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Modular curves

For N ∈ Z>0, the modular curve Y1(N) classifies pairs (E ,P)
up to isomorphism of elliptic curves together with a point of
order N.

Similarly, Y0(N) classifies pairs (E ,CN) up to isomorphism of
elliptic curves E together with a cyclic subgroup CN of order
N.

The point (E ,CN) can equivalently be viewed as (E , ι), where
ι : E → E/CN =: E ′ is an isogeny whose kernel is cyclic of
order N.

The curves X1(N) and X0(N) are the compactifications of
Y1(N) and Y0(N), respectively. These curves are defined over
Z
[ 1
N

]
.
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Atkin–Lehner Quotients

Let d > 1 be a Hall divisor of N, i.e. gcd(d ,N/d) = 1.
We write d ∥ N.

The Atkin–Lehner involution wd is given by

wd : (E ,CN) 7→ (E/Cd , (CN + E [d ])/Cd).

Let W (N) := ⟨wd : d ∥ N⟩.

Consider the quotients

X0(N)+ := X0(N)/⟨wN⟩,
X0(N)∗ := X0(N)/W (N).

Rational points on X0(N)∗ correspond to Q-curves defined over
multi-quadratic extensions of Q.
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Motivation

Rational points on X0(N)∗ correspond to Q-curves defined
over multi-quadratic extensions of Q.

Knowing X0(N)+(Q), an “extremely interesting arithmetic
question" (Mazur), is helpful in determining all quadratic
points on X0(N).

Elkies’ conjecture: For N ≫ 0, X0(N)∗ consists only of cusps
and CM points.

Hasegawa proved that there are exactly 64 levels N for which
X0(N)∗ is hyperelliptic.
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Hyperelliptic X0(N)∗

Hasegawa proved that there are exactly 64 levels N for which
X0(N)∗ is hyperelliptic.

Adžaga-Chidambaram-Keller-P. completed the computation of
X0(N)∗(Q) for the 15 remaining levels in Hasegawa’s table.

For N ∈ {67, 73, 103, 7 · 19}, we notice the following
isomorphisms

X0(2N)∗ ∼= X0(N)∗.

These isomorphisms are partially explained by the fact that for
N ∈ {67, 73, 103, 7 · 19}, the curve X0(2N)∗ has good
reduction at 2.
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Exceptional Isomorphisms

For distinct positive integers N1,N2 and Atkin–Lehner subgroups
W1 ≤ W (N1),W2 ≤ W (N2), if

X0(N1)/W1 ∼= X0(N2)/W2,

then we say that this isomorphism is exceptional.

Question: Are there only finitely many exceptional isomorphisms,
and if so, can we give a complete classification?
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Infinitely many exceptional isomorphisms

Question: Are there only finitely many exceptional isomorphisms,
and if so, can we give a complete classification?
Answer: No.

Proposition (Hasegawa)

Let M > 1 be an odd integer. Let
W = ⟨W4,WM1 , · · · ,WMs ⟩ ≤ W (4M) with Mi ∥ M and
W ′ = ⟨WM1 , · · · ,WMs ⟩ ≤ W (2M). Then

X0(4M)/W ∼= X0(2M)/W ′.
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Refined question

Refined question: Are there finitely many isomorphisms

X0(N1)/W1 ∼= X0(N2)/W2

when rad(N1) ̸= rad(N2)?

In this case, for at least one of i ∈ {1, 2}, X0(Ni )/Wi would have
fewer primes of bad reduction compared to X0(Ni ).

We approach the question by considering the primes of bad
reduction of X0(N)∗.
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Primes of bad reduction for X0(N)∗

We give a positive answer to the refined question.

Theorem (P.-Voight 2023)

Let N > 1 be a square-free integer. The set of primes of bad
reduction of X0(N)∗ equals the set of prime divisors of N except for
a finite, explicitly computable set of levels N.
This list classifies all exceptional isomorphisms

X0(N1)/W1 ∼= X0(N2)/W2

for distinct and squre-free N1,N2 and W1 ≤ W (N1), W2 ≤ W (N2).
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Outline of proof

Main ingredients of the proof:

Atkin–Lehner–Li theory (newforms and oldforms), and

Genus formula for X0(N)∗.



11/18

Towards the proof

Consider
J0(N)∗ := Jac(X0(N)∗) ⊂ J0(N).

We have that
J0(N)∗ ⊆ J0(N) ∼

⊕
f

Amf
f ,

where the sum is taken over a set of representatives
f ∈ S2(Γ0(Mf )) at levels Mf |N, and each mf = σ0(N/Mf ).

Consider the subvariety

J0(N)∗,new ⊂ J0(N)∗,

which is the union of isogeny factors corresponding to newforms of
level N.
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A sufficient condition

The condition
dim(J0(N)∗,new) > 0

is sufficient (but not necessary) for X0(N)∗ to have as primes of
bad reduction all prime divisors of N.

Thus we would like to prove that

dim(J0(N)∗,new) > 0

for N ≫ 0.

In fact, we show that

lim
N→∞

dim(J0(N)∗,new) = ∞.

We begin by computing dimensions of spaces of newforms.
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Newforms

Let N = p1 · · · pk be square-free. Consider first k = 2. We have
two embeddings

S2(Γ0(p1)) ↪→↪→ S2(Γ0(p1p2)).

Then dim(S2(Γ0(p1p2))
p1−new,p2−new) equals

dim(S2(Γ0(p1p2)))− 2 dim(S2(Γ0(p1)))− 2 dim(S2(Γ0(p2))).

Lemma

The dimension of (S2(Γ0(p1p2))
∗)p1−new,p2−new equals

dim(S2(Γ0(p1p2))
∗)− dim(S2(Γ0(p1))

∗)− dim(S2(Γ0(p2))
∗).
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Inclusion-Exclusion Principle

We can generalize the computation for k ≥ 3. Using the
inclusion-exclusion principle, the coefficients are the same as before,
and we obtain that

dim(J0(N)new) =
∑
d |N
d<N

µ(d)2ω(d)gN/d ,

while
dim(J0(N)∗,new) =

∑
d |N
d<N

µ(d)g∗
N/d .
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Computing genera of X0(N) and X0(N)∗

Let gN be the genus of X0(N). Then

gN = 1 +
ψ(N)

12
− ν2(N)

4
− ν3(N)

3
− ν∞(N)

2
, where

ν2(N) := #{x ∈ Z/NZ : x2 + 1 = 0}, ν3(N) := #{x ∈ Z/NZ : x2 + x + 1 = 0},

ψ(N) = N
∏
p|N

(
1 + 1

p

)
, ν∞(N) =

∑
d |N

φ(gcd(d ,N/d)).

There is a similar formula for the genus g∗
N of X0(N)∗:

g∗
N = 1 +

gN − 1
2ω(N)

− 1
2ω(N)+1

∑
1<d∥N

ν(N, d),

where ν(N, d) denotes the number of fixed points of the involution
wd of X0(N).
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Square root beats log

After considering each summand and manipulating (in)equalities,
we obtain that

dim(J0(N)∗,new) >
1
12

∏
p|N

p − 1
2

− 7
2π

∏
p|N

(√
p log(p)

2
+ 1

)
> 0,

for N ≫ 0.

Thus there are only finitely many square-free levels N for which
X0(N) and X0(N)∗ do not have the same set of primes of bad
reduction.
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Work in progress

Provide complete table of exceptional isomorphisms explained
by “loss” of bad primes and upload it to the LMFDB

Remove the square-free condition

Extend the result to more general modular curves and to
quotients of Shimura curves
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