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Motivation



Yesterday

• David: Weight categories of affine VOAs are large, not
semisimple and there are tools to study its abelian
structure.

• The embedding

Lk (sl2) ↪→ Virk ⊗ Π

is a great aid.

• Jinwei: Improved technology to establish tensor category
structure and rigidity..

• Simon: good weaker notions than rigidity.



The Question

Given a vertex tensor category of modules of a VOA, is there
some simpler structure like a quasi Hopf algebra that has a

braided tensor equivalent category?



Kazhdan-Lusztig

• Kazhdan-Lusztig, 1994, proved such a correspondence for
V k (g) for g a simple Lie algebra and most k such that
k + h∨ /∈ Q>0 (here h∨ is the dual Coxeter number).

• The category is KLk (g), that is modules whose conformal
weight spaces are integrable g modules.

• The dual algebra is the quantum group of g for
q = exp

(
2πi

2r∨(k+h∨)

)
(here r∨ is the lacing number).

• The proof is the content of four articles in JAMS and is
highly impressive.



Logarithmic Kazhdan-Lusztig correspondences

• Lisse VOAs are rare, otherwise categories of VOA
modules usually satisfy:

• Uncountable number of isomorphism classes of simple
objects

• Not semisimple.

• Often modules lack nice finiteness conditions as
C1-cofiniteness or lower-bounded conformal weight.

• Studying representation theory and in particular tensor
category is highly challenging.

• Eventually a correspondence to a quantum group or a
similar structure like a quasi Hopf algebra is desired.



Example: superalgebras

• Let g be a simple basic, classical Lie algebra (or gln|n).

• Consider KLk (g), that is modules whose conformal weight
spaces are finite dimensional g weight modules.

• Let Uq(g) the usual quantum supergroup of g and Uq(g) the
category of weight modules of Uq(g).

• Then one expects that KLk (g) and Uq(g) are braided tensor
equivalent for q = exp

(
2πi

2r∨(k+h∨)

)
and suitable r∨.

• Note that osp1|2n behaves in many respects like a simple
Lie algebra and in particular one can and will prove the
correspondence.



Example: Small Hook

• Let g = sln+m, then nilpotent elements are identified with
partitions of n + m or equivalently Young tableaux with
n + m boxes.

• A simplest type are small hooks:

• These small hook W -algebras Wk (n,m) enjoy triality with
certain W -superalgebras (TC-Linshaw, 2022)



Example: Small Hook

Triality suggest that Wk (n,m) has a vertex tensor category of
weight modules, call it C(n,m), that is braided tensor equivalent
to a variant of

Uq(sln+m) ⊠ Uq̃(sln+m|m) ⊠

Uq̃(slm|m−1) ⊠ Uq̃(slm−1|m−2) ⊠ . . . ⊠ Uq̃(sl2|1)

for

q = exp
(

2πi
2(k + n + m)

)
q̃ = exp

(
2πi(k + n + m)

2

)



An algebraic theory of logarithmic
Kazhdan-Lusztig correspondences

Joint work with Lentner-Rupert



This Talk

• A good theory is needed to approach these conjectures.

• The key input is that W-algebras and affine vertex
superalgebras allow for good free field realizations
(Feigin-Frenkel, Genra, Wakimoto, Quella-Schomerus,
Adamovic ...)

• By a free field realization I vaguely mean a connection of
the algebra of interest to a much simpler structure. Today
this will really be a free field VOA, but this is NOT
necessary. (See the talks by Fehily and Ridout).

• The idea is that the complicated representation theory is
completely specified by a nilpotent algebra inside the
category of the free field algebra.



Realizations for sl2

• The Cartan subalgebra of sl2 is just C and one can view sl2
as an algebra in the category of modules of the Cartan
subalgebra.

• In this case the algebra would just be C[e] with e the usual
nilpotent element of sl2 (and this would be inside the
universal envelopping algebra).

• The Lie algebra sl2 acts on the Lie group SL2 via left (or
right) invariant vector fields and so it is a subalgebra of an
algebra of differential operators.



Free field realization

• Let V be a VOA, that embeds conformally into a free field
VOA A (e.g. Heisenberg and/or fermions).

• Let U be a braided tensor category of V -modules such that
A is an object in U .

• Let C be the braided tensor category of A-modules that lie
in U .

• C is just the category of vector spaces graded by some
abelian group and characterized by a quadratic form. It is
as easy as a tensor category can be.

• How much is U determined by C and A?



Algebras in Categories
Let U be a braided tensor category. An algebra in U is an
object A in U together with a multiplication map

m : A ⊗ A → A

and a unit
u : 1 → A

such that the multiplication is associative and compatible with
left and right multiplication, e.g. the diagram commute:

(A ⊗ A)⊗ A
α−1

A,A,A //

m⊗IdA
��

A ⊗ (A ⊗ A)

IdA⊗m
��

A ⊗ A

m
%%

A ⊗ A

m
yy

A



Commutative Algebras in Categories

The algebra A is called commutative if the diagram

A ⊠ A

m
""

cA,A // A ⊠ A

m
||

A

commutes.

• There is a category UA of A-modules in U .

• UA is a tensor category but not braided.

• UA has a braided tensor subcategory of local modules.



Back to free field realization

• The free field algebra A translates to a commutative
algebra in U . (Huang-Kirillov-Lepowsky).

• The category C is precisely the tensor category of local
A-modules. (TC-Kanade-McRae).

• The first aim is to obtain U from the knowledge of UA.



Back to free field realization

• Free field realizations of VOAs are usually characterized as
being the joint kernel of certain screening charges.

• The Semikhatov idea is that screening charges can be
identified with certain nilpotent algebras (called Nichols
algebras) in the category of modules of the free field
algebra.

• The aim is to relate a tensor category of Nichols algebra
modules to UA.

• To a Nichols algebra one has an associated category of
Yetter-Drinfeld modules and to the latter one can construct
an associated quantum group (under some mild degree
conditions otherwise one gets an associated quasi Hopf
algebra).



Needed assumptions

Assume that U is a rigid, braided, locally finite abelian category
with trivial Müger center, the property that for any object X ,
there exists a projective object PX and an injective object IX
with a surjection πX : PX ↠ X and an embedding ιX : X ↪→ IX ,
and that A ∈ U is a commutative and haploid algebra object,
such that UA is rigid.

Over the last years and jointly with Robert McRae and Jinwei
Yang we have concentrated on proving that assumptions of this
type hold in important examples.



The Key Theorem

Theorem (TC-Lenter-Rupert)
Suppose U is a braided tensor category and A ∈ U a
commutative algebra fulfilling the assumptions. Let
C = VectQΓ = Repwt(C) and let X ∈ C with finite-dimensional
Nichols algebra N satisfying some mild degree conditions and
Uq the corresponding quantum group. Assume that

a) U ∼= Repwt(Uq) as abelian categories.

b) U0
A
∼= VectQΓ as braided tensor categories.

c) UA
∼= Rep(N)(VectQΓ ) as abelian categories, compatible

with a certain C-module structure.
Then in fact these are equivalences of tensor categories and
braided tensor categories.



The moral of the key Theorem

The Theorem says that if you can prove
• all necessary assumptions
• suitable abelian equivalence
• a braided equivalence of the much much simpler category
C to suitable graded vector spaces.

Then you already get a braided tensor equivalence.

In our later cases the assumptions can be verified thanks to
previous work by Adamovic-Milas, Tsuchiya-Wood,
McRae-Yang and others.



The logic of the proof

a) Show that U is a relative Drinfeld center using methods
developped by Schauenburg

b) Laugwitz relates relative Drinfeld centers to categories of
Yetter-Drinfeld modules

c) A realizing quasi-Hopf algebra is constructed from the
category of Yetter-Drinfeld modules. If C satisfies a
condition that we call sufficiently unrolled, then one gets a
Hopf algebra, otherwise it is not strict.



Drinfeld Center

The center Z(U) of a tensor category U consists of objects
(Z , γ) with Z an object in U and γ a natural family of
isomorphisms {γX : X ⊗ Z → Z ⊗ X | X ∈ Obj(U)}, satisfying
the hexagon diagram

(X ⊗ Y )⊗ Z
γX⊗Y // Z ⊗ (X ⊗ Y )

αZ ,X ,Y

((
X ⊗ (Y ⊗ Z )

αX ,Y ,Z
66

IdX⊗γY ((

(Z ⊗ X )⊗ Y

X ⊗ (Z ⊗ Y )
αX ,Z ,Y

// (X ⊗ Z )⊗ Y
γX⊗IdY

66



The relative Drinfeld Center

Theorem (TC-Lenter-Rupert)
Under above assumptions and an additional relative finiteness
condition

U ∼= ZC(UA)

as braided tensor categories, where ZC(UA) is the relative
Drinfeld Center, that is the centralizer of Crev in Z(UA).



Examples

a) Let OT
M(p) the category of weight modules of the singlet

algebra (TC-McRae-Yang) and Repwtu
H
q (sl2) the category of

weight modules of the small unrolled quantum group of sl2
at 2p-th root of unity of (Constantino-Geer-Patureau Mirand).
Then

OT
M(p)

∼= Repwt(u
H
q (2))

as braided tensor categories
b) The analogous result for triplet VOA and quasi Hopf

modification of the small quantum group.
c) A Hopf algebra whose category of weight modules is

braided equivalent to the vertex tensor category of certain
principal W-superalgebras of type sln|1 that were studied
by (TC-McRae-Yang).



More Examples

a) Affine Feigin-Tipunin algebra of sl2 at level minus one and
Repwtu

H
−1(sl2|1), see Shigenori’s talk

(TC-Nakatsuka-Sugimoto)

b) A Hopf algebra whose category of weight modules is
braided equivalent to the vertex tensor category of certain
subregular W-superalgebras of type sln that were studied
by (TC-McRae-Yang). This is work in progress by
(Allen-Lentner-Schweigert-Wood).

c) Quantum supergroups associated to the boundary VOAs
of abelian three-dimensional N = 4 gauge theories. This is
work in progress by (TC-Dimofte-Niu).



Example: gl1|1



History

• Computes Alexander-Conway polynomials of knots and
links (Rozansky-Saleur, 1992).

• A very first example of a logarithmic CFT
(Saleur-Schomerus 2005, . . . ).

• Used to study disordered systems
(LeClair, Ludwig, Saleur, . . . )

• Rigorously only understood now (TC-McRae-Yang 2020)
using (TC-Ridout).



The Lie Algebra

Defining representation, even generators

N =
1
2

(
1 0
0 −1

)
, E =

(
1 0
0 1

)
,

odd generators

ψ+ =

(
0 1
0 0

)
, ψ− =

(
0 0
1 0

)
,

Relations
[N, ψ±] = ±ψ±, {ψ+, ψ−} = E .



Verma Modules

• Let Vn− 1
2 ,e

for n,e ∈ C be the Verma module generated by
a highest-weight vector v such that

N · v = nv , E · v = ev , ψ+ · v = 0.

• Since ψ− squares to zero every Verma module has
dimension 2; thus n is the average of the two
N-eigenvalues of Vn,e.

• The Verma module Vn,e is irreducible if and only if e ̸= 0.
Atypical when e = 0, we denote the 1-dimensional
irreducible quotient of Vn,e by An+ 1

2
.

• For each n ∈ C, there is a non-split exact sequence

0 → An− 1
2
→ Vn,0 → An+ 1

2
→ 0.



Projective Modules
• For n ∈ C, the module Pn has basis vn, ψ

±vn, ψ
+ψ−vn,

where where E · vn = 0 and N · vn = nvn.
• The module Pn is indecomposable but reducible and

satisfies the non-split exact sequence

0 → Vn+ 1
2 ,0

→ Pn → Vn− 1
2 ,0

→ 0.

• It has Loewy diagram

An

Pn: An−1 An+1

An



The affine Lie algebra

• r , s ∈ Z

[Nr ,Es] = rkδr+s,0, [Nr , ψ
±
s ] = ±ψ±

r+s,

{ψ+
r , ψ

−
s } = Er+s + rkδr+s,0,

• k central
• The zero-mode algebra < E0,N0, ψ

±
0 > is isomorphic to

gl1|1



Modules

• Induced module M̂: M a gl1|1-module, then for k ∈ C, let k
act by multiplication of k and Xr by zero for r ∈ Z>0 and Xs
freely for s ∈ Z<0.

• Modules have a similar structure, except that if e ∈ kZ,
then modules are of atypical type, i.e.

Âk
n,m

P̂k
n,m: Âk

n+1,m Âk
n−1,m.

Âk
n,m



The VOA

• Generating fields E(z),N(Z ),Ψ±(z).
• Operator products

N(z)E(w) ∼ k
(z − w)2 , N(z)ψ±(w) ∼ ±ψ±(w)

(z − w)

ψ+(z)ψ−(w) ∼ k
(z − w)2 +

E(w)

(z − w)



The free field realization

• Free bosons X (z),Y (z) and free fermions b(z), c(z)
• Operator products

X (z)Y (w) ∼ 1
(z − w)2 , b(z)c(w) ∼ 1

(z − w)

• The embedding

E = kY , N = X + cb +
1
2

Y ,

ψ− = b, ψ+ = −k∂c + kcY ,

• It is characterized as the kernel of the zero-mode S0
(screening charge) of the field S = be

∫
Y .



Modules of the free field algebra

• The free fermions are holomorphic, i.e. the VOA is its only
simple module

• The free boson simple modules are just Fock modules πλ
for λ ∈ C2 with fusion rules

πλ ⊗ πµ ∼= πλ+µ

• The category of modules of the free field algebra is a
ribbon category that is equivalent to C = VectQC2 ⊠ sVect for
a certain non-degenerate quadratic form Q.

• This is as easy as a tensor category can be.



The Nichols algebra of screenings

• The screening charge S0 is naturally associated with the
highest-weight vector of a module x = πα ⊗ bc.

• It satisfies S2
0 = 0.

• It is identified with the algebra N = C[x ]/x2, but viewed as
an algebra in C.

• N is a Hopf algebra (a Nichols algebra) in C and there is an
associated tensor category Rep(N)(C).

• Projective modules in this category are of the form

0 → πλ+α ⊗ bc → Pλ → πλ ⊗ bc → 0



The category Rep(N)(C)

• Rep(N)(C) is not braided
• The Drinfeld center of a tensor category is always braided,

so Z(Rep(N)(C)) is braided.
• Z(Rep(N)(C)) contains Crev as a subcategory and its

centralizer ZC(Rep(N)(C)) is braided as well.
• Relative centers ZC(Rep(N)(C)) can be identified with

categories of Yetter-Drinfeld modules N
NYD(C) and the

latter allow often for realizing quasi Hopf algebras
• In this case this is uH

q (gl1|1) for q = eπi/k .



The Kazhdan-Lusztig equivalence

Theorem (TC-Lenter-Rupert)
The categories of weight modules of the affine VOA of gl1|1 at
non-zero level k and of uH

q (gl1|1) are equivalent as braided
tensor categories.



Recall the moral of the key Theorem

The Theorem says that if you can prove
• all necessary assumptions
• suitable abelian equivalences
• a braided equivalence of the much much simpler category
C to suitable graded vector spaces.

Then you already get a braided tensor equivalence.


