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Notation

SL2(R) is defined by

SL2(R) =

{(
a b
c d

)
; a, b, c , d ∈ R, ad − bc = 1

}
H is the upper half–plane: Im(z) > 0
SL2(R) acts on H in a well–known way

g .z =
az + b

cz + d
, g =

(
a b
c d

)
∈ SL2(R), z ∈ H

H can be regarded as a model for the hyperbolic plane with
(invariant under SL2(R))

hyperbolic volume: dxdy
y2

hyperbolic distance: ds2 = dx2+dy2

y2
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Goran Muić On Higher Order Weierstrass Points on X0(N) and beyond (joint with D. Mikoč) Representation theory XVIII, Dubrovnik
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Fuchsian groups of the first kind

we are interested in discrete subgroups Γ of SL2(R)

traditionally called Fuchsian groups

the hyperbolic geometry can be used to construct nice
fundamental domains FΓ for the action of Γ on H
Γ is a Fuchsian group of the first kind if

∫∫
FΓ

dxdy
y2 <∞

Goran Muić On Higher Order Weierstrass Points on X0(N) and beyond (joint with D. Mikoč) Representation theory XVIII, Dubrovnik
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Fuchsian groups of the first kind

Siegel
=⇒

FΓ is a polygon in the hyperbolic plane H with finitely many
vertices: some of them might be at infinity = R ∪ {∞}

a Γ–conjugate of a vertex at infinity is called cusp for Γ

In what follows Γ always denotes a Fuchsian group of the first kind
The most important examples are congruence subgroups, and
especially among them

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z); c ≡ 0 (mod N)

}
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Goran Muić On Higher Order Weierstrass Points on X0(N) and beyond (joint with D. Mikoč) Representation theory XVIII, Dubrovnik
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Fuchsian groups of the first kind

Let H∗ be the union of H and the set of all cusps for Γ
the space RΓ of Γ–orbits for H∗ has a structure of compact
Riemann surface

compact Riemann surface (analysis) is a complete (projective)
non–singular irreducible algebraic curve over C (algebraic
geometry)

we write X0(N) for the RΓ0(N)

the set of cusps for congruence subgroups is Q ∪ {∞}
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Fuchsian groups of the first kind

Let H∗ be the union of H and the set of all cusps for Γ

the space RΓ of Γ–orbits for H∗ has a structure of compact
Riemann surface

compact Riemann surface (analysis) is a complete (projective)
non–singular irreducible algebraic curve over C (algebraic
geometry)

we write X0(N) for the RΓ0(N)

the set of cusps for congruence subgroups is Q ∪ {∞}
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Holomorphic Differentials and m–Weierstrass Points on
RΓ

let Hm (RΓ) be the space of holomorphic differentials of degree m
on RΓ for each m ≥ 1

let g(Γ) be the genus of RΓ

we have

dimHm (RΓ) =


0 if m ≥ 1, g(Γ) = 0;

g(Γ) if m = 1, g(Γ) ≥ 1;

g(Γ) if m ≥ 2, g(Γ) = 1;

(2m − 1) (g(Γ)− 1) if m ≥ 2, g(Γ) ≥ 2.
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Holomorphic Differentials and m–Weierstrass Points on
RΓ

the canonical class K is the divisor of any non–zero meromorphic
form ω on RΓ

let f ∈ C (RΓ) be non–zero function in the field of meromorphic
functions C (RΓ) on RΓ

then, for m ≥ 1, f ωm ∈ Hm (RΓ) if and only if

f ∈ L(mK )
def
= {g ∈ C (RΓ) ; g = 0 or div(g) + mK ≥ 0}
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Holomorphic Differentials and m–Weierstrass Points on
RΓ

assume g(Γ) ≥ 1 and m ≥ 1 =⇒ dimHm (RΓ) 6= 0

Let t = dimHm (RΓ). We fix the basis ω1, . . . , ωt of Hm (RΓ). Let
z be any local coordinate on RΓ. Then, locally there exists unique
holomorphic functions ϕ1, . . . , ϕt such that ωi = ϕi (dz)m, for all i .
Then, again locally, we can consider the Wronskian Wz defined by

Wz (ω1, . . . , ωt)
def
=

∣∣∣∣∣∣∣∣∣
ϕ1(z) · · · ϕt(z)
dϕ1(z)

dz · · · dϕt(z)
dz

· · ·
d t−1ϕ1(z)
dzk−1 · · · d t−1ϕt(z)

dz t−1

∣∣∣∣∣∣∣∣∣
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Holomorphic Differentials and m–Weierstrass Points on
RΓ

the collection of all

Wz (ω1, . . . , ωt) (dz)
t
2

(2m−1+t) ,

defines a non–zero holomorphic differential form

W (ω1, . . . , ωt) ∈ H
t
2

(2m−1+t) (RΓ) .

called the Wronskian of the basis ω1, . . . , ωt

a different choice of a basis of Hm (RΓ) results in a Wronskian
which differ from W (ω1, . . . , ωt) by a multiplication by a non–zero
complex number. Also, the degree is given by

deg (div(W (ω1, . . . , ωt))) = t (2m − 1 + t) (g (Γ)− 1).
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Holomorphic Differentials and m–Weierstrass Points on
RΓ

Definition

Let m ≥ 1 be an integer. We say that a ∈ RΓ is a m-Weierstrass
point if

νa (W (ω1, . . . , ωt)) ≥ 1.

When m = 1 we speak about classical Weierstrass points. So,
1-Weierstrass points are simply Weierstrass points.
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Interpretation in terms of cuspidal modular forms

Let m ≥ 2 be an even integer

Let Sm(Γ) be the space of cuspidal modular forms for Γ of weight
m

f ∈ Sm(Γ), f 6= 0 has a divisor which has the form

div(f ) = (the part independent of f ) + cf ,

cf is usual effective divisor on the curve RΓ

Goran Muić On Higher Order Weierstrass Points on X0(N) and beyond (joint with D. Mikoč) Representation theory XVIII, Dubrovnik
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Interpretation in terms of cuspidal modular forms

let SH
m (Γ) be the space of all f ∈ Sm(Γ) either f = 0 or f satisfies

cf ≥
∑
a∈RΓ,
elliptic

[m
2

(1− 1/ea)
]
a +

(m
2
− 1
) ∑

b∈RΓ,
cusp

b

Theorem

For each f ∈ SH
m (Γ), f 6= 0, there exists unique ωf ∈ Hm/2 (RΓ)

such that

div(ωf ) = cf −
∑
a∈RΓ,
elliptic

[m
2

(1− 1/ea)
]
a−

(m
2
− 1
) ∑

b∈RΓ,
cusp

b.

Moreover, the map f 7−→ ωf is an isomorphism of SH
m (Γ) onto

Hm/2 (RΓ).
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Interpretation in terms of cuspidal modular forms

We remark that when m = 2, this reduces to obvious condition
cf ≥ 0. Hence, SH

2 (Γ) = S2(Γ) recovering the standard
isomorphism of S2(Γ) and H1(RΓ)
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Interpretation in terms of cuspidal modular forms and
m
2 –Weierstrass points

Theorem

Assume that g(Γ) ≥ 2, and a∞ is a Γ-cusp. Then, there exists a
basis f1, . . . ft of S

H
m (Γ) such that their q–expansions are of the

form

fu = auq
iu + higher order terms in q, 1 ≤ u ≤ t,

where
m

2
≤ i1 < i2 < · · · < it ≤

m

2
+ m (g(Γ)− 1) ,

and
au ∈ C, au 6= 0.
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Interpretation in terms of cuspidal modular forms and
m
2 –Weierstrass points

Theorem

Assume that g(Γ) ≥ 2, and a∞ is a Γ-cusp. Then, a∞ is not a
m
2 –Weierstrass point if and only if there exists a basis f1, . . . ft of
SH
m (Γ) such that their q–expansions are of the form

fu = auq
u+m/2−1 + higher order terms in q, 1 ≤ u ≤ t,

where
au ∈ C, au 6= 0.
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An Algorithm for X0(N) using SAGE (first part)

Let m = 2. The last theorem gives as a simple and already
well–known way of testing if a∞ is usual Weierstrass point for
Γ = Γ0(N)

List a basis of S2(Γ0(N)) in Sage and see if it is of the form

fu = auq
u + higher order terms in q, 1 ≤ u ≤ t = g(Γ),

where
au ∈ C, au 6= 0.

in what follows we discuss the case m ≥ 4
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Some properties of the space SH
m (Γ) that goes back to the

work of Petri

Lemma

Let m ≥ 4 be an even integer. Let us select a basis f0, . . . , fg−1,

g = g(Γ), of S2(Γ). Then, all of
(g+m

2
−1

m
2

)
monomials

f α0
0 f α1

1 · · · f
αg−1

g−1 , αi ∈ Z≥0,
∑g−1

i=0 αi = m
2 , belong to SH

m (Γ). We

denote by SH
m,2(Γ) this subspace of SH

m (Γ).

Lemma

Let m ≥ 4 be an even integer. Assume that RΓ is not hyperelliptic
(and g(Γ) ≥ 2). Then, we have SH

m,2(Γ) = SH
m (Γ).

the last lemma is crucial for testing if a∞ is a m
2 –Weierstrass point

(combined with earlier criterion)
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An Algorithm for X0(N) using SAGE (second part)

Theorem

Let m ≥ 4 be an even integer. Assume that RΓ is not hyperelliptic.
Assume that a∞ is a cusp for Γ. Let us select a basis f0, . . . , fg−1,
g = g(Γ), of S2(Γ) (listed by their q–expansions using SAGE
system if Γ = Γ0(N)). Compute q–expansions of all monomials

f α0
0 f α1

1 · · · f
αg−1

g−1 , αi ∈ Z≥0,

g−1∑
i=0

αi =
m

2
.

Then, a∞ is not a m
2 –Weierstrass point if and only if there exist

C–linear combinations of such monomials, say F1, . . .Ft ,
t = (m − 1)(g − 1), such that their q–expansions are of the form

Fu = auq
u+m/2−1 + higher order terms in q, 1 ≤ u ≤ t,

where
au ∈ C, au 6= 0.
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Examples

For X0(34) the basis of SH
4 (Γ0(34)) is given by

f 2
0 = q2 − 4q5 − 4q6 + 12q8 + 12q9 − 2q10

f0f1 = q3 − q5 − 2q6 − 2q7 + 2q8 + 5q9 + 2q10

f0f2 = q4 − 2q5 − q6 − q7 + 6q8 + 6q9 + 2q10

−f 2
1 + f0f2 = −2q5 + q6 − q7 + 5q8 + 6q9 + 4q10

−f 2
1 + f0f2 + 2f1f2 = −3q6 − 5q7 + 11q8 + 16q9 + 2q10

−f 2
1 + f0f2 + 2f1f2 + 3f 2

2 = −17q7 + 17q8 + 34q9 + 17q10

Their first exponents are
m
2 = 2, 3, 4, 5, 6, m2 + (m− 1)(g − 1)− 1 = 7 which shows that a∞
is not 2–Weierstrass point for X0(34).
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Examples

For X0(55), the basis of SH
4 (Γ0(55)) is given by

f 2
0 = q2 − 2q8 + · · ·

f0f1 = q3 − 2q7 + · · ·
f0f2 = q4 − 2q7 + · · ·
f0f3 = q5 − 2q7 + · · ·
f0f4 = q6 − 2q11 + · · ·

−f1f2 + f0f3 = −2q7 + q8 + · · ·
−f1f2 + f0f3 + 2f2f3 = q8 + 2q9 + · · ·

−f1f2 + f0f3 + 2f2f3 − f 2
3 = 2q9 − q10 + · · ·

−f1f2 + f0f3 + 2f2f3 − f 2
3 − 2f3f4 = −q10 + 11q12 + · · ·

−f1f2 + f0f3 + 2f2f3 − f 2
3 − 2f3f4 + f 2

4 = 11q12 − 11q13 + · · ·
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Examples

−f1f2 − f 2
2 + f0f3 + 2f2f3 − f 2

3 + f0f4 − 6f3f4 − f 2
4 = −22q13 + 44q15 + · · ·

−f 2
2 + f 2

3 + f0f4 − f2f4 − 4f3f4 + 2f 2
4 = −22q14 + 22q15 + · · ·

The last exponent is 14 > m
2 + (m− 1)(g − 1)− 1 = 13. So, a∞ is

a 2–Weierstrass point for X0(55).
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Thank you!
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