Quadratic twists of genus one curves and Diophantine quintuples

Representation Theory XVIII, Dubrovnik
June 23, 2023

Matija Kazalicki

University of Zagreb

A problem

Quadratic twists of genus one curves

Consider the genus one quartic

$$
H: \quad y^{2}=f(x)
$$

where $f(x) \in \mathbb{Z}[x]$ is a monic polynomial of degree 4 with the nonzero discriminant.

Quadratic twists of genus one curves

Consider the genus one quartic

$$
H: \quad y^{2}=f(x)
$$

where $f(x) \in \mathbb{Z}[x]$ is a monic polynomial of degree 4 with the nonzero discriminant.

For a square-free integer d, we denote by $H^{d}: d y^{2}=f(x)$ the quadratic twist of H with respect to $\mathbb{Q}(\sqrt{d})$.

Two questions

Consider

$$
S=\left\{d \in \mathbb{Z}: H^{d}(\mathbb{Q}) \neq \emptyset \text { and }|d| \text { is a prime }\right\} .
$$

Two questions

Consider

$$
S=\left\{d \in \mathbb{Z}: H^{d}(\mathbb{Q}) \neq \emptyset \text { and }|d| \text { is a prime }\right\} .
$$

Question

$$
H^{d}(\mathbb{Q}) \neq \emptyset ?
$$

Two questions

Consider

$$
S=\left\{d \in \mathbb{Z}: H^{d}(\mathbb{Q}) \neq \emptyset \text { and }|d| \text { is a prime }\right\} .
$$

Question

$$
H^{d}(\mathbb{Q}) \neq \emptyset ?
$$

Question
What is asymptotically the size of $S(X)=\{d \in S:|d|<X\}$ as $X \rightarrow \infty$?

Two questions

Consider

$$
S=\left\{d \in \mathbb{Z}: H^{d}(\mathbb{Q}) \neq \emptyset \text { and }|d| \text { is a prime }\right\} .
$$

Question

$$
H^{d}(\mathbb{Q}) \neq \emptyset ?
$$

Question
What is asymptotically the size of $S(X)=\{d \in S:|d|<X\}$ as $X \rightarrow \infty$?

In this talk we address these questions in case when

$$
H: \quad y^{2}=\left(x^{2}-x-3\right)\left(x^{2}+2 x-12\right) .
$$

Known results

C̦iperiani, Ozman: a criterion for $H^{d}(\mathbb{Q}) \neq \emptyset$ in terms of the image of the global trace map $\operatorname{tr}_{\mathbb{Q}(\sqrt{d}) / \mathbb{Q}}$ on E.

No estimates for the size of set $S(X)$ are known.

Connection with Diophantine quintuples

$D(q)$ - m-tuples

For a rational number q, we say that the set of m rational numbers is a rational $D(q)-m$-tuple if the product of any two its distinct elements is q less then a square.

$D(q)$ - m-tuples

For a rational number q, we say that the set of m rational numbers is a rational $D(q)-m$-tuple if the product of any two its distinct elements is q less then a square.

Diophantus of Alexandria

Figure 1: Cover of the 1621 edition

Diophantus of Alexandria

Figure 1: Cover of the 1621 edition

Diophantus - rational $D(1)$ quadruple:
$\{1 / 16,33 / 16,17 / 4,105 / 16\}$

Fermat

Figure 2: Pierre de Fermat

Fermat

Figure 2: Pierre de Fermat

Fermat - $D(1)$ quadruples: $\quad\{1,3,8,120\}$

Fermat

Figure 2: Pierre de Fermat

Fermat - $D(1)$ quadruples:

$$
\{1,3,8,120\}
$$

$$
\begin{gathered}
1 \cdot 3+1=2^{2} \quad 1 \cdot 8+1=3^{2} \quad 1 \cdot 120+1=11^{2} \\
3 \cdot 8+1=5^{2} \quad 3 \cdot 120+1=19^{2} \quad 8 \cdot 120+1=31^{2} .
\end{gathered}
$$

Euler

Figure 3: Leonhard Euler

Euler

Figure 3: Leonhard Euler

Euler - $D(1)$-quintuple: $\{1,3,8,120,777480 / 8288641\}$

Lots of interesting questions...

For more information: A. Dujella, What is... a Diophantine m-tuple?, Notices of AMS, August 2016

Lots of interesting questions...

For more information: A. Dujella, What is... a Diophantine m-tuple?,
Notices of AMS, August 2016
Question
Does there exist a rational $D(q)$-quintuple for every q ?

Lots of interesting questions...

For more information: A. Dujella, What is... a Diophantine m-tuple?, Notices of AMS, August 2016

Question
Does there exist a rational $D(q)$-quintuple for every q ?

Dražić (continuing the work of Dujella and Fuchs):
Assuming the parity conjecture, for at least 99.5% squarefree integers q there are infinitely many $D(q)$-quintuples

Connection with quadratic twists of genus one curves

Dujella:

$$
\left\{\frac{1}{3}\left(x^{2}+6 x-18\right)\left(-x^{2}+2 x+2\right), \frac{1}{3} x^{2}(x+5)(-x+3),(x-2)(5 x+6), \frac{1}{3}\left(x^{2}+4 x-6\right)\left(-x^{2}+4 x+6\right), 4 x^{2}\right\}
$$

is $D\left(\frac{16}{9} x^{2}\left(x^{2}-x-3\right)\left(x^{2}+2 x-12\right)\right)$-quintuple.

Connection with quadratic twists of genus one curves

Dujella:

$$
\left\{\frac{1}{3}\left(x^{2}+6 x-18\right)\left(-x^{2}+2 x+2\right), \frac{1}{3} x^{2}(x+5)(-x+3),(x-2)(5 x+6), \frac{1}{3}\left(x^{2}+4 x-6\right)\left(-x^{2}+4 x+6\right), 4 x^{2}\right\}
$$

is $D\left(\frac{16}{9} x^{2}\left(x^{2}-x-3\right)\left(x^{2}+2 x-12\right)\right)$-quintuple.

For squarefree integer d, if

$$
H^{d}: d y^{2}=\left(x^{2}-x-3\right)\left(x^{2}+2 x-12\right)
$$

for some rational (x, y) then by dividing the elements of quintuple above with $\frac{4}{3} x y$ we obtain $D(d)$-quintuple.

Question

Describe primes d for which H^{d} has infinitely many rational points.

Question
 Describe primes d for which H^{d} has infinitely many rational points.

Proposition

If $d \in \mathbb{Z}$ is square free integer such that $H^{d}(\mathbb{Q}) \neq \emptyset$, then $H^{d}(\mathbb{Q})$ is infinite.

Results

Elliptic curve

Since quartic H has rational point at infinity, it is birationally equivalent to the elliptic curve

$$
E: y^{2}=(x-9)(x-8)(x+18)
$$

Denote by E^{d} its quadratic twist.

Density result

Theorem
Assuming the parity conjecture for curves E^{d} and that 100% of quadratic twists E^{d} have rank 0 or 1 (where $|d|$ is prime), we have that as $X \rightarrow \infty$

$$
C_{1}+o(1) \leq \frac{\# S(X)}{2 \pi(X)} \leq C_{2}+o(1)
$$

where $C_{1}=\frac{43}{256}$ and $C_{2}=\frac{46}{256}$.

Some sets and fields

Let $T=T^{+} \cup T^{-}$where

$$
\begin{aligned}
& T^{+}=\left\{d>0:|d| \text { is prime },\left(\frac{d}{13}\right)=1,\left(\frac{d}{3}\right)=1, d \equiv 1 \quad(\bmod 8)\right\} \\
& T^{-}=\left\{d<0:|d| \text { is prime },\left(\frac{d}{13}\right)=1,\left(\frac{d}{2}\right) \cdot\left(\frac{d}{3}\right)=-1, d \equiv 5,7 \quad(\bmod 8)\right\} .
\end{aligned}
$$

Some sets and fields

Let $T=T^{+} \cup T^{-}$where

$$
\begin{aligned}
& T^{+}=\left\{d>0:|d| \text { is prime },\left(\frac{d}{13}\right)=1,\left(\frac{d}{3}\right)=1, d \equiv 1 \quad(\bmod 8)\right\}, \\
& T^{-}=\left\{d<0:|d| \text { is prime },\left(\frac{d}{13}\right)=1,\left(\frac{d}{2}\right) \cdot\left(\frac{d}{3}\right)=-1, d \equiv 5,7 \quad(\bmod 8)\right\} .
\end{aligned}
$$

Define

$$
\begin{aligned}
L_{H_{1}, H_{2}} & =\mathbb{Q}(\sqrt{3}, \sqrt{-1}, \sqrt{2}) \sqrt{8(1+\sqrt{3})(4+2 \sqrt{3})} \\
L_{H, H_{1}} & =\mathbb{Q}(\sqrt{3}, \sqrt{13})(\sqrt{4+\sqrt{13}}) \\
L_{H, H_{2}} & =\mathbb{Q}(\sqrt{-1}, \sqrt{2}, \sqrt{13})(\sqrt{4+2 \sqrt{13}}) \\
L_{H^{-1}, F_{2}} & =\mathbb{Q}(\sqrt{13}, \sqrt{-1}, \sqrt{-3})(\sqrt{3(1+\sqrt{13})(3+\sqrt{13})})
\end{aligned}
$$

Main result

Corollary

Let $d \in T$. Assuming the parity conjecture for E^{d}, if d does not split completely in $L_{H_{1}, H_{2}}=L_{F_{1}, F_{2}}$ and
a) $d=-p<0$ with $p \equiv 1 \bmod 4$ and p splits completely in

$$
L_{H^{-1}, F_{2}} \text {, or }
$$

b) $d=p>0$ and p splits completely in $L_{H, H_{1}}$ and $L_{H, H_{2}}$,
then $H^{d}(\mathbb{Q}) \neq \emptyset$. Hence, for such d there exists infinitely many $D(d)$-quintuples.

Example

Example

The set of $d \in T,|d|<3000$, for which Corollary implies that $H^{d}(\mathbb{Q}) \neq \emptyset$ is equal to

$$
\{-2857,-2833,-1993,-601,-337,-313,1993,2833,2857\} .
$$

For $d=-313$, we find a point

$$
(-2107 / 1202,389073 / 1444804) \in H^{-313}(\mathbb{Q})
$$

which produces a $D(-313)$-quintuple
$\left\{\frac{81062614477261}{1313828969096}, \frac{15660515591}{623554328}, \frac{9009021853}{546517874}, \frac{28246175292437}{1313828969096}, \frac{2532614}{129691}\right\}$.

Example

Example

The set of $d \in T,|d|<3000$, for which Corollary implies that $H^{d}(\mathbb{Q}) \neq \emptyset$ is equal to

$$
\{-2857,-2833,-1993,-601,-337,-313,1993,2833,2857\} .
$$

For $d=-313$, we find a point

$$
(-2107 / 1202,389073 / 1444804) \in H^{-313}(\mathbb{Q})
$$

which produces a $D(-313)$-quintuple
$\left\{\frac{81062614477261}{1313828969096}, \frac{15660515591}{623554328}, \frac{9009021853}{546517874}, \frac{28246175292437}{1313828969096}, \frac{2532614}{129691}\right\}$.

Remark
Results about infinite number of $D(d)$-quintuples obtained as above from $d \in T$ where $d<0$ are new.

More details

Local solvability

Proposition

For a square-free $d \in \mathbb{Z}$, the quartic H^{d} is everywhere locally solvable (ELS) if and only if for all primes $p \mid d$ we have $\left(\frac{p}{13}\right)=1$ or $p=13$.

Selmer group

Starting observation: if H^{d} is ELS, then H^{d} represents na element in $\mathrm{Sel}^{(2)}\left(E^{d} / \mathbb{Q}\right)$.

Reformulation

If H^{d} is ELS then $H^{d}(\mathbb{Q})=\emptyset$ if and only if H^{d} represents a nontrivial element in $\amalg\left(E^{d}\right)[2]$ (where $\amalg\left(E^{d}\right)$ denotes the Tate-Shafarevich group of E^{d}), or more precisely, if and only if the image of H^{d} under the map $\iota: \operatorname{Sel}{ }^{(2)}\left(E^{d}\right) \rightarrow \amalg\left(E^{d}\right)[2]$ from the exact sequence

$$
\begin{equation*}
0 \longrightarrow E^{d}(\mathbb{Q}) / 2 E^{d}(\mathbb{Q}) \longrightarrow \operatorname{Sel}^{(2)}\left(E^{d}\right) \xrightarrow{\iota} \amalg\left(E^{d}\right)[2] \longrightarrow 0 \tag{1}
\end{equation*}
$$

is nonzero. In this case we say that H^{d} represents the element of order two in $\amalg\left(E^{d}\right)$.

Definition of T - root number of E^{d}

If $\operatorname{rank}\left(E^{d}(\mathbb{Q})\right)=0$, then $H^{d}(\mathbb{Q})=\emptyset$, hence, assuming the parity conjecture and standard rank conjectures, the main contribution to $\# S(X)$ comes from the d^{\prime} 's for which the root number $w\left(E^{d}\right)$ is -1 .

Definition of T - root number of E^{d}

If $\operatorname{rank}\left(E^{d}(\mathbb{Q})\right)=0$, then $H^{d}(\mathbb{Q})=\emptyset$, hence, assuming the parity conjecture and standard rank conjectures, the main contribution to $\# S(X)$ comes from the d^{\prime} 's for which the root number $w\left(E^{d}\right)$ is -1 .

Proposition

For $d= \pm p$ where $p \neq 2,3,13$ is a prime, the root number $w\left(E^{d}\right)$ is equal to -1 if and only if

$$
\left(\frac{p}{2}\right) \cdot\left(\frac{p}{3}\right) \cdot\left(\frac{p}{13}\right)=1
$$

Here $\left(\frac{\dot{2}}{2}\right)$ is the Kronecker symbol for odd d defined by

$$
\left(\frac{d}{2}\right)= \begin{cases}1, & \text { if }|d| \equiv 1,7 \bmod (8) \\ -1, & \text { if }|d| \equiv 3,5 \bmod (8)\end{cases}
$$

Definition of T - nontrivial $\amalg(E)[2]$

Moreover, if $\amalg\left(E^{d}\right)[2]$ is trivial, then H^{d} automatically has a rational point, thus we furthermore focus on d's for which, besides $w\left(E^{d}\right)=-1$, we have that generically rank $_{\mathbb{F}_{2}} \amalg\left(E^{d}\right)[2]>0$.

Definition of T - nontrivial $\amalg(E)[2]$

Moreover, if $\amalg\left(E^{d}\right)[2]$ is trivial, then H^{d} automatically has a rational point, thus we furthermore focus on d 's for which, besides $w\left(E^{d}\right)=-1$, we have that generically $\operatorname{rank}_{\mathbb{F}_{2}} \amalg\left(E^{d}\right)[2]>0$.

Since $E^{d}: d y^{2}=(x-8)(x-9)(x+18)$ has full rational 2-torsion, for such d 's generically we will have $\operatorname{rank}_{\mathbb{F}_{2}} \operatorname{Sel}^{(2)}\left(E^{d}\right)=5$ since (again assuming the parity conjecture) we have that rank $_{\mathbb{F}_{2}} \amalg\left(E^{d}\right)[2]$ is even (hence at least 2 if non-trivial).

Definition of T - nontrivial $\amalg(E)[2]$

Moreover, if $\amalg\left(E^{d}\right)[2]$ is trivial, then H^{d} automatically has a rational point, thus we furthermore focus on d 's for which, besides $w\left(E^{d}\right)=-1$, we have that generically rank $_{\mathbb{F}_{2}} \amalg\left(E^{d}\right)[2]>0$.

Since $E^{d}: d y^{2}=(x-8)(x-9)(x+18)$ has full rational 2-torsion, for such d 's generically we will have $\operatorname{rank}_{\mathbb{F}_{2}} \operatorname{Sel}^{(2)}\left(E^{d}\right)=5$ since (again assuming the parity conjecture) we have that rank $_{\mathbb{F}_{2}} \amalg\left(E^{d}\right)[2]$ is even (hence at least 2 if non-trivial).

These conditions altogether define set T.

Size of 2-Selmer group

Proposition (without using the parity conjecture)
For prime $p>3$, let $d= \pm p$ be such that $\left(\frac{d}{13}\right)=1$ and $w\left(E^{d}\right)=-1$. We have that $\operatorname{rank}_{\mathbb{F}_{2}} \mathrm{Sel}^{(2)}\left(E^{d}\right)=3$ or 5 . More precisely, $\operatorname{rank}_{\mathbb{F}_{2}} \operatorname{Sel}^{(2)}\left(E^{d}\right)=5$ if and only if $d \equiv 1(\bmod 8)$ if $d>0$ or $d \equiv 5,7(\bmod 8)$ if $d<0$.

Size of 2-Selmer group

Proposition (without using the parity conjecture)
For prime $p>3$, let $d= \pm p$ be such that $\left(\frac{d}{13}\right)=1$ and $w\left(E^{d}\right)=-1$. We have that rank $_{\mathbb{F}_{2}} \mathrm{Sel}^{(2)}\left(E^{d}\right)=3$ or 5 . More precisely, $\operatorname{rank}_{\mathbb{F}_{2}} \operatorname{Sel}^{(2)}\left(E^{d}\right)=5$ if and only if $d \equiv 1(\bmod 8)$ if $d>0$ or $d \equiv 5,7(\bmod 8)$ if $d<0$.

Proof: Mazur-Rubin method

Cassels-Tate pairing

Our main tool for studying image of H^{d} in $Ш\left(E^{d}\right)[2]$ is the Cassels-Tate pairing on $\amalg\left(E^{d}\right)$ with values in \mathbb{Q} / \mathbb{Z}, or more precisely, its extension to a pairing of Selmer group by (1)

$$
\langle\cdot, \cdot\rangle_{C T}: \operatorname{Sel}^{(2)}\left(E^{d}\right)[2] \times \operatorname{Sel}^{(2)}\left(E^{d}\right)[2] \rightarrow \mathbb{Z} / 2 \mathbb{Z}=\{0,1\} .
$$

Cassels-Tate pairing

Our main tool for studying image of H^{d} in $Ш\left(E^{d}\right)[2]$ is the Cassels-Tate pairing on $\amalg\left(E^{d}\right)$ with values in \mathbb{Q} / \mathbb{Z}, or more precisely, its extension to a pairing of Selmer group by (1)

$$
\langle\cdot, \cdot\rangle_{C T}: \operatorname{Sel}^{(2)}\left(E^{d}\right)[2] \times \operatorname{Sel}^{(2)}\left(E^{d}\right)[2] \rightarrow \mathbb{Z} / 2 \mathbb{Z}=\{0,1\} .
$$

This pairing is bilinear, alternating, and non-degenerate on $Ш\left(E^{d}\right)[2] / 2 Ш\left(E^{d}\right)[4]$, or equivalently, on $\mathrm{Sel}^{(2)}\left(E^{d}\right) / 2 \mathrm{Sel}^{(4)}\left(E^{d}\right)$.

Cassels-Tate pairing

Our main tool for studying image of H^{d} in $\amalg\left(E^{d}\right)[2]$ is the Cassels-Tate pairing on $\amalg\left(E^{d}\right)$ with values in \mathbb{Q} / \mathbb{Z}, or more precisely, its extension to a pairing of Selmer group by (1)

$$
\langle\cdot, \cdot\rangle_{C T}: \mathrm{Sel}^{(2)}\left(E^{d}\right)[2] \times \mathrm{Sel}^{(2)}\left(E^{d}\right)[2] \rightarrow \mathbb{Z} / 2 \mathbb{Z}=\{0,1\} .
$$

This pairing is bilinear, alternating, and non-degenerate on $Ш\left(E^{d}\right)[2] / 2 \amalg\left(E^{d}\right)[4]$, or equivalently, on $\mathrm{Sel}^{(2)}\left(E^{d}\right) / 2 \mathrm{Sel}^{(4)}\left(E^{d}\right)$.

Thus, if we find a class $L \in \operatorname{Sel}^{(2)}\left(E^{d}\right)$ such that $\left\langle H^{d}, L\right\rangle C T=1$, we can conclude that $\iota\left(H^{d}\right) \neq 0$, and, hence, that H^{d} represents the element of order two in $\amalg\left(E^{d}\right)$.

Cassels-Tate pairing

Our main tool for studying image of H^{d} in $\amalg\left(E^{d}\right)[2]$ is the Cassels-Tate pairing on $\amalg\left(E^{d}\right)$ with values in \mathbb{Q} / \mathbb{Z}, or more precisely, its extension to a pairing of Selmer group by (1)

$$
\langle\cdot, \cdot\rangle_{C T}: \mathrm{Sel}^{(2)}\left(E^{d}\right)[2] \times \mathrm{Sel}^{(2)}\left(E^{d}\right)[2] \rightarrow \mathbb{Z} / 2 \mathbb{Z}=\{0,1\} .
$$

This pairing is bilinear, alternating, and non-degenerate on $Ш\left(E^{d}\right)[2] / 2 \amalg\left(E^{d}\right)[4]$, or equivalently, on $\mathrm{Sel}^{(2)}\left(E^{d}\right) / 2 \mathrm{Sel}^{(4)}\left(E^{d}\right)$.

Thus, if we find a class $L \in \operatorname{Sel}^{(2)}\left(E^{d}\right)$ such that $\left\langle H^{d}, L\right\rangle C T=1$, we can conclude that $\iota\left(H^{d}\right) \neq 0$, and, hence, that H^{d} represents the element of order two in $\amalg\left(E^{d}\right)$.
Note that in the situation when $\amalg\left(E^{d}\right)[2]=2 \amalg\left(E^{d}\right)[4]$, we can not obtain any information about H^{d} using Cassels-Tate pairing.

More quartics

Define

$$
\begin{align*}
& H_{1}: y^{2}=4 x^{4}-56 x^{2}+169 \in \operatorname{Sel}^{(2)}(E) \\
& H_{2}: y^{2}=18 x^{4}-24 x^{3}-32 x^{2}+40 x+34 \in \operatorname{Sel}^{(2)}(E), \\
& F_{1}: y^{2}=11 x^{4}+12 x^{3}+56 x^{2}+24 x+68 \in \operatorname{Sel}^{(2)}\left(E^{-1}\right), \tag{2}\\
& F_{2}: y^{2}=x^{4}+56 x^{2}+676 \in \operatorname{Sel}^{(2)}\left(E^{-1}\right)
\end{align*}
$$

More quartics

Define

$$
\begin{align*}
& H_{1}: y^{2}=4 x^{4}-56 x^{2}+169 \in \operatorname{Sel}^{(2)}(E), \\
& H_{2}: y^{2}=18 x^{4}-24 x^{3}-32 x^{2}+40 x+34 \in \operatorname{Sel}^{(2)}(E), \\
& F_{1}: y^{2}=11 x^{4}+12 x^{3}+56 x^{2}+24 x+68 \in \operatorname{Sel}^{(2)}\left(E^{-1}\right), \tag{2}\\
& F_{2}: y^{2}=x^{4}+56 x^{2}+676 \in \operatorname{Sel}^{(2)}\left(E^{-1}\right)
\end{align*}
$$

The pairings between the twists of these classes and H^{d} determine whether $\iota\left(H^{d}\right)=0$.

When is $\iota\left(H^{d}\right) \neq 0$?

Theorem

Let $d \in T$ such that $\amalg\left(E^{d}\right)[2] \neq 2 \amalg\left(E^{d}\right)[4]$. Assuming the parity conjecture for E^{d}, the following is true.
a) If $d<0$ and $d \equiv 1(\bmod 4)$ then $\left\langle H^{d}, F_{1}^{-d}\right\rangle_{C T}=1$. In particular, $\iota\left(H^{d}\right) \neq 0 \in \amalg\left(E^{d}\right)[2]$.
b) If $d<0$ and $d \equiv 3(\bmod 4)$ then $\iota\left(H^{d}\right) \neq 0$ if and only if $\left\langle H^{d}, F_{2}^{-d}\right\rangle_{C T}=1$.
c) If $d>0$ then $\iota\left(H^{d}\right) \neq 0$ if and only if $\left\langle H^{d}, H_{1}^{d}\right\rangle_{C T}=1$ or $\left\langle H^{d}, H_{2}^{d}\right\rangle_{C T}=1$.

How to compute Cassels-Tate pairing?

Theorem (Smith)

Let \tilde{E} be an elliptic curve over \mathbb{Q} with full 2-torsion over \mathbb{Q}. Let

$$
F, F^{\prime} \in H^{\mathbf{1}}(\mathbb{Q}, \tilde{E}[2])
$$

and let K be the minimal field over which F and F^{\prime} are trivial. Next, let S be any set of places of \mathbb{Q} which contains all places of bad reduction of \tilde{E}, the archimedean place and 2. Take \mathcal{D} to be the set of pairs $\left(d_{1}, d_{2}\right)$ of elements in \mathbb{Q}^{\times}such that d_{1} / d_{2} is square at all places of S, and $F^{d_{1}}$ and $F^{\prime d_{2}}$ are elements of 2-Selmer group of $\tilde{E}^{d_{1}}$ and $\tilde{E}^{d_{2}}$ respectively.

If $F \cup F^{\prime}$ is alternating, then $\left\langle F^{d_{1}}, F^{\prime d_{1}}\right\rangle_{C T}=\left\langle F^{d_{\mathbf{2}}}, F^{\prime d_{2}}\right\rangle_{C T}$ for all $\left(d_{1}, d_{2}\right) \in \mathcal{D}$. Otherwise, there is a quadratic extension L of K that is ramified only at primes in S such that

$$
\left\langle F^{d_{\mathbf{1}}}, F^{\prime d_{\mathbf{1}}}\right\rangle_{C T}=\left\langle F^{d_{\mathbf{2}}}, F^{\prime d_{\mathbf{2}}}\right\rangle_{C T}+\left[\frac{L / K}{\mathbf{d}}\right],
$$

for all $\left(d_{1}, d_{2}\right) \in \mathcal{D}$, where the Galois group $\operatorname{Gal}(L / K)$ is identified with $\frac{1}{2} \mathbb{Z} / \mathbb{Z}$. Here d is any ideal of K coprime to the conductor of L / K that has norm in $\mathbb{Q}^{\times} / \mathbb{Q}^{\times 2}$ equal to $\left(d_{1} / d_{2}\right)$. Such d exists for all $\left(d_{1}, d_{2}\right) \in \mathcal{D}$. We denote by $[\div]$ the Artin symbol.

Remark

We will call field L from the statement of Theorem above a governing field of F and F^{\prime}. It needs not to be unique.

Example of a governing field

Example

$$
L_{H^{-1}, F_{2}}=\mathbb{Q}(\sqrt{13}, \sqrt{-1}, \sqrt{-3})(\sqrt{3(1+\sqrt{13})(3+\sqrt{13})})
$$

Example of a governing field

Example

$$
L_{H^{-1}, F_{2}}=\mathbb{Q}(\sqrt{13}, \sqrt{-1}, \sqrt{-3})(\sqrt{3(1+\sqrt{13})(3+\sqrt{13})})
$$

Essentially, field of a governing field is a field of definition of suitable choosen 1-cochain $\Gamma: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mu_{2}$ with the property that $d \Gamma=H^{-1} \cup F_{2}$.

Lemma usefull for construction of Γ

Lemma

For integers a and b such that $a b$ is not a perfect square let $L_{a, b} / \mathbb{Q}(\sqrt{a}, \sqrt{b})$ be quadratic extension such that $L_{a, b} / \mathbb{Q}$ is Galois with Galois group isomorphic to dihedral group D_{4}. There exist a map

$$
\gamma_{a, b}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \xrightarrow{\text { res }} \operatorname{Gal}\left(L_{a, b} / \mathbb{Q}\right) \rightarrow \mu_{2}
$$

which satisfies $d \gamma_{a, b}=\chi_{a} \cup \chi_{b} \in H^{2}\left(\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}), \mu_{2}\right)$. Here $\mu_{2}=\{ \pm 1\}$ and the cup product $\chi_{a} \cup \chi_{b}$ is induced by the natural bilinear map $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \rightarrow \mathbb{Z} / 2 \mathbb{Z}$ (hence for $\sigma, \tau \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ we have that $\left(\chi_{a} \cup \chi_{b}\right)(\sigma, \tau)=-1$ if and only if $\sqrt{a}^{\sigma}=-\sqrt{a}$ and $\left.\sqrt{b}^{\tau}=-\sqrt{b}\right)$.

When is $\amalg\left(E^{d}\right)[2]=2 \amalg\left(E^{d}\right)[4] ?$

Proposition

Let $d \in T$ and (thus rank $\mathbb{F}_{\mathbb{F}_{2}} \operatorname{Sel}^{(2)}\left(E^{d}\right)=5$). We have that $Ш\left(E^{d}\right)[2]=2 \amalg\left(E^{d}\right)[4]$ (which include the case when
$\operatorname{rank}(E(\mathbb{Q}))=3$) if and only if
a) $\left\langle H^{d}, H_{i}^{d}\right\rangle_{C T}=0$ and $\left\langle H_{1}^{d}, H_{2}^{d}\right\rangle_{C T}=0$ for $i=1,2$ if $d>0$,
b) $\left\langle H^{d}, F_{i}^{-d}\right\rangle_{C T}=0$ and $\left\langle F_{1}^{-d}, F_{2}^{-d}\right\rangle_{C T}=0$ for $i=1,2$ if $d<0$.

Putting everything together - Chebotarev density theorem

Density result now follows from the description of Cassels-Tate pairing (the splitting condition in governing fields) and Chebotarev density theorem.

Thank you for your attention!

