^{2} \bar{\tau}_{\perp}(z) \\
& H(z) H(w) \sim \frac{2(\mathrm{k}+1) 1(w)}{(z-w)^{2}}, \quad J(z) J(w) \sim \frac{4(\mathrm{k}+2) 1(w)}{(z-w)^{2}}, \\
& H(z) E(w) \sim \frac{2 E(w)}{z-w}, \quad H(z) F(W) \sim \frac{-2 F(w)}{z-w}, \quad H(z) G^{i, \pm}(w) \sim \frac{(3-2 i) G^{i, \pm}(w)}{z-w} \\
& J(z) G^{1, \pm}(w) \sim \frac{ \pm 2 G^{1, \pm}(w)}{(z-w)}, \quad J(z) G^{2, \pm}(w) \sim \frac{ \pm 2 G^{2, \pm}(w)}{(z-w)}, \quad E(z) F(w) \sim \frac{(\mathrm{k}+1) 1(w)}{(z-w)^{2}}+\frac{H(w)}{z-w}, \\
& E(z) G^{2,-}(w) \sim \frac{G^{1,-}(w)}{z-w} \quad E(z) G^{2+}(z) \sim \frac{-G^{\prime \prime}(w)}{z-w}, F(z) G^{1,}(w) \sim \frac{G^{2}(w)}{z-w}, \quad F(z) G^{1,+}(w) \sim \frac{-G^{2,+}(w)}{z-w}, \\
& G^{1-(z) G^{1,+}(w)} \left\lvert\, \frac{2(w) E(w):-(k+2) E(w)}{4, \mathbf{1}}\right., \\
& G^{1,-}(z) G^{2+}(w)-\frac{-2(k+1)(k+2)}{(z-w)^{3}} \frac{(z-w)^{2}}{(z)} \\
& +\frac{(\mathrm{k}+4) T_{(2,1,1)}(w)-2: E(w) F(w):-\frac{1}{2}: H(w) H(w):+\frac{1}{2}: H(w) J(w):-\frac{3}{8}: J(w) J(w):-\frac{k}{2} \partial H(w)+\frac{1}{2}(\mathrm{k}+1) \partial J(w)}{z-w}, \\
& G^{1,+}(z) G^{2,-}(w) \sim \frac{2(\mathrm{k}+1)(\mathrm{k}+2) 1(w)}{(z-w)^{3}}+\frac{(\mathbf{k}+1) J(w)+(\mathbf{k}+2) H(w)}{(z-w)^{2}} \\
& +\frac{-(\mathrm{k}+4) T_{(2,1,1)}(w)+2: E(w) F(w):+\frac{1}{2}: H(w) H(w):+\frac{1}{2}: H(w) J(w):+\frac{3}{8}: J(w) J(w):+\frac{k}{2} \partial H(w)+\frac{1}{2}(\mathrm{k}+1) \partial J(w)}{z-w} . \\
& -\frac{(\mathbf{k}+2)(\mathbf{k}+4)^{2}(11 \mathrm{k}+26)}{2(3 \mathrm{k}+8)\left(20 \mathrm{k}^{2}+93 \mathrm{k}+102\right)}: T_{\perp}(z) T_{\perp}(z):+\frac{2(\mathbf{k}+2)(\mathbf{k}+4)}{3 \mathrm{k}+8} 2 T_{\perp}(z) j(z):+\frac{8(\mathbf{k}+2)(\mathrm{k}+4)}{(3 \mathrm{k}+8)^{2}}: T_{\perp}(z) j(z) j(z): \\
& -\frac{(\mathrm{k}+2)(2 \mathrm{k}+5)}{3 \mathrm{k}+8}\left(\frac{8}{3}: \partial^{2} j(z) j(z):+2 \cdot \partial j(z) \partial j(z):+\frac{16}{3 \mathrm{k}+8}: \partial j(z) j(z) j(z):+\frac{32}{3(3 \mathrm{k}+8)^{2}}: j()^{4}:+\frac{3 \mathrm{k}+8}{6} \partial^{3} j(z)\right) \text {. }
\end{aligned}
$$

Even More Inverse Reductions? $\mathfrak{s l}_{4}$

$$
\begin{aligned}
& j(z) j(w) \sim \frac{(3 k+8) \mathbf{1}(w)}{4(z-w)^{2}}, \quad j(z) g^{ \pm}(w) \sim \frac{ \pm G^{ \pm}(w)}{(z-w)}, \\
& g^{+}(z) g^{-}(w) \sim \frac{(\mathrm{k}+2)(2 \mathrm{k}+5)(3 \mathrm{k}+8) \mathbf{1}(w)}{(z-w)^{4}}+\frac{4(\mathrm{k}+2)(2 \mathrm{k}+5) j(w)}{(z-w)^{3}}-\frac{(\mathrm{k}+2)((\mathrm{k}+4) \tilde{T}(w)-6 \cdot j(w) j(w):-2(2 \mathrm{k}+5) \partial j(w))}{(z-w)^{2}} \\
& +(\mathrm{k}+2)\left(W(w)+\frac{8(11 \mathrm{k}+32)}{3(3 \mathrm{k}+8)^{2}}: j(w)^{3}:-\frac{4(\mathrm{k}+4)}{3 \mathrm{k}+8}: \bar{T}(w) j(w):+6: j(w) \partial j(w):\right. \\
& \left.-\frac{1}{2}(\mathbf{k}+4) \partial \tilde{T}(w)+\frac{4\left(3 \mathbf{k}^{2}+17 \mathbf{k}+26\right)}{3(3 \mathbf{k}+8)} \partial^{2} j(w)\right)(z-w)^{-1}, \\
& w(z) g^{\perp}(w) \sim \pm \frac{2(k+4)(3 k+7)(5 k+16) g^{\perp}(w)}{(3 k+8)^{2}(z-w)^{3}}+\left(\pm \frac{3(k+4)(5 k+16)}{2(3 k+8)} d g^{\perp}(w)-\frac{6(k+4)(5 k+16)}{(3 k+8)^{2}} j(w) g^{\perp}(w):\right)(z-w)^{-2} \\
& +\left(-\frac{8(\mathbf{k}+3)(\mathbf{k}+4)}{(\mathbf{k}+2)(3 \mathrm{k}+8)} \cdot j(w) \partial g^{ \pm}(w):-\frac{4(\mathrm{k}+4)\left(3 \mathbf{k}^{2}+15 \mathrm{k}+16\right)}{(\mathrm{k}+2)(3 \mathrm{k}+8)^{2}}: \partial j(w) g^{ \pm}(w): \pm \frac{(\mathbf{k}+3)(\mathrm{k}+4)}{\mathrm{k}+2} \partial^{2} g^{ \pm}(w)\right. \\
& w(z) W(w) \sim 2(k+4 \\
& +\left(-\frac{5}{}\right. \text { generating fields } \\
& +\frac{8(k+4)^{3}(5 k+16)}{(3 k+8)\left(20 k^{2}+93 k+102\right)}: \tilde{T}_{\perp}(w) \tilde{T}_{\perp}(w):+4(k+4) \Lambda(w) \mid(z-w)^{-2} \\
& +\left(-\frac{(k+4)^{2}(5 k+16)\left(12 k^{2}+59 k+74\right)}{6(3 k+8)\left(20 k^{2}+93 k+102\right)} \delta^{3} \bar{T}_{\perp}(w)\right. \\
& \left.+\frac{8(k+4)^{3}(5 k+16)}{(3 k+8)\left(20 k^{2}+93 k+102\right)}: \partial \widetilde{T}_{\perp}(w) T_{\perp}(w):+2(k+4) \partial \Lambda(w)\right)(z-w)^{-1}, \\
& \text { where } \tilde{T}(z)=T_{(3,1)}(z)-\partial j(z), \tilde{T}_{\perp}(z)=\tilde{T}(z)-\frac{2}{3 k+\$} ; j(z) j(z) \text { : and } \\
& (\mathrm{k}+2)^{2} \Lambda(z)=g^{+}(\mathrm{z}) g^{-}(\mathrm{z}):-\frac{\mathrm{k}+2}{2} d W(\mathrm{z})-\frac{4(\mathrm{k}+2)}{3 \mathrm{k}+8}: W(\mathrm{z}) j(\mathrm{z}):+\frac{3(\mathrm{k}+2)^{2}(\mathrm{k}+4)\left(6 \mathrm{k}^{2}+33 \mathrm{k}+46\right)}{2(3 \mathrm{k}+8)\left(20 \mathrm{k}^{2}+93 \mathrm{k}+102\right)} d^{2} \bar{T}_{\perp}(\mathrm{z}) \\
& -\frac{(\mathbf{k}+2)(\mathbf{k}+4)^{2}(11 \mathrm{k}+26)}{2(3 \mathrm{k}+8)\left(20 \mathrm{k}^{2}+93 \mathrm{k}+102\right)}: T_{\perp}(z) T_{\perp}(z):+\frac{2(\mathbf{k}+2)(\mathbf{k}+4)}{3 \mathrm{k}+8} \partial T_{\perp}(z) j(z):+\frac{8(\mathbf{k}+2)(\mathrm{k}+4)}{(3 \mathrm{k}+8)^{2}}: T_{\perp}(z) j(z) j(z) \\
& -\frac{(\mathrm{k}+2)(2 \mathrm{k}+5)}{3 \mathrm{k}+8}\left(\frac{8}{3}: \partial^{2} j(z) j(z):+2: \partial j(z) \partial j(z):+\frac{16}{3 \mathrm{k}+8}: \partial j(z) j(z) j(z):+\frac{32}{3(3 \mathrm{k}+8)^{2}}: j(z)^{4}:+\frac{3 \mathrm{k}+8}{6} \partial^{3} j(z)\right) \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& H(z) H(w) \sim \frac{2(\mathrm{k}+1) 1(w)}{(z-w)^{2}}, \quad J(z) J(w) \sim \frac{4(\mathrm{k}+2) 1(w)}{(z-w)^{2}}, \\
& H(z) E(w) \sim \frac{2 E(w)}{z-w}, \quad H(z) F(W) \sim \frac{-2 F(w)}{z-w}, \quad H(z) G^{i, \pm}(w) \sim \frac{(3-2 i) G^{i, \pm}(w)}{z-w} \\
& J(z) G^{1, \pm}(w) \sim \frac{ \pm 2 G^{1, \pm}(w)}{(z-w)}, \quad J(z) G^{2, \pm}(w) \sim \frac{ \pm 2 G^{2, \pm}(w)}{(z-w)}, \quad E(z) F(w) \sim \frac{(\mathrm{k}+1) 1(w)}{(z-w)^{2}}+\frac{H(w)}{z-w}, \\
& E(z) G^{2,-}(w) \sim \frac{G^{1,-}(w)}{z-w} \quad E(z) G^{2+}(z) \sim \frac{-G^{\prime \prime}(w)}{z-w}, F(z) G^{1,}(w) \sim \frac{G^{2}(w)}{z-w}, \quad F(z) G^{1,+}(w) \sim \frac{-G^{2,+}(w)}{z-w},
\end{aligned}
$$

$$
\begin{aligned}
& G^{:}(z) G^{2+}(w) \sim-2(k+2) F(w)+4(w) F(w):-(k+2) \overline{F(w)} \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{(\mathrm{k}+4) T_{(2,1,1)}(w)-2: E(w) F(w):-\frac{1}{2}: H(w) H(w):+\frac{1}{2}: H(w) J(w):-\frac{3}{8}: J(w) J(w):-\frac{k}{2} \partial H(w)+\frac{1}{2}(k+1) \partial J(w)}{z-w}, \\
& G^{1,+}(z) G^{2,-}(w) \sim \frac{2(k+1)(k+2) 1(w)}{(z-w)^{3}}+\frac{(k+1) J(w)+(k+2) H(w)}{(z-w)^{2}} \\
& +\frac{-(\mathrm{k}+4) T_{(2,1,1)}(w)+2: E(w) F(w):+\frac{1}{2}: H(w) H(w):+\frac{1}{2}: H(w) J(w):+\frac{3}{8}: J(w) J(w):+\frac{k}{2} \partial H(w)+\frac{1}{2}(\mathrm{k}+1) \partial J(w)}{z-w} . \\
& (z-w)^{2}
\end{aligned}
$$

Surely there's a better way than brute force.

Wakimoto Realisation of $V^{\mathrm{k}}(\mathfrak{g})$

This free-field realisation requires two pieces: A Heisenberg vertex algebra $\mathrm{H}(\mathfrak{g})$ with generating fields $\left\{a_{i}(z)\right\}_{i=1}^{r}$ and a $\beta \gamma$-ghost system B_{α} with generating fields $\left\{\beta_{\alpha}(z), \gamma_{\alpha}(z)\right\}$ for each positive root $\alpha \in \Delta_{+}$.

Wakimoto Realisation of $V^{\mathrm{k}}(\mathfrak{g})$

This free-field realisation requires two pieces: A Heisenberg vertex algebra $\mathrm{H}(\mathfrak{g})$ with generating fields $\left\{a_{i}(z)\right\}_{i=1}^{r}$ and a $\beta \gamma$-ghost system B_{α} with generating fields $\left\{\beta_{\alpha}(z), \gamma_{\alpha}(z)\right\}$ for each positive root $\alpha \in \Delta_{+}$.

$$
a_{i}(z) a_{j}(w) \sim \frac{2\left(\mathrm{k}+\mathrm{h}^{\vee}\right) A_{i, j} \mathbb{1}(w)}{(z-w)^{2}} \quad \beta_{\alpha}(z) \gamma_{\alpha^{\prime}}(w) \sim \frac{-\delta_{\alpha, \alpha^{\prime}} \mathbb{1}(w)}{z-w}
$$

where $[A]$ is the Cartan matrix of \mathfrak{g}.

Wakimoto Realisation of $V^{\mathrm{k}}(\mathfrak{g})$

This free-field realisation requires two pieces: A Heisenberg vertex algebra $\mathrm{H}(\mathfrak{g})$ with generating fields $\left\{a_{i}(z)\right\}_{i=1}^{r}$ and a $\beta \gamma$-ghost system B_{α} with generating fields $\left\{\beta_{\alpha}(z), \gamma_{\alpha}(z)\right\}$ for each positive root $\alpha \in \Delta_{+}$.

$$
a_{i}(z) a_{j}(w) \sim \frac{2\left(\mathrm{k}+\mathrm{h}^{\vee}\right) A_{i, j} \mathbb{1}(w)}{(z-w)^{2}} \quad \beta_{\alpha}(z) \gamma_{\alpha^{\prime}}(w) \sim \frac{-\delta_{\alpha, \alpha^{\prime}} \mathbb{1}(w)}{z-w} .
$$

where $[A]$ is the Cartan matrix of \mathfrak{g}. The Wakimoto realisation is an embedding $\mathrm{V}^{\mathrm{k}}(\mathfrak{g}) \hookrightarrow \mathrm{H}(\mathfrak{g}) \otimes \otimes_{\alpha \in \Delta_{+}} \mathrm{B}_{\alpha}$. Can be described explicitly, but is very complicated in general.

Wakimoto Realisation of $V^{\mathrm{k}}(\mathfrak{g})$

This free-field realisation requires two pieces: A Heisenberg vertex algebra $\mathrm{H}(\mathfrak{g})$ with generating fields $\left\{a_{i}(z)\right\}_{i=1}^{r}$ and a $\beta \gamma$-ghost system B_{α} with generating fields $\left\{\beta_{\alpha}(z), \gamma_{\alpha}(z)\right\}$ for each positive root $\alpha \in \Delta_{+}$.

$$
a_{i}(z) a_{j}(w) \sim \frac{2\left(\mathrm{k}+\mathrm{h}^{\vee}\right) A_{i, j} \mathbb{1}(w)}{(z-w)^{2}} \quad \beta_{\alpha}(z) \gamma_{\alpha^{\prime}}(w) \sim \frac{-\delta_{\alpha, \alpha^{\prime}} \mathbb{1}(w)}{z-w} .
$$

where $[A]$ is the Cartan matrix of \mathfrak{g}. The Wakimoto realisation is an embedding $\mathrm{V}^{\mathrm{k}}(\mathfrak{g}) \hookrightarrow \mathrm{H}(\mathfrak{g}) \otimes \otimes_{\alpha \in \Delta_{+}} \mathrm{B}_{\alpha}$. Can be described explicitly, but is very complicated in general.

Question

Can we describe the image of the embedding another way?

Screening Operators

Let's stick to $\mathfrak{s l}_{n+1}$. Denote the positive roots by $\left\{\alpha_{i, j} \mid 1 \leq i \leq j \leq n\right\}$. Define fields

$$
S^{i}(z)=:\left(\beta_{\alpha_{i, i}}(z)+\sum_{j=1}^{i-1} \gamma_{\alpha_{i-j, i-1}}(z) \beta_{\alpha_{i-j, i}}(z)\right) \mathrm{e}^{\frac{-1}{k+h\rangle} a_{i}}(z): .
$$

and consider the operators $S_{(0)}^{i}=\int S^{i}(z) \mathrm{d} z$ on $\mathrm{H}\left(\mathfrak{s l}_{n+1}\right) \otimes \otimes_{\alpha \in \Delta_{+}} \mathrm{B}_{\alpha}$.

Screening Operators

Let's stick to $\mathfrak{s l}_{n+1}$. Denote the positive roots by $\left\{\alpha_{i, j} \mid 1 \leq i \leq j \leq n\right\}$. Define fields

$$
S^{i}(z)=:\left(\beta_{\alpha_{i, i}}(z)+\sum_{j=1}^{i-1} \gamma_{\alpha_{i-j, i-1}}(z) \beta_{\alpha_{i-j, i}}(z)\right) \mathrm{e}^{\frac{-1}{k+h\rangle} a_{i}}(z): .
$$

and consider the operators $S_{(0)}^{i}=\int S^{i}(z) \mathrm{d} z$ on $\mathrm{H}\left(\mathfrak{s l}_{n+1}\right) \otimes \otimes_{\alpha \in \Delta_{+}} \mathrm{B}_{\alpha}$. It turns out that the image of the Wakimoto realisation embedding is
[Feigin, Frenkel, '90]

$$
\bigcap_{i=1}^{r} \operatorname{ker} S_{(0)}^{i} \simeq \mathrm{~V}^{\mathrm{k}}\left(\mathfrak{s l}_{n+1}\right)
$$

Screening Operators

Let's stick to $\mathfrak{s l}_{n+1}$. Denote the positive roots by $\left\{\alpha_{i, j} \mid 1 \leq i \leq j \leq n\right\}$. Define fields

$$
S^{i}(z)=:\left(\beta_{\alpha_{i, i}}(z)+\sum_{j=1}^{i-1} \gamma_{\alpha_{i-j, i-1}}(z) \beta_{\alpha_{i-j, i}}(z)\right) \mathrm{e}^{\frac{-1}{k+h} a_{i}}(z): .
$$

and consider the operators $S_{(0)}^{i}=\int S^{i}(z) \mathrm{d} z$ on $\mathrm{H}\left(\mathfrak{s l}_{n+1}\right) \otimes \otimes_{\alpha \in \Delta_{+}} \mathrm{B}_{\alpha}$. It turns out that the image of the Wakimoto realisation embedding is
[Feigin, Frenkel, '90]

$$
\bigcap_{i=1}^{r} \operatorname{ker} S_{(0)}^{i} \simeq \mathrm{~V}^{\mathrm{k}}\left(\mathfrak{s l}_{n+1}\right) .
$$

Actually, this only works for generic k. But that's typically enough to do what we want to do since the set of generic levels is Zariski dense in \mathbb{C}.

Screening Operators for W-Algebras

There is a Wakimoto-style realisation for W-algebras too: For $\mathfrak{s l}_{n+1}$, choose f and pick a 'nice' h. Then there is a subset $\Delta_{+}^{0} \subset \Delta_{+}$such that

$$
\mathrm{W}^{\mathrm{k}}\left(\mathfrak{s l}_{n+1}, f\right) \hookrightarrow \mathrm{H}\left(\mathfrak{s l}_{n+1}\right) \otimes \bigotimes_{\alpha \in \Delta_{+}^{0}} \mathrm{~B}_{\alpha} .
$$

Screening Operators for W-Algebras

There is a Wakimoto-style realisation for W-algebras too: For $\mathfrak{s l}_{n+1}$, choose f and pick a 'nice' h. Then there is a subset $\Delta_{+}^{0} \subset \Delta_{+}$such that

$$
\mathrm{W}^{\mathrm{k}}\left(\mathfrak{s l}_{n+1}, f\right) \hookrightarrow \mathrm{H}\left(\mathfrak{s l}_{n+1}\right) \otimes \bigotimes_{\alpha \in \Delta_{+}^{0}} \mathrm{~B}_{\alpha} .
$$

Even have screening operators related to $S^{i}(z)$. Call them $Q^{i}(z)$ [Genra, ${ }^{16]}$:

$$
\bigcap_{i=1}^{r} \operatorname{ker} Q_{(0)}^{i} \simeq \mathrm{~W}^{\mathrm{k}}\left(\mathfrak{s l}_{n+1}, f\right) .
$$

Screening Operators for W-Algebras

There is a Wakimoto-style realisation for W-algebras too: For $\mathfrak{s l}_{n+1}$, choose f and pick a 'nice' h. Then there is a subset $\Delta_{+}^{0} \subset \Delta_{+}$such that

$$
\mathrm{W}^{\mathrm{k}}\left(\mathfrak{s l}_{n+1}, f\right) \hookrightarrow \mathrm{H}\left(\mathfrak{s l}_{n+1}\right) \otimes \bigotimes_{\alpha \in \Delta_{+}^{0}} \mathrm{~B}_{\alpha} .
$$

Even have screening operators related to $S^{i}(z)$. Call them $Q^{i}(z)$ [Genra, ${ }^{16]}$:

$$
\bigcap_{i=1}^{r} \operatorname{ker} Q_{(0)}^{i} \simeq \mathrm{~W}^{\mathrm{k}}\left(\mathfrak{s l}_{n+1}, f\right) .
$$

Again, this only works for generic k .

Screening Operators for W-Algebras

There is a Wakimoto-style realisation for W-algebras too: For $\mathfrak{s l}_{n+1}$, choose f and pick a 'nice' h. Then there is a subset $\Delta_{+}^{0} \subset \Delta_{+}$such that

$$
\mathrm{W}^{\mathrm{k}}\left(\mathfrak{s l}_{n+1}, f\right) \hookrightarrow \mathrm{H}\left(\mathfrak{s l}_{n+1}\right) \otimes \bigotimes_{\alpha \in \Delta_{+}^{0}} \mathrm{~B}_{\alpha} .
$$

Even have screening operators related to $S^{i}(z)$. Call them $Q^{i}(z)$ [Genra, ${ }^{16]}$:

$$
\bigcap_{i=1}^{r} \operatorname{ker} Q_{(0)}^{i} \simeq \mathrm{~W}^{\mathrm{k}}\left(\mathfrak{s l}_{n+1}, f\right) .
$$

Again, this only works for generic k.

Idea

Let's see if we can relate the free-field realisations, and therefore the W-algebras.

Explaining $\mathfrak{s l}_{2}$ and Foreshadowing

We have free-field realisations for both of these vertex algebras:

$$
\mathrm{V}^{\mathrm{k}}\left(\mathfrak{s l}_{2}\right) \hookrightarrow \mathrm{H}\left(\mathfrak{s l}_{2}\right) \otimes \mathrm{B} \quad \mathrm{~W}^{\mathrm{k}}\left(\mathfrak{s l}_{2},\left(\begin{array}{c}
0 \\
1 \\
1
\end{array} 0\right)\right) \simeq \mathrm{Vir}^{\mathrm{k}} \hookrightarrow \mathrm{H}\left(\mathfrak{s l}_{2}\right)
$$

Explaining $\mathfrak{s l}_{2}$ and Foreshadowing

We have free-field realisations for both of these vertex algebras:

$$
\mathrm{V}^{\mathrm{k}}\left(\mathfrak{s l}_{2}\right) \hookrightarrow \mathrm{H}\left(\mathfrak{s l}_{2}\right) \otimes \mathrm{B} \quad \mathrm{~W}^{\mathrm{k}}\left(\mathfrak{s l}_{2},\left(\begin{array}{c}
0 \\
10 \\
10
\end{array}\right)\right) \simeq \mathrm{Vir}^{\mathrm{k}} \hookrightarrow \mathrm{H}\left(\mathfrak{s l}_{2}\right)
$$

- It turns out we can embed B into Π (described by a screening operator $T_{(0)}$, more on that later), called bosonisation.

Explaining $\mathfrak{s l}_{2}$ and Foreshadowing

We have free-field realisations for both of these vertex algebras:

$$
\mathrm{V}^{\mathrm{k}}\left(\mathfrak{s l}_{2}\right) \hookrightarrow \mathrm{H}\left(\mathfrak{s l}_{2}\right) \otimes \mathrm{B} \quad \mathrm{~W}^{\mathrm{k}}\left(\mathfrak{s l}_{2},\left(\begin{array}{c}
0 \\
1 \\
1
\end{array}\right)\right) \simeq \mathrm{Vir}^{\mathrm{k}} \hookrightarrow \mathrm{H}\left(\mathfrak{s l}_{2}\right)
$$

- It turns out we can embed B into Π (described by a screening operator $T_{(0)}$, more on that later), called bosonisation.
- Compose that with the Wakimoto realisation for $\mathfrak{s l}_{2}$ to obtain an embedding $V^{\mathrm{k}}\left(\mathfrak{s l}_{2}\right) \hookrightarrow \mathrm{H}\left(\mathfrak{s l}_{2}\right) \otimes \Pi$, call it ψ

Explaining $\mathfrak{s l}_{2}$ and Foreshadowing

We have free-field realisations for both of these vertex algebras:

$$
\mathrm{V}^{\mathrm{k}}\left(\mathfrak{s l}_{2}\right) \hookrightarrow \mathrm{H}\left(\mathfrak{s l}_{2}\right) \otimes \mathrm{B} \quad \mathrm{~W}^{\mathrm{k}}\left(\mathfrak{s l}_{2},\left(\begin{array}{c}
0 \\
1 \\
1
\end{array}\right)\right) \simeq \mathrm{Vir}^{\mathrm{k}} \hookrightarrow \mathrm{H}\left(\mathfrak{s l}_{2}\right)
$$

- It turns out we can embed B into Π (described by a screening operator $T_{(0)}$, more on that later), called bosonisation.
- Compose that with the Wakimoto realisation for $\mathfrak{s l}_{2}$ to obtain an embedding $V^{\mathrm{k}}\left(\mathfrak{s l}_{2}\right) \hookrightarrow \mathrm{H}\left(\mathfrak{s l}_{2}\right) \otimes \Pi$, call it ψ
- Cook up an isomorphism $\mathrm{H}\left(\mathfrak{s l}_{2}\right) \otimes \Pi \simeq \widetilde{\mathrm{H}\left(\mathfrak{s l}_{2}\right)} \otimes \widetilde{\Pi}$ such that tilded VOAs are isomorphic to their untilded versions. Get embedding $\widetilde{\psi}$.

Explaining $\mathfrak{s l}_{2}$ and Foreshadowing

We have free-field realisations for both of these vertex algebras:

$$
\mathrm{V}^{\mathrm{k}}\left(\mathfrak{s l}_{2}\right) \hookrightarrow \mathrm{H}\left(\mathfrak{s l}_{2}\right) \otimes \mathrm{B} \quad \mathrm{~W}^{\mathrm{k}}\left(\mathfrak{s l}_{2},\left(\begin{array}{c}
0 \\
1 \\
1
\end{array}\right)\right) \simeq \mathrm{Vir}^{\mathrm{k}} \hookrightarrow \mathrm{H}\left(\mathfrak{s l}_{2}\right)
$$

- It turns out we can embed B into Π (described by a screening operator $T_{(0)}$, more on that later), called bosonisation.
- Compose that with the Wakimoto realisation for $\mathfrak{s l}_{2}$ to obtain an embedding $V^{\mathrm{k}}\left(\mathfrak{s l}_{2}\right) \hookrightarrow \mathrm{H}\left(\mathfrak{s l}_{2}\right) \otimes \Pi$, call it ψ
- Cook up an isomorphism $\mathrm{H}\left(\mathfrak{s l}_{2}\right) \otimes \Pi \simeq \widetilde{\mathrm{H}\left(\mathfrak{s l}_{2}\right)} \otimes \widetilde{\Pi}$ such that tilded VOAs are isomorphic to their untilded versions. Get embedding $\widetilde{\psi}$.
- Vir ${ }^{\mathrm{k}}$ embeds into $\widetilde{\mathrm{H}\left(\mathfrak{s l}_{2}\right)}$, call the embedding ϕ.

Explaining $\mathfrak{s l}_{2}$ and Foreshadowing

We have free-field realisations for both of these vertex algebras:

$$
\mathrm{V}^{\mathrm{k}}\left(\mathfrak{s l}_{2}\right) \hookrightarrow \mathrm{H}\left(\mathfrak{s l}_{2}\right) \otimes \mathrm{B} \quad \mathrm{~W}^{\mathrm{k}}\left(\mathfrak{s l}_{2},\left(\begin{array}{c}
0 \\
1 \\
1
\end{array}\right)\right) \simeq \mathrm{Vir}^{\mathrm{k}} \hookrightarrow \mathrm{H}\left(\mathfrak{s l}_{2}\right)
$$

- It turns out we can embed B into Π (described by a screening operator $T_{(0)}$, more on that later), called bosonisation.
- Compose that with the Wakimoto realisation for $\mathfrak{s l}_{2}$ to obtain an embedding $V^{\mathrm{k}}\left(\mathfrak{s l}_{2}\right) \hookrightarrow \mathrm{H}\left(\mathfrak{s l}_{2}\right) \otimes \Pi$, call it ψ
- Cook up an isomorphism $\mathrm{H}\left(\mathfrak{s l}_{2}\right) \otimes \Pi \simeq \widetilde{\mathrm{H}\left(\mathfrak{s l}_{2}\right)} \otimes \widetilde{\Pi}$ such that tilded VOAs are isomorphic to their untilded versions. Get embedding $\widetilde{\psi}$.
- Vir ${ }^{\mathrm{k}}$ embeds into $\widetilde{\mathrm{H}\left(\mathfrak{s l}_{2}\right)}$, call the embedding ϕ.
- If done carefully, the only fields in $\mathrm{H}\left(\mathfrak{s l}_{2}\right)$ that appear in the image of $\widetilde{\psi}$ are in the image of ϕ. This defines an inverse reduction.

Explaining $\mathfrak{s l}_{2}$ and Foreshadowing

We have free-field realisations for both of these vertex algebras:

$$
\mathrm{V}^{\mathrm{k}}\left(\mathfrak{s l}_{2}\right) \hookrightarrow \mathrm{H}\left(\mathfrak{s l}_{2}\right) \otimes \mathrm{B} \quad \mathrm{~W}^{\mathrm{k}}\left(\mathfrak{s l}_{2},\left(\begin{array}{c}
0 \\
10 \\
1
\end{array}\right)\right) \simeq \mathrm{Vir}^{\mathrm{k}} \hookrightarrow \mathrm{H}\left(\mathfrak{s l}_{2}\right)
$$

- It turns out we can embed B into Π (described by a screening operator $T_{(0)}$, more on that later), called bosonisation.
- Compose that with the Wakimoto realisation for $\mathfrak{s l}_{2}$ to obtain an embedding $V^{\mathrm{k}}\left(\mathfrak{s l}_{2}\right) \hookrightarrow \mathrm{H}\left(\mathfrak{s l}_{2}\right) \otimes \Pi$, call it ψ
- Cook up an isomorphism $\mathrm{H}\left(\mathfrak{s l}_{2}\right) \otimes \Pi \simeq \widetilde{\mathrm{H}\left(\mathfrak{s l}_{2}\right)} \otimes \widetilde{\Pi}$ such that tilded VOAs are isomorphic to their untilded versions. Get embedding $\widetilde{\psi}$.
- Vir ${ }^{\mathrm{k}}$ embeds into $\widetilde{\mathrm{H}\left(\mathfrak{s l}_{2}\right)}$, call the embedding ϕ.
- If done carefully, the only fields in $\widetilde{\mathrm{H}\left(\mathfrak{s l}_{2}\right) \text { that appear in the image of }}$ $\widetilde{\psi}$ are in the image of ϕ. This defines an inverse reduction.
- This also works for the $\mathfrak{s l}_{3}$ inverse reduction and defines one relating the principal and subregular $\mathfrak{s l}_{n+1} \mathrm{~W}$-algebras [ZF, '21].

Making New Inverse Reductions

Let $\mathfrak{g}=\mathfrak{s l}_{n+1}$.

The Second Biggest W-algebra

Let $f=f_{\theta}=M_{n+1,1}$. The minimal W-algebra $\mathrm{W}^{\mathrm{k}}\left(\mathfrak{s l}_{n+1}, f_{\theta}\right)$ is the 'closest' W -algebra to $\mathrm{V}^{\mathrm{k}}\left(\mathfrak{s l}_{n+1}\right)$.

Making New Inverse Reductions

Let $\mathfrak{g}=\mathfrak{s l}_{n+1}$.

The Second Biggest W-algebra

Let $f=f_{\theta}=M_{n+1,1}$. The minimal W-algebra $\mathrm{W}^{\mathrm{k}}\left(\mathfrak{s l}_{n+1}, f_{\theta}\right)$ is the 'closest' W -algebra to $\mathrm{V}^{\mathrm{k}}\left(\mathfrak{s l}_{n+1}\right)$.

For the minimal W-algebra, $\Delta_{+}^{0}=\left\{\alpha_{i, j} \mid 1 \leq i \leq j \leq n-1\right\}$. Screening operators are (zero modes of):

$$
Q^{i}(z)= \begin{cases}S^{i}(z), & i=1, \ldots n-1, \\ : \gamma_{\alpha_{1, n-1}}(z) \mathrm{e}^{\frac{-1}{\mathrm{k}^{\frac{1}{V} a_{n}}}(z):,} & i=n .\end{cases}
$$

Making New Inverse Reductions

Let $\mathfrak{g}=\mathfrak{s l}_{n+1}$.

The Second Biggest W-algebra

Let $f=f_{\theta}=M_{n+1,1}$. The minimal W-algebra $\mathrm{W}^{\mathrm{k}}\left(\mathfrak{s l}_{n+1}, f_{\theta}\right)$ is the 'closest' W -algebra to $\mathrm{V}^{\mathrm{k}}\left(\mathfrak{s l}_{n+1}\right)$.

For the minimal W-algebra, $\Delta_{+}^{0}=\left\{\alpha_{i, j} \mid 1 \leq i \leq j \leq n-1\right\}$. Screening operators are (zero modes of):

$$
Q^{i}(z)= \begin{cases}S^{i}(z), & i=1, \ldots n-1, \\ : \gamma_{\alpha_{1, n-1}}(z) \mathrm{e}^{\frac{-1}{k+h^{7} a_{n}}}(z):, & i=n .\end{cases}
$$

Not unique: choosing a different f conjugate to f_{\ominus} gives a different set of screening operators but an isomorphic W-algebra.

One Difference and Overcoming

Observation

Ignoring the differing domains, the only difference in the screening operators for $\mathrm{V}^{\mathrm{k}}\left(\mathfrak{s l}_{n+1}\right)$ and $\mathrm{W}^{\mathrm{k}}\left(\mathfrak{s l}_{n+1}, f_{\theta}\right)$ is in the n'th ones:

$$
\begin{gathered}
Q^{n}(z)=: \gamma_{\alpha_{1, n-1}}(z) \mathrm{e}^{\frac{-1}{k+h} a_{n}}(z): \\
\text { vs. } \\
S^{n}(z)=:\left(\beta_{\alpha_{n, n}}(z)+\sum_{j=1}^{n-1} \gamma_{\alpha_{n-j, n-1}}(z) \beta_{\alpha_{n-j, n}}(z)\right) \mathrm{e}^{\frac{-1}{k+h} a_{n}}(z): .
\end{gathered}
$$

One Difference and Overcoming

Observation

Ignoring the differing domains, the only difference in the screening operators for $\bigvee^{\mathrm{k}}\left(\mathfrak{s l}_{n+1}\right)$ and $\mathrm{W}^{\mathrm{k}}\left(\mathfrak{s l}_{n+1}, f_{\theta}\right)$ is in the n'th ones:

$$
\begin{gathered}
Q^{n}(z)=: \gamma_{\alpha_{1, n-1}}(z) \mathrm{e}^{\frac{-1}{k+h} a_{n}}(z): \\
\text { vs. } \\
S^{n}(z)=:\left(\beta_{\alpha_{n, n}}(z)+\sum_{j=1}^{n-1} \gamma_{\alpha_{n-j, n-1}}(z) \beta_{\alpha_{n-j, n}}(z)\right) \mathrm{e}^{\frac{-1}{k+h} v_{n}}(z):
\end{gathered}
$$

But we see something familiar the $j=n-1$ term in the sum: $\gamma_{\alpha_{1, n-1}}(z)$.

One Difference and Overcoming

Observation

Ignoring the differing domains, the only difference in the screening operators for $\mathrm{V}^{\mathrm{k}}\left(\mathfrak{s l}_{n+1}\right)$ and $\mathrm{W}^{\mathrm{k}}\left(\mathfrak{s l}_{n+1}, f_{\theta}\right)$ is in the n^{\prime} th ones:

$$
\begin{gathered}
Q^{n}(z)=: \gamma_{\alpha_{1, n-1}}(z) \mathrm{e}^{\frac{-1}{k+h} a_{n}}(z): \\
\text { vs. } \\
S^{n}(z)=:\left(\beta_{\alpha_{n, n}}(z)+\sum_{j=1}^{n-1} \gamma_{\alpha_{n-j, n-1}}(z) \beta_{\alpha_{n-j, n}}(z)\right) \mathrm{e}^{\frac{-1}{k+h} a_{n}}(z):
\end{gathered}
$$

But we see something familiar the $j=n-1$ term in the sum: $\gamma_{\alpha_{1, n-1}}(z)$.

Question

Can we 'free' it by bosonising a ghost system?

Tildefication

Let's bosonise $\mathrm{B}_{\alpha_{1, n}}$ by embedding it into Π :

$$
\beta_{\alpha_{1, n}}(z) \mapsto \mathrm{e}^{c}(z), \quad \gamma_{\alpha_{1, n}}(z) \mapsto \frac{1}{2}:(c(z)+d(z)) \mathrm{e}^{-c}(z):
$$

Tildefication

Let's bosonise $\mathrm{B}_{\alpha_{1, n}}$ by embedding it into Π :

$$
\beta_{\alpha_{1, n}}(z) \mapsto \mathrm{e}^{c}(z), \quad \gamma_{\alpha_{1, n}}(z) \mapsto \frac{1}{2}:(c(z)+d(z)) \mathrm{e}^{-c}(z): .
$$

Payoff

The screening operator $S^{n}(z)$ becomes:

$$
\begin{gathered}
S^{n}(z)=:\left(\beta_{\alpha_{n, n}}(z)+\sum_{j=1}^{n-1} \gamma_{\alpha_{n-j, n-1}}(z) \beta_{\alpha_{n-j, n}}(z)\right) \mathrm{e}^{\frac{-1}{k+h} a_{n}}(z): \\
\quad \downarrow \\
: \widetilde{\gamma_{\alpha_{1, n-1}}}(z) \mathrm{e}^{\frac{-1}{k+h} \widetilde{v}_{n}}(z):
\end{gathered}
$$

where $\widetilde{a_{n}}(z)=a_{n}(z)-\left(\mathrm{k}+\mathrm{h}^{\vee}\right) c(z)$ and

$$
\widetilde{\gamma_{\alpha_{1, n-1}}}(z)=\gamma_{\alpha_{1, n-1}}(z)+(\text { some other fields }) .
$$

Not So Fast

So by combining the Wakimoto realisation with bosonisation, the n'th screening operator for $\mathrm{V}^{\mathrm{k}}\left(\mathfrak{s l}_{n+1}\right)$ looks like that of $\mathrm{W}^{\mathrm{k}}\left(\mathfrak{s l}_{n+1}, f_{\theta}\right)$ with tildes.

Not So Fast

So by combining the Wakimoto realisation with bosonisation, the n'th screening operator for $\mathrm{V}^{\mathrm{k}}\left(\mathfrak{s l}_{n+1}\right)$ looks like that of $\mathrm{W}^{\mathrm{k}}\left(\mathfrak{s l}_{n+1}, f_{\theta}\right)$ with tildes.

Two Problems

Not So Fast

So by combining the Wakimoto realisation with bosonisation, the n'th screening operator for $\mathrm{V}^{\mathrm{k}}\left(\mathfrak{s l}_{n+1}\right)$ looks like that of $\mathrm{W}^{\mathrm{k}}\left(\mathfrak{s l}_{n+1}, f_{\theta}\right)$ with tildes.

Two Problems

- $\widetilde{\gamma_{\alpha_{1, n-1}}}(z)$ has nontrivial OPEs with fields that it shouldn't, so we need to reshuffle the rest of the fields so that the ghost fields all split into pairs.

Not So Fast

So by combining the Wakimoto realisation with bosonisation, the n'th screening operator for $\mathrm{V}^{\mathrm{k}}\left(\mathfrak{s l}_{n+1}\right)$ looks like that of $\mathrm{W}^{\mathrm{k}}\left(\mathfrak{s l}_{n+1}, f_{\theta}\right)$ with tildes.

Two Problems

- $\widetilde{\gamma_{\alpha_{1, n-1}}}(z)$ has nontrivial OPEs with fields that it shouldn't, so we need to reshuffle the rest of the fields so that the ghost fields all split into pairs.
- If we're reshuffling ghost fields, that will change the form of $S^{i}(z)$ (for $i<n$) since it contains ghost fields.

Splitting Ghosts

Define:

$$
\begin{aligned}
& \widetilde{\beta}_{\alpha}(z)=\beta_{\alpha}(z)-\frac{1}{2} \sum_{\substack{\alpha^{\prime}, \alpha^{\prime \prime} \in \Delta_{+} \backslash \theta \\
\alpha^{\prime}+\alpha^{\prime \prime}=\theta+\alpha}}: \beta_{\alpha^{\prime}}(z) \beta_{\alpha^{\prime \prime}}(z) \mathrm{e}^{-c}(z): \\
& \widetilde{\gamma}_{\alpha}(z)=\gamma_{\alpha}(z)+\sum_{\substack{\alpha^{\prime} \in \Delta_{+} \backslash \theta \\
\alpha^{\prime}=\theta-\alpha}}: \beta_{\alpha^{\prime}}(z) \mathrm{e}^{-c}(z): \\
& +\sum_{\substack{\alpha^{\prime \prime}, \alpha^{\prime \prime \prime} \in \Delta_{+} \backslash \theta \\
-\alpha^{\prime \prime}+\alpha^{\prime \prime \prime}=\theta-\alpha}}: \gamma_{\alpha^{\prime \prime}}(z) \beta_{\alpha^{\prime \prime \prime}}(z) \mathrm{e}^{-c}(z):
\end{aligned}
$$

Splitting Ghosts

Define:

$$
\begin{aligned}
& \widetilde{\beta}_{\alpha}(z)=\beta_{\alpha}(z)-\frac{1}{2} \sum_{\substack{\alpha^{\prime}, \alpha^{\prime \prime} \in \Delta_{+} \backslash \theta \\
\alpha^{\prime}+\alpha^{\prime \prime}=\theta+\alpha}}: \beta_{\alpha^{\prime}}(z) \beta_{\alpha^{\prime \prime}}(z) \mathrm{e}^{-c}(z): \\
& \widetilde{\gamma}_{\alpha}(z)=\gamma_{\alpha}(z)+\sum_{\substack{\alpha^{\prime} \in \Delta_{+} \backslash \theta \\
\alpha^{\prime}=\theta-\alpha}}: \beta_{\alpha^{\prime}}(z) \mathrm{e}^{-c}(z): \\
& +\sum_{\substack{\alpha^{\prime \prime}, \alpha^{\prime \prime \prime} \in \Delta_{+} \backslash \theta \\
-\alpha^{\prime \prime}+\alpha^{\prime \prime \prime}=\theta-\alpha}}: \gamma_{\alpha^{\prime \prime}}(z) \beta_{\alpha^{\prime \prime \prime}}(z) \mathrm{e}^{-c}(z):
\end{aligned}
$$

- $\widetilde{\beta_{\alpha}}(z) \widetilde{\gamma_{\alpha^{\prime}}}(w) \sim-\delta_{\alpha, \alpha^{\prime}} \mathbb{1}(w)(z-w)^{-1}$

Splitting Ghosts

Define:

$$
\begin{gathered}
\widetilde{\beta}_{\alpha}(z)=\beta_{\alpha}(z)-\frac{1}{2} \sum_{\substack{\alpha^{\prime}, \alpha^{\prime \prime} \in \Delta_{+} \backslash \theta \\
\alpha^{\prime}+\alpha^{\prime \prime}=\theta+\alpha}}: \beta_{\alpha^{\prime}}(z) \beta_{\alpha^{\prime \prime}}(z) \mathrm{e}^{-c}(z): \\
\widetilde{\gamma}_{\alpha}(z)=\gamma_{\alpha}(z)+\sum_{\substack{\alpha^{\prime} \in \Delta_{+} \backslash \theta \\
\alpha^{\prime}=\theta-\alpha}}: \beta_{\alpha^{\prime}}(z) \mathrm{e}^{-c}(z): \\
+\sum_{\substack{\alpha^{\prime \prime}, \alpha^{\prime \prime \prime} \in \Delta_{+} \backslash \theta \\
-\alpha^{\prime \prime}+\alpha^{\prime \prime \prime}=\theta-\alpha}}: \gamma_{\alpha^{\prime \prime}}(z) \beta_{\alpha^{\prime \prime \prime}}(z) \mathrm{e}^{-c}(z):
\end{gathered}
$$

- $\widetilde{\beta_{\alpha}}(z) \widetilde{\gamma_{\alpha^{\prime}}}(w) \sim-\delta_{\alpha, \alpha^{\prime}} \mathbb{1}(w)(z-w)^{-1}$
- A Miracle?: Replacing all fields in $S^{i}(z)$ with their tilded versions and substituting the above gives $S^{i}(z)$ back again (for $i<n$).

Rearranging Screening Operators

Take the Wakimoto realisation of $\mathrm{V}^{\mathrm{k}}\left(\mathfrak{s l}_{n+1}\right)$, bosonise $\mathrm{B}_{\alpha_{1, n}}$, replace fields with their tilded versions to obtain an embedding

$$
\begin{aligned}
& \mathrm{V}^{\mathrm{k}}\left(\mathfrak{s l}_{n+1}\right) \stackrel{\text { Wakimoto }}{\hookrightarrow} \mathrm{H}\left(\mathfrak{s l}_{n+1}\right) \otimes \bigotimes_{\alpha \in \Delta_{+}} \mathrm{B}_{\alpha} \\
& \downarrow \text { Bosonisation } \\
& \mathrm{H}\left(\mathfrak{s l}_{n+1}\right) \otimes \bigotimes_{\alpha \in \Delta_{+} \backslash \theta} \mathrm{B}_{\alpha} \otimes \Pi \\
& \mid 2 \text { Tildefication } \\
&\left(\widetilde{\left.\mathrm{H}_{\mathfrak{s l}_{n+1}}\right)} \otimes \bigotimes_{\alpha \in \Delta_{+} \backslash \theta} \widetilde{\mathrm{B}_{\alpha}} \otimes \widetilde{\Pi}\right.
\end{aligned}
$$

Rearranging Screening Operators

Take the Wakimoto realisation of $\mathrm{V}^{\mathrm{k}}\left(\mathfrak{s l}_{n+1}\right)$, bosonise $\mathrm{B}_{\alpha_{1, n}}$, replace fields with their tilded versions to obtain an embedding

$$
\begin{aligned}
& \mathrm{V}^{\mathrm{k}}\left(\mathfrak{s l}_{n+1}\right) \stackrel{\text { Wakimoto }}{\hookrightarrow} \mathrm{H}\left(\mathfrak{s l}_{n+1}\right) \otimes \bigotimes_{\alpha \in \Delta_{+}} \mathrm{B}_{\alpha} \\
& \downarrow \text { Bosonisation } \\
& \mathrm{H}\left(\mathfrak{s l}_{n+1}\right) \otimes \bigotimes_{\alpha \in \Delta_{+} \backslash \theta} \mathrm{B}_{\alpha} \otimes \Pi \\
& 12 \text { Tildefication } \\
& \widetilde{\mathrm{H}\left(\mathfrak{s l}_{n+1}\right)} \otimes \bigotimes_{\alpha \in \Delta_{+} \backslash \theta} \widetilde{\mathrm{B}_{\alpha}} \otimes \widetilde{\Pi}
\end{aligned}
$$

with screening operators description

$$
\mathrm{V}^{\mathrm{k}}\left(\mathfrak{s l}_{n+1}\right) \simeq \underbrace{\left.\bigcap_{i=1}^{n} \operatorname{ker} \widetilde{Q}_{(0)}{ }^{n}\right)}_{\text {screening operators for } \mathrm{W}^{\mathrm{k}}\left(\mathfrak{s l}_{n+1}, f_{\theta}\right)}
$$

Inverse Reduction

Result [ZF, 'Soon]

For k generic, there exists an embedding

$$
\mathrm{V}^{\mathrm{k}}\left(\mathfrak{s l}_{n+1}\right) \hookrightarrow \mathrm{W}^{\mathrm{k}}\left(\mathfrak{s l}_{n+1}, f_{\theta}\right) \otimes \Pi \otimes \mathrm{B}^{\otimes(n-1)}
$$

with known screening operator (coming from bosonisation). Generic k can be upgraded to noncritical k with a little extra work.

Where To From Here

It turns out that the above argument for the minimal to affine inverse reduction can be easily adapted to find even more inverse reductions:

Where To From Here

It turns out that the above argument for the minimal to affine inverse reduction can be easily adapted to find even more inverse reductions:

Hook-Types

Recall that $\mathfrak{s l}_{n+1} \mathrm{~W}$-algebras are labelled by partitions of $n+1$. If that partition is of the form

we call the W-algebra hook-type

Where To From Here

It turns out that the above argument for the minimal to affine inverse reduction can be easily adapted to find even more inverse reductions:

Hook-Types

Recall that $\mathfrak{s l}_{n+1} \mathrm{~W}$-algebras are labelled by partitions of $n+1$. If that partition is of the form

we call the W-algebra hook-type . This includes the principal/regular, subregular and minimal $\mathfrak{s l}_{n+1} \mathrm{~W}$-algebras, as well as the affine $\mathfrak{s l}_{n+1}$ VOA. There are $n+1$ of these, choose a corresponding nilpotent element $f^{(m)}$.

Inverse Reduction for Hook-Types

Remarkably, an almost identical argument to that for the minimal-to-affine $\mathfrak{s l}_{m}$ inverse reduction gives:

Result [ZF, 'Soon]

For k generic, there exists an embedding

$$
\mathrm{W}^{\mathrm{k}}\left(\mathfrak{s l}_{n+1}, f^{(m)}\right) \hookrightarrow \mathrm{W}^{\mathrm{k}}\left(\mathfrak{s l}_{n+1}, f^{(m-1)}\right) \otimes \Pi \otimes \mathrm{B}^{\otimes(m-2)}
$$

with known screening operator (coming from bosonisation). Generic k can be upgraded to noncritical k with a little extra work.

Inverse Reduction for Hook-Types

Remarkably, an almost identical argument to that for the minimal-to-affine $\mathfrak{s l}_{m}$ inverse reduction gives:

Result [ZF, 'Soon]

For k generic, there exists an embedding

$$
\mathrm{W}^{\mathrm{k}}\left(\mathfrak{s l}_{n+1}, f^{(m)}\right) \hookrightarrow \mathrm{W}^{\mathrm{k}}\left(\mathfrak{s l}_{n+1}, f^{(m-1)}\right) \otimes \Pi \otimes \mathrm{B}^{\otimes(m-2)}
$$

with known screening operator (coming from bosonisation). Generic k can be upgraded to noncritical k with a little extra work.

- All known $\mathfrak{s l}_{n+1}$ inverse reductions are examples of the above.

Inverse Reduction for Hook-Types

Remarkably, an almost identical argument to that for the minimal-to-affine $\mathfrak{s l}_{m}$ inverse reduction gives:

Result [ZF, 'Soon]

For k generic, there exists an embedding

$$
\mathrm{W}^{\mathrm{k}}\left(\mathfrak{s l}_{n+1}, f^{(m)}\right) \hookrightarrow \mathrm{W}^{\mathrm{k}}\left(\mathfrak{s l}_{n+1}, f^{(m-1)}\right) \otimes \Pi \otimes \mathrm{B}^{\otimes(m-2)}
$$

with known screening operator (coming from bosonisation). Generic k can be upgraded to noncritical k with a little extra work.

- All known $\mathfrak{s l}_{n+1}$ inverse reductions are examples of the above.
- Tildefication is also a recipe to make the inverse reduction explicit.

Inverse Reduction for Hook-Types

Remarkably, an almost identical argument to that for the minimal-to-affine $\mathfrak{s l}_{m}$ inverse reduction gives:

Result [ZF, 'Soon]

For k generic, there exists an embedding

$$
\mathrm{W}^{\mathrm{k}}\left(\mathfrak{s l}_{n+1}, f^{(m)}\right) \hookrightarrow \mathrm{W}^{\mathrm{k}}\left(\mathfrak{s l}_{n+1}, f^{(m-1)}\right) \otimes \Pi \otimes \mathrm{B}^{\otimes(m-2)}
$$

with known screening operator (coming from bosonisation). Generic k can be upgraded to noncritical k with a little extra work.

- All known $\mathfrak{s l}_{n+1}$ inverse reductions are examples of the above.
- Tildefication is also a recipe to make the inverse reduction explicit.
- Can compose these embeddings to realise $V^{\mathrm{k}}\left(\mathfrak{s l}_{n+1}\right)$ in terms of any hook-type $\mathfrak{s l}_{n+1} \mathrm{~W}$-algebra.

The Path of Hooks

Now have a traversable path in the poset of W-algebras for $\mathfrak{s l}_{n+1}$ using partial and inverse reduction.

Can construct modules for any hook-type W-algebra (or affine VOA) by taking a module for a 'smaller' hook-type W -algebra and tensoring with modules for the bosonic ghost systems and half lattices.

When do these inverse reduction embeddings descend to embeddings of simple quotients? Know $\mathfrak{s l}_{2}, \mathfrak{s l}_{3}$ and $m=2$ for general $\mathfrak{s l}_{n+1}$

Lingering Questions and Future Directions

- When else can we construct inverse reductions and why?
- What about examples outside of type A?
- Why do we need to bosonise? Some kind of localisation?
- Is there something geometric underlying all of this, since the Wakimoto realisation is very geometric?
- Representation theory (W-algebra modules by restriction, embeddings of simple quotients, highest-weight theory, ...)
- Physics (modular-invariant partition functions, fusion, correlation functions, conformal blocks ...)
- Mathematics (finite W-algebras/shifted Yangians, Slodowy slices and geometric representation theory, ...)

