Quadratic twists of genus one curves and Diophantine quintuples

Representation Theory XVIII, Dubrovnik June 23, 2023

Matija Kazalicki

University of Zagreb

A problem

Consider the genus one quartic

$$H: \quad y^2 = f(x),$$

where $f(x) \in \mathbb{Z}[x]$ is a monic polynomial of degree 4 with the nonzero discriminant.

Consider the genus one quartic

$$H: \quad y^2 = f(x),$$

where $f(x) \in \mathbb{Z}[x]$ is a monic polynomial of degree 4 with the nonzero discriminant.

For a square-free integer d, we denote by H^d : $dy^2 = f(x)$ the quadratic twist of H with respect to $\mathbb{Q}(\sqrt{d})$.

Consider

$$S = \{ d \in \mathbb{Z} : H^d(\mathbb{Q}) \neq \emptyset \text{ and } |d| \text{ is a prime} \}.$$

Consider

$$S = \{ d \in \mathbb{Z} : H^d(\mathbb{Q})
eq \emptyset ext{ and } |d| ext{ is a prime} \}.$$

Question

 $H^d(\mathbb{Q}) \neq \emptyset$?

Consider

$$S = \{ d \in \mathbb{Z} : H^d(\mathbb{Q})
eq \emptyset ext{ and } |d| ext{ is a prime} \}.$$

Question

 $H^d(\mathbb{Q}) \neq \emptyset$?

Question What is asymptotically the size of $S(X) = \{d \in S : |d| < X\}$ as $X \to \infty$?

Consider

$$S = \{ d \in \mathbb{Z} : H^d(\mathbb{Q})
eq \emptyset ext{ and } |d| ext{ is a prime} \}.$$

Question

 $H^d(\mathbb{Q}) \neq \emptyset$?

Question What is asymptotically the size of $S(X) = \{d \in S : |d| < X\}$ as $X \to \infty$?

In this talk we address these questions in case when

H:
$$y^2 = (x^2 - x - 3)(x^2 + 2x - 12).$$

Çiperiani, Ozman: a criterion for $H^d(\mathbb{Q}) \neq \emptyset$ in terms of the image of the global trace map $tr_{\mathbb{Q}(\sqrt{d})/\mathbb{Q}}$ on E.

No estimates for the size of set S(X) are known.

Connection with Diophantine quintuples

For a rational number q, we say that the set of m rational numbers is a rational D(q) - m-tuple if the product of any two its distinct elements is q less then a square.

For a rational number q, we say that the set of m rational numbers is a rational D(q) - m-tuple if the product of any two its distinct elements is q less then a square.

Diophantus of Alexandria

Figure 1: Cover of the 1621 edition

Diophantus of Alexandria

Figure 1: Cover of the 1621 edition

Diophantus - rational D(1) quadruple: {1/16,33/16,17/4,105/16}

Fermat

Figure 2: Pierre de Fermat

Fermat

Figure 2: Pierre de Fermat

Fermat - D(1) quadruples:

 $\{1,3,8,120\}$

Fermat

Figure 2: Pierre de Fermat

Fermat - D(1) quadruples: {1,3,8,120} $1 \cdot 3 + 1 = 2^2$ $1 \cdot 8 + 1 = 3^2$ $1 \cdot 120 + 1 = 11^2$ $3 \cdot 8 + 1 = 5^2$ $3 \cdot 120 + 1 = 19^2$ $8 \cdot 120 + 1 = 31^2$.

Euler

Figure 3: Leonhard Euler

Figure 3: Leonhard Euler

Euler - *D*(1)-quintuple: {1,3,8,120,777480/8288641} For more information: A. Dujella, What is... a Diophantine *m*-tuple?, Notices of AMS, August 2016

For more information: A. Dujella, What is... a Diophantine *m*-tuple?, Notices of AMS, August 2016

Question Does there exist a rational D(q)-quintuple for every q? For more information: A. Dujella, What is... a Diophantine *m*-tuple?, Notices of AMS, August 2016

Question Does there exist a rational D(q)-quintuple for every q?

Dražić (continuing the work of Dujella and Fuchs): Assuming the parity conjecture, for at least 99.5% squarefree integers q there are infinitely many D(q)-quintuples

Connection with quadratic twists of genus one curves

Dujella:

$$\left\{ \ \frac{1}{3}(x^2+6x-18)(-x^2+2x+2), \ \frac{1}{3}x^2(x+5)(-x+3), (x-2)(5x+6), \ \frac{1}{3}(x^2+4x-6)(-x^2+4x+6), 4x^2 \right\}$$

is $D(\frac{16}{9}x^2(x^2-x-3)(x^2+2x-12))$ -quintuple.

Dujella:

$$\left\{ \frac{1}{3}(x^2+6x-18)(-x^2+2x+2), \frac{1}{3}x^2(x+5)(-x+3), (x-2)(5x+6), \frac{1}{3}(x^2+4x-6)(-x^2+4x+6), 4x^2 \right\}$$

is $D(\frac{16}{9}x^2(x^2-x-3)(x^2+2x-12))$ -quintuple.

For squarefree integer d, if

$$H^d$$
: $dy^2 = (x^2 - x - 3)(x^2 + 2x - 12)$

for some rational (x, y) then by dividing the elements of quintuple above with $\frac{4}{3}xy$ we obtain D(d)-quintuple. **Question** Describe primes d for which H^d has infinitely many rational points. **Question** Describe primes d for which H^d has infinitely many rational points.

Proposition

If $d \in \mathbb{Z}$ is square free integer such that $H^d(\mathbb{Q}) \neq \emptyset$, then $H^d(\mathbb{Q})$ is infinite.

Results

Since quartic H has rational point at infinity, it is birationally equivalent to the elliptic curve

$$E: y^2 = (x - 9)(x - 8)(x + 18).$$

Denote by E^d its quadratic twist.

Theorem

Assuming the parity conjecture for curves E^d and that 100% of quadratic twists E^d have rank 0 or 1 (where |d| is prime), we have that as $X \to \infty$

$$C_1 + o(1) \leq rac{\#S(X)}{2\pi(X)} \leq C_2 + o(1),$$

where $C_1 = \frac{43}{256}$ and $C_2 = \frac{46}{256}$.

Some sets and fields

Let $\tau = \tau^+ \cup \tau^-$ where

$$T^{+} = \{d > 0: |d| \text{ is prime}, \left(\frac{d}{13}\right) = 1, \left(\frac{d}{3}\right) = 1, d \equiv 1 \pmod{8}\},$$

$$T^{-} = \{d < 0: |d| \text{ is prime}, \left(\frac{d}{13}\right) = 1, \left(\frac{d}{2}\right) \cdot \left(\frac{d}{3}\right) = -1, d \equiv 5, 7 \pmod{8}\}.$$

Some sets and fields

Let $\tau = \tau^+ \cup \tau^-$ where

$$T^{+} = \{d > 0: |d| \text{ is prime}, \left(\frac{d}{13}\right) = 1, \left(\frac{d}{3}\right) = 1, d \equiv 1 \pmod{8}\},$$

$$T^{-} = \{d < 0: |d| \text{ is prime}, \left(\frac{d}{13}\right) = 1, \left(\frac{d}{2}\right) \cdot \left(\frac{d}{3}\right) = -1, d \equiv 5, 7 \pmod{8}\}.$$

Define

$$\begin{split} L_{H_1,H_2} &= \mathbb{Q}(\sqrt{3},\sqrt{-1},\sqrt{2})\sqrt{8(1+\sqrt{3})(4+2\sqrt{3})},\\ L_{H,H_1} &= \mathbb{Q}(\sqrt{3},\sqrt{13})(\sqrt{4+\sqrt{13}}),\\ L_{H,H_2} &= \mathbb{Q}(\sqrt{-1},\sqrt{2},\sqrt{13})(\sqrt{4+2\sqrt{13}}),\\ L_{H^{-1},F_2} &= \mathbb{Q}(\sqrt{13},\sqrt{-1},\sqrt{-3})(\sqrt{3(1+\sqrt{13})(3+\sqrt{13})}). \end{split}$$

Corollary

Let $d \in T$. Assuming the parity conjecture for E^d , if d does not split completely in $L_{H_1,H_2} = L_{F_1,F_2}$ and

a)
$$d=-p<0$$
 with $p\equiv 1 \bmod 4$ and p splits completely in $L_{H^{-1},F_2},$ or

b) d = p > 0 and p splits completely in L_{H,H_1} and L_{H,H_2} ,

then $H^d(\mathbb{Q}) \neq \emptyset$. Hence, for such d there exists infinitely many D(d)-quintuples.

Example

Example

The set of $d \in T$, |d| < 3000, for which Corollary implies that $H^d(\mathbb{Q}) \neq \emptyset$ is equal to

 $\{-2857,-2833,-1993,-601,-337,-313,1993,2833,2857\}.$

For d = -313, we find a point

 $(-2107/1202, 389073/1444804) \in H^{-313}(\mathbb{Q})$

which produces a D(-313)-quintuple

ſ	81062614477261	15660515591	9009021853	28246175292437	2532614	l
J	1313828969096	623554328	546517874	1313828969096	129691	ſ

Example

Example

The set of $d \in T$, |d| < 3000, for which Corollary implies that $H^d(\mathbb{Q}) \neq \emptyset$ is equal to

 $\{-2857,-2833,-1993,-601,-337,-313,1993,2833,2857\}.$

For d = -313, we find a point

 $(-2107/1202, 389073/1444804) \in H^{-313}(\mathbb{Q})$

which produces a D(-313)-quintuple

ſ	81062614477261	15660515591	9009021853	28246175292437	2532614`	l
l	1313828969096 '	623554328	546517874	1313828969096 '	129691	ſ.

Remark

Results about infinite number of D(d)-quintuples obtained as above from $d \in T$ where d < 0 are new.

More details

Proposition For a square-free $d \in \mathbb{Z}$, the quartic H^d is everywhere locally solvable (ELS) if and only if for all primes p|d we have $\left(\frac{p}{13}\right) = 1$ or p = 13.

Starting observation: if H^d is ELS, then H^d represents na element in $\mathrm{Sel}^{(2)}(E^d/\mathbb{Q})$.

If H^d is ELS then $H^d(\mathbb{Q}) = \emptyset$ if and only if H^d represents a nontrivial element in $\operatorname{III}(E^d)[2]$ (where $\operatorname{III}(E^d)$ denotes the Tate-Shafarevich group of E^d), or more precisely, if and only if the image of H^d under the map $\iota : \operatorname{Sel}^{(2)}(E^d) \to \operatorname{III}(E^d)[2]$ from the exact sequence

$$0 \longrightarrow E^{d}(\mathbb{Q})/2E^{d}(\mathbb{Q}) \longrightarrow \operatorname{Sel}^{(2)}(E^{d}) \xrightarrow{\iota} \operatorname{III}(E^{d})[2] \longrightarrow 0 \quad (1)$$

is nonzero. In this case we say that H^d represents the element of order two in $\operatorname{III}(E^d)$.

Definition of T - root number of E^d

If rank $(E^{d}(\mathbb{Q})) = 0$, then $H^{d}(\mathbb{Q}) = \emptyset$, hence, assuming the parity conjecture and standard rank conjectures, the main contribution to #S(X) comes from the *d*'s for which the root number $w(E^{d})$ is -1.

Definition of T - root number of E^d

If rank $(E^{d}(\mathbb{Q})) = 0$, then $H^{d}(\mathbb{Q}) = \emptyset$, hence, assuming the parity conjecture and standard rank conjectures, the main contribution to #S(X) comes from the d's for which the root number $w(E^{d})$ is -1.

Proposition

For $d = \pm p$ where $p \neq 2, 3, 13$ is a prime, the root number $w(E^d)$ is equal to -1 if and only if

$$\left(\frac{p}{2}\right) \cdot \left(\frac{p}{3}\right) \cdot \left(\frac{p}{13}\right) = 1.$$

Here $\left(\frac{\cdot}{2}\right)$ is the Kronecker symbol for odd d defined by

$$\left(\frac{d}{2}\right) = \begin{cases} 1, & \text{if } |d| \equiv 1,7 \mod (8) \\ -1, & \text{if } |d| \equiv 3,5 \mod (8). \end{cases}$$

Moreover, if $\operatorname{III}(E^d)[2]$ is trivial, then H^d automatically has a rational point, thus we furthermore focus on d's for which, besides $w(E^d) = -1$, we have that generically $\operatorname{rank}_{\mathbb{F}_2} \operatorname{III}(E^d)[2] > 0$.

Moreover, if $\operatorname{III}(E^d)[2]$ is trivial, then H^d automatically has a rational point, thus we furthermore focus on d's for which, besides $w(E^d) = -1$, we have that generically $\operatorname{rank}_{\mathbb{F}_2} \operatorname{III}(E^d)[2] > 0$.

Since E^d : $dy^2 = (x - 8)(x - 9)(x + 18)$ has full rational 2-torsion, for such d's generically we will have rank_{F2} Sel⁽²⁾(E^d) = 5 since (again assuming the parity conjecture) we have that rank_{F2} III(E^d)[2] is even (hence at least 2 if non-trivial). Moreover, if $\operatorname{III}(E^d)[2]$ is trivial, then H^d automatically has a rational point, thus we furthermore focus on d's for which, besides $w(E^d) = -1$, we have that generically $\operatorname{rank}_{\mathbb{F}_2} \operatorname{III}(E^d)[2] > 0$.

Since E^d : $dy^2 = (x - 8)(x - 9)(x + 18)$ has full rational 2-torsion, for such d's generically we will have rank_{F2} Sel⁽²⁾(E^d) = 5 since (again assuming the parity conjecture) we have that rank_{F2} III(E^d)[2] is even (hence at least 2 if non-trivial).

These conditions altogether define set T.

Proposition (without using the parity conjecture) For prime p > 3, let $d = \pm p$ be such that $\left(\frac{d}{13}\right) = 1$ and $w(E^d) = -1$. We have that $\operatorname{rank}_{\mathbb{F}_2} \operatorname{Sel}^{(2)}(E^d) = 3$ or 5. More precisely, $\operatorname{rank}_{\mathbb{F}_2} \operatorname{Sel}^{(2)}(E^d) = 5$ if and only if $d \equiv 1 \pmod{8}$ if d > 0 or $d \equiv 5,7 \pmod{8}$ if d < 0. Proposition (without using the parity conjecture) For prime p > 3, let $d = \pm p$ be such that $\left(\frac{d}{13}\right) = 1$ and $w(E^d) = -1$. We have that $\operatorname{rank}_{\mathbb{F}_2} \operatorname{Sel}^{(2)}(E^d) = 3$ or 5. More precisely, $\operatorname{rank}_{\mathbb{F}_2} \operatorname{Sel}^{(2)}(E^d) = 5$ if and only if $d \equiv 1 \pmod{8}$ if d > 0 or $d \equiv 5,7 \pmod{8}$ if d < 0.

Proof: Mazur-Rubin method

Our main tool for studying image of H^d in $\operatorname{III}(E^d)[2]$ is the Cassels-Tate pairing on $\operatorname{III}(E^d)$ with values in \mathbb{Q}/\mathbb{Z} , or more precisely, its extension to a pairing of Selmer group by (1)

 $\langle \cdot, \cdot \rangle_{CT} : \mathsf{Sel}^{(2)}(E^d)[2] \times \mathsf{Sel}^{(2)}(E^d)[2] \to \mathbb{Z}/2\mathbb{Z} = \{0, 1\}.$

Our main tool for studying image of H^d in $\operatorname{III}(E^d)[2]$ is the Cassels-Tate pairing on $\operatorname{III}(E^d)$ with values in \mathbb{Q}/\mathbb{Z} , or more precisely, its extension to a pairing of Selmer group by (1)

 $\langle \cdot, \cdot \rangle_{CT} : \mathsf{Sel}^{(2)}(E^d)[2] \times \mathsf{Sel}^{(2)}(E^d)[2] \to \mathbb{Z}/2\mathbb{Z} = \{0, 1\}.$

This pairing is bilinear, alternating, and non-degenerate on $\operatorname{III}(E^d)[2]/2\operatorname{III}(E^d)[4]$, or equivalently, on $\operatorname{Sel}^{(2)}(E^d)/2\operatorname{Sel}^{(4)}(E^d)$.

Our main tool for studying image of H^d in $\operatorname{III}(E^d)[2]$ is the Cassels-Tate pairing on $\operatorname{III}(E^d)$ with values in \mathbb{Q}/\mathbb{Z} , or more precisely, its extension to a pairing of Selmer group by (1)

 $\langle \cdot, \cdot \rangle_{CT} : \mathsf{Sel}^{(2)}(E^d)[2] \times \mathsf{Sel}^{(2)}(E^d)[2] \to \mathbb{Z}/2\mathbb{Z} = \{0, 1\}.$

This pairing is bilinear, alternating, and non-degenerate on $\operatorname{III}(E^d)[2]/2\operatorname{III}(E^d)[4]$, or equivalently, on $\operatorname{Sel}^{(2)}(E^d)/2\operatorname{Sel}^{(4)}(E^d)$.

Thus, if we find a class $L \in Sel^{(2)}(E^d)$ such that $\langle H^d, L \rangle_{CT} = 1$, we can conclude that $\iota(H^d) \neq 0$, and, hence, that H^d represents the element of order two in $III(E^d)$.

Our main tool for studying image of H^d in $\operatorname{III}(E^d)[2]$ is the Cassels-Tate pairing on $\operatorname{III}(E^d)$ with values in \mathbb{Q}/\mathbb{Z} , or more precisely, its extension to a pairing of Selmer group by (1)

 $\langle \cdot, \cdot \rangle_{CT} : \mathsf{Sel}^{(2)}(E^d)[2] \times \mathsf{Sel}^{(2)}(E^d)[2] \to \mathbb{Z}/2\mathbb{Z} = \{0, 1\}.$

This pairing is bilinear, alternating, and non-degenerate on $\operatorname{III}(E^d)[2]/2\operatorname{III}(E^d)[4]$, or equivalently, on $\operatorname{Sel}^{(2)}(E^d)/2\operatorname{Sel}^{(4)}(E^d)$.

Thus, if we find a class $L \in \text{Sel}^{(2)}(E^d)$ such that $\langle H^d, L \rangle_{CT} = 1$, we can conclude that $\iota(H^d) \neq 0$, and, hence, that H^d represents the element of order two in $\text{III}(E^d)$.

Note that in the situation when $\operatorname{III}(E^d)[2] = 2\operatorname{III}(E^d)[4]$, we can not obtain any information about H^d using Cassels-Tate pairing.

Define

$$H_{1}: y^{2} = 4x^{4} - 56x^{2} + 169 \in \operatorname{Sel}^{(2)}(E),$$

$$H_{2}: y^{2} = 18x^{4} - 24x^{3} - 32x^{2} + 40x + 34 \in \operatorname{Sel}^{(2)}(E),$$

$$F_{1}: y^{2} = 11x^{4} + 12x^{3} + 56x^{2} + 24x + 68 \in \operatorname{Sel}^{(2)}(E^{-1}),$$

$$F_{2}: y^{2} = x^{4} + 56x^{2} + 676 \in \operatorname{Sel}^{(2)}(E^{-1}).$$

$$(2)$$

Define

$$H_{1}: y^{2} = 4x^{4} - 56x^{2} + 169 \in Sel^{(2)}(E),$$

$$H_{2}: y^{2} = 18x^{4} - 24x^{3} - 32x^{2} + 40x + 34 \in Sel^{(2)}(E),$$

$$F_{1}: y^{2} = 11x^{4} + 12x^{3} + 56x^{2} + 24x + 68 \in Sel^{(2)}(E^{-1}),$$

$$F_{2}: y^{2} = x^{4} + 56x^{2} + 676 \in Sel^{(2)}(E^{-1}).$$
(2)

The pairings between the twists of these classes and H^d determine whether $\iota(H^d) = 0$.

Theorem

Let $d \in T$ such that $\operatorname{III}(E^d)[2] \neq 2\operatorname{III}(E^d)[4]$. Assuming the parity conjecture for E^d , the following is true.

- a) If d < 0 and $d \equiv 1 \pmod{4}$ then $\langle H^d, F_1^{-d} \rangle_{CT} = 1$. In particular, $\iota(H^d) \neq 0 \in \operatorname{III}(E^d)[2]$.
- b) If d < 0 and $d \equiv 3 \pmod{4}$ then $\iota(H^d) \neq 0$ if and only if $\langle H^d, F_2^{-d} \rangle_{CT} = 1.$
- c) If d > 0 then $\iota(H^d) \neq 0$ if and only if $\langle H^d, H_1^d \rangle_{CT} = 1$ or $\langle H^d, H_2^d \rangle_{CT} = 1$.

How to compute Cassels-Tate pairing?

Theorem (Smith)

Let \tilde{E} be an elliptic curve over \mathbb{Q} with full 2-torsion over \mathbb{Q} . Let

 $F,F'\,\in\, H^1(\mathbb{Q},\tilde{E}[2]),$

and let K be the minimal field over which F and F' are trivial. Next, let S be any set of places of \mathbb{Q} which contains all places of bad reduction of \tilde{E} , the archimedean place and 2. Take \mathcal{D} to be the set of pairs (d_1, d_2) of elements in \mathbb{Q}^{\times} such that d_1/d_2 is square at all places of S, and F^{d_1} and F^{d_2} are elements of 2-Selmer group of \tilde{E}^{d_1} and \tilde{E}^{d_2} respectively.

If $F \cup F'$ is alternating, then $\langle F^{d_1}, F'^{d_1} \rangle_{CT} = \langle F^{d_2}, F'^{d_2} \rangle_{CT}$ for all $(d_1, d_2) \in \mathcal{D}$. Otherwise, there is a quadratic extension L of K that is ramified only at primes in S such that

$$\langle F^{d_{\mathbf{1}}}, F'^{d_{\mathbf{1}}} \rangle_{CT} = \langle F^{d_{\mathbf{2}}}, F'^{d_{\mathbf{2}}} \rangle_{CT} + \left[\frac{L/K}{d} \right],$$

for all $(d_1, d_2) \in \mathcal{D}$, where the Galois group $\operatorname{Gal}(L/K)$ is identified with $\frac{1}{2}\mathbb{Z}/\mathbb{Z}$. Here d is any ideal of K coprime to the conductor of L/K that has norm in $\mathbb{Q}^{\times}/\mathbb{Q}^{\times 2}$ equal to (d_1/d_2) . Such d exists for all $(d_1, d_2) \in \mathcal{D}$. We denote by $\left\lceil \frac{1}{2} \right\rceil$ the Artin symbol.

Remark

We will call field L from the statement of Theorem above a governing field of F and F'. It needs not to be unique.

Example

$$L_{H^{-1},F_2} = \mathbb{Q}(\sqrt{13},\sqrt{-1},\sqrt{-3})(\sqrt{3(1+\sqrt{13})(3+\sqrt{13})})$$

Example

$$L_{H^{-1},F_2} = \mathbb{Q}(\sqrt{13},\sqrt{-1},\sqrt{-3})(\sqrt{3(1+\sqrt{13})(3+\sqrt{13})})$$

Essentially, field of a governing field is a field of definition of suitable choosen 1-cochain Γ : $Gal(\overline{\mathbb{Q}}/\mathbb{Q}) \to \mu_2$ with the property that $d\Gamma = H^{-1} \cup F_2$.

Lemma

For integers a and b such that ab is not a perfect square let $L_{a,b}/\mathbb{Q}(\sqrt{a},\sqrt{b})$ be quadratic extension such that $L_{a,b}/\mathbb{Q}$ is Galois with Galois group isomorphic to dihedral group D_4 . There exist a map

$$\gamma_{a,b}: \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \xrightarrow{\operatorname{res}} \operatorname{Gal}(L_{a,b}/\mathbb{Q}) \to \mu_2$$

which satisfies $d\gamma_{a,b} = \chi_a \cup \chi_b \in H^2(\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}), \mu_2)$. Here $\mu_2 = \{\pm 1\}$ and the cup product $\chi_a \cup \chi_b$ is induced by the natural bilinear map $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}$ (hence for $\sigma, \tau \in \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$) we have that $(\chi_a \cup \chi_b)(\sigma, \tau) = -1$ if and only if $\sqrt{a}^{\sigma} = -\sqrt{a}$ and $\sqrt{b}^{\tau} = -\sqrt{b}$).

Proposition

Let $d \in T$ and (thus rank_{\mathbb{F}_2} Sel⁽²⁾(E^d) = 5). We have that III(E^d)[2] = 2III(E^d)[4] (which include the case when rank($E(\mathbb{Q})$) = 3) if and only if

a)
$$\langle H^d, H^d_i \rangle_{CT} = 0$$
 and $\langle H^d_1, H^d_2 \rangle_{CT} = 0$ for $i = 1, 2$ if $d > 0$,

b)
$$\langle H^d, F_i^{-d} \rangle_{CT} = 0$$
 and $\langle F_1^{-d}, F_2^{-d} \rangle_{CT} = 0$ for $i = 1, 2$ if $d < 0$.

Density result now follows from the description of Cassels-Tate pairing (the splitting condition in governing fields) and Chebotarev density theorem.

Thank you for your attention!