The modular approach for solving $\mathrm{x}^{\mathrm{r}}+\mathrm{y}^{\mathrm{r}}=\mathrm{z}^{\mathrm{p}}$ over totally real fields

Dubrovnik June 2023

Diana Mocanu, University of Warwick

Introduction

Generalized Fermat Equation:

$$
\begin{equation*}
x^{p}+y^{q}=z^{r}, \quad p, q, r \in \mathbb{Z}_{\geq 2} . \tag{1}
\end{equation*}
$$

Introduction

Generalized Fermat Equation:

$$
\begin{equation*}
x^{p}+y^{q}=z^{r}, \quad p, q, r \in \mathbb{Z}_{\geq 2} \tag{1}
\end{equation*}
$$

Conjecture(Fermat-Catalan)

Over all choices of prime exponents p, q, r satisfying $1 / p+1 / q+1 / r<1$ the equation (1) admits only finitely many integer solutions (a, b, c) which are non-trivial (i.e. $a b c \neq 0$) coprime (i.e. $\operatorname{gcd}(a, b, c)=1$). (Here solutions like $2^{3}+1^{q}=3^{2}$ are counted only once.)

Introduction

Generalized Fermat Equation:

$$
x^{p}+y^{q}=z^{r}, \quad p, q, r \in \mathbb{Z}_{\geq 2} .
$$

Theorem(Darmon-Granville 1995)

If we fix the prime exponents p, q, r such that $1 / p+1 / q+1 / r<1$, then there are only finitely many coprime integers solutions to the above equation.

The Theorem can be extended easily to coprime solutions in any fixed number field.

Introduction

Generalized Fermat Equation:

$$
x^{p}+y^{q}=z^{r}, \quad p, q, r \in \mathbb{Z}_{\geq 2}
$$

We call (p, q, r) the signature of the equation.

Introduction

Generalized Fermat Equation:

$$
x^{p}+y^{q}=z^{r}, \quad p, q, r \in \mathbb{Z}_{\geq 2}
$$

We call (p, q, r) the signature of the equation.

Signatures	Over \mathbb{Q}	Over totally real fields K
(n, n, n)	Wiles, Taylor-Wiles, $n \geq 3$	Freitas-Siksek, $n>B_{K}$
$(n, n, 2)$	Darmon-Merel, Poonen, $n \geq 4$	Ișıı, Kara, Ozman*, M.*, $n>B_{K}$
$(n, n, 3)$	Darmon-Merel, Poonen, $n \geq 3$	M. $^{*}, n>B_{K}$
$(4,2, n)$	Ellenberg, Bennett-Ellenberg-Ng, $n \geq 4$	Torcomian*, $n>B_{K}$

Solved signatures using the modular method

Signature (r, r, p)

Fix $r \geq 5$ a rational prime.

$$
x^{r}+y^{r}=d z^{p}, \quad p \geq 2 .
$$

Signature (r, r, p)

Fix $r \geq 5$ a rational prime.

$$
x^{r}+y^{r}=d z^{p}, \quad p \geq 2 .
$$

Some instances that have been partially solved over \mathbb{Q} :

- $(7,7, p)$ with $d=3$ Freitas 2013;
- $(5,5,7),(5,5,19)$, and $(7,7,5)$ Dahmen, Siksek 2014;
- $(2 l, 2 m, p), d=1, p \in\{3,5,7,11,13\}, m, n>7$, Anni, Siksek 2016;
- $(5,5, n)$ with $d=1^{*}, 2^{*}, 3,(13,13, n)$ with $d=3$ Billerey, Chen, Dembélé, Dieulefait and Freitas 2022;
- (11, 11, p) with $d=1^{*}$ Billerey, Chen, Dieulefait, Freitas and Najman 2022;
- (r, r, p) with $d \neq 1^{*}, d$ has only primes $q \not \equiv 1 \bmod r$ for a positive density of primes p, Freitas and Najman 2022.

Asymptotic (r, r, p)

Theorem (1)

Fix $r \geq 5$ such that $r \not \equiv 1 \bmod 8$. Let $\mathbb{Q}^{+}:=\mathbb{Q}\left(\zeta_{r}+\zeta_{r}^{-1}\right)$, suppose that 2 is inert in \mathbb{Q}^{+} and $2 \nmid h_{\mathbb{Q}^{+}}^{+}$. Then, there is a constant B_{r} (depending only on r) such that for each rational prime $p>B_{r}$, the equation $x^{r}+y^{r}=z^{p}$ has no integer solutions with $2 \mid z$.

Asymptotic (r, r, p)

Theorem (1)

Fix $r \geq 5$ such that $r \not \equiv 1 \bmod 8$. Let $\mathbb{Q}^{+}:=\mathbb{Q}\left(\zeta_{r}+\zeta_{r}^{-1}\right)$, suppose that 2 is inert in \mathbb{Q}^{+} and $2 \nmid h_{\mathbb{Q}^{+}}^{+}$. Then, there is a constant B_{r} (depending only on r) such that for each rational prime $p>B_{r}$, the equation $x^{r}+y^{r}=z^{p}$ has no integer solutions with $2 \mid z$.

Example

This implies that there are no integer solutions (x, y, z) with $2 \mid z$ for p large enough for signatures:

$$
(5,5, p),(7,7, p),(11,11, p),(13,13, p),(19,19, p),(23,23, p),(37,37, p),(43,43, p)
$$

Asymptotic (r, r, p)

Theorem (2)

Fix $r \geq 5$ such that $r \not \equiv 1 \bmod 8$. Let $K:=\mathbb{Q}(\sqrt{d})$ with d square-free and $d \not \equiv 1$ $\bmod 8$. Assume that r is inert in K. Let $K^{+}:=K\left(\zeta_{r}+\zeta_{r}^{-1}\right)$, suppose that 2 is inert in \mathbb{Q}^{+}and $2 \nmid h_{K^{+}}^{+}$. Moreover

1. if $d \equiv 5 \bmod 8$ we assume $r \not \equiv 1 \bmod 8$;
2. if $d \equiv 2,3 \bmod 4$ we assume $r \not \equiv 1, d \bmod 8$.

In the first case, 2 is inert in K and in the second case, it is totally ramified. Either way, we denote the unique prime above 2 by \mathfrak{P}. Then, there is a constant $B_{K, r}$ such that for primes $p>B_{K, r}$, the equation $x^{r}+y^{r}=z^{p}$ has no integer solutions with $\mathfrak{P} \mid z$.

Asymptotic (r, r, p)

Theorem (2)

Fix $r \geq 5$ such that $r \not \equiv 1 \bmod 8$. Let $K:=\mathbb{Q}(\sqrt{d})$ with d square-free and $d \not \equiv 1$ $\bmod 8$. Assume that r is inert in K. Let $K^{+}:=K\left(\zeta_{r}+\zeta_{r}^{-1}\right)$, suppose that 2 is inert in \mathbb{Q}^{+}and $2 \nmid h_{K^{+}}^{+}$. Moreover

1. if $d \equiv 5 \bmod 8$ we assume $r \not \equiv 1 \bmod 8$;
2. if $d \equiv 2,3 \bmod 4$ we assume $r \not \equiv 1, d \bmod 8$.

In the first case, 2 is inert in K and in the second case, it is totally ramified. Either way, we denote the unique prime above 2 by \mathfrak{P}. Then, there is a constant $B_{K, r}$ such that for primes $p>B_{K, r}$, the equation $x^{r}+y^{r}=z^{p}$ has no integer solutions with $\mathfrak{P} \mid z$.

Example

Let $K=\mathbb{Q}(\sqrt{2})$. There are no non-trivial, primitive solutions $(x, y, z) \in \mathcal{O}_{K}^{3}$ with $\sqrt{2} \mid z$ for signatures $(5,5, p),(7,7, p),(11,11, p),(13,13, p)$ and sufficiently large p.

Modular Method - Sketch

Modular Method - Sketch

Step 1: Selecting a Frey curve.

Attach an appropriate elliptic curve E defined over a totally real field K to a putative solution (of a certain type) of a Diophantine equation which has the property that the Artin conductor of $\bar{\rho}_{E, p}$ is independent of the putative solution.

Modular Method - Sketch

Step 1: Selecting a Frey curve.

Attach an appropriate elliptic curve E defined over a totally real field K to a putative solution (of a certain type) of a Diophantine equation which has the property that the Artin conductor of $\bar{\rho}_{E, p}$ is independent of the putative solution.

Step 2: Modularity.

Prove that E / K is modular.

Theorem (Freitas, Hung and Siksek)

Let K be a totally real field. There are at most finitely many \bar{K}-isomorphism classes of non-modular elliptic curves E over K. Moreover, if K is real quadratic, then all elliptic curves over K are modular.

Modular Method - Sketch

Step 3: Irreducibility.

Freitas and Siksek (2015) proved irreducibility of $\bar{\rho}_{E, p}$ for elliptic curves E / K that are semistable at all $\mathfrak{p} \mid p$, when p is taken to be large enough.

Modular Method - Sketch

Step 3: Irreducibility.

Freitas and Siksek (2015) proved irreducibility of $\bar{\rho}_{E, p}$ for elliptic curves E / K that are semistable at all $\mathfrak{p} \mid p$, when p is taken to be large enough.
Step 4: Level lowering.
Freitas and Siksek (2015) proved that if $\bar{\rho}_{E, p}$ is irreducible, E is modular and a few technical conditions hold, there exists a Hilbert newform \mathfrak{f} over K of parallel weight 2 with level equal to the Artin conductor of E such that

$$
\bar{\rho}_{E, p} \simeq \bar{\rho}_{\mathrm{f}, \pi}
$$

where π is a prime in $\mathbb{Q}_{\mathfrak{f}}$ with $\pi \mid p$.
Note: After possibly enlarging p we can assume $\mathbb{Q}_{\mathfrak{f}}=\mathbb{Q}$ so $\pi=p$.

Modular Method - Sketch

Step 5: Eliminate. Not easy in general.

Modular Method - Sketch

Step 5: Eliminate. Not easy in general.

Example

An approach due to Freitas and Siksek (2015) involves:

1. an 'Eichler-Shimura'-type result;
2. image of inertia comparison arguments;
3. the study of certain S-unit equations;
to get a contradiction.

Modular Method Recap

Select a Frey Curve - Modularity - Irreducibility - Level lowering - Eliminate

Proof of Theorem 1

Fix $r \geq 5$ a rational prime. Suppose we have a non-trivial, primitive integer solution (x, y, z) with $2 \mid z$ to the equation

$$
x^{r}+y^{r}=z^{p}, \quad p \geq 2, \text { rational prime } .
$$

Proof of Theorem 1

Fix $r \geq 5$ a rational prime. Suppose we have a non-trivial, primitive integer solution (x, y, z) with $2 \mid z$ to the equation

$$
x^{r}+y^{r}=z^{p}, \quad p \geq 2, \text { rational prime } .
$$

We will show we get a contradiction when:

- $r \not \equiv 1 \bmod 8$;
- 2 is inert in \mathbb{Q}^{+};
- $2 \nmid h_{\mathbb{Q}^{+}}^{+}$.
where $\mathbb{Q}^{+}:=\mathbb{Q}\left(\zeta_{r}+\zeta_{r}^{-1}\right)$. We will denote by \mathfrak{P}_{r} the unique prime above r.

Relating diophantine equations

We write

$$
\begin{equation*}
\phi_{r}(x, y):=\frac{x^{r}+y^{r}}{x+y}=\sum_{i=1}^{r-1}(-1)^{i} x^{r-1-i} y^{i} \tag{2}
\end{equation*}
$$

Over the cyclotomic field $\mathbb{Q}\left(\zeta_{r}\right)$ one gets the factorization

$$
\begin{equation*}
\phi_{r}(x, y)=\prod_{i=1}^{r-1}\left(x+\zeta_{r}^{i} y\right) \tag{3}
\end{equation*}
$$

Relating diophantine equations

Over the totally real field \mathbb{Q}^{+}, ϕ_{r} factors into degree two factors of the form

$$
\begin{equation*}
f_{k}(x, y):=x^{2}+\left(\zeta_{r}^{k}+\zeta_{r}^{-k}\right) x y+y^{2}, \quad 1 \leq k \leq \frac{r-1}{2} \tag{4}
\end{equation*}
$$

Moreover, we denote $f_{0}(x, y)=(x+y)^{2}$.

Relating diophantine equations

Over the totally real field \mathbb{Q}^{+}, ϕ_{r} factors into degree two factors of the form

$$
\begin{equation*}
f_{k}(x, y):=x^{2}+\left(\zeta_{r}^{k}+\zeta_{r}^{-k}\right) x y+y^{2}, \quad 1 \leq k \leq \frac{r-1}{2} \tag{4}
\end{equation*}
$$

Moreover, we denote $f_{0}(x, y)=(x+y)^{2}$. From the fact that

$$
(x+y) \underbrace{\prod_{k=1}^{(r-1) / 2} f_{k}(x, y)}_{\phi_{r}(x, y):=\left(x^{r}+y^{r}\right) /(x+y)}=z^{p}
$$

we deduce there is precisely one k_{1} such that $2 \mid f_{k_{1}}$. Since $\frac{r-1}{2} \geq 2$ we can fix two more distinct subscripts $0 \leq k_{2}, k_{3} \leq \frac{r-1}{2}$. Moreover $\left\{f_{k}\right\}_{k}$ are pairwise coprime outside \mathfrak{P}_{r}.

Step 1: Constructing the Frey Elliptic Curve

We find (α, β, γ) such that

$$
\alpha f_{k_{1}}+\beta f_{k_{2}}+\gamma f_{k_{3}}=0
$$

Write $A=\alpha f_{k_{1}}, B=\beta f_{k_{2}}, C=\gamma f_{k_{3}}$ and define

$$
\begin{equation*}
E: Y^{2}=X(X-A)(X+B) \tag{5}
\end{equation*}
$$

Note that E is defined over the totally real number field \mathbb{Q}^{+}. The Artin conductor of E is

$$
\mathcal{N}_{p}=2^{e_{2}} \mathfrak{P}_{r}^{e_{r}} .
$$

Step 1: Constructing the Frey Elliptic Curve

We find (α, β, γ) such that

$$
\alpha f_{k_{1}}+\beta f_{k_{2}}+\gamma f_{k_{3}}=0
$$

Write $A=\alpha f_{k_{1}}, B=\beta f_{k_{2}}, C=\gamma f_{k_{3}}$ and define

$$
\begin{equation*}
E: Y^{2}=X(X-A)(X+B) \tag{5}
\end{equation*}
$$

Note that E is defined over the totally real number field \mathbb{Q}^{+}. The Artin conductor of E is

$$
\mathcal{N}_{p}=2^{e_{2}} \mathfrak{P}_{r}^{e_{r}} .
$$

Note: The choice of A, B, C assures that $2 \mid A$ and A, B, C are pairwise coprime outside \mathfrak{P}_{r}.

Steps 2,3,4: Modularity, Level Lowering, Irreducibility

After possibly enlarging $p, E / \mathbb{Q}^{+}$is modular and $\bar{\rho}_{E, p}$ irreducible allowing us to apply level lowering and get a Hilbert newform over K with rational eigenvalues, parallel weight 2 with level equal to \mathcal{N}_{p} such that

$$
\bar{\rho}_{E, p} \simeq \bar{\rho}_{\mathfrak{f}, p}
$$

Step 5 - Eliminate

1.Eichler Shimura

Step 5 - Eliminate

1.Eichler Shimura

Freitas and Siksek (2015) proved a partial result towards the Eichler-Shimura conjecture. Applied in our case, it gives an elliptic curve E^{\prime} / K such that

$$
\bar{\rho}_{E, p} \simeq \bar{\rho}_{\mathrm{f}, p} \simeq \bar{\rho}_{E^{\prime}, p}
$$

and E^{\prime} has conductor \mathcal{N}_{p}.

Step 5 - Eliminate

What can we say about E^{\prime} ?

Step 5 - Eliminate

What can we say about E^{\prime} ?

- $\bar{\rho}_{E, p} \simeq \bar{\rho}_{E^{\prime}, p}$

Step 5 - Eliminate

What can we say about E^{\prime} ?

- $\bar{\rho}_{E, p} \simeq \bar{\rho}_{E^{\prime}, p}$
- E^{\prime} has good reduction outside $S:=\left\{2, \mathfrak{P}_{r}\right\}$

Step 5 - Eliminate

What can we say about E^{\prime} ?

- $\bar{\rho}_{E, p} \simeq \bar{\rho}_{E^{\prime}, p}$
- E^{\prime} has good reduction outside $S:=\left\{2, \mathfrak{P}_{r}\right\}$
- E^{\prime} has $\# E^{\prime}\left(\mathbb{Q}^{+}\right)[2]=4$ (after possibly enlarging p and replacing E^{\prime} with an 2-isogenous curve)

Step 5 - Eliminate

What can we say about E^{\prime} ?

- $\bar{\rho}_{E, p} \simeq \bar{\rho}_{E^{\prime}, p}$
- E^{\prime} has good reduction outside $S:=\left\{2, \mathfrak{P}_{r}\right\}$
- E^{\prime} has $\# E^{\prime}\left(\mathbb{Q}^{+}\right)[2]=4$ (after possibly enlarging p and replacing E^{\prime} with an 2-isogenous curve)
- E^{\prime} has potentially multiplicative reduction at 2 (after possibly enlarging p).

Step 5 - Eliminate

2. Image of inertia comparison: E^{\prime} has potentially multiplicative reduction at $2 \Leftrightarrow v_{2}\left(j_{E^{\prime}}\right)<0$

Lemma

Let E be an elliptic curve over K with j-invariant j_{E}. Let $p \geq 5$ and let $\mathfrak{q} \nmid p$ be a prime of K. Then $p \mid \# \bar{\rho}_{E, p}\left(I_{\mathfrak{q}}\right)$ if and only if E has potentially multiplicative reduction at \mathfrak{q} (i.e. $\left.v_{\mathfrak{q}}\left(j_{E}\right)<0\right)$ and $p \nmid v_{\mathfrak{q}}\left(j_{E}\right)$.

Step 5 - Eliminate

2. Image of inertia comparison: E^{\prime} has potentially multiplicative reduction at $2 \Leftrightarrow v_{2}\left(j_{E^{\prime}}\right)<0$

Lemma

Let E be an elliptic curve over K with j-invariant j_{E}. Let $p \geq 5$ and let $\mathfrak{q} \nmid p$ be a prime of K. Then $p \mid \# \bar{\rho}_{E, p}\left(I_{\mathfrak{q}}\right)$ if and only if E has potentially multiplicative reduction at \mathfrak{q} (i.e. $\left.v_{\mathfrak{q}}\left(j_{E}\right)<0\right)$ and $p \nmid v_{\mathfrak{q}}\left(j_{E}\right)$.

The Frey Elliptic curve

$$
E: Y^{2}=X(X-A)(X+B)
$$

has

$$
j_{E}=-2^{8} \frac{(A B+B C+A C)^{3}}{(A B C)^{2}}
$$

From Elliptic Curves to S-units

- We have an elliptic curve $E^{\prime} / \mathbb{Q}^{+}$with full 2 torsion over \mathbb{Q}^{+}, hence with a model:

$$
E^{\prime}: Y^{2}=\left(X-e_{1}\right)\left(X-e_{2}\right)\left(X-e_{3}\right)
$$

Consider $\lambda:=\left(e_{3}-e_{1}\right) /\left(e_{2}-e_{1}\right)$ then

$$
j_{E^{\prime}}=2^{8}\left(\lambda^{2}-\lambda+1\right)^{3} \lambda^{-2}(\lambda-1)^{-2}
$$

From Elliptic Curves to S-units

- We have an elliptic curve $E^{\prime} / \mathbb{Q}^{+}$with full 2 torsion over \mathbb{Q}^{+}, hence with a model:

$$
E^{\prime}: Y^{2}=\left(X-e_{1}\right)\left(X-e_{2}\right)\left(X-e_{3}\right)
$$

Consider $\lambda:=\left(e_{3}-e_{1}\right) /\left(e_{2}-e_{1}\right)$ then

$$
j_{E^{\prime}}=2^{8}\left(\lambda^{2}-\lambda+1\right)^{3} \lambda^{-2}(\lambda-1)^{-2}
$$

- Good reduction outside $S \Rightarrow j_{E^{\prime}} \in \mathcal{O}_{S}$
- Potentially multiplicative reduction at $2 \Leftrightarrow v_{2}\left(j_{E^{\prime}}\right)<0$

Putting this information together we get an S-unit equation

$$
\lambda+\mu=1
$$

where $S:=\left\{2, \mathfrak{P}_{r}\right\}$ and with $2^{5} \mid \lambda$.

Step 5 - Eliminate

3.Finiteness of S-units

Theorem (De Weger's, Siegel, Smart)

Let K be a number field and $S \subset \mathcal{O}_{K}$ a finite set of prime ideals, and let $a, b \in K^{*}$.
Then, the equation

$$
a x+b y=1
$$

has only finitely many solutions in \mathcal{O}_{S}^{*}.
S-unit solver for $a=b=1$ has been implemented in the free open-source mathematics software, Sage by A. Alvarado, A. Koutsianas, B. Malmskog, C. Rasmussen, D. Roe, C. Vincent, M. West.

Step 5 - Eliminate

We are going to show that when our assumptions that $r \not \equiv 1 \bmod 8$ and $2 \nmid h_{\mathbb{Q}^{+}}^{+}$hold, the S-unit equation

$$
\lambda+\mu=1
$$

cannot have $2^{5} \mid \lambda$.

Step 5 - Eliminate

If by contradiction $2^{5} \mid \lambda$, then

$$
\mu \equiv 1 \quad \bmod 32
$$

Step 5 - Eliminate

If by contradiction $2^{5} \mid \lambda$, then

$$
\mu \equiv 1 \bmod 32
$$

Ingredient 1: Class field theory (+assumptions) gives $\mu=\tau_{0}^{2}$ with $\tau_{0} \in \mathcal{O}_{S}^{*}$.
Denote $\left(\lambda_{0}, \mu_{0}\right)=(\lambda, \mu)$. This gives the possibility to construct a sequence of solutions to our S-unit equation

$$
\left(\lambda_{n+1}, \mu_{n+1}\right)=\left(\frac{-\left(1-\tau_{n}\right)^{2}}{4 \tau_{n}}, \frac{\left(1+\tau_{n}\right)^{2}}{4 \tau_{n}}\right)
$$

with $v_{2}\left(\lambda_{n+1}\right)>v_{2}\left(\lambda_{n}\right)$.

Step 5 - Eliminate

If by contradiction $2^{5} \mid \lambda$, then

$$
\mu \equiv 1 \quad \bmod 32
$$

Ingredient 1: Class field theory (+assumptions) gives $\mu=\tau_{0}^{2}$ with $\tau_{0} \in \mathcal{O}_{S}^{*}$.
Denote $\left(\lambda_{0}, \mu_{0}\right)=(\lambda, \mu)$. This gives the possibility to construct a sequence of solutions to our S-unit equation

$$
\left(\lambda_{n+1}, \mu_{n+1}\right)=\left(\frac{-\left(1-\tau_{n}\right)^{2}}{4 \tau_{n}}, \frac{\left(1+\tau_{n}\right)^{2}}{4 \tau_{n}}\right)
$$

with $v_{2}\left(\lambda_{n+1}\right)>v_{2}\left(\lambda_{n}\right)$.
Ingredient 2: Finiteness of S-units gives the desired contradiction.

Examples signatures $(p, p, 2)$ and $(p, p, 3)$

Theorem (M., 2021)

Let $d \geq 5$ be a rational prime satisfying $d \equiv 5 \bmod 8$. Write $K=\mathbb{Q}(\sqrt{d})$. Then, there is a constant B_{K} such that for each rational prime $p>B_{K}$, the equation $x^{p}+y^{p}=z^{2}$ has no coprime, non-trivial solutions $(a, b, c) \in \mathcal{O}_{K}^{3}$ with $2 \mid b$.

Examples signatures $(p, p, 2)$ and $(p, p, 3)$

Theorem (M.,2021)

Let $d \geq 5$ be a rational prime satisfying $d \equiv 5 \bmod 8$. Write $K=\mathbb{Q}(\sqrt{d})$. Then, there is a constant B_{K} such that for each rational prime $p>B_{K}$, the equation $x^{p}+y^{p}=z^{2}$ has no coprime, non-trivial solutions $(a, b, c) \in \mathcal{O}_{K}^{3}$ with $2 \mid b$.

Theorem (M.,2021)

Let d a positive, square-free satisfying $d \equiv 2 \bmod 3$. Write $K=\mathbb{Q}(\sqrt{d})$ and suppose $3 \nmid h_{K(\omega)}, 3 \nmid h_{K}$. Then, there is a constant B_{K} such that for each prime $p>B_{K}$, the equation $x^{p}+y^{p}=z^{3}$ has no coprime, non-trivial solutions $(a, b, c) \in \mathcal{O}_{K}^{3}$ with $3 \mid b$.

Thank you!

