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where f(x) € Z[x] is a monic polynomial of degree 4 with the
nonzero discriminant.

For a square-free integer d, we denote by HY : dy? = f(x) the
quadratic twist of H with respect to Q(v/d).
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Consider

S={deZ:H¥Q)#0 and |d| is a prime}.

Question
H(Q) # 07
Question
What is asymptotically the size of S(X) ={d € S : |d| < X} as
X = o0?

In this talk we address these questions in case when

H: y?>=(x*—-x-3)(x*+2x—12).



Known results

Ciperiani, Ozman: a criterion for HY(Q) # 0 in terms of the image
of the global trace map tro/a)/Q O E.

No estimates for the size of set S(X) are known.



Connection with Diophantine
quintuples



D(q)-m-tuples

For a rational number g, we say that the set of m rational
numbers is a rational D(q) — m-tuple if the product of any two its
distinct elements is g less then a square.
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Diophantus - rational D(1) quadruple:
{1/16,33/16,17/4,105,/16}
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Figure 2: Pierre de Fermat

Fermat - D(1) quadruples: {1,3,8,120}

1-341=2%2 1.-84+1=3> 1-120+1=11°
3-841=5% 3.120+1=19> 8-120+ 1 =312



Figure 3: Leonhard Euler



Figure 3: Leonhard Euler

Euler - D(1)-quintuple:
{1,3,8,120,777480,/8288641}
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Lots of interesting questions...

For more information: A. Dujella, What is... a Diophantine m-tuple?,
Notices of AMS, August 2016

Question
Does there exist a rational D(q)-quintuple for every q7

Drazi¢ (continuing the work of Dujella and Fuchs):
Assuming the parity conjecture, for at least 99.5% squarefree
integers g there are infinitely many D(q)-quintuples



Connection with quadratic twists of genus one curves

Dujella:
{ 1 16x—18)(—x2+2x+2), § 22 (x+5)(—x+3),(x—2)(5x+6), } (x2 +-4x—6)(—x2 +-4x-+6),4x }

IS D(%x2(x2—x—3)(x>+2x—12))-quintuple.
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Connection with quadratic twists of genus one curves

Dujella:
{ 162 +6x—18)(—x®+2x+2), L x® (x+5)(—x+3),(x—2)(5x+6),  (x?+4x—6)(—x? +4x+6),4x> }

IS D(%x2(x2—x—3)(x>+2x—12))-quintuple.

For squarefree integer d, if
HY - dy? = (x* — x — 3)(x® + 2x — 12)

for some rational (x, y) then by dividing the elements of quintuple

above with %xy we obtain D(d)-quintuple.

10



Question
Describe primes d for which H? has infinitely many rational points.
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Question
Describe primes d for which H? has infinitely many rational points.

Proposition
If d € 7 is square free integer such that HY(Q) # 0, then HY(Q) is
infinite.
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Results




Elliptic curve

Since quartic H has rational point at infinity, it is birationally
equivalent to the elliptic curve

E:y?=(x—9)(x—8)(x+18).

Denote by E9 its quadratic twist.
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Density result

Theorem

Assuming the parity conjecture for curves E9 and that 100% of
quadratic twists E9 have rank 0 or 1 (where |d| is prime), we have
that as X — oo

#5(X)

G +o(1) < 27(X)

< G+ O(l),

where C; = % and G = %.
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Some sets and fields

Let T=7+uT— where

T+ ={d>0:|d| is prime,(%):l,( )zl,dzl (mod 8)},

d
3
d
2

T— ={d<0:|d| is prime,(%):l,( )~(%):—1,d55,7 (mod 8)}.
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Some sets and fields

Let T=7+uT~ where
T+ ={d>0:|d| is prime,()=1,(

1,(9):(¢)=-1,d=57 (mod 8)}.

9)=1,d=1 (mod 8)},
d
2

T— ={d<0:|d| is prime(%)

Define
L = Q(V3, V=T, V2)\/8(1 + V3)(4 + 2V3),
L, = Q(V3,VI3)(y/4 + V13),
L, = Q(V—1,v2,V13)(\/4 +2V13),
Ly, = QUVIB, V=T, V3)(1/3(1 + VI3)(3 + VI3)).
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Main result

Corollary

Let d € T. Assuming the parity conjecture for E9, if d does not
split completely in Ly, 4, = LF, F, and

a) d =—p <0 with p=1mod 4 and p splits completely in
Ly, or

b) d = p > 0 and p splits completely in Ly p, and Ly p,,

then HY(Q) # (). Hence, for such d there exists infinitely many
D(d)-quintuples.
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Example
The set of d € T, |d| < 3000, for which Corollary implies that

HY(Q) # 0 is equal to

{—2857,—2833, —1993, —601, —337, —313, 1993, 2833, 2857 }.
For d = —313, we find a point

(—2107/1202,389073/1444804) € H313(Q)

which produces a D(—313)-quintuple

81062614477261 15660515591 9009021853 28246175292437 2532614
1313828969096 ’ 623554328 ’ 546517874 ' 1313828969096 ' 129691 | °
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Example
The set of d € T, |d| < 3000, for which Corollary implies that

HY(Q) # 0 is equal to

{—2857,—2833, —1993, —601, —337, —313, 1993, 2833, 2857 }.
For d = —313, we find a point

(—2107/1202,389073/1444804) € H313(Q)

which produces a D(—313)-quintuple

81062614477261 15660515591 9009021853 28246175292437 2532614
1313828969096 ’ 623554328 ’ 546517874 ' 1313828969096 ' 129691 | °

Remark
Results about infinite number of D(d)-quintuples obtained as

above from d € T where d < 0 are new. 16



More details




Local solvability

Proposition
For a square-free d € Z, the quartic H? is everywhere locally

solvable (ELS) if and only if for all primes p|d we have (&) =1 or
p=13.
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Selmer group

Starting observation: if H is ELS, then H represents na element
in Sel®(E9/Q).

18



Reformulation

If H? is ELS then HY(Q) = ) if and only if HY represents a
nontrivial element in III(E9)[2] (where III(E9) denotes the
Tate-Shafarevich group of £9), or more precisely, if and only if the
image of H? under the map ¢ : Sel®(E9) — MI(EY)[2] from the

exact sequence
0 — E9(Q)/2EY(Q) — Sel@(EY) & HI(EN)[2] — 0 (1)

is nonzero. In this case we say that H? represents the element of
order two in ITI(EY).
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Definition of T - root number of E¢

If rank(E9(Q)) = 0, then HY(Q) = () , hence, assuming the parity
conjecture and standard rank conjectures, the main contribution to
#5(X) comes from the d's for which the root number w(E?) is
=i,
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Definition of T - root number of E¢

If rank(E9(Q)) = 0, then HY(Q) = () , hence, assuming the parity
conjecture and standard rank conjectures, the main contribution to
#5(X) comes from the d's for which the root number w(E?) is
=i,

Proposition
For d = +p where p # 2,3,13 is a prime, the root number w(E?)

is equal to —1 if and only if
PY (P . (P) 1
2 3 13
Here (3) is the Kronecker symbol for odd d defined by

<d>_ 1, if|d|=1,7 mod (8)
2) ] -1, if|d|=3,5mod (8).
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Definition of T - nontrivial III(E)[2]

Moreover, if III(E9)[2] is trivial, then HY automatically has a
rational point, thus we furthermore focus on d’s for which, besides
w(E9) = —1, we have that generically ranky, III(E9)[2] > 0.
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Since E? : dy? = (x — 8)(x — 9)(x + 18) has full rational 2-torsion,
for such d’s generically we will have rankp, Sel®®)(E?) = 5 since
(again assuming the parity conjecture) we have that

rank, II1(E9)[2] is even (hence at least 2 if non-trivial).
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Definition of T - nontrivial III(E)[2]

Moreover, if III(E9)[2] is trivial, then HY automatically has a
rational point, thus we furthermore focus on d’s for which, besides
w(E9) = —1, we have that generically ranky, III(E9)[2] > 0.

Since E? : dy? = (x — 8)(x — 9)(x + 18) has full rational 2-torsion,
for such d’s generically we will have rankp, Sel®®)(E?) = 5 since
(again assuming the parity conjecture) we have that

rank, II1(E9)[2] is even (hence at least 2 if non-trivial).

These conditions altogether define set T.

21



Size of 2-Selmer group

Proposition (without using the parity conjecture)
For prime p > 3, let d = +p be such that (%) =1 and

w(E9) = —1. We have that rankg, Sel®(E9) =3 or 5. More
precisely, rankp, Sel®(E9) =5 if and only ifd =1 (mod 8) if
d>0o0rd=5,7 (mod 8) ifd < 0.
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Size of 2-Selmer group

Proposition (without using the parity conjecture)
For prime p > 3, let d = +p be such that (%) =1 and

w(E9) = —1. We have that rankg, Sel®(E9) =3 or 5. More
precisely, rankp, Sel®(E9) =5 if and only ifd =1 (mod 8) if
d>0o0rd=5,7 (mod 8) ifd < 0.

Proof: Mazur-Rubin method
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Cassels-Tate pairing

Our main tool for studying image of HY in III(E9)[2] is the
Cassels-Tate pairing on ITI(E?) with values in Q/Z, or more
precisely, its extension to a pairing of Selmer group by (1)

(-, Yer : Sel®(EY)[2] x Sel®®(E)[2] — Z/2Z = {0,1}.
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Cassels-Tate pairing

Our main tool for studying image of HY in III(E9)[2] is the
Cassels-Tate pairing on ITI(E?) with values in Q/Z, or more
precisely, its extension to a pairing of Selmer group by (1)

(-, Yer : Sel®(EY)[2] x Sel®®(E)[2] — Z/2Z = {0,1}.

This pairing is bilinear, alternating, and non-degenerate on
II(E9)[2] /2111(E?)[4], or equivalently, on Sel@)(E9)/2 Sel®)(EY).

Thus, if we find a class L € Sel®(E9) such that (H?, L)cr = 1,
we can conclude that «(H?) # 0, and, hence, that H? represents
the element of order two in III(E9).

Note that in the situation when IITI(E9)[2] = 2I11(E?)[4], we can

not obtain any information about H? using Cassels-Tate pairing. ’s



Define
Hy

F1
F>

L y? = 4x* — 56x% + 169 € Sel?(E),
H> :
L y? = 11x* 4+ 12x3 + 562 + 24x + 68 € Sel D (E~1),
:y? = x* +56x% + 676 € SelD(E~1).

y? = 18x* — 24x3 — 32x? + 40x + 34 € Sel®(E), )
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Define
Hy

F1
F>

- y? = 4x* — 56x% 4 169 € Sel®)(E),
H> :
L y? = 11x* 4+ 12x3 + 562 + 24x + 68 € Sel D (E~1),
:y? = x* +56x% + 676 € SelD(E~1).

y? = 18x* — 24x3 — 32x? + 40x + 34 € Sel®(E), )

The pairings between the twists of these classes and HY determine
whether ((H9) = 0.

24



When is ((H?) # 07

Theorem

Let d € T such that IIT(E9)[2] # 2111(E9)[4]. Assuming the parity
conjecture for E d the following is true.

a) Ifd <0andd=1 (mod 4) then (HY, F{%)cr =1. In
particular, «(H?) # 0 € TII(E9)[2].

b) Ifd <0 and d =3 (mod 4) then «(HY) # 0 if and only if
(HY, Fy ¥ er = 1.

c) Ifd >0 then t(H) # 0 if and only if (H?, Hf)cT =1 or
<Hd7 H2d>CT =1

25



How to compute Cassels-Tate pairing?

Theorem (Smith)

Let E be an elliptic curve over Q with full 2-torsion over Q. Let
F,F' € HY(Q, Ef2)),

and let K be the minimal field over which F and F' are trivial. Next, let S be any set of places of Q
which contains all places of bad reduction of E, the archimedean place and 2. Take D to be the set of
pairs (dy, d2) of elements in QX such that dy /da is square at all places of S, and FI and F'%2 are
elements of 2-Selmer group of E and E% respectively.

If FU F’ is alternating, then (F9  F'9) 1 = (F92 F'92) 1 for all (dy, d2) € D. Otherwise, there is a
quadratic extension L of K that is ramified only at primes in S such that

L/K
(FF'y or = (F2, F/¥2) cr + [7/ ] )

d
for all (dy, d2) € D, where the Galois group Gal(L/K) is identified with %Z/Z. Here d is any ideal of K

coprime to the conductor of L/K that has norm in Q% /Q* 2 equal to (dy /d3). Such d exists for all
(d1,d2) € D. We denote by {—} the Artin symbol.

Remark
We will call field L from the statement of Theorem above a governing field of F and F’. It needs not to
be unique.
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Example of a governing field

Example

Lyt p, = QWIS V=1, V3)(4/3(1 + VI3)(3 + VI3))
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Example of a governing field

Example

Lyt p, = QWIS V=1, V3)(4/3(1 + VI3)(3 + VI3))

Essentially, field of a governing field is a field of definition of
suitable choosen 1-cochain I : Gal(Q/Q) — up with the property
that df = H 1 U F,.
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Lemma usefull for construction of I

Lemma
For integers a and b such that ab is not a perfect square let

Lap/Q(V/a, V/'b) be quadratic extension such that L.p/Q is Galois
with Galois group isomorphic to dihedral group Dy. There exist a
map

Yab : Gal(Q/Q) = Gal(L,p/Q) — 2

which satisfies dvyap = xaU X € H*(Gal(Q/Q), p12). Here

p2 = {£1} and the cup product x, U xp is induced by the natural
bilinear map 7Z./27 x 7./27 — 7./27 (hence for o, T € Gal(Q/Q)
we have that (xa U x)(0,7) = —1 if and only if \/a’ = —\/a and
VB = V).
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When is III(£9)[2] = 2III(£9)[4]?

Proposition
Let d € T and (thus ranky, Sel®(EY) =5). We have that

II(E9)[2] = 2L11(E?)[4] (which include the case when
rank(E(Q)) = 3) if and only if
a) (HY, HY)cr =0 and (Hf,H)cr =0 fori = 1,2 ifd > 0,
b) (HY, F7er =0and (F[9 Fy % er =0 fori=1,2ifd <0.

1
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Putting everything together - Chebotarev density theorem

Density result now follows from the description of Cassels-Tate
pairing (the splitting condition in governing fields) and Chebotarev
density theorem.
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Thank you for your attention!
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