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SLy(R) is defined by
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SLy(R) is defined by

SLZ(R):{C Z); a,b,c,deR,ad—bc:l}
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SLy(R) is defined by
SLy(R) = {(i Z) . a,b,c,d €R,ad — bc = 1}

H is the upper half-plane:
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SLy(R) is defined by
SLy(R) = {(i Z) . a,b,c,d €R,ad — bc = 1}

H is the upper half—plane: Im(z) >0
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SLy(R) is defined by
SLy(R) = {(i Z) . a,b,c,d €R,ad — bc = 1}

H is the upper half—plane: Im(z) >0
SL>(R) acts on H in a well-known way

Goran Mui¢ On Higher Order Weierstrass Points on Xp(/NV) and beyond (jo



SLy(R) is defined by
SLy(R) = {(i Z) . a,b,c,d €R,ad — bc = 1}

H is the upper half—plane: Im(z) >0
SL>(R) acts on H in a well-known way

az+b a b
g:

m, d) S SLQ(R), zeH

g.z=
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SLy(R) is defined by
SLy(R) = {(i Z) . a,b,c,d €R,ad — bc = 1}

H is the upper half—plane: Im(z) >0
SL>(R) acts on H in a well-known way

az+b a b
g:

m, d) S SLQ(R), zeH

g.z=
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SLy(R) is defined by
ﬂﬂ@:{(iZ);aaqdeR@d—M:l}

H is the upper half—plane: Im(z) >0
SL>(R) acts on H in a well-known way

az+b a b
gz= g=

azrbh L(R H
z+d d)eSﬂ),ze

H can be regarded as a model for the hyperbolic plane with
(invariant under SL(R))
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SLy(R) is defined by
ﬂﬂ@:{(iZ);aaqdeR@d—M:l}

H is the upper half—plane: Im(z) >0
SL>(R) acts on H in a well-known way
az+b a b
z=— = SLH(R H
84 z+a & ( d)e 2(R), z¢
H can be regarded as a model for the hyperbolic plane with
(invariant under SL(R))

hyperbolic volume: C’;;’y
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SLy(R) is defined by
ﬂﬂ@:{(iZ);aaqdeR@d—M:l}

H is the upper half—plane: Im(z) >0
SL>(R) acts on H in a well-known way
az+b a b
z=— = SLH(R H
84 z+a & ( d)e 2(R), z¢
H can be regarded as a model for the hyperbolic plane with
(invariant under SL(R))

hyperbolic volume: C’;;’y

dx2+dy?
2

hyperbolic distance: ds® = )
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Fuchsian groups of the first kind

we are interested in discrete subgroups I' of SL>(R)
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Fuchsian groups of the first kind

we are interested in discrete subgroups I' of SL>(R)
traditionally called Fuchsian groups
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Fuchsian groups of the first kind

we are interested in discrete subgroups I' of SL>(R)
traditionally called Fuchsian groups

the hyperbolic geometry can be used to construct nice
fundamental domains Fr for the action of [ on H
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Fuchsian groups of the first kind

we are interested in discrete subgroups I' of SL>(R)
traditionally called Fuchsian groups

the hyperbolic geometry can be used to construct nice

fundamental domains Fr for the action of [ on H

[ is a Fuchsian group of the first kind if [/ d;‘;y < 00
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Fuchsian groups of the first kind

Siegel
EN
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Fuchsian groups of the first kind

Siege Fr is a polygon in the hyperbolic plane H with finitely many

vertices: some of them might be at infinity
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Fuchsian groups of the first kind

Siege Fr is a polygon in the hyperbolic plane H with finitely many

vertices: some of them might be at infinity = RU {co}
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Fuchsian groups of the first kind

Sggl Fr is a polygon in the hyperbolic plane H with finitely many
vertices: some of them might be at infinity = RU {co}

a [—conjugate of a vertex at infinity is called cusp for [

In what follows I always denotes a Fuchsian group of the first kind
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Fuchsian groups of the first kind

Siege Fr is a polygon in the hyperbolic plane H with finitely many

vertices: some of them might be at infinity = RU {co}
a [—conjugate of a vertex at infinity is called cusp for [
In what follows I always denotes a Fuchsian group of the first kind

The most important examples are congruence subgroups, and
especially among them

Fo(N) = {(f_ 2) € SLa(Z); ¢ =0 (mod N)}
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Fuchsian groups of the first kind
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Fuchsian groups of the first kind

Let H* be the union of H and the set of all cusps for I
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Fuchsian groups of the first kind

Let H* be the union of H and the set of all cusps for I
the space Ry of -orbits for H* has a structure of compact
Riemann surface
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Fuchsian groups of the first kind

Let H* be the union of H and the set of all cusps for I
the space Ry of -orbits for H* has a structure of compact
Riemann surface

compact Riemann surface (analysis) is a complete (projective)
non—singular irreducible algebraic curve over C (algebraic
geometry)
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Fuchsian groups of the first kind

Let H* be the union of H and the set of all cusps for I
the space Ry of -orbits for H* has a structure of compact
Riemann surface

compact Riemann surface (analysis) is a complete (projective)
non—singular irreducible algebraic curve over C (algebraic

geometry)

we write Xo(NV) for the R ()
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Fuchsian groups of the first kind

Let H* be the union of H and the set of all cusps for I
the space Ry of -orbits for H* has a structure of compact
Riemann surface

compact Riemann surface (analysis) is a complete (projective)
non—singular irreducible algebraic curve over C (algebraic
geometry)

we write Xo(NV) for the R ()

the set of cusps for congruence subgroups is Q U {oo}
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Holomorphic Differentials and m—Weierstrass Points on

Rr

let H™ (Rr) be the space of holomorphic differentials of degree m
on Rr foreach m>1
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Holomorphic Differentials and m—Weierstrass Points on

Rr

let H™ (Rr) be the space of holomorphic differentials of degree m
on Rr foreach m>1

let g(I") be the genus of Rr
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Holomorphic Differentials and m—Weierstrass Points on

Rr

let H™ (Rr) be the space of holomorphic differentials of degree m
on Rr foreach m>1

let g(I") be the genus of Rr

we have
0 if m>1,g()=
L m _J&m) if m=1, g(N) >1,
Am AT A= o) i m>2, g(n)=1
2m—-1)(g(N)—-1) if m>2 g(I)>2
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Holomorphic Differentials and m—Weierstrass Points on

Rr
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Holomorphic Differentials and m—Weierstrass Points on

Rr

the canonical class K is the divisor of any non—zero meromorphic
form w on Rr
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Holomorphic Differentials and m—Weierstrass Points on

Rr

the canonical class K is the divisor of any non—zero meromorphic
form w on Rr

let f € C(2r) be non-zero function in the field of meromorphic
functions C (%) on Rr
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Holomorphic Differentials and m—Weierstrass Points on

Rr

the canonical class K is the divisor of any non—zero meromorphic
form w on Rr

let f € C(2r) be non-zero function in the field of meromorphic
functions C (%) on Rr

then, for m > 1, fw™ € H™ (Rr) if and only if
f e L(mK) % {g € C(RAr); g=0ordiv(g)+ mK >0}
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Holomorphic Differentials and m—Weierstrass Points on

Rr
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Holomorphic Differentials and m—Weierstrass Points on

Rr

assume g(lN) >1land m>1
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Holomorphic Differentials and m—Weierstrass Points on

Rr

assume g(IN) >1land m>1 = dimH™ (Rr) #0
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Holomorphic Differentials and m—Weierstrass Points on

Rr

assume g(IN) >1land m>1 = dimH™ (Rr) #0

Let t = dim H™ (Pr). We fix the basis wi, ..., w; of H™ (Rr). Let
z be any local coordinate on Rr. Then, locally there exists unique
holomorphic functions 1, ..., ¢ such that w; = ¢; (dz)™, for all /.
Then, again locally, we can consider the Wronskian W, defined by

Goran Mui¢ On Higher Order Weierstrass Points on Xp(/NV) and beyond (jo



Holomorphic Differentials and m—Weierstrass Points on

Rr

assume g(IN) >1land m>1 = dimH™ (Rr) #0

Let t = dim H™ (Pr). We fix the basis wi, ..., w; of H™ (Rr). Let
z be any local coordinate on Rr. Then, locally there exists unique
holomorphic functions 1, ..., ¢ such that w; = ¢; (dz)™, for all /.
Then, again locally, we can consider the Wronskian W, defined by

e1(z) - ee(2)
def dei(z) dei(2)
Wy (wi,...,we) = dz dz
d""lei(2) d"loe(2)
g )
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Holomorphic Differentials and m—Weierstrass Points on

Rr

the collection of all

Wz (("‘)17 s 7wt) (dz)%(2m_1+t) )

defines a non—zero holomorphic differential form
W (wi,...,we) € HZCM1H0 (91

called the Wronskian of the basis wr, ..., w:
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Holomorphic Differentials and m—Weierstrass Points on

Rr

the collection of all

Wz (w17 cee 7wt) (dz)%(2m_1+t) ’
defines a non—zero holomorphic differential form
W (wi,...,we) € HZCM1H0 (91

called the Wronskian of the basis wr, ..., w:

a different choice of a basis of H™ (1) results in a Wronskian
which differ from W (w1,...,w;) by a multiplication by a non—zero
complex number. Also, the degree is given by

deg (div(W (w1, ...,we))) =t(2m—1+4+1t)(g () —1).
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Holomorphic Differentials and m—Weierstrass Points on

Rr

Definition

Let m > 1 be an integer. We say that a € Ry is a m-Weierstrass
point if
Vg (W (w1,...,we)) > 1.

When m = 1 we speak about classical Weierstrass points. So,
1-Weierstrass points are simply Weierstrass points.

Goran Mui¢ On Higher Order Weierstrass Points on Xp(/NV) and beyond (jo



Interpretation in terms of cuspidal modular forms

Let m > 2 be an even integer
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Interpretation in terms of cuspidal modular forms

Let m > 2 be an even integer

Let S,(I") be the space of cuspidal modular forms for I' of weight
m
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Interpretation in terms of cuspidal modular forms

Let m > 2 be an even integer

Let S,(I") be the space of cuspidal modular forms for I' of weight
m

f € Sm(l), f # 0 has a divisor which has the form

div(f) = (the part independent of f) + cf,
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Interpretation in terms of cuspidal modular forms

Let m > 2 be an even integer

Let S,(I") be the space of cuspidal modular forms for I' of weight
m

f € Sm(l), f # 0 has a divisor which has the form

div(f) = (the part independent of f) + cf,

¢r is usual effective divisor on the curve Rr
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Interpretation in terms of cuspidal modular forms
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Interpretation in terms of cuspidal modular forms

let S!(T") be the space of all f € S,,(") either f = 0 or f satisfies

cF > Z [ 1—1/ea)}a+<——1> Z b

acR s beNR s
elliptic cusp

For each f € SH(T), f # 0, there exists unique ws € H™'? (Rr)
such that
) m m
div(ws) =cr— Y [5(1 - l/ea)] a— (E - 1) 3 o

aERr, bERr,
elliptic cusp

Moreover, the map f — wy is an isomorphism of SH(I") onto

H™/2 (Rr).
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Interpretation in terms of cuspidal modular forms

We remark that when m = 2, this reduces to obvious condition
¢r > 0. Hence, S¥/(I") = Sy(") recovering the standard
isomorphism of S(I') and H!(%Rr)
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Interpretation in terms of cuspidal modular forms and
5—Weierstrass points

Theorem

Assume that g(I') > 2, and a is a [-cusp. Then, there exists a

basis f1, ... f; of SH(I') such that their g—expansions are of the
form

f, = auq™ + higher order terms in q, 1< u<'t,
where m m
E§i1<i2<--~<it§§+m(g(r)—1),

and

a, €C, a, #0.
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Interpretation in terms of cuspidal modular forms and

5—Weierstrass points

Assume that g(I') > 2, and a is a [-cusp. Then, a, is not a
% —Weierstrass point if and only if there exists a basis fi, ... f; of
SH(T) such that their g—expansions are of the form

u+m/2—1

fu = auq + higher order terms in q, 1 < u <'t,

where

a, €C, a, #0.
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An Algorithm for Xo(N) using SAGE (first part)

Let m = 2. The last theorem gives as a simple and already
well-known way of testing if ay, is usual Weierstrass point for
M=To(N)

Goran Mui¢ On Higher Order Weierstrass Points on Xp(/NV) and beyond (jo



An Algorithm for Xo(N) using SAGE (first part)

Let m = 2. The last theorem gives as a simple and already
well-known way of testing if ay, is usual Weierstrass point for
M=To(N)

List a basis of S3(lo(/NV)) in Sage and see if it is of the form
fu = ayq" + higher order terms in q, 1 <u <t =g(lN),

where
a, €C, a, #0.
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An Algorithm for Xo(N) using SAGE (first part)

Let m = 2. The last theorem gives as a simple and already
well-known way of testing if ay, is usual Weierstrass point for
M=To(N)

List a basis of S3(lo(/NV)) in Sage and see if it is of the form
fu = ayq" + higher order terms in q, 1 <u <t =g(lN),

where
a, €C, a, #0.

in what follows we discuss the case m > 4
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Some properties of the space S!/(I") that goes back to the
work of Petri

Let m > 4 be an even integer. Let us select a basis fo, ..., fg_1,
g =g(N), of Sp(I'). Then, all of (g+g*1) monomials
2

FRORM - FE i € Lso, Y80 o = 2, belong to SH(T). We

denote by Sﬂvz(l') this subspace of SH(T).

Let m > 4 be an even integer. Assume that Rr is not hyperelliptic
(and g(I') > 2). Then, we have S}!,(I") = SH(T).
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Some properties of the space S!/(I") that goes back to the
work of Petri

Let m > 4 be an even integer. Let us select a basis fo, ..., fg_1,
g =g(N), of Sp(I'). Then, all of (g+g*1) monomials
2

FRORM - FE i € Lso, Y80 o = 2, belong to SH(T). We

denote by S,’:vz(l') this subspace of SH(T).

Let m > 4 be an even integer. Assume that Rr is not hyperelliptic
(and g(I') > 2). Then, we have S}!,(I") = SH(T).

the last lemma is crucial for testing if a., is a 5—Weierstrass point
(combined with earlier criterion)
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An Algorithm for Xo(NV) using SAGE (second part)

Theorem

Let m > 4 be an even integer. Assume that Ry is not hyperelliptic.
Assume that a is a cusp for I'. Let us select a basis fy, ..., fg_1,
g = g(I"), of S2(T") (listed by their g—expansions using SAGE
system if I = To(N)). Compute g—expansions of all monomials

g—1

Qg o Qg1 m
fo oyt e Er, OZIEZzO;ZOCIZE-
i=0

Then, a is not a 5 —Weierstrass point if and only if there exist
C—linear combinations of such monomials, say F, ... F,
t =(m—1)(g — 1), such that their g—expansions are of the form

u+m/2—1

[Py = @@ + higher order terms in q, 1 < u <'t,

where

a, €C, a, #0.
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For Xo(34) the basis of S}'(I'o(34)) is given by

£2 = g% — 4q° — 4q® + 12¢° + 12¢° — 2¢™°
fofi = > — ¢° — 2¢° — 29" +2¢°® + 5¢° + 2¢™°
fofs = q* —2¢° — ¢° — q" +64° +6¢° + 2™
—f2 4+ fofa = —2¢° + q° — g" + 5¢° + 64° + 4¢*°
—f2 + fofs + 2f1fh = —3q¢% — 5" + 11¢® + 164° + 2¢'°
—f2 4+ fofy + 2f1h 4+ 3F2 = —17q" +17¢% + 344¢° 4+ 17q"°

Their first exponents are
5 =2,3,4,56,7+(m—1)(g —1) — 1 =7 which shows that a.,
is not 2—Weierstrass point for Xp(34).
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For Xo(55), the basis of Si/(Io(55)) is given by

ff =q°—2¢° + -
foh = q° —2q" + -
fofr=q* —2q" + -
fofs=q"—2¢" +---
fofa = q° —2q* +---
—hfh+fofs =—2¢" +¢° + -
~fify + fofs + 2f2fs = ¢° +2¢° + -+
~fifo + fofy + 2ffs — £ = 2¢° — q'% + -
—fify + fofs + 2hf — £ — 26 = —¢"° + 11" + - -
—fif+ fofs + 26f; — f — 2R + 7 = 11g"2 — 11¢" + - -
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—hfy — £ + fofs + 2fafs — £ + fofs — 6fsfy — f7 = —22¢™ + 44¢™ + -
—f +  + fofa — Rfs — 4fsfy + 27 = —22¢™ + 22" + -

The last exponent is 14 > 3 +(m—1)(g —1) =1 =13. So, ay is
a 2-Weierstrass point for Xo(55).
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Thank you!
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