On Higher Order Weierstrass Points on $X_0(N)$ and beyond (joint with D. Mikoč) Representation theory XVIII, Dubrovnik

Goran Muić

June 21, 2023

Goran Muić On Higher Order Weierstrass Points on $X_0(N)$ and beyond (jo

ヘロト ヘヨト ヘヨト ヘヨト

◆□ > ◆□ > ◆ 三 > ◆ 三 > ・ 三 ・ の < ⊙

 $SL_2(\mathbb{R})$ is defined by

◆□ > ◆□ > ◆ 三 > ◆ 三 > ・ 三 ・ の < ⊙

 $SL_2(\mathbb{R})$ is defined by

$$SL_2(\mathbb{R}) = \left\{ egin{pmatrix} \mathsf{a} & b \ \mathsf{c} & d \end{pmatrix}; \ \mathsf{a}, \mathsf{b}, \mathsf{c}, \mathsf{d} \in \mathbb{R}, \mathsf{ad} - \mathsf{bc} = 1
ight\}$$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ・ 三 ・ の < ⊙

 $SL_2(\mathbb{R})$ is defined by

$$SL_2(\mathbb{R}) = \left\{ egin{pmatrix} \mathsf{a} & b \ \mathsf{c} & d \end{pmatrix}; \ \mathsf{a}, \mathsf{b}, \mathsf{c}, \mathsf{d} \in \mathbb{R}, \mathsf{ad} - \mathsf{bc} = 1
ight\}$$

 $\mathbb H$ is the upper half–plane:

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

 $SL_2(\mathbb{R})$ is defined by

$$SL_2(\mathbb{R}) = \left\{ egin{pmatrix} \mathsf{a} & b \ \mathsf{c} & d \end{pmatrix}; \ \mathsf{a}, \mathsf{b}, \mathsf{c}, \mathsf{d} \in \mathbb{R}, \mathsf{ad} - \mathsf{bc} = 1
ight\}$$

 $\mathbb H$ is the upper half–plane: $\mathit{Im}(z)>0$

・ロト ・回ト ・ヨト ・ヨト … ヨ

 $SL_2(\mathbb{R})$ is defined by

$$SL_2(\mathbb{R}) = \left\{ egin{pmatrix} \mathsf{a} & b \ \mathsf{c} & d \end{pmatrix}; \ \mathsf{a}, \mathsf{b}, \mathsf{c}, \mathsf{d} \in \mathbb{R}, \mathsf{ad} - \mathsf{bc} = 1
ight\}$$

 \mathbb{H} is the upper half-plane: Im(z) > 0 $SL_2(\mathbb{R})$ acts on \mathbb{H} in a well-known way

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

 $SL_2(\mathbb{R})$ is defined by

$$SL_2(\mathbb{R}) = \left\{ egin{pmatrix} \mathsf{a} & b \ \mathsf{c} & d \end{pmatrix}; \ \mathsf{a}, \mathsf{b}, \mathsf{c}, \mathsf{d} \in \mathbb{R}, \mathsf{ad} - \mathsf{bc} = 1
ight\}$$

 \mathbb{H} is the upper half-plane: Im(z) > 0 $SL_2(\mathbb{R})$ acts on \mathbb{H} in a well-known way

$$g.z = rac{az+b}{cz+d}, \hspace{0.2cm} g = egin{pmatrix} a & b \ c & d \end{pmatrix} \in SL_2(\mathbb{R}), \hspace{0.2cm} z \in \mathbb{H}$$

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

 $SL_2(\mathbb{R})$ is defined by

$$SL_2(\mathbb{R}) = \left\{ egin{pmatrix} \mathsf{a} & b \ \mathsf{c} & d \end{pmatrix}; \ \mathsf{a}, \mathsf{b}, \mathsf{c}, \mathsf{d} \in \mathbb{R}, \mathsf{ad} - \mathsf{bc} = 1
ight\}$$

 \mathbb{H} is the upper half-plane: Im(z) > 0 $SL_2(\mathbb{R})$ acts on \mathbb{H} in a well-known way

$$g.z = rac{az+b}{cz+d}, \hspace{0.2cm} g = egin{pmatrix} a & b \ c & d \end{pmatrix} \in SL_2(\mathbb{R}), \hspace{0.2cm} z \in \mathbb{H}$$

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

 $SL_2(\mathbb{R})$ is defined by

$$SL_2(\mathbb{R}) = \left\{ egin{pmatrix} \mathsf{a} & b \ \mathsf{c} & d \end{pmatrix}; \ \mathsf{a}, \mathsf{b}, \mathsf{c}, \mathsf{d} \in \mathbb{R}, \mathsf{ad} - \mathsf{bc} = 1
ight\}$$

 \mathbb{H} is the upper half-plane: Im(z) > 0 $SL_2(\mathbb{R})$ acts on \mathbb{H} in a well-known way

$$g.z = rac{az+b}{cz+d}, \ \ g = egin{pmatrix} a & b \ c & d \end{pmatrix} \in SL_2(\mathbb{R}), \ \ z \in \mathbb{H}$$

 \mathbb{H} can be regarded as a model for the hyperbolic plane with (invariant under $SL_2(\mathbb{R})$)

イロン 不同 とうほう 不同 とう

 $SL_2(\mathbb{R})$ is defined by

$$SL_2(\mathbb{R}) = \left\{ egin{pmatrix} \mathsf{a} & b \ \mathsf{c} & d \end{pmatrix}; \ \mathsf{a}, \mathsf{b}, \mathsf{c}, \mathsf{d} \in \mathbb{R}, \mathsf{ad} - \mathsf{bc} = 1
ight\}$$

 \mathbb{H} is the upper half-plane: Im(z) > 0 $SL_2(\mathbb{R})$ acts on \mathbb{H} in a well-known way

$$g.z = rac{az+b}{cz+d}, \ \ g = egin{pmatrix} a & b \ c & d \end{pmatrix} \in SL_2(\mathbb{R}), \ \ z \in \mathbb{H}$$

 \mathbb{H} can be regarded as a model for the hyperbolic plane with (invariant under $SL_2(\mathbb{R})$) hyperbolic volume: $\frac{dxdy}{y^2}$

・ロト ・回ト ・ヨト ・ヨト

 $SL_2(\mathbb{R})$ is defined by

$$SL_2(\mathbb{R}) = \left\{ egin{pmatrix} \mathsf{a} & b \ \mathsf{c} & d \end{pmatrix}; \ \mathsf{a}, \mathsf{b}, \mathsf{c}, \mathsf{d} \in \mathbb{R}, \mathsf{ad} - \mathsf{bc} = 1
ight\}$$

 \mathbb{H} is the upper half-plane: Im(z) > 0 $SL_2(\mathbb{R})$ acts on \mathbb{H} in a well-known way

$$g.z = rac{az+b}{cz+d}, \ \ g = egin{pmatrix} a & b \ c & d \end{pmatrix} \in SL_2(\mathbb{R}), \ \ z \in \mathbb{H}$$

 \mathbb{H} can be regarded as a model for the hyperbolic plane with (invariant under $SL_2(\mathbb{R})$) hyperbolic volume: $\frac{dxdy}{y^2}$ hyperbolic distance: $ds^2 = \frac{dx^2 + dy^2}{y^2}$

・ロト ・回ト ・ヨト ・ヨト

we are interested in discrete subgroups Γ of $SL_2(\mathbb{R})$

イロン イヨン イヨン

we are interested in discrete subgroups Γ of $SL_2(\mathbb{R})$ traditionally called **Fuchsian groups**

(人間) (人) (人) (人) (人) (人)

we are interested in discrete subgroups Γ of $SL_2(\mathbb{R})$ traditionally called **Fuchsian groups**

the hyperbolic geometry can be used to construct nice fundamental domains \mathcal{F}_{Γ} for the action of Γ on $\mathbb H$

イロト イポト イヨト イヨト

we are interested in discrete subgroups Γ of $SL_2(\mathbb{R})$ traditionally called **Fuchsian groups**

the hyperbolic geometry can be used to construct nice fundamental domains \mathcal{F}_{Γ} for the action of Γ on \mathbb{H} Γ is a **Fuchsian group of the first kind** if $\iint_{\mathcal{F}_{\Gamma}} \frac{dxdy}{v^2} < \infty$

イロト イポト イヨト イヨト 二日

Goran Muić On Higher Order Weierstrass Points on $X_0(N)$ and beyond (jo

・ロト ・回ト ・ヨト ・ヨト

臣

 $\stackrel{Siegel}{\Longrightarrow} \mathcal{F}_{\Gamma} \text{ is a polygon in the hyperbolic plane } \mathbb{H} \text{ with finitely many} \\ \text{vertices: some of them might be at infinity}$

イロン イヨン イヨン

 $\stackrel{Siegel}{\Longrightarrow} \mathcal{F}_{\Gamma} \text{ is a polygon in the hyperbolic plane } \mathbb{H} \text{ with finitely many} \\ \text{vertices: some of them might be at infinity} = \mathbb{R} \cup \{\infty\}$

イロン 不同 とうほう 不同 とう

 $\stackrel{Siegel}{\Longrightarrow} \mathcal{F}_{\Gamma} \text{ is a polygon in the hyperbolic plane } \mathbb{H} \text{ with finitely many} \\ \text{vertices: some of them might be at infinity} = \mathbb{R} \cup \{\infty\}$

a $\Gamma\text{-conjugate}$ of a vertex at infinity is called cusp for Γ

In what follows Γ always denotes a Fuchsian group of the first kind

イロト イヨト イヨト イヨト 三日

 $\stackrel{Siegel}{\Longrightarrow} \mathcal{F}_{\Gamma} \text{ is a polygon in the hyperbolic plane } \mathbb{H} \text{ with finitely many} \\ \text{vertices: some of them might be at infinity} = \mathbb{R} \cup \{\infty\}$

a $\Gamma\text{-conjugate}$ of a vertex at infinity is called cusp for Γ

In what follows Γ always denotes a Fuchsian group of the first kind The most important examples are congruence subgroups, and especially among them

$$\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}); \ c \equiv 0 \ (mod \ N) \right\}$$

イロト 不得 トイラト イラト 二日

Fuchsian groups of the first kind

Goran Muić On Higher Order Weierstrass Points on $X_0(N)$ and beyond (jo

イロト イヨト イヨト イヨト

Let \mathbb{H}^* be the union of $\mathbb H$ and the set of all cusps for Γ

イロン 不同 とくほど 不同 とう

æ

Let \mathbb{H}^* be the union of \mathbb{H} and the set of all cusps for Γ the space \mathfrak{R}_Γ of $\Gamma\text{-orbits}$ for \mathbb{H}^* has a structure of compact Riemann surface

(日) (四) (三) (三) (三)

Let \mathbb{H}^* be the union of $\mathbb H$ and the set of all cusps for Γ the space \mathfrak{R}_Γ of $\Gamma\text{-orbits}$ for $\mathbb H^*$ has a structure of compact Riemann surface

compact Riemann surface (analysis) is a complete (projective) non–singular irreducible algebraic curve over $\mathbb C$ (algebraic geometry)

イロト 不得 トイラト イラト 二日

Let \mathbb{H}^* be the union of $\mathbb H$ and the set of all cusps for Γ the space \mathfrak{R}_Γ of $\Gamma\text{-orbits}$ for $\mathbb H^*$ has a structure of compact Riemann surface

compact Riemann surface (analysis) is a complete (projective) non–singular irreducible algebraic curve over $\mathbb C$ (algebraic geometry)

we write $X_0(N)$ for the $\mathfrak{R}_{\Gamma_0(N)}$

イロト イポト イヨト イヨト

Let \mathbb{H}^* be the union of $\mathbb H$ and the set of all cusps for Γ the space \mathfrak{R}_Γ of $\Gamma\text{-orbits}$ for $\mathbb H^*$ has a structure of compact Riemann surface

compact Riemann surface (analysis) is a complete (projective) non–singular irreducible algebraic curve over $\mathbb C$ (algebraic geometry)

```
we write X_0(N) for the \mathfrak{R}_{\Gamma_0(N)}
```

the set of cusps for congruence subgroups is $\mathbb{Q}\cup\{\infty\}$

let $H^m(\mathfrak{R}_{\Gamma})$ be the space of holomorphic differentials of degree m on \mathfrak{R}_{Γ} for each $m \geq 1$

イロン 不同 とうほう 不同 とう

let $H^m(\mathfrak{R}_{\Gamma})$ be the space of holomorphic differentials of degree m on \mathfrak{R}_{Γ} for each $m \geq 1$

let $g(\Gamma)$ be the genus of \mathfrak{R}_{Γ}

イロン 不同 とうほう 不同 とう

let $H^m(\mathfrak{R}_{\Gamma})$ be the space of holomorphic differentials of degree m on \mathfrak{R}_{Γ} for each $m \geq 1$

let $g(\Gamma)$ be the genus of \mathfrak{R}_{Γ}

we have

$$\dim H^m\left(\mathfrak{R}_{\Gamma}\right) = \begin{cases} 0 & \text{if } m \ge 1, g(\Gamma) = 0; \\ g(\Gamma) & \text{if } m = 1, \ g(\Gamma) \ge 1; \\ g(\Gamma) & \text{if } m \ge 2, \ g(\Gamma) = 1; \\ (2m-1)(g(\Gamma)-1) & \text{if } m \ge 2, \ g(\Gamma) \ge 2. \end{cases}$$

イロト イヨト イヨト イヨト

(日) (四) (三) (三) (三)

the canonical class K is the divisor of any non–zero meromorphic form ω on \Re_{Γ}

イロン 不同 とうほう 不同 とう

the canonical class K is the divisor of any non–zero meromorphic form ω on \Re_{Γ}

let $f \in \mathbb{C}(\mathfrak{R}_{\Gamma})$ be non-zero function in the field of meromorphic functions $\mathbb{C}(\mathfrak{R}_{\Gamma})$ on \mathfrak{R}_{Γ}

イロト イポト イヨト イヨト

the canonical class K is the divisor of any non–zero meromorphic form ω on \Re_{Γ}

let $f \in \mathbb{C}(\mathfrak{R}_{\Gamma})$ be non-zero function in the field of meromorphic functions $\mathbb{C}(\mathfrak{R}_{\Gamma})$ on \mathfrak{R}_{Γ}

then, for
$$m \ge 1$$
, $f \omega^m \in H^m(\mathfrak{R}_{\Gamma})$ if and only if
 $f \in L(mK) \stackrel{def}{=} \{g \in \mathbb{C}(\mathfrak{R}_{\Gamma}); g = 0 \text{ or } \operatorname{div}(g) + mK \ge 0\}$

イロト イポト イヨト イヨト

(日) (四) (三) (三) (三)

assume $g(\Gamma) \geq 1$ and $m \geq 1$

<ロ> (四) (四) (三) (三) (三) (三)

assume $g(\Gamma) \geq 1$ and $m \geq 1 \implies \dim H^m(\mathfrak{R}_{\Gamma}) \neq 0$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 - のくで

assume $g(\Gamma) \geq 1$ and $m \geq 1 \implies \dim H^m(\mathfrak{R}_{\Gamma}) \neq 0$

Let $t = \dim H^m(\mathfrak{R}_{\Gamma})$. We fix the basis $\omega_1, \ldots, \omega_t$ of $H^m(\mathfrak{R}_{\Gamma})$. Let z be any local coordinate on \mathfrak{R}_{Γ} . Then, locally there exists unique holomorphic functions $\varphi_1, \ldots, \varphi_t$ such that $\omega_i = \varphi_i (dz)^m$, for all i. Then, again locally, we can consider the Wronskian W_z defined by

assume $g(\Gamma) \geq 1$ and $m \geq 1 \implies \dim H^m(\mathfrak{R}_{\Gamma}) \neq 0$

Let $t = \dim H^m(\mathfrak{R}_{\Gamma})$. We fix the basis $\omega_1, \ldots, \omega_t$ of $H^m(\mathfrak{R}_{\Gamma})$. Let z be any local coordinate on \mathfrak{R}_{Γ} . Then, locally there exists unique holomorphic functions $\varphi_1, \ldots, \varphi_t$ such that $\omega_i = \varphi_i (dz)^m$, for all i. Then, again locally, we can consider the Wronskian W_z defined by

$$W_{z}(\omega_{1},\ldots,\omega_{t}) \stackrel{def}{=} \begin{vmatrix} \varphi_{1}(z) & \cdots & \varphi_{t}(z) \\ \frac{d\varphi_{1}(z)}{dz} & \cdots & \frac{d\varphi_{t}(z)}{dz} \\ & \cdots \\ \frac{d^{t-1}\varphi_{1}(z)}{dz^{k-1}} & \cdots & \frac{d^{t-1}\varphi_{t}(z)}{dz^{t-1}} \end{vmatrix}$$

the collection of all

$$W_z(\omega_1,\ldots,\omega_t)(dz)^{\frac{t}{2}(2m-1+t)}$$

defines a non-zero holomorphic differential form

$$W(\omega_1,\ldots,\omega_t)\in H^{rac{t}{2}(2m-1+t)}(\mathfrak{R}_{\Gamma}).$$

called the Wronskian of the basis $\omega_1, \ldots, \omega_t$

(日) (四) (三) (三) (三)

the collection of all

$$W_z(\omega_1,\ldots,\omega_t)(dz)^{\frac{t}{2}(2m-1+t)},$$

defines a non-zero holomorphic differential form

$$W(\omega_1,\ldots,\omega_t)\in H^{rac{t}{2}(2m-1+t)}(\mathfrak{R}_{\Gamma}).$$

called the Wronskian of the basis $\omega_1, \ldots, \omega_t$

a different choice of a basis of $H^m(\mathfrak{R}_{\Gamma})$ results in a Wronskian which differ from $W(\omega_1, \ldots, \omega_t)$ by a multiplication by a non-zero complex number. Also, the degree is given by

$$deg\left(div(W(\omega_1,\ldots,\omega_t))\right) = t\left(2m - 1 + t\right)(g(\Gamma) - 1).$$

Definition

Let $m \geq 1$ be an integer. We say that $\mathfrak{a} \in \mathfrak{R}_{\Gamma}$ is a m-Weierstrass point if

$$\nu_{\mathfrak{a}}(W(\omega_1,\ldots,\omega_t))\geq 1.$$

When m = 1 we speak about classical Weierstrass points. So, 1-Weierstrass points are simply Weierstrass points.

・ロト ・回ト ・ヨト ・ヨト

Interpretation in terms of cuspidal modular forms

Let $m \ge 2$ be an even integer

イロン イヨン イヨン

Let $m \ge 2$ be an even integer

Let $S_m(\Gamma)$ be the space of cuspidal modular forms for Γ of weight m

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Let $m \ge 2$ be an even integer

Let $S_m(\Gamma)$ be the space of cuspidal modular forms for Γ of weight m

 $f \in S_m(\Gamma)$, $f \neq 0$ has a divisor which has the form

 $\operatorname{div}(f) = (\text{the part independent of } f) + \mathfrak{c}_f,$

(本間) (本語) (本語) (二語)

Let $m \ge 2$ be an even integer

Let $S_m(\Gamma)$ be the space of cuspidal modular forms for Γ of weight m

 $f \in S_m(\Gamma)$, $f \neq 0$ has a divisor which has the form

 $\operatorname{div}(f) = (\text{the part independent of } f) + \mathfrak{c}_f,$

 \mathfrak{c}_f is usual effective divisor on the curve \mathfrak{R}_Γ

(4月) (3日) (3日) 日

Interpretation in terms of cuspidal modular forms

イロト イヨト イヨト イヨト

Interpretation in terms of cuspidal modular forms

let $S_m^H(\Gamma)$ be the space of all $f \in S_m(\Gamma)$ either f = 0 or f satisfies $\mathfrak{c}_f \ge \sum_{\substack{\mathfrak{a} \in \mathfrak{R}_{\Gamma}, \\ elliptic}} \left[\frac{m}{2} (1 - 1/e_\mathfrak{a}) \right] \mathfrak{a} + \left(\frac{m}{2} - 1 \right) \sum_{\substack{\mathfrak{b} \in \mathfrak{R}_{\Gamma}, \\ cusp}} \mathfrak{b}$

Theorem

For each $f \in S_m^H(\Gamma)$, $f \neq 0$, there exists unique $\omega_f \in H^{m/2}(\mathfrak{R}_{\Gamma})$ such that

$$\operatorname{div}(\omega_f) = \mathfrak{c}_f - \sum_{\substack{\mathfrak{a} \in \mathfrak{R}_{\Gamma}, \\ elliptic}} \left[\frac{m}{2} (1 - 1/e_{\mathfrak{a}}) \right] \mathfrak{a} - \left(\frac{m}{2} - 1 \right) \sum_{\substack{\mathfrak{b} \in \mathfrak{R}_{\Gamma}, \\ cusp}} \mathfrak{b}.$$

Moreover, the map $f \mapsto \omega_f$ is an isomorphism of $S_m^H(\Gamma)$ onto $H^{m/2}(\mathfrak{R}_{\Gamma})$.

We remark that when m = 2, this reduces to obvious condition $\mathfrak{c}_f \geq 0$. Hence, $S_2^H(\Gamma) = S_2(\Gamma)$ recovering the standard isomorphism of $S_2(\Gamma)$ and $H^1(\mathfrak{R}_{\Gamma})$

(日) (四) (三) (三) (三)

Interpretation in terms of cuspidal modular forms and $\frac{m}{2}$ -Weierstrass points

Theorem

Assume that $g(\Gamma) \ge 2$, and \mathfrak{a}_{∞} is a Γ -cusp. Then, there exists a basis f_1, \ldots, f_t of $S_m^H(\Gamma)$ such that their q-expansions are of the form

$$f_u = a_u q^{i_u} + higher ext{ order terms in } q, \;\; 1 \leq u \leq t,$$

where

$$\frac{m}{2} \le i_1 < i_2 < \cdots < i_t \le \frac{m}{2} + m(g(\Gamma) - 1),$$

and

$$a_u \in \mathbb{C}, a_u \neq 0.$$

・ロ・ ・ 回 ・ ・ ヨ ・ ・ ヨ ・ ・

Interpretation in terms of cuspidal modular forms and $\frac{m}{2}$ -Weierstrass points

Theorem

Assume that $g(\Gamma) \ge 2$, and \mathfrak{a}_{∞} is a Γ -cusp. Then, \mathfrak{a}_{∞} is not a $\frac{m}{2}$ -Weierstrass point if and only if there exists a basis f_1, \ldots, f_t of $S_m^H(\Gamma)$ such that their q-expansions are of the form

$$f_u = a_u q^{u+m/2-1} + higher \text{ order terms in } q, \ 1 \le u \le t,$$

where

$$a_u \in \mathbb{C}, \ a_u \neq 0.$$

イロト イポト イヨト イヨト

An Algorithm for $X_0(N)$ using SAGE (first part)

Let m = 2. The last theorem gives as a simple and already well-known way of testing if \mathfrak{a}_{∞} is usual Weierstrass point for $\Gamma = \Gamma_0(N)$

(日) (四) (三) (三) (三)

An Algorithm for $X_0(N)$ using SAGE (first part)

Let m = 2. The last theorem gives as a simple and already well–known way of testing if \mathfrak{a}_{∞} is usual Weierstrass point for $\Gamma = \Gamma_0(N)$

List a basis of $S_2(\Gamma_0(N))$ in Sage and see if it is of the form

 $f_u = a_u q^u + \text{higher order terms in } q, \ 1 \le u \le t = g(\Gamma),$

where

$$a_u \in \mathbb{C}, a_u \neq 0.$$

Let m = 2. The last theorem gives as a simple and already well–known way of testing if \mathfrak{a}_{∞} is usual Weierstrass point for $\Gamma = \Gamma_0(N)$

List a basis of $S_2(\Gamma_0(N))$ in Sage and see if it is of the form

 $f_u = a_u q^u + \text{higher order terms in } q, \ 1 \le u \le t = g(\Gamma),$

where

$$a_u \in \mathbb{C}, a_u \neq 0.$$

in what follows we discuss the case $m \ge 4$

Some properties of the space $S_m^H(\Gamma)$ that goes back to the work of Petri

Lemma

Let
$$m \ge 4$$
 be an even integer. Let us select a basis f_0, \ldots, f_{g-1} ,
 $g = g(\Gamma)$, of $S_2(\Gamma)$. Then, all of $\binom{g + \frac{m}{2} - 1}{\frac{m}{2}}$ monomials
 $f_0^{\alpha_0} f_1^{\alpha_1} \cdots f_{g-1}^{\alpha_{g-1}}$, $\alpha_i \in \mathbb{Z}_{\ge 0}$, $\sum_{i=0}^{g-1} \alpha_i = \frac{m}{2}$, belong to $S_m^H(\Gamma)$. We
denote by $S_{m,2}^H(\Gamma)$ this subspace of $S_m^H(\Gamma)$.

Lemma

Let $m \ge 4$ be an even integer. Assume that \mathfrak{R}_{Γ} is not hyperelliptic (and $g(\Gamma) \ge 2$). Then, we have $S_{m,2}^{H}(\Gamma) = S_{m}^{H}(\Gamma)$.

Some properties of the space $S_m^H(\Gamma)$ that goes back to the work of Petri

Lemma

Let
$$m \ge 4$$
 be an even integer. Let us select a basis f_0, \ldots, f_{g-1} ,
 $g = g(\Gamma)$, of $S_2(\Gamma)$. Then, all of $\binom{g+\frac{m}{2}-1}{\frac{m}{2}}$ monomials
 $f_0^{\alpha_0} f_1^{\alpha_1} \cdots f_{g-1}^{\alpha_{g-1}}$, $\alpha_i \in \mathbb{Z}_{\ge 0}$, $\sum_{i=0}^{g-1} \alpha_i = \frac{m}{2}$, belong to $S_m^H(\Gamma)$. We
denote by $S_{m,2}^H(\Gamma)$ this subspace of $S_m^H(\Gamma)$.

Lemma

Let $m \ge 4$ be an even integer. Assume that \mathfrak{R}_{Γ} is not hyperelliptic (and $g(\Gamma) \ge 2$). Then, we have $S_{m,2}^{H}(\Gamma) = S_{m}^{H}(\Gamma)$.

the last lemma is crucial for testing if a_{∞} is a $\frac{m}{2}$ -Weierstrass point (combined with earlier criterion)

An Algorithm for $X_0(N)$ using SAGE (second part)

Theorem

Let $m \ge 4$ be an even integer. Assume that \mathfrak{R}_{Γ} is not hyperelliptic. Assume that \mathfrak{a}_{∞} is a cusp for Γ . Let us select a basis f_0, \ldots, f_{g-1} , $g = g(\Gamma)$, of $S_2(\Gamma)$ (listed by their q-expansions using SAGE system if $\Gamma = \Gamma_0(N)$). Compute q-expansions of all monomials

$$f_0^{\alpha_0} f_1^{\alpha_1} \cdots f_{g-1}^{\alpha_{g-1}}, \ \alpha_i \in \mathbb{Z}_{\geq 0}, \ \sum_{i=0}^{g-1} \alpha_i = \frac{m}{2}.$$

Then, \mathfrak{a}_{∞} is not a $\frac{m}{2}$ -Weierstrass point if and only if there exist \mathbb{C} -linear combinations of such monomials, say $F_1, \ldots F_t$, t = (m-1)(g-1), such that their q-expansions are of the form

$$F_u = a_u q^{u+m/2-1} + higher \text{ order terms in } q, \ 1 \le u \le t,$$

where

$$a_u \in \mathbb{C}, a_u \neq 0.$$

On Higher Order Weierstrass Points on $X_0(N)$ and beyond (jo

Examples

For $X_0(34)$ the basis of $S_4^H(\Gamma_0(34))$ is given by

$$\begin{split} f_0^2 &= q^2 - 4q^5 - 4q^6 + 12q^8 + 12q^9 - 2q^{10} \\ f_0f_1 &= q^3 - q^5 - 2q^6 - 2q^7 + 2q^8 + 5q^9 + 2q^{10} \\ f_0f_2 &= q^4 - 2q^5 - q^6 - q^7 + 6q^8 + 6q^9 + 2q^{10} \\ -f_1^2 + f_0f_2 &= -2q^5 + q^6 - q^7 + 5q^8 + 6q^9 + 4q^{10} \\ -f_1^2 + f_0f_2 + 2f_1f_2 &= -3q^6 - 5q^7 + 11q^8 + 16q^9 + 2q^{10} \\ -f_1^2 + f_0f_2 + 2f_1f_2 + 3f_2^2 &= -17q^7 + 17q^8 + 34q^9 + 17q^{10} \end{split}$$

Their first exponents are $\frac{m}{2} = 2, 3, 4, 5, 6, \frac{m}{2} + (m-1)(g-1) - 1 = 7$ which shows that \mathfrak{a}_{∞} is not 2-Weierstrass point for $X_0(34)$.

(日) (四) (三) (三) (三)

Examples

For $X_0(55)$, the basis of $S_4^H(\Gamma_0(55))$ is given by

$$\begin{aligned} f_0^2 &= q^2 - 2q^8 + \cdots \\ f_0 f_1 &= q^3 - 2q^7 + \cdots \\ f_0 f_2 &= q^4 - 2q^7 + \cdots \\ f_0 f_3 &= q^5 - 2q^7 + \cdots \\ f_0 f_3 &= q^5 - 2q^7 + \cdots \\ f_0 f_4 &= q^6 - 2q^{11} + \cdots \\ -f_1 f_2 + f_0 f_3 &= -2q^7 + q^8 + \cdots \\ -f_1 f_2 + f_0 f_3 + 2f_2 f_3 &= q^8 + 2q^9 + \cdots \\ -f_1 f_2 + f_0 f_3 + 2f_2 f_3 - f_3^2 &= 2q^9 - q^{10} + \cdots \\ -f_1 f_2 + f_0 f_3 + 2f_2 f_3 - f_3^2 - 2f_3 f_4 &= -q^{10} + 11q^{12} + \cdots \\ -f_1 f_2 + f_0 f_3 + 2f_2 f_3 - f_3^2 - 2f_3 f_4 &= -q^{10} + 11q^{12} + \cdots \\ -f_1 f_2 + f_0 f_3 + 2f_2 f_3 - f_3^2 - 2f_3 f_4 + f_4^2 &= 11q^{12} - 11q^{13} + \cdots \end{aligned}$$

イロン 不同 とくほど 不同 とう

臣

$$-f_1f_2 - f_2^2 + f_0f_3 + 2f_2f_3 - f_3^2 + f_0f_4 - 6f_3f_4 - f_4^2 = -22q^{13} + 44q^{15} + \cdots \\ -f_2^2 + f_3^2 + f_0f_4 - f_2f_4 - 4f_3f_4 + 2f_4^2 = -22q^{14} + 22q^{15} + \cdots$$

The last exponent is $14 > \frac{m}{2} + (m-1)(g-1) - 1 = 13$. So, \mathfrak{a}_{∞} is a 2-Weierstrass point for $X_0(55)$.

イロン 不同 とうほう 不同 とう

æ

Thank you!

◆□ > ◆□ > ◆ 三 > ◆ 三 > ・ 三 ・ の へ ()・