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The origin of everything

Fermat’s Last Theorem
The only solutions (a, b, c) to the equation

xn + yn + zn = 0, a, b, c ∈ Z, n ≥ 3

satisfy abc = 0.

Theorem (Wiles, Taylor–Wiles)
All semistable elliptic curves over Q are modular.

Can the modular method be applied to other equations?
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Can the modular method be applied to other equations?

Let A,B,C ∈ Z pairwise coprime. The equation

Axp + Byq = Cz r

where r , q, p ≥ 2 are exponents satisfying

1/r + 1/q + 1/p < 1

is called the Generalized Fermat Equation.

Definition
Let (a, b, c) be a solution to the GFE.

We say that (a, b, c) is trivial if abc = 0.

We say (a, b, c) is primitive if gcd(a, b, c) = 1.
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The modular method

1) Constructing the Frey curve. Attach a Frey elliptic curve
E/K to a putative solution of a Diophantine equation, where
K is some totally real field;
2) Modularity. Prove modularity of E/K ;
3) Irreducibility. Prove irreducibility of ρE ,p

4) Level lowering. Conclude via level lowering that
ρE ,p ≃ ρf,p where f is Hilbert eigenform over K with parallel
weight 2, trivial character and level among finitely many
explicit possibilities Ni ;
5) Contradiction.
5a) Compute all the Hilbert newforms f predicted in step 4;
5b) Show that ρE ,p ̸≃ ρf,p for all f computed in 5a).
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Darmon’s Frey curves over Q in 1997

“Can one refine the existing techniques based on ellip-
tic curves, modular forms, and Galois representations to
prove the generalized Fermat conjecture for all the expo-
nent listed in the above table?”
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The obstruction arising from solutions
The equation xp + yp = zp has solutions (0,±1,±1) and (1,−1, 0)

Ea,b : Y 2 = X (X − ap)(X + bp) ∆ = 24 · (abc)2p.

The equation x3 + y3 = zp also has solutions (2, 1,±3) for p = 2

Ea,b : Y 2 = X 3 + 3abX + b3 − a3, ∆ = −24 · 33 · c2p.

The equation x2 + y3 = zp also has solutions (±3, 2, 1) for all p

Ea,b : Y 2 = X 3 + 3bX + 2a ∆ = 2633cp.

Therefore, after modularity and level lowering, we can have

ρEa,b,p ≃ ρEsol,p

Theorem (Kraus, Darmon–Merel, Chen–Siksek, F.)
The equation x3 + y3 = zp has no non-trivial primitive solutions for
a ser of prime exponents with density ∼ 0.844.
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The multi-Frey approach to x r + y r = Czp

To avoid solutions we consider equations of the form

x r + y r = Czp where C ≥ 3

Fix r ≥ 5 be a prime and ζ = ζr a fixed primitive r -th root of unity.
Let K = Q(ζr )

+ be the maximal real subfield of Q(ζr ).
For an integer k we define the polynomial

fk(x , y) := x2 + ωkxy + y2 where ωk = ζk + ζ−k .

We have the following elementary factorization over K

x r + y r = (x + y)Φ(x , y) = (x + y)f1(x , y)f2(x , y) · · · f r−1
2
(x , y).

Let (k1, k2, k3) ∈ Z3 satisfy 0 ≤ k1 < k2 < k3 ≤ (r − 1)/2, and set

α = ωk3 − ωk2 , β = ωk1 − ωk3 , γ = ωk2 − ωk1 .
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The multi-Frey approach to x r + y r = Czp

Let (a, b, c) be a primitive solution to x r + y r = Czp. Set

Aa,b = αfk1(a, b), Ba,b = βfk2(a, b), Ca,b = γfk3(a, b)

satisfying Aa,b + Ba,b + Ca,b = 0.
We can consider the elliptic curve over K given by

Z
(k1,k2,k3)
a,b : Y 2 = X (X − Aa,b)(X + Ba,b).

having standard invariants:

c4(Za,b) = 24(A2
a,b − Ba,bCa,b)

c6(Za,b) = −25(Aa,b − Ba,b)(Ba,b − Ca,b)(Ca,b − Aa,b)

∆(Za,b) = 24 (Aa,bBa,bCa,b)
2 .

The discriminant is a constant times a p-th power !
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The multi-Frey approach to x r + y r = Czp

Let (k1, k2, k3) ∈ Z3 be as above with k1 ̸= 0.
The following is a consequence of Tate’s Algorithm

Proposition
Let NE denote the conductor of E = Ea,b = Z

(k1,k2,k3)
a,b . We have

1. For all primes q | C above q ̸≡ 1 (mod r) the curve E has
good reduction at q.

2. If r | a+ b then E has good reduction at qr .
3. If r ∤ a+ b then E has potentially good reduction at qr and

vqr (NE ) = 2.
4. For all primes q2 | 2, we have vq2(NE ) ∈ {2, 3, 4}.
5. the Serre level of ρE ,p is given by

N(ρE ,p) =
∏
q2|2

q
υq2 (NE )
2 q

υqr (NE )
r
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The multi-Frey approach to x r + y r = Czp

Let (k1, k2, k3) ∈ Z3 be as above with k1 = 0.
The following is a consequence of Tate’s Algorithm

Proposition
Let NF denote the conductor of F = Fa,b = Z

(0,k2,k3)
a,b .

1. A prime q ∤ 2r is of bad reduction for F if and only if it
divides (a+ b)fk2(a, b)fk3(a, b). In such case, F has bad
multiplicative reduction at q

2. If q | C and q ∤ 2r then vq(NF ) = 1.
3. We have vq2(NF ) ∈ {1, 2, 3, 4}
4. the Serre level of ρF ,p is given by

N(ρF ,p) =
∏
q2|2

q
υq2 (NF )
2 · qυqr (NF )

r ·
∏
q|C

q
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The equation x19 + y 19 = 5zp

Let K0 = Q(z) where z3 + z2 − 6z − 7 = 0.
Note that 2 and 5 are inert in K0 and K

We have [K : Q] = 9 and [K : K0] = 3.
There is a generator σ of Gal(K/K0) satisfying

σ(ω1) = ω7, σ(ω7) = ω8, σ(ω8) = ω1,

hence the Frey curve Ea,b = Z
(1,7,8)
a,b admits a model E0/K0.

Since [K0 : Q] is odd, the Eichler-Shimura conjecture holds
over K0. Therefore, by modularity and level lowering, for large
enough p, we have

ρE0,p ≃ ρf ,p ≃ ρW ,p

where W is an elliptic curve over K0 with full 2-torsion over K , no
2-torsion points over K0 and conductor equal to N(ρE0,p).
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The equation x19 + y 19 = 5zp

We know that υq2(NE0) ∈ {2, 3, 4}, and the exact valuations are
determined by a, b (mod 25). Using Magma to run through all the
congruence classes yields

N(ρE0,p) =

{
q4
2q

2
r if a+ b is odd and ab ≡ 2 (mod 4),

q3
2q

2
r otherwise,

(1)

Moreover, if a+ b is odd and ab ≡ 2 (mod 4), we have

N(ρ
E

δ1
0 ,p

) = q2
2q

2
r (2)

where E δ1
0 is the quadratic twist of E0 by the unit δ1 = −z2 + 5.
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The equation x19 + y 19 = 5zp

When 19 | a+ b, the curve Ea,b/K has good reduction at qr .

If 19 ∤ a+ b, then E δ2
a,b/K has good reduction at qr where

δ2 = −z2 − 3z − 3.
The curve Ea,b/K has good reduction at q5.
The trace of Frobenius aq5(E0) = (53 + 1)−#Ẽ0(Fq5) depends
only on a, b modulo 5. Using that 5 | a+ b, we have

aq5(E0) = aq5(E
δ1
0 ) = aq5(E

δ2
0 ) = aq5(E1,−1/K0) = −9

Therefore, taking twists by δi and traces at q5 in ρE0,p ≃ ρW ,p

together with the Weil bound imply

aq5(W ) = aq5(W
δ1) = aq5(W

δ2) = −9. (3)
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The equation x19 + y 19 = 5zp

All the above shows that, after twisting both sides of ρE0,p ≃ ρW ,p

by δ1 or δ2 or δ1δ2 when needed, we can assume that

ρE0,p ≃ ρW ,p

where W satisfies
1. full 2-torsion over K and trivial 2-torsion over K0;
2. good reduction away from q2 over K ;
3. conductor q2

2q
2
r or q3

2q
2
r over K0;

4. aq5(W /K ) = α3 + β3 = 2646, where α, β are the roots of the
characteristic polynomial of Frobenius at q5 over K0, that is
x2 + 9x + 125.

Can we compute ONLY these curves?
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Matschke tables for elliptic curves

Benjamin Matschke developed a novel S-unit equation solver which
he used to efficiently compute sets M(K , S) of elliptic curves over a
number field K with good reduction outside S .
For example, over Q, he computed all curves of conductor N such
that Rad(2N) ≤ 1000000. These include all elliptic curves in
Cremonas’ database (i.e. N ≤ 500000) and the largest conductor
included is 1727923968836352. Upcoming improvements to the
solver will compute particular subsets of M(S ,K ), where

1. the 2-torsion field of E is given,
2. the places of possible bad reduction of E over the 2-torsion

field is further restricted, and
3. some trace of Frobenius is prescribed (up to sign).

Remark: Applying 3. requires extra computations, so it depends
on the case wether it will be quicker than applying no restrictions.
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The equation x19 + y 19 = 5zp

Using the above algorithms, we computed all elliptic curves
satisfying the required properties. Unfortunately there are still
unnecessary computations going on.
We found no elliptic curves with conductor q2

2q
2
r and 24 elliptic

curves with conductor q3
2q

2
r .

Next, for each computed W , we show that, for large p, the
isomorphism ρE0,p ≃ ρW ,p is impossible unless W = E1,−1.
This is achieved by standard arguments comparing traces of
Frobenius at various primes.

We note 13 is inert in K0, and from ρE0,p ≃ ρE−1,1,p it follows

aq13(Ea,b) = aq13(E1,−1) = 67.

Since aq13(Ea,b) depends only on a, b modulo 13, a quick
computation shows that aq13(Ea,b) = 67 implies 13 | a+ b.
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The equation x19 + y 19 = 5zp

Finally, we now switch to the Frey curve Fa,b

Note that F is defined over K and not K0.
After modularity and level lowering, we have

ρFa,b,p ≃ ρW ,p

where W has full 2-torsion over K , conductor N(ρFa,b,p).
Moreover, F/K It has multiplicative reduction at q13 and

N(ρF ,p) = 2υq2 (NF ) · qυqr (NF )
19 · 5

therefore level lowering occurs at q13 which requires

aq13(W ) ≡ ±(Norm(q13) + 1) (mod p).

For large p this congruence gives a contradiction with the Weil
bound |aq(W )| ≤ 2

√
Norm(q).
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Concluding Remarks

We have proved

Theorem (F.–Matschke)
The equation x19 + y19 = 5zp has non non-trivial primitive integer
solutions for large enough p.

Remarks:
▶ Note that there were NO calculation of newforms or elliptic

curves required with the Frey curve F .
▶ The equations x r + y r = 3zp for r = 11, 17, 19 seem

approachable.
▶ We have computed all elliptic curves over the degree 8

maximal totally real subfield K ⊂ Q(ζ19) with good reduction
outside 2, full 2-torsion over K and aq3(W ) = ±118. Took
about 6 days, and computing all the curves seems impossible.

18 / 19



THANK YOU !!
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