Hilbert scheme of the points in the place and quasi-lisse vertex algebra with $\mathcal{N}=4$

symmetry
REPRESENTATION THEORY XVIII
Dubrovnik, Croatia, June 18-July 1, 2023

Tomoyuki Arakawa
June 30, 2023

RIMS, Kyoto University
joint work with Toshiro Kuwabara (Tsukuba) and Sven Möller (Hamburg)

Quasi-lisse vertex algebras (cf. Hao's talk)

Definition (A.-Kawasetsu'18)

Quasi-lisse vertex algebras (cf. Hao's talk)

Definition (A.-Kawasetsu'18)

A vertex algebra is called quasi-lisse if the associated variety $X_{V}=\operatorname{Specm} R_{V}, R_{V}=V / C_{2}(V)$, has finitely many symplectic leaves.

Quasi-lisse vertex algebras (cf. Hao's talk)

Definition (A.-Kawasetsu'18)

A vertex algebra is called quasi-lisse if the associated variety $X_{V}=\operatorname{Specm} R_{V}, R_{V}=V / C_{2}(V)$, has finitely many symplectic leaves.

Theorem (AK18)

Let V be quasi-lisse, conformal.

Quasi-lisse vertex algebras (cf. Hao's talk)

Definition (A.-Kawasetsu'18)

A vertex algebra is called quasi-lisse if the associated variety $X_{V}=\operatorname{Specm} R_{V}, R_{V}=V / C_{2}(V)$, has finitely many symplectic leaves.

Theorem (AK18)

Let V be quasi-lisse, conformal.
i) There exists only finitely many simple ordinary representations of V;

Quasi-lisse vertex algebras (cf. Hao's talk)

Definition (A.-Kawasetsu'18)

A vertex algebra is called quasi-lisse if the associated variety $X_{V}=\operatorname{Specm} R_{V}, R_{V}=V / C_{2}(V)$, has finitely many symplectic leaves.

Theorem (AK18)

Let V be quasi-lisse, conformal.
i) There exists only finitely many simple ordinary representations of V;
ii) For an ordinary representation $M, \operatorname{tr}_{M}\left(q^{L_{0}-c_{(V)} / 24}\right)$ converges to a holomorphic function on the upper half place.

Quasi-lisse vertex algebras (cf. Hao's talk)

Definition (A.-Kawasetsu'18)

A vertex algebra is called quasi-lisse if the associated variety $X_{V}=\operatorname{Specm} R_{V}, R_{V}=V / C_{2}(V)$, has finitely many symplectic leaves.

Theorem (AK18)

Let V be quasi-lisse, conformal.
i) There exists only finitely many simple ordinary representations of V;
ii) For an ordinary representation $M, \operatorname{tr}_{M}\left(q^{L_{0}-c_{(V)} / 24}\right)$ converges to a holomorphic function on the upper half place. Moreover, $\left\{\operatorname{tr}_{M}\left(q^{L_{0}-c_{(V)} / 24}\right) \mid M\right.$ ordinary $\}$ is a subspace of the space of the solutions of a modular linear differential equation (MLDE).

Quasi-lisse vertex algebras and quasi-modular forms

Remark

Quasi-lisse vertex algebras and quasi-modular forms

Remark

The normalized character of a quasi-lisse vertex algebra is "often" quasi-modular

Quasi-lisse vertex algebras and quasi-modular forms

Remark

The normalized character of a quasi-lisse vertex algebra is "often" quasi-modular, that is,

$$
\chi_{v}(\tau) \in \mathbb{C}\left[E_{2}(\tau), E_{4}(\tau), E_{6}(\tau)\right]
$$

Quasi-lisse vertex algebras and quasi-modular forms

Remark

The normalized character of a quasi-lisse vertex algebra is "often" quasi-modular, that is,

$$
\chi_{v}(\tau) \in \mathbb{C}\left[E_{2}(\tau), E_{4}(\tau), E_{6}(\tau)\right]
$$

Examples

Quasi-lisse vertex algebras and quasi-modular forms

Remark

The normalized character of a quasi-lisse vertex algebra is "often" quasi-modular, that is,

$$
\chi_{v}(\tau) \in \mathbb{C}\left[E_{2}(\tau), E_{4}(\tau), E_{6}(\tau)\right]
$$

Examples

i) $([\operatorname{AK18}]) L_{k}(\mathfrak{g})$ with $\mathfrak{g}=D_{4}, E_{6}, E_{7}, E_{8}, k=-h^{\vee} / 6-1$. (cf. Kawien's talk).

Quasi-lisse vertex algebras and quasi-modular forms

Remark

The normalized character of a quasi-lisse vertex algebra is "often" quasi-modular, that is,

$$
\chi_{v}(\tau) \in \mathbb{C}\left[E_{2}(\tau), E_{4}(\tau), E_{6}(\tau)\right]
$$

Examples

i) $([\operatorname{AK18}]) L_{k}(\mathfrak{g})$ with $\mathfrak{g}=D_{4}, E_{6}, E_{7}, E_{8}, k=-h^{\vee} / 6-1$. (cf. Kawien's talk).
ii) (Conjectured by [Milas'22]) Class \mathcal{S} chiral algebras ([A]) "Generalized multiple q-zeta values"

Singular support of quasi-lisse vertex algebras

Theorem (A.-Moreau'21)
\checkmark quasi-lisse
$\Rightarrow S S(V):=\operatorname{Spec}(\operatorname{gr} V) \cong J_{\infty} X_{V}$ as topological spaces.

Singular support of quasi-lisse vertex algebras

Theorem (A.-Moreau'21)
\checkmark quasi-lisse
$\Rightarrow S S(V):=\operatorname{Spec}(\operatorname{gr} V) \cong J_{\infty} X_{V}$ as topological spaces.
(cf. Rastelli's conjecture below)

When is quasi-lisse condition satisfied?

When is quasi-lisse condition satisfied?

Proposition (AK18)

When is quasi-lisse condition satisfied?

Proposition (AK18)

Let V be conical, quasi-lisse, conformal. The the image [ω] of the conformal vector ω of V is nilpotent in Zhu's C_{2}-algebra of R_{V}.

When is quasi-lisse condition satisfied?

Proposition (AK18)

Let V be conical, quasi-lisse, conformal. The the image [ω] of the conformal vector ω of V is nilpotent in Zhu's C_{2}-algebra of R_{V}.

Theorem

When is quasi-lisse condition satisfied?

Proposition (AK18)

Let V be conical, quasi-lisse, conformal. The the image [ω] of the conformal vector ω of V is nilpotent in Zhu's C_{2}-algebra of R_{V}.

Theorem

Let V be a quotient of a universal affine vertex algebra $V^{k}(\mathfrak{g})$ or a universal \mathbb{W}-algebras $\mathcal{W}^{k}(\mathfrak{g}, f)$.

When is quasi-lisse condition satisfied?

Proposition (AK18)

Let V be conical, quasi-lisse, conformal. The the image [ω] of the conformal vector ω of V is nilpotent in Zhu's C_{2}-algebra of R_{V}.

Theorem

Let V be a quotient of a universal affine vertex algebra $V^{k}(\mathfrak{g})$ or a universal \mathcal{W}-algebras $\mathcal{W}^{k}(\mathfrak{g}, f)$. Then the following conditions are equivalent.
i) V is quasi-lisse.
ii) the image $[\omega]$ of the conformal vector ω of V is nilpotent in Zhu's C_{2}-algebra of R_{V}.

Symplectic singularity

Symplectic singularity

Definition (Beauville'99)

Symplectic singularity

Definition (Beauville'99)

A symplectic singularity is a normal variety such that
i) \exists a closed symplectic 2 -form on its smooth part $X_{\text {reg }}$,
ii) for any resolution $p: \tilde{X} \rightarrow X, p^{*} \omega$ extends to \tilde{X}.

Symplectic singularity

Definition (Beauville'99)

A symplectic singularity is a normal variety such that
i) \exists a closed symplectic 2 -form on its smooth part $X_{\text {reg }}$,
ii) for any resolution $p: \tilde{X} \rightarrow X, p^{*} \omega$ extends to \tilde{X}.

Remark

Symplectic singularity

Definition (Beauville'99)

A symplectic singularity is a normal variety such that
i) \exists a closed symplectic 2 -form on its smooth part $X_{\text {reg }}$,
ii) for any resolution $p: \tilde{X} \rightarrow X, p^{*} \omega$ extends to \tilde{X}.

Remark

symplectic singularity
\Rightarrow Poisson

Symplectic singularity

Definition (Beauville'99)

A symplectic singularity is a normal variety such that
i) \exists a closed symplectic 2 -form on its smooth part $X_{\text {reg }}$,
ii) for any resolution $p: \tilde{X} \rightarrow X, p^{*} \omega$ extends to \tilde{X}.

Remark

symplectic singularity
\Rightarrow Poisson by $\{f, g\}=$ unique extension of $\left\{\left.f\right|_{X_{\text {reg }}},\left.g\right|_{\mid X_{\text {reg }}}\right\}$.

Symplectic singularity

Definition (Beauville'99)

A symplectic singularity is a normal variety such that
i) \exists a closed symplectic 2 -form on its smooth part $X_{\text {reg }}$,
ii) for any resolution $p: \tilde{X} \rightarrow X, p^{*} \omega$ extends to \tilde{X}.

Remark

symplectic singularity
\Rightarrow Poisson by $\{f, g\}=$ unique extension of $\left\{\left.f\right|_{X_{\text {reg }}},\left.g\right|_{\mid X_{\text {reg }}}\right\}$.
Theorem (Kaledin'06)

Symplectic singularity

Definition (Beauville'99)

A symplectic singularity is a normal variety such that
i) \exists a closed symplectic 2 -form on its smooth part $X_{\text {reg }}$,
ii) for any resolution $p: \tilde{X} \rightarrow X, p^{*} \omega$ extends to \tilde{X}.

Remark

symplectic singularity
\Rightarrow Poisson by $\{f, g\}=$ unique extension of $\left\{\left.f\right|_{X_{\text {reg }}},\left.g\right|_{\mid X_{\text {reg }}}\right\}$.

Theorem (Kaledin'06)

symplectic singularity \Rightarrow finitely many symplectic leaves.

Quotient symplectic singularity

Quotient symplectic singularity

Example (Beauville)

Quotient symplectic singularity

Example (Beauville)

Let X be a symplectic singularity, G finite group of automorphisms of X preserving the symplectic form ω on $X_{\text {reg }}$.
$\Rightarrow X / G$ is a symplectic singularity.

Symplectic singularity associated with complex reflection groups

Symplectic singularity associated with complex reflection groups
Γ complex reflection group, $\Gamma=\left\langle r_{\alpha}\right\rangle \subset G L\left(V_{\Gamma}\right), V_{\Gamma}=\mathbb{C}^{\mathrm{rk}} \Gamma$.

Symplectic singularity associated with complex reflection

groups

Γ complex reflection group, $\Gamma=\left\langle r_{\alpha}\right\rangle \subset G L\left(V_{\Gamma}\right), V_{\Gamma}=\mathbb{C}^{\mathrm{rk}} \Gamma$.

Symplectic singularity associated with complex reflection

groups

Γ complex reflection group, $\Gamma=\left\langle r_{\alpha}\right\rangle \subset G L\left(V_{\Gamma}\right), V_{\Gamma}=\mathbb{C}^{r k} \Gamma$.

$T^{*} V_{\Gamma}=V_{\Gamma} \oplus V_{\Gamma}^{*}$ symplectic vector space

Symplectic singularity associated with complex reflection

groups

Γ complex reflection group, $\Gamma=\left\langle r_{\alpha}\right\rangle \subset G L\left(V_{\Gamma}\right), V_{\Gamma}=\mathbb{C}^{r k} \Gamma$.

$T^{*} V_{\Gamma}=V_{\Gamma} \oplus V_{\Gamma}^{*}$ symplectic vector space
$\Gamma \curvearrowright T^{*} V_{\Gamma}$, preserving the symplectic form

Symplectic singularity associated with complex reflection

groups

Γ complex reflection group, $\Gamma=\left\langle r_{\alpha}\right\rangle \subset G L\left(V_{\Gamma}\right), V_{\Gamma}=\mathbb{C}^{r k} \Gamma$.

$T^{*} V_{\Gamma}=V_{\Gamma} \oplus V_{\Gamma}^{*}$ symplectic vector space
$\Gamma \curvearrowright T^{*} V_{\Gamma}$, preserving the symplectic form
\Rightarrow Get symplectic singularity

$$
\mathcal{M}_{\Gamma}:=T^{*} V_{\Gamma} / \Gamma=\operatorname{Spec} \mathbb{C}\left[T^{*} V_{\Gamma}\right]^{\Gamma}
$$

Vertex algebras labelled by complex reflection groups

Vertex algebras labelled by complex reflection groups

Conjecture (Bonetti-Meneghelli-Rastelli '19)

Vertex algebras labelled by complex reflection groups

Conjecture (Bonetti-Meneghelli-Rastelli '19)
For any complex reflection group Γ,

Vertex algebras labelled by complex reflection groups

Conjecture (Bonetti-Meneghelli-Rastelli '19)

For any complex reflection group Γ, there exits a vertex
superalgebra \mathbf{V}_{Γ} with the following properties:

Vertex algebras labelled by complex reflection groups

Conjecture (Bonetti-Meneghelli-Rastelli '19)

For any complex reflection group Γ, there exits a vertex superalgebra \mathbf{V}_{Γ} with the following properties:
i) $X_{\mathbf{V}_{\Gamma}} \cong \mathcal{M}_{\Gamma}=T^{*} V_{\Gamma} / \Gamma$,

Vertex algebras labelled by complex reflection groups

Conjecture (Bonetti-Meneghelli-Rastelli '19)

For any complex reflection group Γ, there exits a vertex superalgebra \mathbf{V}_{Γ} with the following properties:
i) $X_{\mathbf{v}_{\Gamma}} \cong \mathcal{M}_{\Gamma}=T^{*} V_{\Gamma} / \Gamma$, In particular, \mathbf{V}_{Γ} is quasi-lisse.

Vertex algebras labelled by complex reflection groups

Conjecture (Bonetti-Meneghelli-Rastelli '19)

For any complex reflection group Γ, there exits a vertex superalgebra \mathbf{V}_{Γ} with the following properties:
i) $X_{\mathbf{V}_{\Gamma}} \cong \mathcal{M}_{\Gamma}=T^{*} V_{\Gamma} / \Gamma$, In particular, \mathbf{V}_{Γ} is quasi-lisse.
ii) \exists conformal vertex algebra homomorphism $\mathrm{Vir}_{\mathcal{N}=2}^{c_{\Gamma}} \rightarrow \mathbf{V}_{\Gamma}$, where $\operatorname{Vir}_{\mathcal{N}=2}^{c_{\Gamma}}$ is the $\mathcal{N}=2$ superconformal algebra

Vertex algebras labelled by complex reflection groups

Conjecture (Bonetti-Meneghelli-Rastelli '19)

For any complex reflection group Γ, there exits a vertex superalgebra \mathbf{V}_{Γ} with the following properties:
i) $X_{\mathbf{v}_{\Gamma}} \cong \mathcal{M}_{\Gamma}=T^{*} V_{\Gamma} / \Gamma$, In particular, \mathbf{V}_{Γ} is quasi-lisse.
ii) \exists conformal vertex algebra homomorphism $\operatorname{Vir}_{\mathcal{N}=2}^{c_{\Gamma}} \rightarrow \mathbf{V}_{\Gamma}$, where $\operatorname{Vir}_{\mathcal{N}=2}^{c_{\Gamma}}$ is the $\mathcal{N}=2$ superconformal algebra with central charge $c_{\Gamma}=-3 \sum_{i=1}^{\mathrm{rank} \Gamma}\left(2 p_{i}-1\right), p_{1}, \ldots, p_{\mathrm{rank} \Gamma}$ the degree of the fundamental invariants in $\mathbb{C}\left[V_{\Gamma}\right]^{\Gamma}$.

Vertex algebras labelled by complex reflection groups

Conjecture (Bonetti-Meneghelli-Rastelli '19)

For any complex reflection group Γ, there exits a vertex superalgebra \mathbf{V}_{Γ} with the following properties:
i) $X_{\mathbf{v}_{\Gamma}} \cong \mathcal{M}_{\Gamma}=T^{*} V_{\Gamma} / \Gamma$, In particular, \mathbf{V}_{Γ} is quasi-lisse.
ii) \exists conformal vertex algebra homomorphism $\mathrm{Vir}_{\mathcal{N}=2}^{c_{\Gamma}} \rightarrow \mathbf{V}_{\Gamma}$, where $\operatorname{Vir}_{\mathcal{N}=2}^{c_{\Gamma}}$ is the $\mathcal{N}=2$ superconformal algebra with central charge $c_{\Gamma}=-3 \sum_{i=1}^{\operatorname{rank} \Gamma}\left(2 p_{i}-1\right), p_{1}, \ldots, p_{\text {rank } \Gamma}$ the degree of the fundamental invariants in $\mathbb{C}\left[V_{\Gamma}\right]^{\ulcorner }$. Moreover, if Γ is a Coxeter group,

Vertex algebras labelled by complex reflection groups

Conjecture (Bonetti-Meneghelli-Rastelli '19)

For any complex reflection group Γ, there exits a vertex superalgebra \mathbf{V}_{Γ} with the following properties:
i) $X_{\mathbf{v}_{\Gamma}} \cong \mathcal{M}_{\Gamma}=T^{*} V_{\Gamma} / \Gamma$, In particular, \mathbf{V}_{Γ} is quasi-lisse.
ii) \exists conformal vertex algebra homomorphism $\mathrm{Vir}_{\mathcal{N}=2}^{c_{\Gamma}} \rightarrow \mathbf{V}_{\Gamma}$, where $\operatorname{Vir}_{\mathcal{N}=2}^{c_{\Gamma}}$ is the $\mathcal{N}=2$ superconformal algebra with central charge $c_{\Gamma}=-3 \sum_{i=1}^{\operatorname{rank} \Gamma}\left(2 p_{i}-1\right), p_{1}, \ldots, p_{\text {rank } \Gamma}$ the degree of the fundamental invariants in $\mathbb{C}\left[V_{\Gamma}\right]^{\Gamma}$. Moreover, if Γ is a Coxeter group, then $\mathrm{Vir}_{\mathcal{N}=2}^{c_{\Gamma}}$ is enhanced to the small $\mathcal{N}=4$ superconformal algebra $\operatorname{Vir}_{\mathcal{N}=4}^{c_{\Gamma}}$

Vertex algebras labelled by complex reflection groups

Conjecture (Bonetti-Meneghelli-Rastelli '19)

For any complex reflection group Γ, there exits a vertex superalgebra \mathbf{V}_{Γ} with the following properties:
i) $X_{\mathbf{V}_{\Gamma}} \cong \mathcal{M}_{\Gamma}=T^{*} V_{\Gamma} / \Gamma$, In particular, \mathbf{V}_{Γ} is quasi-lisse.
ii) \exists conformal vertex algebra homomorphism $\mathrm{Vir}_{\mathcal{N}=2}^{c_{\Gamma}} \rightarrow \mathbf{V}_{\Gamma}$, where $\operatorname{Vir}_{\mathcal{N}=2}^{c_{\Gamma}}$ is the $\mathcal{N}=2$ superconformal algebra with central charge $c_{\Gamma}=-3 \sum_{i=1}^{\mathrm{rank}} \Gamma\left(2 p_{i}-1\right), p_{1}, \ldots, p_{\text {rank } \Gamma}$ the degree of the fundamental invariants in $\mathbb{C}\left[V_{\Gamma}\right]^{\Gamma}$. Moreover, if Γ is a Coxeter group, then $\mathrm{Vir}_{\mathcal{N}=2}^{c_{\Gamma}}$ is enhanced to the small $\mathcal{N}=4$ superconformal algebra $\operatorname{Vir}_{\mathcal{N}=4}^{c_{\Gamma}}$
iii) \mathbf{V}_{Γ} admits a free field realization $\mathbf{V}_{\Gamma} \hookrightarrow(\beta \gamma b c)^{\otimes r a n k} \Gamma$.

Connection with the 4D/2D duality

Connection with the 4D/2D duality

Beem-Lemos-Liendo-Peelaers-Rastelli-van Rees'15

Connection with the 4D/2D duality

Beem-Lemos-Liendo-Peelaers-Rastelli-van Rees'15

There exits a map

$$
\mathbb{V}:\{4 \mathrm{D} \mathcal{N}=2 \mathrm{SCFT}\} \longrightarrow\{\mathrm{VOAs}\}=\{2 \mathrm{D} \text { CFTs }\}
$$

Connection with the 4D/2D duality

Beem-Lemos-Liendo-Peelaers-Rastelli-van Rees'15

There exits a map

$$
\mathbb{V}:\{4 \mathrm{D} \mathcal{N}=2 \mathrm{SCFTs}\} \longrightarrow\{\mathrm{VOAs}\}=\{2 \mathrm{D} \text { CFTs }\}
$$

such that

$$
\operatorname{Schur}(\mathcal{T})=\chi_{\mathbb{V}(\mathcal{T})}(q)=\operatorname{Tr}_{\mathbb{V}(\mathcal{T})}\left(q^{-c / 24+L_{0}}\right)
$$

for any 4D $\mathcal{N}=2$ SCFT \mathcal{T}.

Connection with the 4D/2D duality

Beem-Lemos-Liendo-Peelaers-Rastelli-van Rees'15

There exits a map

$$
\mathbb{V}:\{4 \mathrm{D} \mathcal{N}=2 \mathrm{SCFT}\} \longrightarrow\{\mathrm{VOAs}\}=\{2 \mathrm{D} \text { CFTs }\}
$$

such that

$$
\operatorname{Schur}(\mathcal{T})=\chi_{\mathbb{V}(\mathcal{T})}(q)=\operatorname{Tr}_{\mathbb{V}(\mathcal{T})}\left(q^{-c / 24+L_{0}}\right)
$$

for any 4D $\mathcal{N}=2$ SCFT \mathcal{T}.
Conjecture (Beem-Rastelli '18)

Connection with the 4D/2D duality

Beem-Lemos-Liendo-Peelaers-Rastelli-van Rees'15

There exits a map

$$
\mathbb{V}:\{4 \mathrm{D} \mathcal{N}=2 \mathrm{SCFT}\} \longrightarrow\{\mathrm{VOAs}\}=\{2 \mathrm{D} \text { CFTs }\}
$$

such that

$$
\operatorname{Schur}(\mathcal{T})=\chi_{\mathbb{V}(\mathcal{T})}(q)=\operatorname{Tr}_{\mathbb{V}(\mathcal{T})}\left(q^{-c / 24+L_{0}}\right)
$$

for any 4D $\mathcal{N}=2$ SCFT \mathcal{T}.

Conjecture (Beem-Rastelli '18)

For any $4 \mathrm{D} \mathcal{N}=2 \mathrm{SCFT} \mathcal{T}$,

Connection with the 4D/2D duality

Beem-Lemos-Liendo-Peelaers-Rastelli-van Rees'15

There exits a map

$$
\mathbb{V}:\{4 \mathrm{D} \mathcal{N}=2 \mathrm{SCFT}\} \longrightarrow\{\mathrm{VOAs}\}=\{2 \mathrm{D} \text { CFTs }\}
$$

such that

$$
\operatorname{Schur}(\mathcal{T})=\chi_{\mathbb{V}(\mathcal{T})}(q)=\operatorname{Tr}_{\mathbb{V}(\mathcal{T})}\left(q^{-c / 24+L_{0}}\right)
$$

for any 4D $\mathcal{N}=2$ SCFT \mathcal{T}.

Conjecture (Beem-Rastelli '18)

For any 4D $\mathcal{N}=2$ SCFT \mathcal{T}, we have

$$
\operatorname{Higgs}(\mathcal{T}) \cong X_{\mathbb{V}(\mathcal{T})}
$$

Connection with the 4D/2D duality

Connection with the 4D/2D duality

Conjecture [Rastelli'18]

Connection with the 4D/2D duality

Conjecture [Rastelli'18]

i) $\mathbb{V}(\mathcal{T})$ is a complete invariant of a $4 \mathrm{D} \mathcal{N}=4 \operatorname{SCFT} \mathcal{T}$.

Connection with the 4D/2D duality

Conjecture [Rastelli'18]

i) $\mathbb{V}(\mathcal{T})$ is a complete invariant of a $4 \mathrm{D} \mathcal{N}=4 \operatorname{SCFT} \mathcal{T}$.
ii) In fact, the associated scheme $\tilde{X}_{\mathbb{V}(\mathcal{T})}=\operatorname{Spec}\left(R_{\mathbb{V}(\mathcal{T})}\right)$ is a complete invariant.

Connection with the 4D/2D duality

Conjecture [Rastelli'18]

i) $\mathbb{V}(\mathcal{T})$ is a complete invariant of a $4 \mathrm{D} \mathcal{N}=4 \operatorname{SCFT} \mathcal{T}$.
ii) In fact, the associated scheme $\tilde{X}_{\mathrm{V}(\mathcal{T})}=\operatorname{Spec}\left(R_{\mathrm{V}(\mathcal{T})}\right)$ is a complete invariant.
iii) $\mathbb{V}(\mathcal{T})$ is a strict chiral quantization of $\tilde{X}_{\mathbb{V}(\mathcal{T})}$ (or classically free). That is, $\operatorname{gr} \mathbb{V}(\mathcal{T}) \cong \mathbb{C}\left[J_{\infty} \tilde{X}_{\mathbb{V}(\mathcal{T})}\right]$.

Connection with the 4D/2D duality

Conjecture [Rastelli'18]

i) $\mathbb{V}(\mathcal{T})$ is a complete invariant of a $4 \mathrm{D} \mathcal{N}=4 \operatorname{SCFT} \mathcal{T}$.
ii) In fact, the associated scheme $\tilde{X}_{\mathrm{V}(\mathcal{T})}=\operatorname{Spec}\left(R_{\mathrm{V}(\mathcal{T})}\right)$ is a complete invariant.
iii) $\mathbb{V}(\mathcal{T})$ is a strict chiral quantization of $\tilde{X}_{\mathbb{V}(\mathcal{T})}$ (or classically free). That is, $\operatorname{gr} \mathbb{V}(\mathcal{T}) \cong \mathbb{C}\left[J_{\infty} \tilde{X}_{\mathbb{V}(\mathcal{T})}\right]$.

Remark

Connection with the 4D/2D duality

Conjecture [Rastelli'18]

i) $\mathbb{V}(\mathcal{T})$ is a complete invariant of a $4 \mathrm{D} \mathcal{N}=4 \operatorname{SCFT} \mathcal{T}$.
ii) In fact, the associated scheme $\tilde{X}_{\mathbb{V}(\mathcal{T})}=\operatorname{Spec}\left(R_{\mathrm{V}(\mathcal{T})}\right)$ is a complete invariant.
iii) $\mathbb{V}(\mathcal{T})$ is a strict chiral quantization of $\tilde{X}_{\mathbb{V}(\mathcal{T})}$ (or classically free). That is, $\operatorname{gr} \mathbb{V}(\mathcal{T}) \cong \mathbb{C}\left[J_{\infty} \tilde{X}_{\mathbb{V}(\mathcal{T})}\right]$.

Remark

i) The Higgs branch $\operatorname{Higgs}(\mathcal{T})$ is not a complete invariant.

Connection with the 4D/2D duality

Conjecture [Rastelli'18]

i) $\mathbb{V}(\mathcal{T})$ is a complete invariant of a $4 \mathrm{D} \mathcal{N}=4 \operatorname{SCFT} \mathcal{T}$.
ii) In fact, the associated scheme $\tilde{X}_{\mathbb{V}(\mathcal{T})}=\operatorname{Spec}\left(R_{\mathrm{V}(\mathcal{T})}\right)$ is a complete invariant.
iii) $\mathbb{V}(\mathcal{T})$ is a strict chiral quantization of $\tilde{X}_{\mathbb{V}(\mathcal{T})}$ (or classically free). That is, $\operatorname{gr} \mathbb{V}(\mathcal{T}) \cong \mathbb{C}\left[J_{\infty} \tilde{X}_{\mathbb{V}(\mathcal{T})}\right]$.

Remark

i) The Higgs branch $\operatorname{Higgs}(\mathcal{T})$ is not a complete invariant. So one can think $\mathbb{V}(\mathcal{T})$ as a refinement of $\operatorname{Higgs}(\mathcal{T})$.

Connection with the 4D/2D duality

Conjecture [Rastelli'18]

i) $\mathbb{V}(\mathcal{T})$ is a complete invariant of a $4 \mathrm{D} \mathcal{N}=4 \operatorname{SCFT} \mathcal{T}$.
ii) In fact, the associated scheme $\tilde{X}_{\mathrm{V}(\mathcal{T})}=\operatorname{Spec}\left(R_{\mathrm{V}(\mathcal{T})}\right)$ is a complete invariant.
iii) $\mathbb{V}(\mathcal{T})$ is a strict chiral quantization of $\tilde{X}_{\mathbb{V}(\mathcal{T})}$ (or classically free). That is, $\operatorname{gr} \mathbb{V}(\mathcal{T}) \cong \mathbb{C}\left[J_{\infty} \tilde{X}_{\mathbb{V}}(\mathcal{T})\right]$.

Remark

i) The Higgs branch $\operatorname{Higgs}(\mathcal{T})$ is not a complete invariant. So one can think $\mathbb{V}(\mathcal{T})$ as a refinement of $\operatorname{Higgs}(\mathcal{T})$.
ii) By the 3D mirror symmetry, $\operatorname{Higgs}(\mathcal{T})=\operatorname{Higgs}\left(\mathcal{T}_{3 D}\right) \cong \operatorname{Coulomb}\left(\check{\mathcal{T}}_{3 D}\right)$, where $\mathcal{T}_{3 D}$ is the 3D theory obtained from \mathcal{T} by S^{1}-compaticification.

Connection with the 4D/2D duality

Connection with the 4D/2D duality

- When $\Gamma=W(\mathfrak{g})$, the Weyl group of a simple Lie algebra \mathfrak{g},

Connection with the 4D/2D duality

- When $\Gamma=W(\mathfrak{g})$, the Weyl group of a simple Lie algebra \mathfrak{g}, it is expected that

$$
\mathbf{V}_{W(\mathfrak{g})}=\mathbb{V}\left(\mathrm{SYM}_{\mathfrak{g}}\right)
$$

where $\mathrm{SYM}_{\mathfrak{g}}$ is the 4-dimensional $\mathcal{N}=4$ super Yang-Mills theory with gauge algebra \mathfrak{g}.

Connection with the 4D/2D duality

- When $\Gamma=W(\mathfrak{g})$, the Weyl group of a simple Lie algebra \mathfrak{g}, it is expected that

$$
\mathbf{V}_{W(\mathfrak{g})}=\mathbb{V}\left(\mathrm{SYM}_{\mathfrak{g}}\right)
$$

where $\mathrm{SYM}_{\mathfrak{g}}$ is the 4-dimensional $\mathcal{N}=4$ super Yang-Mills theory with gauge algebra \mathfrak{g}. It is known that

$$
\operatorname{Higgs}\left(\mathrm{SYM}_{\mathfrak{g}}\right) \cong \mathcal{M}_{W(\mathfrak{g})}
$$

Connection with the 4D/2D duality

- When $\Gamma=W(\mathfrak{g})$, the Weyl group of a simple Lie algebra \mathfrak{g}, it is expected that

$$
\mathbf{V}_{W(\mathfrak{g})}=\mathbb{V}\left(\mathrm{SYM}_{\mathfrak{g}}\right)
$$

where $\mathrm{SYM}_{\mathfrak{g}}$ is the 4-dimensional $\mathcal{N}=4$ super Yang-Mills theory with gauge algebra \mathfrak{g}. It is known that

$$
\operatorname{Higgs}\left(\mathrm{SYM}_{\mathfrak{g}}\right) \cong \mathcal{M}_{W(\mathfrak{g})}
$$

- When Γ is a crystallographic complex reflection group that is not a Coxeter group, then it is expected that $\mathbf{V}_{\Gamma}=\mathbb{V}\left(\mathcal{T}_{\Gamma}\right)$ for some the 4-dimensional theory \mathcal{T}_{Γ} with $\mathcal{N}=3$ supersymmetry.

Aim

Aim

To prove the Bonetti-Meneghelli-Rastelli conjecture for $\Gamma=W\left(\mathfrak{s l}_{N}\right)=\mathfrak{S}_{N}$.

Aim

To prove the Bonetti-Meneghelli-Rastelli conjecture for $\Gamma=W\left(\mathfrak{s l}_{N}\right)=\mathfrak{S}_{N}$.

$$
V_{\mathfrak{S}_{N}}=\mathbb{C}^{N-1} \curvearrowleft \mathfrak{S}_{N},
$$

Aim

To prove the Bonetti-Meneghelli-Rastelli conjecture for $\Gamma=W\left(\mathfrak{s l}_{N}\right)=\mathfrak{S}_{N}$.
$V_{\mathfrak{S}_{N}}=\mathbb{C}^{N-1} \curvearrowleft \mathfrak{S}_{N}$,
$\mathcal{M}_{\mathfrak{S}_{N}}=\left(\mathbb{C}^{N-1} \oplus \mathbb{C}^{N-1}\right) / \mathfrak{S}_{N}$

Aim

To prove the Bonetti-Meneghelli-Rastelli conjecture for $\Gamma=W\left(\mathfrak{s l}_{N}\right)=\mathfrak{S}_{N}$.

$$
V_{\mathfrak{S}_{N}}=\mathbb{C}^{N-1} \curvearrowleft \mathfrak{S}_{N},
$$

$$
\mathcal{M}_{\mathfrak{S}_{N}}=\left(\mathbb{C}^{N-1} \oplus \mathbb{C}^{N-1}\right) / \mathfrak{S}_{N}
$$

$$
\left.\mathbf{V}_{\mathfrak{S}_{N}} \text { is of c.c. } c_{\mathfrak{S}_{N}}=-3 \sum_{i=1}^{N-1}(2(i+1)-1)\right)=-3\left(N^{2}-1\right)
$$

Aim

To prove the Bonetti-Meneghelli-Rastelli conjecture for $\Gamma=W\left(\mathfrak{s l}_{N}\right)=\mathfrak{S}_{N}$.
$V_{\mathfrak{S}_{N}}=\mathbb{C}^{N-1} \curvearrowleft \mathfrak{S}_{N}$,
$\mathcal{M}_{\mathfrak{S}_{N}}=\left(\mathbb{C}^{N-1} \oplus \mathbb{C}^{N-1}\right) / \mathfrak{S}_{N}$
$\mathbf{V}_{\mathfrak{S}_{N}}$ is of c.c. $\left.c_{\mathfrak{S}_{N}}=-3 \sum_{i=1}^{N-1}(2(i+1)-1)\right)=-3\left(N^{2}-1\right)$
\uparrow conformal
$\operatorname{Vir}_{\mathcal{N}=4}^{-3\left(N^{2}-1\right)}$

Aim

To prove the Bonetti-Meneghelli-Rastelli conjecture for

$$
\Gamma=W\left(\mathfrak{s l}_{N}\right)=\mathfrak{S}_{N}
$$

$$
V_{\mathfrak{S}_{N}}=\mathbb{C}^{N-1} \curvearrowleft \mathfrak{S}_{N}
$$

$$
\mathcal{M}_{\mathfrak{S}_{N}}=\left(\mathbb{C}^{N-1} \oplus \mathbb{C}^{N-1}\right) / \mathfrak{S}_{N}
$$

$$
\left.\mathbf{V}_{\mathfrak{S}_{N}} \text { is of c.c. } c_{\mathfrak{S}_{N}}=-3 \sum_{i=1}^{N-1}(2(i+1)-1)\right)=-3\left(N^{2}-1\right)
$$

\uparrow conformal

$$
\operatorname{Vir}_{\mathcal{N}=4}^{-3\left(N^{2}-1\right)} \supset V^{-\frac{N^{2}-1}{2}}\left(\mathfrak{s l}_{2}\right)
$$

$N=2$ case

$N=2$ case

$$
\mathcal{M}_{\mathfrak{S}_{2}}=\operatorname{Spec} \mathbb{C}[x, y]^{\mathfrak{S}_{2}}, \mathfrak{S}_{2} \ni s: x \mapsto-x, y \mapsto-y
$$

$N=2$ case

$$
\mathcal{M}_{\mathfrak{S}_{2}}=\operatorname{Spec} \mathbb{C}[x, y]^{\mathfrak{S}_{2}}, \mathfrak{S}_{2} \ni s: x \mapsto-x, y \mapsto-y
$$

$=\operatorname{Spec} \mathbb{C}\left[x^{2}, x y, y^{2}\right]$

$N=2$ case

$$
\begin{aligned}
& \mathcal{M}_{\mathfrak{S}_{2}}=\operatorname{Spec} \mathbb{C}[x, y]^{\mathfrak{S}_{2}}, \mathfrak{S}_{2} \ni s: x \mapsto-x, y \mapsto-y \\
& =\operatorname{Spec} \mathbb{C}\left[x^{2}, x y, y^{2}\right]=\operatorname{Spec} \mathbb{C}[a, b, c] /\left(a^{2}-b c\right)
\end{aligned}
$$

$N=2$ case

$$
\begin{aligned}
& \mathcal{M}_{\mathfrak{S}_{2}}=\operatorname{Spec} \mathbb{C}[x, y]^{\mathfrak{S}_{2}}, \mathfrak{S}_{2} \ni s: x \mapsto-x, y \mapsto-y \\
& =\operatorname{Spec} \mathbb{C}\left[x^{2}, x y, y^{2}\right]=\operatorname{Spec} \mathbb{C}[a, b, c] /\left(a^{2}-b c\right) \\
& =\left\{\left.A=\left(\begin{array}{cc}
a & b \\
-c & -a
\end{array}\right) \in \mathfrak{s l}_{2}(\mathbb{C}) \right\rvert\, \operatorname{det} A=0\right\}
\end{aligned}
$$

$N=2$ case

$\mathcal{M}_{\mathfrak{S}_{2}}=\operatorname{Spec} \mathbb{C}[x, y]^{\mathfrak{S}_{2}}, \mathfrak{S}_{2} \ni s: x \mapsto-x, y \mapsto-y$
$=\operatorname{Spec} \mathbb{C}\left[x^{2}, x y, y^{2}\right]=\operatorname{Spec} \mathbb{C}[a, b, c] /\left(a^{2}-b c\right)$
$=\left\{\left.A=\left(\begin{array}{cc}a & b \\ -c & -a\end{array}\right) \in \mathfrak{s l}_{2}(\mathbb{C}) \right\rvert\, \operatorname{det} A=0\right\}$
$=\mathcal{N}\left(\mathfrak{s l}_{2}\right)$, nilpotent cone of $\mathfrak{S l}_{2}$,

$N=2$ case

$$
\begin{aligned}
& \mathcal{M}_{\mathfrak{S}_{2}}=\operatorname{Spec} \mathbb{C}[x, y]^{\mathfrak{S}_{2}}, \mathfrak{S}_{2} \ni s: x \mapsto-x, y \mapsto-y \\
& =\operatorname{Spec} \mathbb{C}\left[x^{2}, x y, y^{2}\right]=\operatorname{Spec} \mathbb{C}[a, b, c] /\left(a^{2}-b c\right) \\
& =\left\{\left.A=\left(\begin{array}{cc}
a & b \\
-c & -a
\end{array}\right) \in \mathfrak{s l}_{2}(\mathbb{C}) \right\rvert\, \operatorname{det} A=0\right\}
\end{aligned}
$$

$=\mathcal{N}\left(\mathfrak{s l}_{2}\right)$, nilpotent cone of $\mathfrak{S l}_{2}$,

$$
c_{\mathfrak{S}_{2}}=-3\left(2^{2}-1\right)-9
$$

$N=2$ case

$\mathcal{M}_{\mathfrak{S}_{2}}=\operatorname{Spec} \mathbb{C}[x, y]^{\mathfrak{S}_{2}}, \mathfrak{S}_{2} \ni s: x \mapsto-x, y \mapsto-y$
$=\operatorname{Spec} \mathbb{C}\left[x^{2}, x y, y^{2}\right]=\operatorname{Spec} \mathbb{C}[a, b, c] /\left(a^{2}-b c\right)$
$=\left\{\left.A=\left(\begin{array}{cc}a & b \\ -c & -a\end{array}\right) \in \mathfrak{s l}_{2}(\mathbb{C}) \right\rvert\, \operatorname{det} A=0\right\}$
$=\mathcal{N}\left(\mathfrak{s l}_{2}\right)$, nilpotent cone of $\mathfrak{s l}_{2}$,
$c_{\mathfrak{S}_{2}}=-3\left(2^{2}-1\right)-9$,
$\mathrm{Vir}_{-9}^{\mathcal{N}}=4$ the unique simple quotient of $\mathrm{Vir}_{\mathcal{N}=4}^{-9}$.

$N=2$ case

$\mathcal{M}_{\mathfrak{S}_{2}}=\operatorname{Spec} \mathbb{C}[x, y]^{\mathfrak{S}_{2}}, \mathfrak{S}_{2} \ni s: x \mapsto-x, y \mapsto-y$
$=\operatorname{Spec} \mathbb{C}\left[x^{2}, x y, y^{2}\right]=\operatorname{Spec} \mathbb{C}[a, b, c] /\left(a^{2}-b c\right)$
$=\left\{\left.A=\left(\begin{array}{cc}a & b \\ -c & -a\end{array}\right) \in \mathfrak{s l}_{2}(\mathbb{C}) \right\rvert\, \operatorname{det} A=0\right\}$
$=\mathcal{N}\left(\mathfrak{s l}_{2}\right)$, nilpotent cone of $\mathfrak{s l}_{2}$,
$c_{\mathfrak{S}_{2}}=-3\left(2^{2}-1\right)-9$,
$\mathrm{Vir}_{-9}^{\mathcal{N}}=4$ the unique simple quotient of $\mathrm{Vir}_{\mathcal{N}=4}^{-9}$.
Theorem (Adamovic '15)

$N=2$ case

$\mathcal{M}_{\mathfrak{S}_{2}}=\operatorname{Spec} \mathbb{C}[x, y]^{\mathfrak{S}_{2}}, \mathfrak{S}_{2} \ni s: x \mapsto-x, y \mapsto-y$
$=\operatorname{Spec} \mathbb{C}\left[x^{2}, x y, y^{2}\right]=\operatorname{Spec} \mathbb{C}[a, b, c] /\left(a^{2}-b c\right)$
$=\left\{\left.A=\left(\begin{array}{cc}a & b \\ -c & -a\end{array}\right) \in \mathfrak{s l}_{2}(\mathbb{C}) \right\rvert\, \operatorname{det} A=0\right\}$
$=\mathcal{N}\left(\mathfrak{s l}_{2}\right)$, nilpotent cone of $\mathfrak{s l}_{2}$,
$c_{\mathfrak{S}_{2}}=-3\left(2^{2}-1\right)-9$,
$\mathrm{Vir}_{-9}^{\mathcal{N}}=4$ the unique simple quotient of $\mathrm{Vir}_{\mathcal{N}=4}^{-9}$.
Theorem (Adamovic '15)

$$
X_{\mathrm{Vir}_{-9}^{\mathcal{N}}=4} \cong \mathcal{N}\left(\mathfrak{s l}_{2}\right)
$$

$N=2$ case

$$
\begin{aligned}
& \mathcal{M}_{\mathfrak{S}_{2}}=\operatorname{Spec} \mathbb{C}[x, y]^{\mathfrak{S}_{2}}, \mathfrak{S}_{2} \ni s: x \mapsto-x, y \mapsto-y \\
& =\operatorname{Spec} \mathbb{C}\left[x^{2}, x y, y^{2}\right]=\operatorname{Spec} \mathbb{C}[a, b, c] /\left(a^{2}-b c\right) \\
& =\left\{\left.A=\left(\begin{array}{cc}
a & b \\
-c & -a
\end{array}\right) \in \mathfrak{S l}_{2}(\mathbb{C}) \right\rvert\, \operatorname{det} A=0\right\}
\end{aligned}
$$

$=\mathcal{N}\left(\mathfrak{s l}_{2}\right)$, nilpotent cone of $\mathfrak{s l}_{2}$,
$c_{\mathfrak{S}_{2}}=-3\left(2^{2}-1\right)-9$,
$\mathrm{Vir}_{-9}^{\mathcal{N}}=4$ the unique simple quotient of $\mathrm{Vir}_{\mathcal{N}=4}^{-9}$.
Theorem (Adamovic '15)
$X_{\operatorname{Vir}_{-9}=4} \cong \mathcal{N}\left(\mathfrak{s l}_{2}\right)$ and there is a vertex algebra embedding $\operatorname{Vir}_{-9}^{\mathcal{N}=4} \hookrightarrow \beta \gamma b c$.

$N=2$ case

$$
\begin{aligned}
& \mathcal{M}_{\mathfrak{S}_{2}}=\operatorname{Spec} \mathbb{C}[x, y]^{\mathfrak{S}_{2}}, \mathfrak{S}_{2} \ni s: x \mapsto-x, y \mapsto-y \\
& =\operatorname{Spec} \mathbb{C}\left[x^{2}, x y, y^{2}\right]=\operatorname{Spec} \mathbb{C}[a, b, c] /\left(a^{2}-b c\right) \\
& =\left\{\left.A=\left(\begin{array}{cc}
a & b \\
-c & -a
\end{array}\right) \in \mathfrak{S l}_{2}(\mathbb{C}) \right\rvert\, \operatorname{det} A=0\right\}
\end{aligned}
$$

$=\mathcal{N}\left(\mathfrak{s l}_{2}\right)$, nilpotent cone of $\mathfrak{s l}_{2}$,
$c_{\mathfrak{S}_{2}}=-3\left(2^{2}-1\right)-9$,
$\mathrm{Vir}_{-9}^{\mathcal{N}}=4$ the unique simple quotient of $\mathrm{Vir}_{\mathcal{N}=4}^{-9}$.
Theorem (Adamovic '15)
$X_{\operatorname{Vir}_{-9}=4} \cong \mathcal{N}\left(\mathfrak{s l}_{2}\right)$ and there is a vertex algebra embedding $\mathrm{Vir}_{-9}^{\mathcal{N}=4} \hookrightarrow \beta \gamma b c$.
$\mathbf{V}_{\mathfrak{S}_{2}}=\operatorname{Vir}_{-9}^{\mathcal{N}}=4$.

First observation

First observation

$T^{*} \mathbb{P}^{1} \rightarrow \mathcal{N}\left(\mathfrak{s l}_{2}\right), \quad$ Springer resolution

First observation

$T^{*} \mathbb{P}^{1} \rightarrow \mathcal{N}\left(\mathfrak{s l}_{2}\right), \quad$ Springer resolution
Normality of $\mathcal{N}\left(\mathfrak{s l}_{2}\right) \Rightarrow \Gamma\left(T^{*} \mathbb{P}^{1}, \mathcal{O}_{T^{*} \mathbb{P}^{1}}\right) \cong \mathbb{C}\left[\mathcal{N}\left(\mathfrak{s l}_{2}\right)\right]$

First observation

$T^{*} \mathbb{P}^{1} \rightarrow \mathcal{N}\left(\mathfrak{s l}_{2}\right)$, Springer resolution
Normality of $\mathcal{N}\left(\mathfrak{s l}_{2}\right) \Rightarrow \Gamma\left(T^{*} \mathbb{P}^{1}, \mathcal{O}_{T * \mathbb{P}^{1}}\right) \cong \mathbb{C}\left[\mathcal{N}\left(\mathfrak{s L}_{2}\right)\right]$
$\Omega_{\mathbb{P}^{1}}^{c h}$ chiral de Rham complex of \mathbb{P}_{1} ([Malikov, Schechtman, Vaintrob '99]
$\Omega_{\mathbb{P}^{1}}^{c h}$ is a sheaf of vertex superalgebra on \mathbb{P}^{1}, which is locally isomorphic to $\beta \gamma b c$:

First observation

$T^{*} \mathbb{P}^{1} \rightarrow \mathcal{N}\left(\mathfrak{s l}_{2}\right)$, Springer resolution
Normality of $\mathcal{N}\left(\mathfrak{s l}_{2}\right) \Rightarrow \Gamma\left(T^{*} \mathbb{P}^{1}, \mathcal{O}_{T * \mathbb{P}^{1}}\right) \cong \mathbb{C}\left[\mathcal{N}\left(\mathfrak{s l}_{2}\right)\right]$
$\Omega_{\mathbb{P}^{1}}^{c h}$ chiral de Rham complex of \mathbb{P}_{1} ([Malikov, Schechtman, Vaintrob '99]
$\Omega_{\mathbb{P}^{1}}^{c h}$ is a sheaf of vertex superalgebra on \mathbb{P}^{1}, which is locally isomorphic to $\beta \gamma b c$:
β, γ even, b, c odd,
$\left[\gamma_{\lambda} \beta\right]=1, \quad\left[b_{\lambda} c\right]=1$.

First observation

$T^{*} \mathbb{P}^{1} \rightarrow \mathcal{N}\left(\mathfrak{s l}_{2}\right)$, Springer resolution
Normality of $\mathcal{N}\left(\mathfrak{s l}_{2}\right) \Rightarrow \Gamma\left(T^{*} \mathbb{P}^{1}, \mathcal{O}_{T^{*} \mathbb{P}^{1}}\right) \cong \mathbb{C}\left[\mathcal{N}\left(\mathfrak{s l}_{2}\right)\right]$
$\Omega_{\mathbb{P}^{1}}^{c h}$ chiral de Rham complex of \mathbb{P}_{1} ([Malikov, Schechtman, Vaintrob '99]
$\Omega_{\mathbb{P}^{1}}^{c h}$ is a sheaf of vertex superalgebra on \mathbb{P}^{1}, which is locally isomorphic to $\beta \gamma b c$:
β, γ even, b, c odd,
$\left[\gamma_{\lambda} \beta\right]=1, \quad\left[b_{\lambda} c\right]=1$.
$\Gamma\left(\mathbb{P}^{1}, \Omega_{\mathbb{P}_{1}}^{c h}\right)$ vertex superalgebra

First observation

$T^{*} \mathbb{P}^{1} \rightarrow \mathcal{N}\left(\mathfrak{s l}_{2}\right)$, Springer resolution
Normality of $\mathcal{N}\left(\mathfrak{s l}_{2}\right) \Rightarrow \Gamma\left(T^{*} \mathbb{P}^{1}, \mathcal{O}_{T^{*} \mathbb{P}^{1}}\right) \cong \mathbb{C}\left[\mathcal{N}\left(\mathfrak{s l}_{2}\right)\right]$
$\Omega_{\mathbb{P}^{1}}^{c h}$ chiral de Rham complex of \mathbb{P}_{1} ([Malikov, Schechtman, Vaintrob '99]
$\Omega_{\mathbb{P}^{1}}^{c h}$ is a sheaf of vertex superalgebra on \mathbb{P}^{1}, which is locally isomorphic to $\beta \gamma b c$:
β, γ even, b, c odd,
$\left[\gamma_{\lambda} \beta\right]=1, \quad\left[b_{\lambda} c\right]=1$.
$\Gamma\left(\mathbb{P}^{1}, \Omega_{\mathbb{P}_{1}}^{c h}\right)$ vertex superalgebra
Question Is $\Gamma\left(\mathbb{P}^{1}, \Omega_{\mathbb{P}_{1}}^{c h}\right)$ isomorphic to $\operatorname{Vir}_{-9}^{\mathcal{N}}=4$?

First observation

$T^{*} \mathbb{P}^{1} \rightarrow \mathcal{N}\left(\mathfrak{s l}_{2}\right)$, Springer resolution
Normality of $\mathcal{N}\left(\mathfrak{s l}_{2}\right) \Rightarrow \Gamma\left(T^{*} \mathbb{P}^{1}, \mathcal{O}_{T^{*} \mathbb{P}^{1}}\right) \cong \mathbb{C}\left[\mathcal{N}\left(\mathfrak{s l}_{2}\right)\right]$
$\Omega_{\mathbb{P}^{1}}^{c h}$ chiral de Rham complex of \mathbb{P}_{1} ([Malikov, Schechtman, Vaintrob '99]
$\Omega_{\mathbb{P}^{1}}^{c h}$ is a sheaf of vertex superalgebra on \mathbb{P}^{1}, which is locally isomorphic to $\beta \gamma b c$:
β, γ even, b, c odd,
$\left[\gamma_{\lambda} \beta\right]=1, \quad\left[b_{\lambda} c\right]=1$.
$\Gamma\left(\mathbb{P}^{1}, \Omega_{\mathbb{P}_{1}}^{c h}\right)$ vertex superalgebra
Question Is $\Gamma\left(\mathbb{P}^{1}, \Omega_{\mathbb{P}_{1}}^{c h}\right)$ isomorphic to $\operatorname{Vir}_{-9}^{\mathcal{N}}=4$?
No,

First observation

$T^{*} \mathbb{P}^{1} \rightarrow \mathcal{N}\left(\mathfrak{s l}_{2}\right)$, Springer resolution
Normality of $\mathcal{N}\left(\mathfrak{s l}_{2}\right) \Rightarrow \Gamma\left(T^{*} \mathbb{P}^{1}, \mathcal{O}_{T^{*} \mathbb{P}^{1}}\right) \cong \mathbb{C}\left[\mathcal{N}\left(\mathfrak{s l}_{2}\right)\right]$
$\Omega_{\mathbb{P}^{1}}^{c h}$ chiral de Rham complex of \mathbb{P}_{1} ([Malikov, Schechtman,
Vaintrob '99]
$\Omega_{\mathbb{P}^{1}}^{c h}$ is a sheaf of vertex superalgebra on \mathbb{P}^{1}, which is locally isomorphic to $\beta \gamma b c$:
β, γ even, b, c odd,
$\left[\gamma_{\lambda} \beta\right]=1, \quad\left[b_{\lambda} c\right]=1$.
$\Gamma\left(\mathbb{P}^{1}, \Omega_{\mathbb{P}_{1}}^{c h}\right)$ vertex superalgebra
Question Is $\Gamma\left(\mathbb{P}^{1}, \Omega_{\mathbb{P}_{1}}^{c h}\right)$ isomorphic to $\operatorname{Vir}_{-9}^{\mathcal{N}}=4$?
No, because the natural action of $\widehat{\mathfrak{s l}}$ on $\Gamma\left(\mathbb{P}^{1}, \Omega_{\mathbb{P}_{1}}^{c h}\right)$ is of level 0 ,

First observation

$T^{*} \mathbb{P}^{1} \rightarrow \mathcal{N}\left(\mathfrak{s l}_{2}\right), \quad$ Springer resolution
Normality of $\mathcal{N}\left(\mathfrak{s l}_{2}\right) \Rightarrow \Gamma\left(T^{*} \mathbb{P}^{1}, \mathcal{O}_{T^{*} \mathbb{P}^{1}}\right) \cong \mathbb{C}\left[\mathcal{N}\left(\mathfrak{s l}_{2}\right)\right]$
$\Omega_{\mathbb{P}^{1}}^{c h}$ chiral de Rham complex of \mathbb{P}_{1} ([Malikov, Schechtman,
Vaintrob '99]
$\Omega_{\mathbb{P}^{1}}^{c h}$ is a sheaf of vertex superalgebra on \mathbb{P}^{1}, which is locally isomorphic to $\beta \gamma b c$:
β, γ even, b, c odd,
$\left[\gamma_{\lambda} \beta\right]=1, \quad\left[b_{\lambda} c\right]=1$.
$\Gamma\left(\mathbb{P}^{1}, \Omega_{\mathbb{P}_{1}}^{c h}\right)$ vertex superalgebra
Question Is $\Gamma\left(\mathbb{P}^{1}, \Omega_{\mathbb{P}_{1}}^{c h}\right)$ isomorphic to $\operatorname{Vir}_{-9}^{\mathcal{N}}=4$?
No, because the natural action of $\widehat{\mathfrak{s l}_{2}}$ on $\Gamma\left(\mathbb{P}^{1}, \Omega_{\mathbb{P}_{1}}^{c h}\right)$ is of level 0 , but the action of $\widehat{\mathfrak{s l}_{2}}$ on $\operatorname{Vir}_{-9}^{\mathcal{N}}=4$ is of level $-9 / 6=-3 / 2$.

First observation

$\exists \Omega_{\mathbb{P}^{1}, \alpha}^{c h}, \alpha \in \frac{1}{2} \mathbb{Z}$, twisted chiral de Rham complex of \mathbb{P}_{1}
([Gorbounov, Malikov, Schechtman '05])

First observation

$\exists \Omega_{\mathbb{P}^{1}, \alpha}^{c h}, \alpha \in \frac{1}{2} \mathbb{Z}$, twisted chiral de Rham complex of \mathbb{P}_{1}
([Gorbounov, Malikov, Schechtman '05])
The level of $\widehat{\mathfrak{s l}_{2}}$-action on $\Gamma\left(\mathbb{P}^{2}, \Omega_{\mathbb{P}^{1}, \alpha}^{c h}\right)$ is $2 \alpha^{2}-2$.

First observation

$\exists \Omega_{\mathbb{P}^{1}, \alpha}^{c h}, \alpha \in \frac{1}{2} \mathbb{Z}$, twisted chiral de Rham complex of \mathbb{P}_{1}
([Gorbounov, Malikov, Schechtman '05])
The level of $\widehat{\mathfrak{s l}_{2}}$-action on $\Gamma\left(\mathbb{P}^{2}, \Omega_{\mathbb{P}^{1}, \alpha}^{c h}\right)$ is $2 \alpha^{2}-2$.
Theorem (A.-Möller)
$\Gamma\left(\mathbb{P}^{1}, \Omega_{\mathbb{P}^{1}, 1 / 2}^{c h}\right) \cong \operatorname{Vir}_{-9}^{\mathcal{N}=4}$

First observation

$\exists \Omega_{\mathbb{P}^{1}, \alpha}^{c h}, \alpha \in \frac{1}{2} \mathbb{Z}$, twisted chiral de Rham complex of \mathbb{P}_{1}
([Gorbounov, Malikov, Schechtman '05])
The level of $\widehat{\mathfrak{s l}_{2}}$-action on $\Gamma\left(\mathbb{P}^{2}, \Omega_{\mathbb{P}^{1}, \alpha}^{c h}\right)$ is $2 \alpha^{2}-2$.

Theorem (A.-Möller)

$\Gamma\left(\mathbb{P}^{1}, \Omega_{\mathbb{P}^{1}, 1 / 2}^{c h}\right) \cong \operatorname{Vir}_{-9}^{\mathcal{N}=4}$ and the restriction map
$\Gamma\left(\mathbb{P}^{1}, \Omega_{\mathbb{P}^{1}, 1 / 2}^{c h}\right) \hookrightarrow \Gamma\left(U_{0}, \Omega_{\mathbb{P}^{1}, 1 / 2}^{c h}\right)$ coincides with Adamovic's realization.

But...

For $N>2$, the symplectic singuarity $\mathcal{M}_{\mathfrak{S}_{N}}$ is not resolved by a cotangent bundle to some smooth variety. So we cannot use the twisted chiral de Rham complex.

Symmetric powers of \mathbb{C}^{2} and Hilbert scheme of points in \mathbb{C}^{2}

Symmetric powers of \mathbb{C}^{2} and Hilbert scheme of points in \mathbb{C}^{2}

It is more convenient to work in $\mathfrak{g l}_{N}$ setting:
$V_{\mathfrak{S}_{N}}=\mathbb{C}^{N-1} \hookrightarrow \mathbb{C}^{N} \curvearrowleft \mathfrak{S}_{N}$

Symmetric powers of \mathbb{C}^{2} and Hilbert scheme of points in \mathbb{C}^{2}

It is more convenient to work in $\mathfrak{g l}_{N}$ setting:
$V_{\mathfrak{S}_{N}}=\mathbb{C}^{N-1} \hookrightarrow \mathbb{C}^{N} \curvearrowleft \mathfrak{S}_{N}$
$\left(\mathbb{C}^{2}\right)^{N} / \mathfrak{S}_{N}=\left(\mathbb{C}^{N} \oplus \mathbb{C}^{N}\right) / \mathfrak{S}_{N} \cong \mathcal{M}_{\mathfrak{S}_{N}} \times T^{*} \mathbb{C}$,
symmetric powers of \mathbb{C}^{2}

Symmetric powers of \mathbb{C}^{2} and Hilbert scheme of points in \mathbb{C}^{2}

It is more convenient to work in $\mathfrak{g l}_{N}$ setting:
$V_{\mathfrak{S}_{N}}=\mathbb{C}^{N-1} \hookrightarrow \mathbb{C}^{N} \curvearrowleft \mathfrak{S}_{N}$
$\left(\mathbb{C}^{2}\right)^{N} / \mathfrak{S}_{N}=\left(\mathbb{C}^{N} \oplus \mathbb{C}^{N}\right) / \mathfrak{S}_{N} \cong \mathcal{M}_{\mathfrak{S}_{N}} \times T^{*} \mathbb{C}$,
symmetric powers of \mathbb{C}^{2}
It is well-known that the singularity of $\left(\mathbb{C}^{2}\right)^{N} / \mathfrak{S}_{N}$ is resolved by the Hilbert scheme $\operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right)$ of N-points on \mathbb{C}^{2} :

Symmetric powers of \mathbb{C}^{2} and Hilbert scheme of points in \mathbb{C}^{2}

It is more convenient to work in $\mathfrak{g l}_{N}$ setting:
$V_{\mathfrak{S}_{N}}=\mathbb{C}^{N-1} \hookrightarrow \mathbb{C}^{N} \curvearrowleft \mathfrak{S}_{N}$
$\left(\mathbb{C}^{2}\right)^{N} / \mathfrak{S}_{N}=\left(\mathbb{C}^{N} \oplus \mathbb{C}^{N}\right) / \mathfrak{S}_{N} \cong \mathcal{M}_{\mathfrak{S}_{N}} \times T^{*} \mathbb{C}$,
symmetric powers of \mathbb{C}^{2}
It is well-known that the singularity of $\left(\mathbb{C}^{2}\right)^{N} / \mathfrak{S}_{N}$ is resolved by the Hilbert scheme $\operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right)$ of N-points on \mathbb{C}^{2} :

$$
\begin{array}{cr}
\operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right)=\left\{I \in \mathbb{C}[x, y] \mid \operatorname{dim}_{\mathbb{C}} \mathbb{C}[x, y] / I=N\right\} & \ni I \\
\downarrow & \downarrow \\
\left(\mathbb{C}^{2}\right)^{N} / \mathbb{S}_{N} & \ni \operatorname{supp}(\mathbb{C}[x, y] / I)
\end{array}
$$

Quantization of $\operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right)$

[Kashiwara-Rouquier'08] constructed a sheaf \mathcal{A}_{\hbar} of \hbar-adic algebras on $\operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right)$ such that

Quantization of $\operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right)$

[Kashiwara-Rouquier'08] constructed a sheaf \mathcal{A}_{\hbar} of \hbar-adic algebras on $\operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right)$ such that

- $\mathcal{A}_{\hbar} / \hbar \mathcal{A}_{\hbar} \cong \mathcal{O}_{\text {Hib }^{N}\left(\mathbb{C}^{2}\right)}$,

Quantization of $\operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right)$

[Kashiwara-Rouquier'08] constructed a sheaf \mathcal{A}_{\hbar} of \hbar-adic algebras on $\operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right)$ such that

- $\mathcal{A}_{\hbar} / \hbar \mathcal{A}_{\hbar} \cong \mathcal{O}_{\text {Hilb }^{N}\left(\mathbb{C}^{2}\right)}$, i.e., \mathcal{A}_{\hbar} is a quantization of $\mathcal{O}_{\text {Hilb }^{N}\left(\mathbb{C}^{2}\right)}$,

Quantization of $\operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right)$

[Kashiwara-Rouquier'08] constructed a sheaf \mathcal{A}_{\hbar} of \hbar-adic algebras on $\operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right)$ such that

- $\mathcal{A}_{\hbar} / \hbar \mathcal{A}_{\hbar} \cong \mathcal{O}_{\text {Hilb }^{N}\left(\mathbb{C}^{2}\right)}$, i.e., \mathcal{A}_{\hbar} is a quantization of $\mathcal{O}_{\text {Hilb }^{N}\left(\mathbb{C}^{2}\right)}$,
- $\Gamma\left(\mathrm{Hilb}^{N}\left(\mathbb{C}^{2}\right), \mathcal{A}_{\hbar}\right)^{\mathbb{C}^{*}} \cong$ spherical rational Cherednik algebra associated with \mathfrak{S}_{N},

Quantization of $\operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right)$

[Kashiwara-Rouquier'08] constructed a sheaf \mathcal{A}_{\hbar} of \hbar-adic algebras on $\operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right)$ such that

- $\mathcal{A}_{\hbar} / \hbar \mathcal{A}_{\hbar} \cong \mathcal{O}_{\text {Hilb }^{N}\left(\mathbb{C}^{2}\right)}$, i.e., \mathcal{A}_{\hbar} is a quantization of $\mathcal{O}_{\text {Hilb }^{N}\left(\mathbb{C}^{2}\right)}$,
- $\Gamma\left(\operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right), \mathcal{A}_{\hbar}\right)^{\mathbb{C}^{*}} \cong$ spherical rational Cherednik algebra associated with \mathfrak{S}_{N},
- $\operatorname{gr} \Gamma\left(\operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right), \mathcal{A}_{\hbar}\right)^{\mathbb{C}^{*}} \cong \mathbb{C}\left[\left(\mathbb{C}^{2}\right)^{N} / \mathbb{S}_{N}\right]=\mathbb{C}\left[\mathbb{C}^{2 N}\right]^{\mathfrak{S}_{N}}$.

Quantization of $\operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right)$

[Kashiwara-Rouquier'08] constructed a sheaf \mathcal{A}_{\hbar} of \hbar-adic algebras on $\operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right)$ such that

- $\mathcal{A}_{\hbar} / \hbar \mathcal{A}_{\hbar} \cong \mathcal{O}_{\text {Hilb }^{N}\left(\mathbb{C}^{2}\right)}$, i.e., \mathcal{A}_{\hbar} is a quantization of $\mathcal{O}_{\text {Hilb }^{N}\left(\mathbb{C}^{2}\right)}$,
- $\Gamma\left(\operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right), \mathcal{A}_{\hbar}\right)^{\mathbb{C}^{*}} \cong$ spherical rational Cherednik algebra associated with \mathfrak{S}_{N},
- $\operatorname{gr} \Gamma\left(\operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right), \mathcal{A}_{\hbar}\right)^{\mathbb{C}^{*}} \cong \mathbb{C}\left[\left(\mathbb{C}^{2}\right)^{N} / \mathbb{S}_{N}\right]=\mathbb{C}\left[\mathbb{C}^{2 N}\right]^{\mathfrak{S}_{N}}$.

Quantization of $\operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right)$

[Kashiwara-Rouquier'08] constructed a sheaf \mathcal{A}_{\hbar} of \hbar-adic algebras on $\operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right)$ such that

- $\mathcal{A}_{\hbar} / \hbar \mathcal{A}_{\hbar} \cong \mathcal{O}_{\text {Hilb }^{N}\left(\mathbb{C}^{2}\right)}$, i.e., \mathcal{A}_{\hbar} is a quantization of $\mathcal{O}_{\text {Hilb }^{N}\left(\mathbb{C}^{2}\right)}$,
- $\Gamma\left(\operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right), \mathcal{A}_{\hbar}\right)^{\mathbb{C}^{*}} \cong$ spherical rational Cherednik algebra associated with \mathfrak{S}_{N},
- $\operatorname{gr} \Gamma\left(\operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right), \mathcal{A}_{\hbar}\right)^{\mathbb{C}^{*}} \cong \mathbb{C}\left[\left(\mathbb{C}^{2}\right)^{N} / \mathfrak{S}_{N}\right]=\mathbb{C}\left[\mathbb{C}^{2 N}\right]^{\mathfrak{S}_{N}}$.

Want to "chiralize" the Kashirara-Rouquier construction,

Quantization of $\operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right)$

[Kashiwara-Rouquier'08] constructed a sheaf \mathcal{A}_{\hbar} of \hbar-adic algebras on $\operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right)$ such that

- $\mathcal{A}_{\hbar} / \hbar \mathcal{A}_{\hbar} \cong \mathcal{O}_{\text {Hilb }^{N}\left(\mathbb{C}^{2}\right)}$, i.e., \mathcal{A}_{\hbar} is a quantization of $\mathcal{O}_{\text {Hilb }^{N}\left(\mathbb{C}^{2}\right)}$,
- $\Gamma\left(\operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right), \mathcal{A}_{\hbar}\right)^{\mathbb{C}^{*}} \cong$ spherical rational Cherednik algebra associated with \mathfrak{S}_{N},
- $\operatorname{gr} \Gamma\left(\operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right), \mathcal{A}_{\hbar}\right)^{\mathbb{C}^{*}} \cong \mathbb{C}\left[\left(\mathbb{C}^{2}\right)^{N} / \mathfrak{S}_{N}\right]=\mathbb{C}\left[\mathbb{C}^{2 N}\right]^{\mathfrak{S}_{N}}$.

Want to "chiralize" the Kashirara-Rouquier construction, but a naive attempt does not work due to some obstruction in constructing sheaf of vertex algebras.

$\operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right)$ as Nakajima quiver variety

$$
V=\operatorname{End} \mathbb{C}^{N} \oplus \operatorname{Hom}\left(\mathbb{C}, \mathbb{C}^{N}\right) \ni(X, \gamma)
$$

$\operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right)$ as Nakajima quiver variety

$$
\begin{aligned}
& V=\operatorname{End} \mathbb{C}^{N} \oplus \operatorname{Hom}\left(\mathbb{C}, \mathbb{C}^{N}\right) \ni(X, \gamma), \\
& V^{*}=\text { End } \mathbb{C}^{N} \oplus \operatorname{Hom}\left(\mathbb{C}^{N}, \mathbb{C}\right) \ni(Y, \beta),
\end{aligned}
$$

$\operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right)$ as Nakajima quiver variety

$$
\begin{aligned}
& V=\operatorname{End} \mathbb{C}^{N} \oplus \operatorname{Hom}\left(\mathbb{C}, \mathbb{C}^{N}\right) \ni(X, \gamma), \\
& V^{*}=\operatorname{End} \mathbb{C}^{N} \oplus \operatorname{Hom}\left(\mathbb{C}^{N}, \mathbb{C}\right) \ni(Y, \beta),
\end{aligned}
$$

$$
T^{*} V=V \oplus V^{*} \curvearrowleft G L_{N}(\mathbb{C})
$$

$\operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right)$ as Nakajima quiver variety

$$
\begin{aligned}
& V=\operatorname{End} \mathbb{C}^{N} \oplus \operatorname{Hom}\left(\mathbb{C}, \mathbb{C}^{N}\right) \ni(X, \gamma) \\
& V^{*}=\operatorname{End} \mathbb{C}^{N} \oplus \operatorname{Hom}\left(\mathbb{C}^{N}, \mathbb{C}\right) \ni(Y, \beta), \\
& T^{*} V=V \oplus V^{*} \curvearrowleft G L_{N}(\mathbb{C}) \\
& \mu: T^{*} V \rightarrow \mathfrak{g l}_{N}(\mathbb{C})=\mathfrak{g l}_{N}(\mathbb{C})^{*}, \mu(X, Y, \gamma, \beta)=[X, Y]+\gamma \beta, \\
& \text { moment map for the } G L_{N}(\mathbb{C}) \text {-action }
\end{aligned}
$$

$\operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right)$ as Nakajima quiver variety

$$
\begin{aligned}
& V=\operatorname{End} \mathbb{C}^{N} \oplus \operatorname{Hom}\left(\mathbb{C}, \mathbb{C}^{N}\right) \ni(X, \gamma) \\
& V^{*}=\operatorname{End} \mathbb{C}^{N} \oplus \operatorname{Hom}\left(\mathbb{C}^{N}, \mathbb{C}\right) \ni(Y, \beta), \\
& T^{*} V=V \oplus V^{*} \curvearrowleft G L_{N}(\mathbb{C}) \\
& \mu: T^{*} V \rightarrow \mathfrak{g l}_{N}(\mathbb{C})=\mathfrak{g l}_{N}(\mathbb{C})^{*}, \mu(X, Y, \gamma, \beta)=[X, Y]+\gamma \beta, \\
& \text { moment map for the } G L_{N}(\mathbb{C}) \text {-action }
\end{aligned}
$$

- $\mu^{-1}(0) / / G L_{N}(\mathbb{C}) \cong\left(\mathbb{C}^{2}\right)^{N} / \mathfrak{S}_{N}$,

$\operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right)$ as Nakajima quiver variety

$$
\begin{aligned}
& V=\operatorname{End} \mathbb{C}^{N} \oplus \operatorname{Hom}\left(\mathbb{C}, \mathbb{C}^{N}\right) \ni(X, \gamma) \\
& V^{*}=\operatorname{End} \mathbb{C}^{N} \oplus \operatorname{Hom}\left(\mathbb{C}^{N}, \mathbb{C}\right) \ni(Y, \beta), \\
& T^{*} V=V \oplus V^{*} \curvearrowleft G L_{N}(\mathbb{C}) \\
& \mu: T^{*} V \rightarrow \mathfrak{g l}_{N}(\mathbb{C})=\mathfrak{g l}_{N}(\mathbb{C})^{*}, \mu(X, Y, \gamma, \beta)=[X, Y]+\gamma \beta, \\
& \text { moment map for the } G L_{N}(\mathbb{C}) \text {-action }
\end{aligned}
$$

- $\mu^{-1}(0) / / G L_{N}(\mathbb{C}) \cong\left(\mathbb{C}^{2}\right)^{N} / \mathfrak{S}_{N}$,
- $\operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right) \cong\left(\mu^{-1}(0) \cap \mathfrak{X}\right) / G L_{N}(\mathbb{C})$,

$$
\mathfrak{X}=\left\{(X, Y, \gamma, \beta) \mid\langle X, Y\rangle \operatorname{im} \gamma=\mathbb{C}^{N}\right\} \text { stable subspace }
$$

$\operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right)$ as Nakajima quiver variety

$$
\begin{aligned}
& V=\operatorname{End} \mathbb{C}^{N} \oplus \operatorname{Hom}\left(\mathbb{C}, \mathbb{C}^{N}\right) \ni(X, \gamma), \\
& V^{*}=\operatorname{End} \mathbb{C}^{N} \oplus \operatorname{Hom}\left(\mathbb{C}^{N}, \mathbb{C}\right) \ni(Y, \beta), \\
& T^{*} V=V \oplus V^{*} \curvearrowleft G L_{N}(\mathbb{C}) \\
& \mu: T^{*} V \rightarrow \mathfrak{g l}_{N}(\mathbb{C})=\mathfrak{g l}_{N}(\mathbb{C})^{*}, \mu(X, Y, \gamma, \beta)=[X, Y]+\gamma \beta, \\
& \text { moment map for the } G L_{N}(\mathbb{C}) \text {-action }
\end{aligned}
$$

- $\mu^{-1}(0) / / G L_{N}(\mathbb{C}) \cong\left(\mathbb{C}^{2}\right)^{N} / \mathfrak{S}_{N}$,
- $\operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right) \cong\left(\mu^{-1}(0) \cap \mathfrak{X}\right) / G L_{N}(\mathbb{C})$,

$$
\mathfrak{X}=\left\{(X, Y, \gamma, \beta) \mid\langle X, Y\rangle \operatorname{im} \gamma=\mathbb{C}^{N}\right\} \text { stable subspace }
$$

Kashirara-Rouquier quantization: replace $T^{*} V$ by its quantization, i.e., the Weyl algebra, and do the quantized Hamiltonian reduction.

Chiralization of Kashirara-Rouquier constuction

Chiralization of Kashirara-Rouquier constuction

Natural to try to: replace the Weyl algebra by its affine analogue, i.e., $\beta \gamma$-system

Chiralization of Kashirara-Rouquier constuction

Natural to try to: replace the Weyl algebra by its affine analogue, i.e., $\beta \gamma$-system and do the BRST reduction

$$
H^{\infty / 2+0}\left(\widehat{\mathfrak{g l}}_{N}, \mathfrak{g l}_{N},(\beta \gamma)^{\otimes \operatorname{dim} v}\right)
$$

Chiralization of Kashirara-Rouquier constuction

Natural to try to: replace the Weyl algebra by its affine analogue, i.e., $\beta \gamma$-system and do the BRST reduction

$$
H^{\infty / 2+0}\left(\widehat{\mathfrak{g l}}_{N}, \mathfrak{g l}_{N},(\beta \gamma)^{\otimes \operatorname{dim} V}\right)
$$

However, $H^{\infty / 2+0}\left(\widehat{\mathfrak{g l}}_{N}, \mathfrak{g l}_{N}, M\right)$ is defined only when the level (cocycle) of the $\widehat{\mathfrak{g l}}_{N}$-module M equals to - Killing form.

Chiralization of Kashirara-Rouquier constuction

Natural to try to: replace the Weyl algebra by its affine analogue, i.e., $\beta \gamma$-system and do the BRST reduction

$$
H^{\infty / 2+0}\left(\widehat{\mathfrak{g l}}_{N}, \mathfrak{g l}_{N},(\beta \gamma)^{\otimes \operatorname{dim} V}\right)
$$

However, $H^{\infty / 2+0}\left(\widehat{\mathfrak{g l}}_{N}, \mathfrak{g l}_{N}, M\right)$ is defined only when the level (cocycle) of the $\widehat{\mathfrak{g l}}_{N}$-module M equals to - Killing form.
!!!

Chiralization of Kashirara-Rouquier constuction

Natural to try to: replace the Weyl algebra by its affine analogue, i.e., $\beta \gamma$-system and do the BRST reduction

$$
H^{\infty / 2+0}\left(\widehat{\mathfrak{g r}}_{N}, \mathfrak{g l}_{N},(\beta \gamma)^{\otimes \operatorname{dim} V}\right)
$$

However, $H^{\infty / 2+0}\left(\widehat{\mathfrak{g l}}_{N}, \mathfrak{g l}_{N}, M\right)$ is defined only when the level (cocycle) of the $\widehat{\mathfrak{g l}}_{N}$-module M equals to - Killing form.
!!! Bonetti-Meneghelli-Rastelli suggest to construct a sheaf of vertex superalgebras.

Chiralization of $\operatorname{Hilb}^{\mathrm{N}}\left(\mathbb{C}^{2}\right)$

We replace the framing vector space \mathbb{C} by the superspace $\mathbb{C}^{1 \mid 1}$:

Chiralization of $\operatorname{Hilb}^{\mathrm{N}}\left(\mathbb{C}^{2}\right)$

We replace the framing vector space \mathbb{C} by the superspace $\mathbb{C}^{1 \mid 1}$: $V=$ End $\mathbb{C}^{N} \oplus \operatorname{Hom}\left(\mathbb{C}, \mathbb{C}^{N}\right) \rightsquigarrow$ End $\mathbb{C}^{N} \oplus \operatorname{Hom}\left(\mathbb{C}^{1 \mid 1}, \mathbb{C}^{N}\right)$

Chiralization of $\operatorname{Hilb}^{\mathrm{N}}\left(\mathbb{C}^{2}\right)$

We replace the framing vector space \mathbb{C} by the superspace $\mathbb{C}^{1 \mid 1}$: $V=$ End $\mathbb{C}^{N} \oplus \operatorname{Hom}\left(\mathbb{C}, \mathbb{C}^{N}\right) \rightsquigarrow \operatorname{End} \mathbb{C}^{N} \oplus \operatorname{Hom}\left(\mathbb{C}^{1 \mid 1}, \mathbb{C}^{N}\right)$ In other words, we replace $\operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right)$ by the supervariety $\operatorname{Hilb}^{\mathrm{N}}\left(\mathbb{C}^{2}\right)_{\mathcal{L}_{\text {tot }}}$ with the underlying topological space $\operatorname{Hilb}^{\mathrm{N}}\left(\mathbb{C}^{2}\right)$ and the structure sheaf $\mathcal{O}_{\text {Hilb }^{\mathrm{N}}\left(\mathbb{C}^{2}\right)} \oplus \mathcal{O}_{\Pi \mathcal{L}_{\text {tot }}}$, where $\Pi \mathcal{L}_{\text {tot }}$ is the odd tautological line bundle of $\operatorname{Hilb}^{\mathrm{N}}\left(\mathbb{C}^{2}\right)$.

Main result

Main result

Theorem (A.-Kuwabara-Möller)

Main result

Theorem (A.-Kuwabara-Möller)

There exists a sheaf of \hbar-adic vertex superalgebra ([A.-Kuwabara-Malikov'15) \mathcal{V}_{\hbar} on $\mathrm{Hilb}^{\mathrm{N}}\left(\mathbb{C}^{2}\right)$ such that

Main result

Theorem (A.-Kuwabara-Möller)

There exists a sheaf of \hbar-adic vertex superalgebra ([A.-Kuwabara-Malikov'15) \mathcal{V}_{\hbar} on $\mathrm{Hilb}^{N}\left(\mathbb{C}^{2}\right)$ such that

1) $\mathcal{V}_{\hbar} / \hbar \mathcal{V}_{\hbar} \cong \pi_{*} \mathcal{O}_{\rho_{\infty} \operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right)_{\mathcal{L}_{\text {too }}} \text {, where }}$
$\pi: J_{\infty} \operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right)_{\mathcal{L}_{\text {tot }}} \rightarrow \operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right)_{\mathcal{L}_{\text {tot }}} \rightarrow \operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right)$ is the projection;

Main result

Theorem (A.-Kuwabara-Möller)

There exists a sheaf of \hbar-adic vertex superalgebra ([A.-Kuwabara-Malikov'15) \mathcal{V}_{\hbar} on $\mathrm{Hilb}^{N}\left(\mathbb{C}^{2}\right)$ such that

1) $\mathcal{V}_{\hbar} / \hbar \mathcal{V}_{\hbar} \cong \pi_{*} \mathcal{O}_{\rho_{\infty} \operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right)_{\mathcal{L}_{\text {too }}} \text {, where }}$
$\pi: J_{\infty} \operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right)_{\mathcal{L}_{\text {tot }}} \rightarrow \operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right)_{\mathcal{L}_{\text {tot }}} \rightarrow \operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right)$ is the projection;
2) it is locally $(\beta \gamma b c)^{\otimes N}$;

Main result

Theorem (A.-Kuwabara-Möller)

There exists a sheaf of \hbar-adic vertex superalgebra ([A.-Kuwabara-Malikov'15) \mathcal{V}_{\hbar} on $\mathrm{Hilb}^{N}\left(\mathbb{C}^{2}\right)$ such that

1) $\mathcal{V}_{\hbar} / \hbar \mathcal{V}_{\hbar} \cong \pi_{*} \mathcal{O}_{\rho_{\infty} \operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right)_{\mathcal{L}_{\text {too }}} \text {, where }}$
$\pi: J_{\infty} \operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right)_{\mathcal{L}_{\text {tot }}} \rightarrow \operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right)_{\mathcal{L}_{\text {tot }}} \rightarrow \operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right)$ is the projection;
2) it is locally $(\beta \gamma b c)^{\otimes N}$;

Main result

Theorem (A.-Kuwabara-Möller)

There exists a sheaf of \hbar-adic vertex superalgebra ([A.-Kuwabara-Malikov'15) \mathcal{V}_{\hbar} on $\mathrm{Hilb}^{\mathrm{N}}\left(\mathbb{C}^{2}\right)$ such that

1) $\mathcal{V}_{\hbar} / \hbar \mathcal{V}_{\hbar} \cong \pi_{*} \mathcal{O}_{J_{\infty} \operatorname{Hilb}^{\mathrm{N}}\left(\mathbb{C}^{2}\right)_{\mathcal{L}_{\text {too }}} \text {, where }}$ $\pi: J_{\infty} \operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right)_{\mathcal{L}_{\text {tot }}} \rightarrow \operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right)_{\mathcal{L}_{\text {tot }}} \rightarrow \operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right)$ is the projection;
2) it is locally $(\beta \gamma b c)^{\otimes N}$;

Moreover, $\exists \mathbf{V}_{N} \subset \Gamma\left(\operatorname{Hilb}^{\mathrm{N}}\left(\mathbb{C}^{2}\right), \mathcal{V}_{\hbar}\right)^{\mathbb{C}^{*}}$ such that

Main result

Theorem (A.-Kuwabara-Möller)

There exists a sheaf of \hbar-adic vertex superalgebra ([A.-Kuwabara-Malikov'15) \mathcal{V}_{\hbar} on $\mathrm{Hilb}^{\mathrm{N}}\left(\mathbb{C}^{2}\right)$ such that

1) $\mathcal{V}_{\hbar} / \hbar \mathcal{V}_{\hbar} \cong \pi_{*} \mathcal{O}_{J_{\infty}} \operatorname{Hilb}^{\mathrm{N}}\left(\mathbb{C}^{2}\right)_{\mathcal{L}_{\text {too }}}$, where $\pi: J_{\infty} \operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right)_{\mathcal{L}_{\text {tot }}} \rightarrow \operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right)_{\mathcal{L}_{\text {tot }}} \rightarrow \operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right)$ is the projection;
2) it is locally $(\beta \gamma b c)^{\otimes N}$;
3) $X_{\Gamma\left(\operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right), \mathcal{V}_{\hbar}\right)^{C^{*}}} \cong \mathbb{C}^{2 N} / \mathfrak{S}_{N}$.

Moreover, $\exists \mathbf{V}_{N} \subset \Gamma\left(\operatorname{Hilb}^{\mathrm{N}}\left(\mathbb{C}^{2}\right), \mathcal{V}_{\hbar}\right)^{\mathbb{C}^{*}}$ such that
i) $\Gamma\left(\operatorname{Hilb}^{\mathrm{N}}\left(\mathbb{C}^{2}\right), \mathcal{V}_{\hbar}\right)^{\mathbb{C}^{*}} \cong \mathbf{V}_{N} \otimes \beta \gamma \otimes S F$;

Main result

Theorem (A.-Kuwabara-Möller)

There exists a sheaf of \hbar-adic vertex superalgebra ([A.-Kuwabara-Malikov'15) \mathcal{V}_{\hbar} on $\mathrm{Hilb}^{\mathrm{N}}\left(\mathbb{C}^{2}\right)$ such that

1) $\mathcal{V}_{\hbar} / \hbar \mathcal{V}_{\hbar} \cong \pi_{*} \mathcal{O}_{J_{\infty}} \operatorname{Hilb}^{\mathrm{N}}\left(\mathbb{C}^{2}\right)_{\mathcal{L}_{\text {too }}}$, where $\pi: J_{\infty} \operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right)_{\mathcal{L}_{\text {tot }}} \rightarrow \operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right)_{\mathcal{L}_{\text {tot }}} \rightarrow \operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right)$ is the projection;
2) it is locally $(\beta \gamma b c)^{\otimes N}$;

Moreover, $\exists \mathbf{V}_{N} \subset \Gamma\left(\operatorname{Hilb}^{\mathrm{N}}\left(\mathbb{C}^{2}\right), \mathcal{V}_{\hbar}\right)^{\mathbb{C}^{*}}$ such that
i) $\Gamma\left(\operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right), \mathcal{V}_{\hbar}\right)^{\mathbb{C}^{*}} \cong \mathbf{V}_{N} \otimes \beta \gamma \otimes S F$;
ii) $X_{\mathbf{v}_{N}} \cong \mathcal{M}_{\mathfrak{S}_{N}}$,
where $S F$ is the symplectic fermions.
$\mathbf{V}_{N}=\mathbf{V}_{\mathfrak{S}_{N}}$
$\mathbf{V}_{N}=\mathbf{V}_{\mathfrak{E}_{N}}$

Remark

$\mathbf{V}_{N}=\mathbf{V}_{\mathfrak{G}_{N}}$

Remark
i) For $N=2, \mathbf{V}_{2} \cong \operatorname{Vir}_{-9}^{\mathcal{N}=4}$.

$\mathbf{V}_{N}=\mathbf{V}_{\mathfrak{G}_{N}}$

Remark

i) For $N=2, \mathbf{V}_{2} \cong \operatorname{Vir}_{-9}{ }_{-9}=4$.
ii) For $N=3, \mathbf{V}_{3}$ is as described by Bonetti-Meneghelli-Rastelli.

$\mathbf{V}_{N}=\mathbf{V}_{\mathfrak{G}_{N}}$

Remark

i) For $N=2, \mathbf{V}_{2} \cong \operatorname{Vir}_{-9}{ }_{-9}=4$.
ii) For $N=3, \mathbf{V}_{3}$ is as described by Bonetti-Meneghelli-Rastelli.

Remark

For an open set $U \subset \operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right)$,

$\mathbf{V}_{N}=\mathbf{V}_{\mathfrak{G}_{N}}$

Remark

i) For $N=2, \mathbf{V}_{2} \cong \operatorname{Vir}_{-9}{ }_{-9}=4$.
ii) For $N=3, \mathbf{V}_{3}$ is as described by Bonetti-Meneghelli-Rastelli.

Remark

For an open set $U \subset \operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right)$, we get an embedding $\Gamma\left(\operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right), \mathcal{V}_{\hbar}\right)^{\mathbb{C}^{*}} \hookrightarrow \Gamma\left(U, \mathcal{V}_{\hbar}\right) \mathbb{C}^{\mathbb{C}^{*}}$.

$$
\mathbf{V}_{N}=\mathbf{V}_{\mathfrak{E}_{N}}
$$

Remark

i) For $N=2, \mathbf{V}_{2} \cong \operatorname{Vir}_{-9}{ }_{-9}=4$.
ii) For $N=3, \mathbf{V}_{3}$ is as described by Bonetti-Meneghelli-Rastelli.

Remark

For an open set $U \subset \operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right)$, we get an embedding $\Gamma\left(\mathrm{Hilb}^{\mathrm{N}}\left(\mathbb{C}^{2}\right), \mathcal{V}_{\hbar}\right)^{\mathbb{C}^{*}} \hookrightarrow \Gamma\left(U, \mathcal{V}_{\hbar}\right)^{\mathbb{C}^{*}}$.

Considering an appropriate open set U_{0} we obtain an embedding $\Gamma\left(\mathrm{Hilb}^{\mathrm{N}}\left(\mathbb{C}^{2}\right), \mathcal{V}_{\hbar}\right)^{\mathbb{C}^{*}} \hookrightarrow(\beta \gamma b c)^{\otimes N-1} \otimes \beta \gamma \otimes S F$

$$
\mathbf{V}_{N}=\mathbf{V}_{\mathfrak{E}_{N}}
$$

Remark

i) For $N=2, \mathbf{V}_{2} \cong \operatorname{Vir}_{-9}{ }_{-9}=4$.
ii) For $N=3, \mathbf{V}_{3}$ is as described by Bonetti-Meneghelli-Rastelli.

Remark

For an open set $U \subset \operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right)$, we get an embedding $\Gamma\left(\mathrm{Hilb}^{\mathrm{N}}\left(\mathbb{C}^{2}\right), \mathcal{V}_{\hbar}\right)^{\mathbb{C}^{*}} \hookrightarrow \Gamma\left(U, \mathcal{V}_{\hbar}\right)^{\mathbb{C}^{*}}$.

Considering an appropriate open set U_{0} we obtain an embedding $\Gamma\left(\mathrm{Hilb}^{\mathrm{N}}\left(\mathbb{C}^{2}\right), \mathcal{V}_{\hbar}\right)^{\mathbb{C}^{*}} \hookrightarrow(\beta \gamma b c)^{\otimes N-1} \otimes \beta \gamma \otimes S F$ that restricts to the embedding $\mathbf{V}_{N} \hookrightarrow(\beta \gamma b c)^{\otimes N-1}$.

$$
\mathbf{V}_{N}=\mathbf{V}_{\mathfrak{S}_{N}}
$$

Remark

i) For $N=2, \mathbf{V}_{2} \cong \operatorname{Vir}_{-9}{ }_{-9}=4$.
ii) For $N=3, \mathbf{V}_{3}$ is as described by Bonetti-Meneghelli-Rastelli.

Remark

For an open set $U \subset \operatorname{Hilb}^{N}\left(\mathbb{C}^{2}\right)$, we get an embedding $\Gamma\left(\mathrm{Hilb}^{\mathrm{N}}\left(\mathbb{C}^{2}\right), \mathcal{V}_{\hbar}\right)^{\mathbb{C}^{*}} \hookrightarrow \Gamma\left(U, \mathcal{V}_{\hbar}\right) \mathbb{C}^{\mathbb{C}^{*}}$.

Considering an appropriate open set U_{0} we obtain an embedding $\Gamma\left(\mathrm{Hilb}^{\mathrm{N}}\left(\mathbb{C}^{2}\right), \mathcal{V}_{\hbar}\right)^{\mathbb{C}^{*}} \hookrightarrow(\beta \gamma b c)^{\otimes N-1} \otimes \beta \gamma \otimes S F$ that restricts to the embedding $\mathbf{V}_{N} \hookrightarrow(\beta \gamma b c)^{\otimes N-1}$. We have checked this coincides with the expected ones for $N=2,3$,

Some words on \hbar-adic vertex algebras

A \hbar-adic vertex algebra V

Some words on \hbar-adic vertex algebras

A \hbar-adic vertex algebra V
\Leftrightarrow flat $\mathbb{C}[\hbar]$-module $V+\lambda$-bracket $V \otimes V \rightarrow V[[\lambda]]$ such that $V / \hbar^{N} V$ is a VA for any N

Some words on \hbar-adic vertex algebras

A \hbar-adic vertex algebra V
\Leftrightarrow flat $\mathbb{C}[\hbar]$-module $V+\lambda$-bracket $V \otimes V \rightarrow V[[\lambda]]$ such that $V / \hbar^{N} V$ is a VA for any N
e.g., \hbar-adic $\beta \gamma$-system $(\beta \gamma)_{\hbar}=\mathbb{C}[[\hbar]]\left[\beta_{0}, \beta_{-1}, \ldots, \gamma_{-1}, \gamma_{-2}, \ldots\right]$
$\left[\gamma_{\lambda} \beta\right]=\hbar$.

Some words on \hbar-adic vertex algebras

A \hbar-adic vertex algebra V
\Leftrightarrow flat $\mathbb{C}[\hbar]$-module $V+\lambda$-bracket $V \otimes V \rightarrow V[[\lambda]]$ such that $V / \hbar^{N} V$ is a VA for any N
e.g., \hbar-adic $\beta \gamma$-system $(\beta \gamma)_{\hbar}=\mathbb{C}[[\hbar]]\left[\beta_{0}, \beta_{-1}, \ldots, \gamma_{-1}, \gamma_{-2}, \ldots\right]$
$\left[\gamma_{\lambda} \beta\right]=\hbar$.
\Rightarrow

$$
\left[f_{\lambda} g\right]=\sum_{i \geq 0} \hbar^{i} P_{i}(f, g) \lambda^{i}, \quad \exists \text { bidifferential operator } P_{i}
$$

for any $f, g \in \mathbb{C}\left[\beta_{0}, \beta_{-1}, \ldots, \gamma_{-1}, \gamma_{-2}, \ldots\right]$

Some words on \hbar-adic vertex algebras

A \hbar-adic vertex algebra V
\Leftrightarrow flat $\mathbb{C}[\hbar]$-module $V+\lambda$-bracket $V \otimes V \rightarrow V[[\lambda]]$ such that $V / \hbar^{N} V$ is a VA for any N
e.g., \hbar-adic $\beta \gamma$-system $(\beta \gamma)_{\hbar}=\mathbb{C}[[\hbar]]\left[\beta_{0}, \beta_{-1}, \ldots, \gamma_{-1}, \gamma_{-2}, \ldots\right]$
$\left[\gamma_{\lambda} \beta\right]=\hbar$.
\Rightarrow

$$
\left[f_{\lambda} g\right]=\sum_{i \geq 0} \hbar^{i} P_{i}(f, g) \lambda^{i}, \quad \exists \text { bidifferential operator } P_{i}
$$

for any $f, g \in \mathbb{C}\left[\beta_{0}, \beta_{-1}, \ldots, \gamma_{-1}, \gamma_{-2}, \ldots\right]$
\Rightarrow Can define $\left[f_{\lambda}^{-1} g^{-1}\right]=\sum_{i \geq 0} \hbar^{i} P_{i}\left(f^{-1}, g^{-1}\right) \lambda^{i}$

On supercharacter $=$ Schur index

On supercharacter $=$ Schur index

"Theorem" ([AKM])
The supercharacter of \mathbf{V}_{N} is quasi-modular

On supercharacter $=$ Schur index

"Theorem" ([AKM])

The supercharacter of \mathbf{V}_{N} is quasi-modular (for $\Gamma(1)$ if N is odd and for $\Gamma(2)$ if N is even).

On supercharacter $=$ Schur index

"Theorem" ([AKM])

The supercharacter of \mathbf{V}_{N} is quasi-modular (for $\Gamma(1)$ if N is odd and for $\Gamma(2)$ if N is even).

Remark

\exists Conjectural character formula ([Pan-Peelaers'22])

On supercharacter $=$ Schur index

"Theorem" ([AKM])

The supercharacter of \mathbf{V}_{N} is quasi-modular (for $\Gamma(1)$ if N is odd and for $\Gamma(2)$ if N is even).

Remark

\exists Conjectural character formula ([Pan-Peelaers'22])
For $N=2 M+1$,

$$
\begin{aligned}
& \chi_{v}(q)=(-1)^{M} \sum_{k=0}^{M} c_{k} \tilde{\mathbb{E}}_{2 k} \\
& \tilde{\mathbb{E}}_{0}=1, \tilde{\mathbb{E}}_{2 k}=\sum_{\sum_{j \geq 1}^{\vec{j}} \dot{n}_{j}=k} \prod_{p \geq 1} \frac{1}{n_{p}!}\left(-\frac{1}{2 p} E_{2 p}\right)^{n_{p}}, c_{k} \in \mathbb{C}
\end{aligned}
$$

Connection to 3D mirror symmetry

Remark

Connection to 3D mirror symmetry

Remark

The 3D theory obtained from $\mathrm{SYM}_{\mathfrak{s i l}_{N}}$ by S^{1}-compatification is known to be self-dual,

Connection to 3D mirror symmetry

Remark

The 3D theory obtained from $\mathrm{SYM}_{\mathfrak{s i l}_{N}}$ by S^{1}-compatification is known to be self-dual, and so its Higgs branch and Coulomb branch are the same.

Connection to 3D mirror symmetry

Remark

The 3D theory obtained from $\mathrm{SYM}_{\mathfrak{s l}_{N}}$ by S^{1}-compatification is known to be self-dual, and so its Higgs branch and Coulomb branch are the same. Then the conjecture of [Costello-Creutzig-Gaiotto'18] says

$$
\operatorname{Ext}^{\bullet}\left(\mathbf{V}_{N}, \mathbf{V}_{N}\right) \cong \mathbb{C}\left[\mathcal{M}_{\mathfrak{S}_{N}}\right]
$$

Thank you!

