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Where it all began

Let
PZ = {αn : α ∈ Z, n ≥ 2}

be the set of perfect powers in Z.

What perfect powers can f (X ) = X 3 + 1 hit?
Or: what is f (Z) ∩ PZ?

solutions to X 3 + 1 = Y n

Mihăilescu (2005): only

23 + 1 = 32, 03 + 1 = 12, (−1)3 + 1 = 02

so f (Z) ∩ PZ = {0, 1, 32}
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The original question

At the recent “Rational Points” conference (Schney, April 2022),
Samir Siksek asked:

Question

Let S be a finite subset of PZ. Is there a polynomial fS ∈ Z[X ] such that

fS(Z) ∩ PZ = S

Gajović (2022): answered this affirmatively for Z
S. (2022): show his method can be extended to Q

Katerina Santicola Curves with prescribed rational points



The original question

At the recent “Rational Points” conference (Schney, April 2022),
Samir Siksek asked:

Question

Let S be a finite subset of PZ. Is there a polynomial fS ∈ Z[X ] such that

fS(Z) ∩ PZ = S

Gajović (2022): answered this affirmatively for Z
S. (2022): show his method can be extended to Q

Katerina Santicola Curves with prescribed rational points



A temporary deviation

Question

Let S be a finite subset of OK . Is there a polynomial fS ∈ OK [X ] such
that

fS(OK ) ∩ POK
= S

this question is much harder over number fields!
assuming Serre’s Uniformity Conjecture: can answer in the
affirmative for totally real fields?
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Hmm, this looks a lot like...

start with a set S ⊂ PQ

construct a polynomial fS(X ) such that if fS(x) = ym, then ym ∈ S

the equation yn = fS(X ) looks like a superelliptic curve!
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Falting’s Theorem

let C/Q be a nonsingular curve of genus g ≥ 2
C (Q) = Caff(Q) + points at ∞
Falting’s Theorem: C (Q) is finite
no effective results for computing C (Q), but possible sometimes
(e.g. Chabauty)
converse of Falting’s:

given a finite set S ⊆ P2(Q), does there exist C/Q such that
C (Q) = S?
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Superelliptic Curves

By a superelliptic curve we mean a smooth projective curve associated to

C : ym = f (x)

where f is separable of degree d ≥ 3 and m ≥ 2 is an integer.

m = 2 and d = 3: elliptic curves
m = 2 and d ≥ 5: hyperelliptic curves
m = d and d ≥ 4: the genus g is

g = (d − 1)(d − 2)/2 ≥ 2

and so C (Q) is finite by Falting’s
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Main result

Let S = {(a1, b1), . . . , (ar , br )} ⊂ Q2 such that:
if (ai , bi ), (aj , bj) ∈ S and ai = aj then bi = bj

ai ̸= aj if i ̸= j .
We call such a set an acceptable set.

Theorem

Given an acceptable set S ⊆ Q2, there exists a separable polynomial
fS(x) ∈ Q[x ] of degree d , such that Caff(Q) = S , where

C : yd = fS(x)

Moreover, C has no rational points at infinity.
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Separability

want: a separable polynomial such that h(ai ) = bdi for all (ai , bi ) ∈ S

Lagrange interpolation polynomial L(X ): not necessarily separable
if S = {(0, 0), (1, 1), (2, 4)} then L(X ) = X 2

consider
h(X ) = X 2 + X (X − 1)(X − 2)c(X )

can we construct c(X ) so that h(X ) is separable?
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Dirichlet’s theorem for polynomial rings

Theorem (Bary-Soroker)

Let a(X ), b(X ) ∈ Q[X ] be relatively prime. For every

n > 2max{deg a(X ), deg b(X ) + 2}+ 4

there exists c(X ) ∈ Q[X ] for which

f (X ,Y ) = a(X ) + b(X )c(X )Y

is irreducible in Q(Y )[X ] of degree n in X and Gal(f (X ,Y ),Q(Y )) ∼= Sn.

With this theorem we construct h(X ) such that:
h(ai ) = bdi
h(X ) is separable modulo a prime ℓ
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Main construction

Now define the polynomial

g(X ) = ℓqk
∏

(X − ai )
k + 1

Then our curve is given by

C : yd = fS(X )

where
fS(X ) = g(X )((h(X )− 1)g(X ) + 1)
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Main construction

We have
fS(ai ) = h(ai ) = bdi

and fS(X ) is separable (by separability of h(X ) and Eisenstein’s criterion)

We prove:

if fS(x) = yd for some rational y ∈ Q ⇒ (x , y) ∈ S

which proves that C (Q) = S (no rational points at infinity: leading
coefficient is not a d th power)
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Where does Falting’s come in?

Theorem (Darmon and Granville)

If A,B,C , p, q, r are fixed positive integers with

1
p
+

1
q
+

1
r
< 1

then the equation
Axp + Byq = Cz r

has at most finitely many solutions in coprime non-zero integers x , y , z .

Proof: application of Falting’s theorem
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Where does Falting’s come in?

Recall we define
g(X ) = ℓqk

∏
(X − ai )

k + 1

Where does this "q" come from? We consider the four equations

ℓx6 + y6 = 2iℓjz3, i , j ∈ {0, 1}

and we choose q ̸= xyz for all solutions (x , y , z), finitely many by
Darmon and Granville
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Example

Let S be the set of points

S = {(0, 2), (1, 3), (2, 6), (−1, 1)}
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we compute r = 4, d = 3 · 17 and k = 6,
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Let S be the set of points

S = {(0, 2), (1, 3), (2, 6), (−1, 1)}

we compute r = 4, d = 3 · 17 and k = 6, and Lagrange interpolation
polynomial is:

h(x) =
1
3
x3 +

2
3
x + 2
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Example

Let S be the set of points

S = {(0, 2), (1, 3), (2, 6), (−1, 1)}

we compute r = 4, d = 3 · 17 and k = 6, and Lagrange interpolation
polynomial is:

h(x) =
1
3
x3 +

2
3
x + 2

irreducible modulo ℓ = 5, so consider

5x6 + y6 = 2i5jz3, i , j ∈ {0, 1}

which have no integer solutions, by examining relevant elliptic curves, say

E1 : y2 = x3 − 5

so can take q = 1.
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g(X ) = 5 (X (X − 1)(X − 2)(X + 1))6 + 1
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Let S be the set of points

S = {(0, 2), (1, 3), (2, 6), (−1, 1)}

we compute r = 4, d = 3 · 17 and k = 6, and Lagrange interpolation
polynomial is:

h(x) =
1
3
x3 +

2
3
x + 2

and now we have

g(X ) = 5 (X (X − 1)(X − 2)(X + 1))6 + 1

and
C : y51 = fS(X ) = g(X )((h(X )− 1)g(X )− 1)

this gives us a curve of genus 1225!
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Thank you for listening!
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