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Introduction

Generalized Fermat Equation:

xp + yq = zr, p, q, r ∈ Z≥2. (1)

Conjecture(Fermat-Catalan)

Over all choices of prime exponents p, q, r satisfying 1/p+ 1/q + 1/r < 1 the equation
(1) admits only finitely many integer solutions (a, b, c) which are non-trivial (i.e. abc ̸= 0)
coprime (i.e. gcd(a, b, c) = 1). (Here solutions like 23 + 1q = 32 are counted only once.)
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Introduction

Generalized Fermat Equation:

xp + yq = zr, p, q, r ∈ Z≥2.

Theorem(Darmon-Granville 1995)

If we fix the prime exponents p, q, r such that 1/p+ 1/q + 1/r < 1, then there are only
finitely many coprime integers solutions to the above equation.

The Theorem can be extended easily to coprime solutions in any fixed number field.
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Introduction

Generalized Fermat Equation:

xp + yq = zr, p, q, r ∈ Z≥2.

We call (p, q, r) the signature of the equation.

Signatures Over Q Over totally real fields K

(n, n, n) Wiles , Taylor-Wiles, n ≥ 3 Freitas-Siksek, n > BK

(n, n, 2) Darmon-Merel, Poonen, n ≥ 4
Işık, Kara, Özman*,
M.*, n > BK

(n, n, 3) Darmon-Merel, Poonen, n ≥ 3 M.*, n > BK

(4, 2, n) Ellenberg, Bennett-Ellenberg-Ng, n ≥ 4 Torcomian*, n > BK

Solved signatures using the modular method
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Signature (r, r, p)

Fix r ≥ 5 a rational prime.
xr + yr = dzp, p ≥ 2.

Some instances that have been partially solved over Q:

(7, 7, p) with d = 3 Freitas 2013;

(5, 5, 7), (5, 5, 19), and (7, 7, 5) Dahmen, Siksek 2014;

(2l, 2m, p), d = 1, p ∈ {3, 5, 7, 11, 13},m, n > 7, Anni, Siksek 2016;

(5, 5, n) with d = 1∗, 2∗, 3, (13, 13, n) with d = 3 Billerey, Chen, Dembélé, Dieulefait
and Freitas 2022;

(11, 11, p) with d = 1∗ Billerey, Chen, Dieulefait, Freitas and Najman 2022;

(r, r, p) with d ̸= 1∗, d has only primes q ̸≡ 1 mod r for a positive density of primes
p, Freitas and Najman 2022.
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Asymptotic (r, r, p)

Theorem (1)

Fix r ≥ 5 such that r ̸≡ 1 mod 8. Let Q+ := Q(ζr + ζ−1
r ), suppose that 2 is inert in Q+

and 2 ∤ h+Q+ . Then, there is a constant Br (depending only on r) such that for each

rational prime p > Br, the equation xr + yr = zp has no integer solutions with 2|z.

Example

This implies that there are no integer solutions (x, y, z) with 2|z for p large enough for
signatures:

(5, 5, p), (7, 7, p), (11, 11, p), (13, 13, p), (19, 19, p), (23, 23, p), (37, 37, p), (43, 43, p).
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Asymptotic (r, r, p)

Theorem (2)

Fix r ≥ 5 such that r ̸≡ 1 mod 8. Let K := Q(
√
d) with d square-free and d ̸≡ 1

mod 8. Assume that r is inert in K. Let K+ := K(ζr + ζ−1
r ), suppose that 2 is inert in

Q+ and 2 ∤ h+
K+ . Moreover

1. if d ≡ 5 mod 8 we assume r ̸≡ 1 mod 8;

2. if d ≡ 2, 3 mod 4 we assume r ̸≡ 1, d mod 8.

In the first case, 2 is inert in K and in the second case, it is totally ramified. Either way,
we denote the unique prime above 2 by P. Then, there is a constant BK,r such that for
primes p > BK,r, the equation xr + yr = zp has no integer solutions with P|z.

Example

Let K = Q(
√
2). There are no non-trivial, primitive solutions (x, y, z) ∈ O3

K with
√
2|z

for signatures (5, 5, p), (7, 7, p), (11, 11, p), (13, 13, p) and sufficiently large p.
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Modular Method - Sketch

Step 1: Selecting a Frey curve.
Attach an appropriate elliptic curve E defined over a totally real field K to a putative
solution (of a certain type) of a Diophantine equation which has the property that the
Artin conductor of ρE,p is independent of the putative solution.
Step 2: Modularity.
Prove that E/K is modular.

Theorem (Freitas, Hung and Siksek)

Let K be a totally real field. There are at most finitely many K̄- isomorphism classes of
non-modular elliptic curves E over K. Moreover, if K is real quadratic, then all elliptic
curves over K are modular.
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Modular Method - Sketch

Step 3: Irreducibility.
Freitas and Siksek (2015) proved irreducibility of ρE,p for elliptic curves E/K that are
semistable at all p|p, when p is taken to be large enough.

Step 4: Level lowering.
Freitas and Siksek (2015) proved that if ρE,p is irreducible, E is modular and a few
technical conditions hold, there exists a Hilbert newform f over K of parallel weight 2
with level equal to the Artin conductor of E such that

ρE,p ≃ ρf,π

where π is a prime in Qf with π|p.
Note: After possibly enlarging p we can assume Qf = Q so π = p.

16 / 47



Modular Method - Sketch

Step 3: Irreducibility.
Freitas and Siksek (2015) proved irreducibility of ρE,p for elliptic curves E/K that are
semistable at all p|p, when p is taken to be large enough.
Step 4: Level lowering.
Freitas and Siksek (2015) proved that if ρE,p is irreducible, E is modular and a few
technical conditions hold, there exists a Hilbert newform f over K of parallel weight 2
with level equal to the Artin conductor of E such that

ρE,p ≃ ρf,π

where π is a prime in Qf with π|p.
Note: After possibly enlarging p we can assume Qf = Q so π = p.

17 / 47



Modular Method - Sketch

Step 5: Eliminate. Not easy in general.

Example

An approach due to Freitas and Siksek (2015) involves:

1. an ’Eichler-Shimura’-type result;

2. image of inertia comparison arguments;

3. the study of certain S-unit equations;

to get a contradiction.
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Modular Method Recap

Select a Frey Curve - Modularity - Irreducibility - Level lowering - Eliminate
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Proof of Theorem 1

Fix r ≥ 5 a rational prime. Suppose we have a non-trivial, primitive integer solution
(x, y, z) with 2|z to the equation

xr + yr = zp, p ≥ 2, rational prime.

We will show we get a contradiction when:

r ̸≡ 1 mod 8;

2 is inert in Q+;

2 ∤ h+Q+ .

where Q+ := Q(ζr + ζ−1
r ). We will denote by Pr the unique prime above r.
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Relating diophantine equations

We write

ϕr(x, y) :=
xr + yr

x+ y
=

r−1∑
i=1

(−1)ixr−1−iyi. (2)

Over the cyclotomic field Q(ζr) one gets the factorization

ϕr(x, y) =

r−1∏
i=1

(x+ ζiry). (3)
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Relating diophantine equations

Over the totally real field Q+, ϕr factors into degree two factors of the form

fk(x, y) := x2 + (ζkr + ζ−k
r )xy + y2, 1 ≤ k ≤ r − 1

2
. (4)

Moreover, we denote f0(x, y) = (x+ y)2.

From the fact that

(x+ y)

(r−1)/2∏
k=1

fk(x, y)︸ ︷︷ ︸
ϕr(x,y):=(xr+yr)/(x+y)

= zp

we deduce there is precisely one k1 such that 2|fk1 . Since r−1
2 ≥ 2 we can fix two more

distinct subscripts 0 ≤ k2, k3 ≤ r−1
2 . Moreover {fk}k are pairwise coprime outside Pr.
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Step 1: Constructing the Frey Elliptic Curve

We find (α, β, γ) such that
αfk1 + βfk2 + γfk3 = 0.

Write A = αfk1 , B = βfk2 , C = γfk3 and define

E : Y 2 = X(X −A)(X +B). (5)

Note that E is defined over the totally real number field Q+. The Artin conductor of E is

Np = 2e2Per
r .

Note: The choice of A,B,C assures that 2|A and A,B,C are pairwise coprime outside
Pr.
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Steps 2,3,4: Modularity, Level Lowering,
Irreducibility

After possibly enlarging p, E/Q+ is modular and ρE,p irreducible allowing us to apply
level lowering and get a Hilbert newform over K with rational eigenvalues, parallel
weight 2 with level equal to Np such that

ρE,p ≃ ρf,p.
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Step 5 - Eliminate

1.Eichler Shimura

Freitas and Siksek (2015) proved a partial result towards the Eichler-Shimura conjecture.
Applied in our case, it gives an elliptic curve E′/K such that

ρE,p ≃ ρf,p ≃ ρE′,p

and E′ has conductor Np.
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Step 5 - Eliminate

What can we say about E′?

ρE,p ≃ ρE′,p

E′ has good reduction outside S := {2,Pr}
E′ has #E′(Q+)[2] = 4 (after possibly enlarging p and replacing E′ with an
2-isogenous curve)

E′ has potentially multiplicative reduction at 2 (after possibly enlarging p).
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Step 5 - Eliminate

2. Image of inertia comparison: E′ has potentially multiplicative reduction at
2 ⇔ v2(jE′) < 0

Lemma

Let E be an elliptic curve over K with j-invariant jE . Let p ≥ 5 and let q ∤ p be a prime
of K. Then p|#ρE,p(Iq) if and only if E has potentially multiplicative reduction at q (i.e.
vq(jE) < 0) and p ∤ vq(jE).

The Frey Elliptic curve
E : Y 2 = X(X −A)(X +B)

has

jE = −28
(AB +BC +AC)3

(ABC)2
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From Elliptic Curves to S-units

We have an elliptic curve E′/Q+ with full 2 torsion over Q+, hence with a model:

E′ : Y 2 = (X − e1)(X − e2)(X − e3).

Consider λ := (e3 − e1)/(e2 − e1) then

jE′ = 28(λ2 − λ+ 1)3λ−2(λ− 1)−2

Good reduction outside S ⇒ jE′ ∈ OS

Potentially multiplicative reduction at 2 ⇔ v2(jE′) < 0

Putting this information together we get an S-unit equation

λ+ µ = 1

where S := {2,Pr} and with 25|λ.
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Step 5 - Eliminate

3.Finiteness of S-units

Theorem (De Weger’s, Siegel, Smart)

Let K be a number field and S ⊂ OK a finite set of prime ideals, and let a, b ∈ K∗.
Then, the equation

ax+ by = 1

has only finitely many solutions in O∗
S .

S-unit solver for a = b = 1 has been implemented in the free open-source mathematics
software, Sage by A. Alvarado, A. Koutsianas, B. Malmskog, C. Rasmussen, D. Roe, C.
Vincent, M. West.
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Step 5 - Eliminate

We are going to show that when our assumptions that r ̸≡ 1 mod 8 and 2 ∤ h+Q+ hold,
the S-unit equation

λ+ µ = 1

cannot have 25|λ.
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Step 5 - Eliminate

If by contradiction 25|λ, then
µ ≡ 1 mod 32.

Ingredient 1: Class field theory (+assumptions) gives µ = τ20 with τ0 ∈ O∗
S .

Denote (λ0, µ0) = (λ, µ). This gives the possibility to construct a sequence of solutions
to our S-unit equation

(λn+1, µn+1) =

(
−(1− τn)

2

4τn
,
(1 + τn)

2

4τn

)
with v2(λn+1) > v2(λn).
Ingredient 2: Finiteness of S-units gives the desired contradiction.
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Examples signatures (p, p, 2) and (p, p, 3)

Theorem (M.,2021)

Let d ≥ 5 be a rational prime satisfying d ≡ 5 mod 8. Write K = Q(
√
d). Then, there is

a constant BK such that for each rational prime p > BK , the equation xp + yp = z2 has
no coprime, non-trivial solutions (a, b, c) ∈ O3

K with 2|b.

Theorem (M.,2021)

Let d a positive, square-free satisfying d ≡ 2 mod 3. Write K = Q(
√
d) and suppose

3 ∤ hK(ω), 3 ∤ hK . Then, there is a constant BK such that for each prime p > BK , the
equation xp + yp = z3 has no coprime, non-trivial solutions (a, b, c) ∈ O3

K with 3|b.
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Thank you!
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