Curves with prescribed rational points

Katerina Santicola
University of Warwick
Representation Theory XVIII Dubrovnik
$23^{\text {rd }}$ June 2023

Where it all began

Let

$$
\mathcal{P}_{\mathbb{Z}}=\left\{\alpha^{n}: \alpha \in \mathbb{Z}, \quad n \geq 2\right\}
$$

be the set of perfect powers in \mathbb{Z}.

$$
\begin{aligned}
& \text { What perfect powers can } f(X)=X^{3}+1 \text { hit? } \\
& \text { Or: what is } f(\mathbb{Z}) \cap \mathcal{P}_{\mathbb{Z}} \text { ? }
\end{aligned}
$$

- solutions to $X^{3}+1=Y^{n}$
- Mihăilescu (2005): only

$$
2^{3}+1=3^{2}, 0^{3}+1=1^{2},(-1)^{3}+1=0^{2}
$$

- so $f(\mathbb{Z}) \cap \mathcal{P}_{\mathbb{Z}}=\left\{0,1,3^{2}\right\}$

Where it all began

Let

$$
\mathcal{P}_{\mathbb{Z}}=\left\{\alpha^{n}: \alpha \in \mathbb{Z}, \quad n \geq 2\right\}
$$

be the set of perfect powers in \mathbb{Z}.
What perfect powers can $f(X)=X^{3}+1$ hit?
Or: what is $f(\mathbb{Z}) \cap \mathcal{P}_{\mathbb{Z}}$?

- solutions to $X^{3}+1=Y^{n}$
- Mihăilescu (2005): only

$$
2^{3}+1=3^{2}, 0^{3}+1=1^{2},(-1)^{3}+1=0^{2}
$$

- so $f(\mathbb{Z}) \cap \mathcal{P}_{\mathbb{Z}}=\left\{0,1,3^{2}\right\}$

Where it all began

Let

$$
\mathcal{P}_{\mathbb{Z}}=\left\{\alpha^{n}: \alpha \in \mathbb{Z}, \quad n \geq 2\right\}
$$

be the set of perfect powers in \mathbb{Z}.
What perfect powers can $f(X)=X^{3}+1$ hit?
Or: what is $f(\mathbb{Z}) \cap \mathcal{P}_{\mathbb{Z}}$?

- solutions to $X^{3}+1=Y^{n}$
- Mihăilescu (2005): only

$$
2^{3}+1=3^{2}, 0^{3}+1=1^{2},(-1)^{3}+1=0^{2}
$$

- so $f(\mathbb{Z}) \cap \mathcal{P}_{\mathbb{Z}}=\left\{0,1,3^{2}\right\}$

Where it all began

Let

$$
\mathcal{P}_{\mathbb{Z}}=\left\{\alpha^{n}: \alpha \in \mathbb{Z}, \quad n \geq 2\right\}
$$

be the set of perfect powers in \mathbb{Z}.
What perfect powers can $f(X)=X^{3}+1$ hit? Or: what is $f(\mathbb{Z}) \cap \mathcal{P}_{\mathbb{Z}}$?

- solutions to $X^{3}+1=Y^{n}$
- Mihăilescu (2005): only

$$
2^{3}+1=3^{2}, 0^{3}+1=1^{2},(-1)^{3}+1=0^{2}
$$

- so $f(\mathbb{Z}) \cap \mathcal{P}_{\mathbb{Z}}=\left\{0,1,3^{2}\right\}$

Where it all began

Let

$$
\mathcal{P}_{\mathbb{Z}}=\left\{\alpha^{n}: \alpha \in \mathbb{Z}, \quad n \geq 2\right\}
$$

be the set of perfect powers in \mathbb{Z}.
What perfect powers can $f(X)=X^{3}+1$ hit? Or: what is $f(\mathbb{Z}) \cap \mathcal{P}_{\mathbb{Z}}$?

- solutions to $X^{3}+1=Y^{n}$
- Mihăilescu (2005): only

$$
2^{3}+1=3^{2}, 0^{3}+1=1^{2},(-1)^{3}+1=0^{2}
$$

- so $f(\mathbb{Z}) \cap \mathcal{P}_{\mathbb{Z}}=\left\{0,1,3^{2}\right\}$

The original question

- At the recent "Rational Points" conference (Schney, April 2022), Samir Siksek asked:

Question
Let S be a finite subset of $\mathcal{P}_{\mathbb{Z}}$. Is there a polynomial $f_{S} \in \mathbb{Z}[X]$ such that

$$
f_{S}(\mathbb{Z}) \cap \mathcal{P}_{\mathbb{Z}}=S
$$

- Gajović (2022): answered this affirmatively for \mathbb{Z}
- S. (2022): show his method can be extended to \mathbb{Q}

The original question

- At the recent "Rational Points" conference (Schney, April 2022), Samir Siksek asked:

Question

Let S be a finite subset of $\mathcal{P}_{\mathbb{Z}}$. Is there a polynomial $f_{S} \in \mathbb{Z}[X]$ such that

$$
f_{S}(\mathbb{Z}) \cap \mathcal{P}_{\mathbb{Z}}=S
$$

- Gajović (2022): answered this affirmatively for \mathbb{Z}
- S. (2022): show his method can be extended to \mathbb{Q}

A temporary deviation

Question
Let S be a finite subset of \mathcal{O}_{K}. Is there a polynomial $f_{S} \in \mathcal{O}_{K}[X]$ such that

$$
f_{S}\left(\mathcal{O}_{K}\right) \cap \mathcal{P}_{\mathcal{O}_{K}}=S
$$

- this question is much harder over number fields!
- assuming Serre's Uniformity Conjecture: can answer in the affirmative for totally real fields?

A temporary deviation

Question
Let S be a finite subset of \mathcal{O}_{K}. Is there a polynomial $f_{S} \in \mathcal{O}_{K}[X]$ such that

$$
f_{S}\left(\mathcal{O}_{K}\right) \cap \mathcal{P}_{\mathcal{O}_{K}}=S
$$

- this question is much harder over number fields!
- assuming Serre's Uniformity Conjecture: can answer in the affirmative for totally real fields?

Hmm, this looks a lot like...

- start with a set $S \subset \mathcal{P}_{\mathbb{Q}}$
- construct a polynomial $f_{S}(X)$ such that if $f_{S}(x)=y^{m}$, then $y^{m} \in S$
- the equation $y^{n}=f_{S}(X)$ looks like a superelliptic curve!

Hmm, this looks a lot like...

- start with a set $S \subset \mathcal{P}_{\mathbb{Q}}$
- construct a polynomial $f_{S}(X)$ such that if $f_{S}(x)=y^{m}$, then $y^{m} \in S$
- the equation $y^{n}=f_{S}(X)$ looks like a superelliptic curve!

Hmm, this looks a lot like...

- start with a set $S \subset \mathcal{P}_{\mathbb{Q}}$
- construct a polynomial $f_{S}(X)$ such that if $f_{S}(x)=y^{m}$, then $y^{m} \in S$
- the equation $y^{n}=f_{S}(X)$ looks like a superelliptic curve!

Falting's Theorem

- let C / \mathbb{Q} be a nonsingular curve of genus $g \geq 2$
- $C(\mathbb{Q})=C_{\text {aff }}(\mathbb{Q})+$ points at ∞
- Falting's Theorem: $C(\mathbb{Q})$ is finite
- no effective results for computing $C(\mathbb{Q})$, but possible sometimes (e.g. Chabauty)
- converse of Falting's:
given a finite set $S \subseteq \mathbb{P}^{2}(\mathbb{Q})$, does there exist C / \mathbb{Q} such that
$C(\mathbb{Q})=S$?

Falting's Theorem

- let C / \mathbb{Q} be a nonsingular curve of genus $g \geq 2$
- $C(\mathbb{Q})=C_{\text {aff }}(\mathbb{Q})+$ points at ∞
- Falting's Theorem: $C(\mathbb{Q})$ is finite
- no effective results for computing $C(\mathbb{Q})$, but possible sometimes (e.g. Chabauty)
- converse of Falting's:
given a finite set $S \subseteq \mathbb{P}^{2}(\mathbb{Q})$, does there exist C / \mathbb{Q} such that $C(\mathbb{Q})=S$?

Falting's Theorem

- let C / \mathbb{Q} be a nonsingular curve of genus $g \geq 2$
- $C(\mathbb{Q})=C_{\text {aff }}(\mathbb{Q})+$ points at ∞
- Falting's Theorem: $C(\mathbb{Q})$ is finite
- no effective results for computing $C(\mathbb{Q})$, but possible sometimes (e.g. Chabauty)
- converse of Falting's:
given a finite set $S \subseteq \mathbb{P}^{2}(\mathbb{Q})$, does there exist C / \mathbb{Q} such that $C(\mathbb{Q})=S$?

Falting's Theorem

- let C / \mathbb{Q} be a nonsingular curve of genus $g \geq 2$
- $C(\mathbb{Q})=C_{\text {aff }}(\mathbb{Q})+$ points at ∞
- Falting's Theorem: $C(\mathbb{Q})$ is finite
- no effective results for computing $C(\mathbb{Q})$, but possible sometimes (e.g. Chabauty)
- converse of Falting's:
given a finite set $S \subseteq \mathbb{P}^{2}(\mathbb{Q})$, does there exist C / \mathbb{Q} such that $C(\mathbb{Q})=S$?

Superelliptic Curves

By a superelliptic curve we mean a smooth projective curve associated to

$$
C: y^{m}=f(x)
$$

where f is separable of degree $d \geq 3$ and $m \geq 2$ is an integer.

- $m=2$ and $d=3$: elliptic curves
- $m=2$ and $d \geq 5$: hyperelliptic curves
- $m=d$ and $d \geq 4$: the genus g is

$$
g=(d-1)(d-2) / 2 \geq 2
$$

and so $C(\mathbb{Q})$ is finite by Falting's

Superelliptic Curves

By a superelliptic curve we mean a smooth projective curve associated to

$$
C: y^{m}=f(x)
$$

where f is separable of degree $d \geq 3$ and $m \geq 2$ is an integer.

- $m=2$ and $d=3$: elliptic curves
- $m=2$ and $d \geq 5$: hyperelliptic curves
- $m=d$ and $d \geq 4$: the genus g is

$$
g=(d-1)(d-2) / 2 \geq 2
$$

and so $C(\mathbb{Q})$ is finite by Falting's

Main result

Let $S=\left\{\left(a_{1}, b_{1}\right), \ldots,\left(a_{r}, b_{r}\right)\right\} \subset \mathbb{Q}^{2}$ such that:

- if $\left(a_{i}, b_{i}\right),\left(a_{j}, b_{j}\right) \in S$ and $a_{i}=a_{j}$ then $b_{i}=b_{j}$
- $a_{i} \neq a_{j}$ if $i \neq j$.

We call such a set an acceptable set.
Theorem
Given an acceptable set $S \subseteq \mathbb{Q}^{2}$, there exists a separable polynomial $f_{S}(x) \in \mathbb{Q}[x]$ of degree d, such that $C_{\text {aff }}(\mathbb{Q})=S$, where

$$
C: y^{d}=f_{S}(x)
$$

Moreover, C has no rational points at infinity.

Main result

Let $S=\left\{\left(a_{1}, b_{1}\right), \ldots,\left(a_{r}, b_{r}\right)\right\} \subset \mathbb{Q}^{2}$ such that:

- if $\left(a_{i}, b_{i}\right),\left(a_{j}, b_{j}\right) \in S$ and $a_{i}=a_{j}$ then $b_{i}=b_{j}$
- $a_{i} \neq a_{j}$ if $i \neq j$.

We call such a set an acceptable set.
Theorem
Given an acceptable set $S \subseteq \mathbb{Q}^{2}$, there exists a separable polynomial $f_{S}(x) \in \mathbb{Q}[x]$ of degree d, such that $C_{\text {aff }}(\mathbb{Q})=S$, where

$$
C: y^{d}=f_{S}(x)
$$

Moreover, C has no rational points at infinity.

Separability

- want: a separable polynomial such that $h\left(a_{i}\right)=b_{i}^{d}$ for all $\left(a_{i}, b_{i}\right) \in S$
- Lagrange interpolation polynomial $L(X)$: not necessarily separable
- if $S=\{(0,0),(1,1),(2,4)\}$ then $L(X)=X^{2}$
- consider

$$
h(X)=X^{2}+X(X-1)(X-2) c(X)
$$

can we construct $c(X)$ so that $h(X)$ is separable?

Separability

- want: a separable polynomial such that $h\left(a_{i}\right)=b_{i}^{d}$ for all $\left(a_{i}, b_{i}\right) \in S$
- Lagrange interpolation polynomial $L(X)$: not necessarily separable
- if $S=\{(0,0),(1,1),(2,4)\}$ then $L(X)=X^{2}$
- consider

$$
h(X)=X^{2}+X(X-1)(X-2) c(X)
$$

can we construct $c(X)$ so that $h(X)$ is separable?

Separability

- want: a separable polynomial such that $h\left(a_{i}\right)=b_{i}^{d}$ for all $\left(a_{i}, b_{i}\right) \in S$
- Lagrange interpolation polynomial $L(X)$: not necessarily separable
- if $S=\{(0,0),(1,1),(2,4)\}$ then $L(X)=X^{2}$
- consider

$$
h(X)=X^{2}+X(X-1)(X-2) c(X)
$$

can we construct $c(X)$ so that $h(X)$ is separable?

Separability

- want: a separable polynomial such that $h\left(a_{i}\right)=b_{i}^{d}$ for all $\left(a_{i}, b_{i}\right) \in S$
- Lagrange interpolation polynomial $L(X)$: not necessarily separable
- if $S=\{(0,0),(1,1),(2,4)\}$ then $L(X)=X^{2}$
- consider

$$
h(X)=X^{2}+X(X-1)(X-2) c(X)
$$

can we construct $c(X)$ so that $h(X)$ is separable?

Dirichlet's theorem for polynomial rings

Theorem (Bary-Soroker)
Let $a(X), b(X) \in \mathbb{Q}[X]$ be relatively prime. For every

$$
n>2 \max \{\operatorname{deg} a(X), \operatorname{deg} b(X)+2\}+4
$$

there exists $c(X) \in \mathbb{Q}[X]$ for which

$$
f(X, Y)=a(X)+b(X) c(X) Y
$$

is irreducible in $\mathbb{Q}(Y)[X]$ of degree n in X and $\operatorname{Gal}(f(X, Y), \mathbb{Q}(Y)) \cong S_{n}$.
With this theorem we construct $h(X)$ such that:

- $h\left(a_{i}\right)=b_{i}^{d}$
- $h(X)$ is separable modulo a prime ℓ

Dirichlet's theorem for polynomial rings

Theorem (Bary-Soroker)
Let $a(X), b(X) \in \mathbb{Q}[X]$ be relatively prime. For every

$$
\begin{gathered}
n>2 \max \{\operatorname{deg} a(X), \operatorname{deg} b(X)+2\}+4 \\
\text { there exists } c(X) \in \mathbb{Q}[X] \text { for which }
\end{gathered}
$$

$$
f(X, Y)=a(X)+b(X) c(X) Y
$$

is irreducible in $\mathbb{Q}(Y)[X]$ of degree n in X and $\operatorname{Gal}(f(X, Y), \mathbb{Q}(Y)) \cong S_{n}$.
With this theorem we construct $h(X)$ such that:

- $h\left(a_{i}\right)=b_{i}^{d}$
- $h(X)$ is separable modulo a prime ℓ

Main construction

Now define the polynomial

$$
g(X)=\ell q^{k} \prod\left(X-a_{i}\right)^{k}+1
$$

Then our curve is given by

$$
C: y^{d}=f_{S}(X)
$$

where

$$
f_{S}(X)=g(X)((h(X)-1) g(X)+1)
$$

Main construction

Now define the polynomial

$$
g(X)=\ell q^{k} \prod\left(X-a_{i}\right)^{k}+1
$$

Then our curve is given by

$$
C: y^{d}=f_{S}(X)
$$

where

$$
f_{S}(X)=g(X)((h(X)-1) g(X)+1)
$$

Main construction

We have

$$
f_{S}\left(a_{i}\right)=h\left(a_{i}\right)=b_{i}^{d}
$$

and $f_{S}(X)$ is separable (by separability of $h(X)$ and Eisenstein's criterion)

We prove:

$$
\text { if } f_{S}(x)=y^{d} \text { for some rational } y \in \mathbb{Q} \Rightarrow(x, y) \in S
$$

which proves that $C(\mathbb{Q})=S$ (no rational points at infinity: leading coefficient is not a $d^{\text {th }}$ power)

Main construction

We have

$$
f_{S}\left(a_{i}\right)=h\left(a_{i}\right)=b_{i}^{d}
$$

and $f_{S}(X)$ is separable (by separability of $h(X)$ and Eisenstein's criterion)

We prove:

$$
\text { if } f_{S}(x)=y^{d} \text { for some rational } y \in \mathbb{Q} \Rightarrow(x, y) \in S
$$

which proves that $C(\mathbb{Q})=S$ (no rational points at infinity: leading coefficient is not a $d^{\text {th }}$ power)

Where does Falting's come in?

Theorem (Darmon and Granville)
If A, B, C, p, q, r are fixed positive integers with

$$
\frac{1}{p}+\frac{1}{q}+\frac{1}{r}<1
$$

then the equation

$$
A x^{p}+B y^{q}=C z^{r}
$$

has at most finitely many solutions in coprime non-zero integers x, y, z.
Proof: application of Falting's theorem

Where does Falting's come in?

Recall we define

$$
g(X)=\ell q^{k} \prod\left(X-a_{i}\right)^{k}+1
$$

Where does this " q " come from? We consider the four equations

$$
\ell x^{6}+y^{6}=2^{i} \ell^{j} z^{3}, \quad i, j \in\{0,1\}
$$

and we choose $q \neq x y z$ for all solutions (x, y, z), finitely many by Darmon and Granville

Where does Falting's come in?

Recall we define

$$
g(X)=\ell q^{k} \prod\left(X-a_{i}\right)^{k}+1
$$

Where does this " q " come from? We consider the four equations

$$
\ell x^{6}+y^{6}=2^{i} \ell^{j} z^{3}, \quad i, j \in\{0,1\}
$$

and we choose $q \neq x y z$ for all solutions (x, y, z), finitely many by Darmon and Granville

Example

Let S be the set of points

$$
S=\{(0,2),(1,3),(2,6),(-1,1)\}
$$

Example

Let S be the set of points

$$
S=\{(0,2),(1,3),(2,6),(-1,1)\}
$$

we compute $r=4, d=3 \cdot 17$ and $k=6$,

Example

Let S be the set of points

$$
S=\{(0,2),(1,3),(2,6),(-1,1)\}
$$

we compute $r=4, d=3 \cdot 17$ and $k=6$, and Lagrange interpolation polynomial is:

$$
h(x)=\frac{1}{3} x^{3}+\frac{2}{3} x+2
$$

Example

Let S be the set of points

$$
S=\{(0,2),(1,3),(2,6),(-1,1)\}
$$

we compute $r=4, d=3 \cdot 17$ and $k=6$, and Lagrange interpolation polynomial is:

$$
h(x)=\frac{1}{3} x^{3}+\frac{2}{3} x+2
$$

irreducible modulo $\ell=5$, so consider

$$
5 x^{6}+y^{6}=2^{i} 5^{j} z^{3}, \quad i, j \in\{0,1\}
$$

Example

Let S be the set of points

$$
S=\{(0,2),(1,3),(2,6),(-1,1)\}
$$

we compute $r=4, d=3 \cdot 17$ and $k=6$, and Lagrange interpolation polynomial is:

$$
h(x)=\frac{1}{3} x^{3}+\frac{2}{3} x+2
$$

irreducible modulo $\ell=5$, so consider

$$
5 x^{6}+y^{6}=2^{i} 5^{j} z^{3}, \quad i, j \in\{0,1\}
$$

which have no integer solutions, by examining relevant elliptic curves, say

$$
E_{1}: y^{2}=x^{3}-5
$$

so can take $q=1$.

Let S be the set of points

$$
S=\{(0,2),(1,3),(2,6),(-1,1)\}
$$

we compute $r=4, d=3 \cdot 17$ and $k=6$, and Lagrange interpolation polynomial is:

$$
h(x)=\frac{1}{3} x^{3}+\frac{2}{3} x+2
$$

Let S be the set of points

$$
S=\{(0,2),(1,3),(2,6),(-1,1)\}
$$

we compute $r=4, d=3 \cdot 17$ and $k=6$, and Lagrange interpolation polynomial is:

$$
h(x)=\frac{1}{3} x^{3}+\frac{2}{3} x+2
$$

and now we have

$$
g(X)=5(X(X-1)(X-2)(X+1))^{6}+1
$$

Let S be the set of points

$$
S=\{(0,2),(1,3),(2,6),(-1,1)\}
$$

we compute $r=4, d=3 \cdot 17$ and $k=6$, and Lagrange interpolation polynomial is:

$$
h(x)=\frac{1}{3} x^{3}+\frac{2}{3} x+2
$$

and now we have

$$
g(X)=5(X(X-1)(X-2)(X+1))^{6}+1
$$

and

$$
C: y^{51}=f_{S}(X)=g(X)((h(X)-1) g(X)-1)
$$

this gives us a curve of genus 1225 !

Thank you for listening!
L.B. Soroker.

Dirichlet's theorem for polynomial rings
Proceedings of the American Mathematical Society. 137, 2006.
图 S. Gajović.
Reverse engineered Diophantine equations, 2022.
https://arxiv.org/abs/2205.09684
圊 K. Santicola.
Reverse engineered Diophantine equations over $\mathbb{Q}, 2022$.
https://arxiv.org/abs/2208.05145

