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Generalities

Let (a,b,c) be an integral solution to the equation x4 +d y2 = zp

(an affine surface).

Definition
The solution is called:

trivial if one of its coordinates is zero.
primitive if gcd(a,b,c) = 1.

Theorem (Darmon-Granville)

If 1
4 + 1

2 + 1
p < 1 then there are finitely many primitive solutions.

Remark (Granville)

In general there are infinitely many non-primitive solutions.
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A Frey curve attached to (a,b,c)

Consider the elliptic curve (over K =Q(
p−d)) with equation

E(a,b,c) : y2 = x3 +4ax2 +2(a2 +
p
−db)x. (1)

Proposition (P-Villagra)

The curve E(a,b,c) is a Q-curve, i.e. E(a,b,c) is 2-isogenous to the
quadratic twist E(a,b,c) ⊗ψ−2.

A result of Ribet implies that a twist of ρE(a,b,c),p extends to the
whole Galois group GalQ.
Serre’s conjectures + results of Taylor-Wiles imply that the
extension is modular (matching a newform in S2(Γ0(N ),ε)).

Problem
Make N and ε explicit.
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Properties of ρE(a,b,c),p

The discriminant of E(a,b,c) equals 29(a2 +b
p−d)cp .

If q | c is odd, E(a,b,c) has multiplicative reduction at q.
In particular the residual representation has good reduction at
odd primes dividing the discriminant.
The conductor at primes dividing 2 can be explicitly computed.

Regarding the trivial solutions:
The trivial solution (0,0,0) gives a singular curve.
The solutions (±1,0,1) are curves with CM by Z[

p−2].
When d = 1, the solution (0,±1,1) gives a curve with CM by
Z[

p−1].
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An alternative approach to Ribet’s solution

Let τ ∈ GalQ be non trivial on K :=Q(
p−d). Then

τρE(a,b,c),p (σ) := ρE(a,b,c),p (τστ−1) = ρE(a,b,c),p ⊗ψ−2.

Our goal is to construct χ : GalK →Q
×

such that

τχ=χ ·ψ−2.

Then τ(ρE(a,b,c),p ⊗χ) = ρE(a,b,c),p ⊗χ, so it extends to GalQ.
By CFT, it is enough to construct χ : IK →Q

×
with this property.

Using the short exact sequence

0 // K × · (
∏

qO
×
q × (K ⊗R)×) // IK

Id // Cl(K ) // 0.

it is enough to define χ on elements of the first place and on idèles
corresponding to representatives of Cl(K ).
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First construct the Nebentypus

We construct an extra character ε : IQ→Q
×

that will be the
“determinant” of the extension (the Nebentypus).
For i = 1,3,5,7, let

Qi = { p prime : p | d , p ≡ i (mod 8)}.

and define the character εp to be:
Unramified at primes p of Q1 ∪Q7.
Quadratic at Z×

p for primes p of Q3.
Of order 4 at Z×

p for primes p of Q5.

At Z×
2 , ε2 =ψ#Q3+#Q5

−1 .
The archimidean component is trivial.
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From ε, construct the character χ

We impose on χ the following condition

χ2 = ε◦Nm.

Let p be a prime of K and define χp at Op by
If p ∤ 2 and p is unramified, χp is trivial.
If p is odd and ramified, χp = εp ·δp .
An explicit description at primes dividing 2 (depending on d
modulo 16 and on the sizes of the sets Qi ).
If d < 0, trivial at one archimidean place and the sign function
at the other.

△! A hard problem is to verify that on the intersection

K ×∩ (
∏
q
O×
q × (K ⊗R)×) =O×

K

the character is trivial (specially when d < 0 as we need some
understanding of the fundamental unit).
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Existence of the Hecke character χ

Theorem (P-Villagra)

There exists a Hecke character χ : GalK →Q such that:
1 χ2(σ) = ε(σ) for all σ ∈ GalK ,
2 χ is unramified at primes not dividing 2

∏
p∈Q1∪Q5∪Q7

p,
3 If τ ∈ GalQ is not the identity on K , τχ=χ ·ψ−2 as characters

of GalK .

Proof.
Define the character as before, and extend it to representatives of
Cl(K ) using the formula

χ2 = ε◦Nm.

Key ingredients: patience and quadratic reciprocity.
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A few remarks

By construction the character χ is unramified at primes not
dividing 2d , and we have a precise formula for its conductor.
The character χ satisfying τχ=χ ·ψ−2 is unique up to
multiplication by characters of GalQ.

Theorem (P-Villagra)

The twisted representation ρE(a,b,c),p ⊗χ extends to a 2-dimensional
representation of GalQ attached to a newform of weight 2,
Nebentypus ε and level N given by

N = 2e · ∏
q∈S(E(a,b,c))

q · ∏
q∈Q3

q · ∏
q∈Q1∪Q5∪Q7

q2.

The hard part is to prove the Nebentypus statement when d < 0.
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Ribet’s lowering the level result

Theorem
Suppose that p ∤ 2d and suppose that the residual Galois
representation ρE(a,b,c),p is absolutely irreducible. Then there exists a
newform g ∈ S2(Γ0(n),ε) with

n = 2e · ∏
q∈Q3

q · ∏
q∈Q1∪Q5∪Q7

q2,

such that ρE(a,b,c),p ≡ ρg ,K ,p ⊗χ−1 (mod p), where ρg ,K ,p is the
restriction of the representation ρg ,p to the Galois group GalK and
p is a prime ideal of Q dividing p.
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Results on large residual image

Theorem (Ellenberg)

Suppose that c is divisible by a prime larger than 3. Then there
exists an integer Nd such that the projective image of the residual
representation of ρE(a,b,c),p is surjective for all primes p > Nd .

Theorem (Jiménez-Dieulefait)

If c is only supported in {2,3} then there exists a constant Nd such
that if p > Nd then the representation ρE(a,b,c),p has absolutely
irreducible image.

It is quite hard to discard solutions when c is only supported at 2
and 3 (for example when d = 7).

Ariel Pacetti On solutions to x4 +d y2 = zp .



Strategies to discard solutions: Mazur’s trick

Proposition

Let q be a rational prime with q ∤ pn. Let q be a prime of OK

dividing q and define B(q, g ; a,b) by
Nm(aq(E(a,b,c))χ(q)−aq (g )) if q splits in K ,

Nm(aq (g )2 −aq (E(a,b,c))χ(q)−2qε(q)) if q is inert in K ,

Nm(ε−1(q)(q +1)2 −aq (g )2) if q | c.

Then p | B(q, f ; a,b).

In particular, p must divide

C (q, g ) = ∏
(a,b)∈F2

q

B(q, g ; a,b).
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Example: d = 7

Theorem (P-Villagra)

Let p > 349 be a prime number. Then there are no non-trivial
primitive solutions of the equation

x4 +7y2 = zp .

If c is even, g ∈ S2(Γ0(2 ·72)) otherwise g ∈ S2(Γ0(28 ·72)).
The large image bound equals: 349 (Ellenberg) and 127 (J-D).
The space S2(2 ·72) has two conjugacy classes. Mazur’s trick
for a few primes q gives that p ∈ {2,7,17}.
The space S2(28 ·72) has 98 conjugacy classes, 30 with CM.
Since c is odd, Ellenberg’s result applies and all CM forms can
be discarded (the trivial solutions are here). Mazur’s trick
discards the non-CM forms if p ̸∈ {2,3,5,7,11,17,23,31}.
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When does the method fail?

Once we discard the CM forms, Mazur’s trick fails for a newform g
precisely when C (q, g ) = 0 for all primes q, i.e. when for any prime
q there exists an elliptic curve E(q) such that

ρg ,K ,p ⊗χ−1 ≡ ρE(q),p .

Question: is it true in this case that there exists an elliptic curve Ẽ
defined over K such that ρg ,K ,p ⊗χ−1 = ρẼ?

Theorem (Golfieri-P.-Villagra)

If C (q, g ) = 0 for all primes q, then there exists a constant B
(depending on n) such that is p > B then there exists an elliptic
curve Ẽ defined over K such that

ρg ,K ,p ⊗χ−1 = ρẼ .
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Application: an assymptotic result

Theorem
Let d be a prime number congruent to 3 modulo 8 and such that
the class number of K =Q(

p−d) is not divisible by 3. Then there
are no non-trivial primitive solutions of the equation

x4 +d y2 = zp ,

for p large enough.

Theorem
With the same hypothesis, the only elliptic curves defined over K
having a K -rational point of order 2 and conductor supported at 2
are those that are base change of Q.
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Thank you for your attention!
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