The primes of bad reduction of the modular star quotient $X_{0}(N)^{*}$

Oana Pădurariu (MPIM Bonn)
joint work with John Voight
Representation Theory XVIII, Dubrovnik

June 22nd, 2023

Modular curves

- For $N \in \mathbb{Z}_{>0}$, the modular curve $Y_{1}(N)$ classifies pairs (E, P) up to isomorphism of elliptic curves together with a point of order N.
- Similarly, $Y_{0}(N)$ classifies pairs $\left(E, C_{N}\right)$ up to isomorphism of elliptic curves E together with a cyclic subgroup C_{N} of order N.
- The point $\left(E, C_{N}\right)$ can equivalently be viewed as (E, ι), where $\iota: E \rightarrow E / C_{N}=: E^{\prime}$ is an isogeny whose kernel is cyclic of order N.
- The curves $X_{1}(N)$ and $X_{0}(N)$ are the compactifications of $Y_{1}(N)$ and $Y_{0}(N)$, respectively. These curves are defined over $\mathbb{Z}\left[\frac{1}{N}\right]$.

Atkin-Lehner Quotients

Let $d>1$ be a Hall divisor of N, i.e. $\operatorname{gcd}(d, N / d)=1$.
We write $d \| N$.
The Atkin-Lehner involution w_{d} is given by

$$
w_{d}:\left(E, C_{N}\right) \mapsto\left(E / C_{d},\left(C_{N}+E[d]\right) / C_{d}\right)
$$

Let $W(N):=\left\langle w_{d}: d \| N\right\rangle$.
Consider the quotients

$$
\begin{aligned}
X_{0}(N)^{+} & :=X_{0}(N) /\left\langle w_{N}\right\rangle \\
X_{0}(N)^{*} & :=X_{0}(N) / W(N)
\end{aligned}
$$

Rational points on $X_{0}(N)^{*}$ correspond to \mathbb{Q}-curves defined over multi-quadratic extensions of \mathbb{Q}.

Motivation

- Rational points on $X_{0}(N)^{*}$ correspond to \mathbb{Q}-curves defined over multi-quadratic extensions of \mathbb{Q}.
- Knowing $X_{0}(N)^{+}(\mathbb{Q})$, an "extremely interesting arithmetic question" (Mazur), is helpful in determining all quadratic points on $X_{0}(N)$.
- Elkies' conjecture: For $N \gg 0, X_{0}(N)^{*}$ consists only of cusps and CM points.
- Hasegawa proved that there are exactly 64 levels N for which $X_{0}(N)^{*}$ is hyperelliptic.

Hyperelliptic $X_{0}(N)^{*}$

- Hasegawa proved that there are exactly 64 levels N for which $X_{0}(N)^{*}$ is hyperelliptic.
- Adžaga-Chidambaram-Keller-P. completed the computation of $X_{0}(N)^{*}(\mathbb{Q})$ for the 15 remaining levels in Hasegawa's table.
- For $N \in\{67,73,103,7 \cdot 19\}$, we notice the following isomorphisms

$$
X_{0}(2 N)^{*} \cong X_{0}(N)^{*}
$$

- These isomorphisms are partially explained by the fact that for $N \in\{67,73,103,7 \cdot 19\}$, the curve $X_{0}(2 N)^{*}$ has good reduction at 2 .

Exceptional Isomorphisms

For distinct positive integers N_{1}, N_{2} and Atkin-Lehner subgroups $W_{1} \leq W\left(N_{1}\right), W_{2} \leq W\left(N_{2}\right)$, if

$$
X_{0}\left(N_{1}\right) / W_{1} \cong X_{0}\left(N_{2}\right) / W_{2}
$$

then we say that this isomorphism is exceptional.
Question: Are there only finitely many exceptional isomorphisms, and if so, can we give a complete classification?

Infinitely many exceptional isomorphisms

Question: Are there only finitely many exceptional isomorphisms, and if so, can we give a complete classification?
Answer: No.

Proposition (Hasegawa)

Let $M>1$ be an odd integer. Let $W=\left\langle W_{4}, W_{M_{1}}, \cdots, W_{M_{s}}\right\rangle \leq W(4 M)$ with $M_{i} \| M$ and $W^{\prime}=\left\langle W_{M_{1}}, \cdots, W_{M_{s}}\right\rangle \leq W(2 M)$. Then

$$
X_{0}(4 M) / W \cong X_{0}(2 M) / W^{\prime}
$$

Refined question

Refined question: Are there finitely many isomorphisms

$$
X_{0}\left(N_{1}\right) / W_{1} \cong X_{0}\left(N_{2}\right) / W_{2}
$$

when $\operatorname{rad}\left(N_{1}\right) \neq \operatorname{rad}\left(N_{2}\right)$?
In this case, for at least one of $i \in\{1,2\}, X_{0}\left(N_{i}\right) / W_{i}$ would have fewer primes of bad reduction compared to $X_{0}\left(N_{i}\right)$.

We approach the question by considering the primes of bad reduction of $X_{0}(N)^{*}$.

Primes of bad reduction for $X_{0}(N)^{*}$

We give a positive answer to the refined question.

Theorem (P.-Voight 2023)

Let $N>1$ be a square-free integer. The set of primes of bad reduction of $X_{0}(N)^{*}$ equals the set of prime divisors of N except for a finite, explicitly computable set of levels N.
This list classifies all exceptional isomorphisms

$$
X_{0}\left(N_{1}\right) / W_{1} \cong X_{0}\left(N_{2}\right) / W_{2}
$$

for distinct and squre-free N_{1}, N_{2} and $W_{1} \leq W\left(N_{1}\right), W_{2} \leq W\left(N_{2}\right)$.

Outline of proof

Main ingredients of the proof:

- Atkin-Lehner-Li theory (newforms and oldforms), and
- Genus formula for $X_{0}(N)^{*}$.

Towards the proof

Consider

$$
J_{0}(N)^{*}:=\operatorname{Jac}\left(X_{0}(N)^{*}\right) \subset J_{0}(N)
$$

We have that

$$
J_{0}(N)^{*} \subseteq J_{0}(N) \sim \bigoplus_{f} A_{f}^{m_{f}}
$$

where the sum is taken over a set of representatives $f \in S_{2}\left(\Gamma_{0}\left(M_{f}\right)\right)$ at levels $M_{f} \mid N$, and each $m_{f}=\sigma_{0}\left(N / M_{f}\right)$.

Consider the subvariety

$$
J_{0}(N)^{*, \text { new }} \subset J_{0}(N)^{*}
$$

which is the union of isogeny factors corresponding to newforms of level N.

A sufficient condition

The condition

$$
\operatorname{dim}\left(J_{0}(N)^{*, \text { new }}\right)>0
$$

is sufficient (but not necessary) for $X_{0}(N)^{*}$ to have as primes of bad reduction all prime divisors of N.

Thus we would like to prove that

$$
\operatorname{dim}\left(J_{0}(N)^{*, \text { new }}\right)>0
$$

for $N \gg 0$.
In fact, we show that

$$
\lim _{N \rightarrow \infty} \operatorname{dim}\left(J_{0}(N)^{*, \text { new }}\right)=\infty
$$

We begin by computing dimensions of spaces of newforms.

Newforms

Let $N=p_{1} \cdots p_{k}$ be square-free. Consider first $k=2$. We have two embeddings

$$
S_{2}\left(\Gamma_{0}\left(p_{1}\right)\right) \leftrightarrows S_{2}\left(\Gamma_{0}\left(p_{1} p_{2}\right)\right)
$$

Then $\operatorname{dim}\left(S_{2}\left(\Gamma_{0}\left(p_{1} p_{2}\right)\right)^{p_{1}-\text { new, } p_{2}-\text { new }}\right)$ equals $\operatorname{dim}\left(S_{2}\left(\Gamma_{0}\left(p_{1} p_{2}\right)\right)\right)-2 \operatorname{dim}\left(S_{2}\left(\Gamma_{0}\left(p_{1}\right)\right)\right)-2 \operatorname{dim}\left(S_{2}\left(\Gamma_{0}\left(p_{2}\right)\right)\right)$.

Lemma

The dimension of $\left(S_{2}\left(\Gamma_{0}\left(p_{1} p_{2}\right)\right)^{*}\right)^{p_{1}-\text { new, } p_{2}-\text { new }}$ equals $\operatorname{dim}\left(S_{2}\left(\Gamma_{0}\left(p_{1} p_{2}\right)\right)^{*}\right)-\operatorname{dim}\left(S_{2}\left(\Gamma_{0}\left(p_{1}\right)\right)^{*}\right)-\operatorname{dim}\left(S_{2}\left(\Gamma_{0}\left(p_{2}\right)\right)^{*}\right)$.

Inclusion-Exclusion Principle

We can generalize the computation for $k \geq 3$. Using the inclusion-exclusion principle, the coefficients are the same as before, and we obtain that

$$
\operatorname{dim}\left(J_{0}(N)^{\text {new }}\right)=\sum_{\substack{d \mid N \\ d<N}} \mu(d) 2^{\omega(d)} g_{N / d}
$$

while

$$
\operatorname{dim}\left(J_{0}(N)^{*, \text { new }}\right)=\sum_{\substack{d \mid N \\ d<N}} \mu(d) g_{N / d}^{*}
$$

Computing genera of $X_{0}(N)$ and $X_{0}(N)^{*}$

Let g_{N} be the genus of $X_{0}(N)$. Then

$$
\begin{gathered}
g_{N}=1+\frac{\psi(N)}{12}-\frac{\nu_{2}(N)}{4}-\frac{\nu_{3}(N)}{3}-\frac{\nu_{\infty}(N)}{2}, \text { where } \\
\nu_{2}(N):=\#\left\{x \in \mathbb{Z} / N \mathbb{Z}: x^{2}+1=0\right\}, \quad \nu_{3}(N):=\#\left\{x \in \mathbb{Z} / N \mathbb{Z}: x^{2}+x+1=0\right\}, \\
\psi(N)=N \prod_{p \mid N}\left(1+\frac{1}{p}\right), \quad \nu_{\infty}(N)=\sum_{d \mid N} \varphi(\operatorname{gcd}(d, N / d)) .
\end{gathered}
$$

There is a similar formula for the genus g_{N}^{*} of $X_{0}(N)^{*}$:

$$
g_{N}^{*}=1+\frac{g_{N}-1}{2^{\omega(N)}}-\frac{1}{2^{\omega(N)+1}} \sum_{1<d \| N} \nu(N, d)
$$

where $\nu(N, d)$ denotes the number of fixed points of the involution w_{d} of $X_{0}(N)$.

Square root beats log

After considering each summand and manipulating (in)equalities, we obtain that

$$
\operatorname{dim}\left(J_{0}(N)^{*, \text { new }}\right)>\frac{1}{12} \prod_{p \mid N} \frac{p-1}{2}-\frac{7}{2 \pi} \prod_{p \mid N}\left(\frac{\sqrt{p} \log (p)}{2}+1\right)>0
$$

for $N \gg 0$.
Thus there are only finitely many square-free levels N for which $X_{0}(N)$ and $X_{0}(N)^{*}$ do not have the same set of primes of bad reduction.

Work in progress

- Provide complete table of exceptional isomorphisms explained by "loss" of bad primes and upload it to the LMFDB
- Remove the square-free condition
- Extend the result to more general modular curves and to quotients of Shimura curves

Thank You for Your Attention!

