Effective Sato-Tate conjecture for abelian varieties with applications

Francesc Fité ${ }^{1}$ (Universitat de Barcelona), jointly with A. Bucur and K.S. Kedlaya

Representation theory XVIII (Dubrovnik)

22/6/2023
${ }^{1}$ Funded by the Ramón y Cajal fellowship RYC2019-027378-I.

Notations

Throughout the talk:

- k is a number field.
- A / k is an abelian variety of dimension $g \geq 1$.
- N denotes the absolute conductor of A.
- For a prime ℓ,

$$
\varrho_{A, \ell}: G_{k} \rightarrow \operatorname{Aut}\left(V_{\ell}(A)\right)
$$

the ℓ-adic representation attached to A, where

$$
T_{\ell}(A):=\lim _{\leftarrow} A\left[\ell^{n}\right](\overline{\mathbb{Q}}) \simeq \mathbb{Z}_{\ell}^{2 g}, \quad V_{\ell}(A):=T_{\ell}(A) \otimes_{\mathbb{Z}_{\ell}} \mathbb{Q}_{\ell} .
$$

- \mathfrak{p} is a prime of k not dividing $N \ell$.

Equidistribution of Frobenius traces

- The Frobenius trace at \mathfrak{p} is

$$
a_{\mathfrak{p}}:=a_{\mathfrak{p}}(A):=\operatorname{Tr}\left(\varrho_{A, \ell}\left(\operatorname{Frob}_{\mathfrak{p}}\right)\right) .
$$

- By the Hasse-Weil bound, the normalized Frobenius trace

$$
\bar{a}_{\mathfrak{p}}:=\frac{a_{\mathfrak{p}}}{\operatorname{Nm}(\mathfrak{p})^{1 / 2}} \in[-2 g, 2 g]
$$

- What is the distribution of the sequence $\left\{\bar{a}_{p}\right\}_{p}$?

In oder words, for a subinterval $I \subseteq[-2 g, 2 g]$, does

exist and can it be predicted?

Equidistribution of Frobenius traces

- The Frobenius trace at \mathfrak{p} is

$$
a_{\mathfrak{p}}:=a_{\mathfrak{p}}(A):=\operatorname{Tr}\left(\varrho_{A, \ell}\left(\operatorname{Frob}_{\mathfrak{p}}\right)\right)
$$

- By the Hasse-Weil bound, the normalized Frobenius trace

$$
\bar{a}_{\mathfrak{p}}:=\frac{a_{\mathfrak{p}}}{\operatorname{Nm}(\mathfrak{p})^{1 / 2}} \in[-2 g, 2 g]
$$

- What is the distribution of the sequence $\left\{\bar{a}_{\mathfrak{p}}\right\}_{\mathfrak{p}}$?

In oder words, for a subinterval $I \subseteq[-2 g, 2 g]$, does

$$
\lim _{x \rightarrow \infty} \frac{\#\left\{\mathfrak{p} \mid \operatorname{Nm}(\mathfrak{p}) \leq x \text { and } \bar{a}_{\mathfrak{p}} \in I\right\}}{\#\{\mathfrak{p} \mid \operatorname{Nm}(\mathfrak{p}) \leq x\}}
$$

exist and can it be predicted?

The Sato-Tate group

- Denote by G_{ℓ} the Zariski closure of the image of $\varrho_{A, \ell}$ in $\mathrm{GSp}_{2 g} / \mathbb{Q}_{\ell}$.
- Let $\operatorname{MT}(A) / \mathbb{Q}$ be the Mumford-Tate group of A. Then

The Sato-Tate group

- Denote by G_{ℓ} the Zariski closure of the image of $\varrho_{A, \ell}$ in $G p_{2 g} / \mathbb{Q}_{\ell}$.

Conjecture (Mumford-Tate; Serre)

- Let $\operatorname{MT}(A) / \mathbb{Q}$ be the Mumford-Tate group of A. Then

$$
G_{\ell}^{0}=M T(A) \times \mathbb{Q} \mathbb{Q}_{\ell} \quad \text { for every prime } \ell .
$$

- There is an algebraic subgroup G of $\mathrm{GS}_{2 g} / \mathbb{Q}$, with $G^{0}=M T(A)$, such that
for every prime ℓ.

The Sato-Tate group

- Denote by G_{ℓ} the Zariski closure of the image of $\varrho_{A, \ell}$ in $G p_{2 g} / \mathbb{Q}_{\ell}$.

Conjecture (Mumford-Tate; Serre)

- Let $\operatorname{MT}(A) / \mathbb{Q}$ be the Mumford-Tate group of A. Then

$$
G_{\ell}^{0}=\mathrm{MT}(A) \times \mathbb{Q} \mathbb{Q}_{\ell} \quad \text { for every prime } \ell .
$$

- There is an algebraic subgroup G of $\mathrm{GSp}_{2 g} / \mathbb{Q}$, with $G^{0}=\mathrm{MT}(A)$, such that

$$
G_{\ell}=G \times_{\mathbb{Q}} \mathbb{Q}_{\ell} \quad \text { for every prime } \ell
$$

- From now on, we will assume the above conjecture.

The Sato-Tate group

- Denote by G_{ℓ} the Zariski closure of the image of $\varrho_{A, \ell}$ in $\mathrm{GSp}_{2 g} / \mathbb{Q}_{\ell}$.

Conjecture (Mumford-Tate; Serre)

- Let $\operatorname{MT}(A) / \mathbb{Q}$ be the Mumford-Tate group of A. Then

$$
G_{\ell}^{0}=\mathrm{MT}(A) \times_{\mathbb{Q}} \mathbb{Q}_{\ell} \quad \text { for every prime } \ell .
$$

- There is an algebraic subgroup G of $\mathrm{GSp}_{2 g} / \mathbb{Q}$, with $G^{0}=\mathrm{MT}(A)$, such that

$$
G_{\ell}=G \times_{\mathbb{Q}} \mathbb{Q}_{\ell} \quad \text { for every prime } \ell
$$

- From now on, we will assume the above conjecture.
$\mathrm{ST}(A)=$ maximal compact subgroup of $\left(G \cap \mathrm{Sp}_{2 g}\right)(\mathbb{C})$

The Sato-Tate group

- Denote by G_{ℓ} the Zariski closure of the image of $\varrho_{A, \ell}$ in $\mathrm{GSp}_{2 g} / \mathbb{Q}_{\ell}$.

Conjecture (Mumford-Tate; Serre)

- Let $\operatorname{MT}(A) / \mathbb{Q}$ be the Mumford-Tate group of A. Then

$$
G_{\ell}^{0}=\mathrm{MT}(A) \times_{\mathbb{Q}} \mathbb{Q}_{\ell} \quad \text { for every prime } \ell .
$$

- There is an algebraic subgroup G of $\mathrm{GSp}_{2 g} / \mathbb{Q}$, with $G^{0}=\mathrm{MT}(A)$, such that

$$
G_{\ell}=G \times_{\mathbb{Q}} \mathbb{Q}_{\ell} \quad \text { for every prime } \ell
$$

- From now on, we will assume the above conjecture.
- The Sato-Tate group of A is
$\mathrm{ST}(A)=$ maximal compact subgroup of $\left(G \cap \mathrm{Sp}_{2 g}\right)(\mathbb{C})$.

The Sato-Tate measure

- By construction

$$
\mathrm{ST}(A) \subseteq \mathrm{USp}(2 g),
$$

and hence

$$
\operatorname{Tr}: \mathrm{ST}(A) \rightarrow[-2 g, 2 g] .
$$

- The Sato-Tate measure of A is

$$
\mu=\operatorname{Tr}_{*}(\text { Haar measure of } \mathrm{ST}(A))
$$

Example

If A is an elliptic curve without complex multiplication, then

$$
\mathrm{ST}(A)=\mathrm{SU}(2), \quad \mu=\frac{1}{2 \pi} \sqrt{4-z^{2}} d z .
$$

The Sato-Tate conjecture

Sato-Tate conjecture v1
For any subinterval $I \subseteq[-2 g, 2 g]$, we have

$$
\lim _{x \rightarrow \infty} \frac{\#\left\{\mathfrak{p} \mid \operatorname{Nm}(\mathfrak{p}) \leq x \text { and } \overline{\mathrm{a}}_{\mathfrak{p}} \in I\right\}}{\#\{\mathfrak{p} \mid \operatorname{Nm}(\mathfrak{p}) \leq x\}}=\mu(I) .
$$

The Sato-Tate conjecture

Sato-Tate conjecture v1
For any subinterval $I \subseteq[-2 g, 2 g]$, we have

$$
\lim _{x \rightarrow \infty} \frac{\#\left\{\mathfrak{p} \mid \operatorname{Nm}(\mathfrak{p}) \leq x \text { and } \bar{a}_{\mathfrak{p}} \in I\right\}}{\#\{\mathfrak{p} \mid \operatorname{Nm}(\mathfrak{p}) \leq x\}}=\mu(I) .
$$

The prime number theorem gives
$\#\{\mathfrak{p} \mid \operatorname{Nm}(\mathfrak{p}) \leq x\}=\operatorname{Li}(x)+o\left(\frac{x}{\log (x)}\right), \quad \mathrm{Li}(x):=\int_{2}^{x} \frac{d t}{\log (t)} \sim \frac{x}{\log (x)}$.

For any subinterval $I \subseteq[-2 g, 2 g]$, we have

The Sato-Tate conjecture

Sato-Tate conjecture v1
For any subinterval $I \subseteq[-2 g, 2 g]$, we have

$$
\lim _{x \rightarrow \infty} \frac{\#\left\{\mathfrak{p} \mid \operatorname{Nm}(\mathfrak{p}) \leq x \text { and } \overline{\mathfrak{a}}_{\mathfrak{p}} \in I\right\}}{\#\{\mathfrak{p} \mid \operatorname{Nm}(\mathfrak{p}) \leq x\}}=\mu(I) .
$$

The prime number theorem gives
$\#\{\mathfrak{p} \mid \operatorname{Nm}(\mathfrak{p}) \leq x\}=\operatorname{Li}(x)+o\left(\frac{x}{\log (x)}\right), \quad \mathrm{Li}(x):=\int_{2}^{x} \frac{d t}{\log (t)} \sim \frac{x}{\log (x)}$.

Sato-Tate conjecture v2
For any subinterval $I \subseteq[-2 g, 2 g]$, we have

$$
\#\left\{\mathfrak{p} \mid \operatorname{Nm}(\mathfrak{p}) \leq x \text { and } \bar{a}_{\mathfrak{p}} \in I\right\}=\mu(I) \operatorname{Li}(x)+o\left(\frac{x}{\log (x)}\right) .
$$

Effective Sato-Tate conjecture

Effective prime number theorem

Assuming the Riemann hypothesis, for $0<\varepsilon<1 / 2$, we have

$$
\#\{\mathfrak{p} \mid \operatorname{Nm}(\mathfrak{p}) \leq x\}=\operatorname{Li}(x)+O_{k}\left(x^{1-\varepsilon}\right) \quad \text { for } x \gg 0
$$

In analogy, one may expect:
Effective Sato-Tate conjecture
For $0<\varepsilon<1 / 2$ and for every subinterval $/ \subseteq[-2 g, 2 g]$, we have

Effective Sato-Tate conjecture

Effective prime number theorem

Assuming the Riemann hypothesis, for $0<\varepsilon<1 / 2$, we have

$$
\#\{\mathfrak{p} \mid \operatorname{Nm}(\mathfrak{p}) \leq x\}=\operatorname{Li}(x)+O_{k}\left(x^{1-\varepsilon}\right) \quad \text { for } x \gg 0 .
$$

In analogy, one may expect:

Effective Sato-Tate conjecture

For $0<\varepsilon<1 / 2$ and for every subinterval $I \subseteq[-2 g, 2 g]$, we have

$$
\#\left\{\mathfrak{p} \mid \operatorname{Nm}(\mathfrak{p}) \leq x \text { and } \bar{a}_{\mathfrak{p}} \in I\right\}=\mu(I) \operatorname{Li}(x)+O_{k, g}\left(x^{1-\varepsilon}\right) \quad \text { for } x \gg, 0
$$

Main result

Theorem (Bucur-F.-Kedlaya)

Suppose:

- The Mumford-Tate conjecture holds;
- $\mathrm{ST}(A)$ is connected;
- GRH holds for the L-functions associated to the irreducible representations of $\mathrm{ST}(A)$.
Let $\mathfrak{g}=\operatorname{Lie}(\mathrm{ST}(A))$ and write
where $\left\{\begin{array}{l}q=\text { rank of } \mathfrak{g}, \\ \varphi=\text { number of positive roots of } \mathfrak{g}^{\text {ss }} .\end{array}\right.$

Main result

Theorem (Bucur-F.-Kedlaya)

Suppose:

- The Mumford-Tate conjecture holds;
- $\mathrm{ST}(A)$ is connected;
- GRH holds for the L-functions associated to the irreducible representations of $\mathrm{ST}(A)$.
Let $\mathfrak{g}=\operatorname{Lie}(\mathrm{ST}(A))$ and write

$$
\varepsilon:=\frac{1}{2(q+\varphi)}, \quad \text { where }\left\{\begin{array}{l}
q=\text { rank of } \mathfrak{g}, \\
\varphi=\text { number of positive roots of } \mathfrak{g}^{\mathrm{ss}} .
\end{array}\right.
$$

Then, for any subinterval $I \subseteq[-2 g, 2 g]$, we have

Main result

Theorem (Bucur-F.-Kedlaya)

Suppose:

- The Mumford-Tate conjecture holds;
- $\mathrm{ST}(A)$ is connected;
- GRH holds for the L-functions associated to the irreducible representations of $\mathrm{ST}(A)$.
Let $\mathfrak{g}=\operatorname{Lie}(\mathrm{ST}(A))$ and write

$$
\varepsilon:=\frac{1}{2(q+\varphi)}, \quad \text { where }\left\{\begin{array}{l}
q=\text { rank of } \mathfrak{g}, \\
\varphi=\text { number of positive roots of } \mathfrak{g}^{\mathrm{ss}} .
\end{array}\right.
$$

Then, for any subinterval $I \subseteq[-2 g, 2 g]$, we have

$$
\#\left\{\mathfrak{p} \mid \operatorname{Nm}(\mathfrak{p}) \leq x \text { and } \bar{a}_{\mathfrak{p}} \in I\right\}=\mu(I) \operatorname{Li}(x)+O_{k, g}\left(\frac{x^{1-\varepsilon}(\log (N x))^{2 \varepsilon}}{\log (x)^{1-4 \varepsilon}}\right)
$$

$$
\text { for } x \gg 10
$$

Predictions for dimensions $g=1$ and $g=2$

g	Splitting of A	ST(A)	q	φ	ε
1	E	SU(2)	1	1	1/4
1	$E_{C M}$	U(1)	1	0	1/2
2	S	USp(4)	2	4	1/12
2	$\begin{gathered} S_{R M} \\ E \times E^{\prime} \end{gathered}$	$\mathrm{SU}(2) \times \mathrm{SU}(2)$	2	2	1/8
2	$E \times E_{C M}^{\prime}$	$\mathrm{SU}(2) \times \mathrm{U}(1)$	2	1	1/6
2	$\begin{gathered} E_{C M} \times E_{C M}^{\prime} \\ S_{C M} \end{gathered}$	$\mathrm{U}(1) \times \mathrm{U}(1)$	2	0	1/4
2	$\begin{gathered} E^{2} \\ S_{Q M} \\ \hline \end{gathered}$	SU(2)	1	1	1/4
2	$E_{C M}^{2}$	U(1)	1	0	1/2

Predictions for dimensions $g=1$ and $g=2$

g	Splitting of A	ST(A)	q	φ	ε
1	E	SU(2)	1	1	1/4
1	$E_{C M}$	U(1)	1	0	1/2
2	S	USp(4)	2	4	1/12
2	$\begin{gathered} S_{R M} \\ E \times E^{\prime} \end{gathered}$	$\mathrm{SU}(2) \times \mathrm{SU}(2)$	2	2	1/8
2	$E \times E_{C M}^{\prime}$	$\mathrm{SU}(2) \times \mathrm{U}(1)$	2	1	1/6
2	$\begin{gathered} E_{C M} \times E_{C M}^{\prime} \\ S_{C M} \end{gathered}$	$\mathrm{U}(1) \times \mathrm{U}(1)$	2	0	1/4
2	$\begin{gathered} E^{2} \\ S_{Q M} \end{gathered}$	SU(2)	1	1	1/4
2	$E_{C M}^{2}$	U(1)	1	0	1/2

- Case E above (non CM e.c.) extends work by Murty (1983).
- Case $E \times E^{\prime}$ above (nonisogenous non CM e.c.) extends work by Bucur and Kedlaya (2015).

The Sato-Tate conjecture and L-functions

Let Γ be an irreducible representation of $\mathrm{ST}(A)$.

- One attaches to Γ an ℓ-adic representation $\Gamma \varrho_{A, \ell}: G_{k} \rightarrow \operatorname{Aut}\left(V_{\Gamma}\right)$.
- It is pure of some weight w_{Γ}.
- One attaches to $\Gamma \varrho_{A, \ell}$ an Euler product:

$$
L(\Gamma(A), s):=\prod_{\mathfrak{p}} \operatorname{det}\left(1-\Gamma \varrho_{A, \ell}\left(\operatorname{Frob}_{\mathfrak{p}}\right) \operatorname{Nm}(\mathfrak{p})^{-s-w_{\Gamma}} \mid V_{\Gamma}^{\ell_{\mathfrak{p}}}\right)^{-1}
$$

which is absolutely convergent for $\Re(s)>1$.
\square

The Sato-Tate conjecture and L-functions

Let Γ be an irreducible representation of $\operatorname{ST}(A)$.

- One attaches to Γ an ℓ-adic representation $\Gamma \varrho_{A, \ell}: G_{k} \rightarrow \operatorname{Aut}\left(V_{\Gamma}\right)$.
- It is pure of some weight w_{Γ}.
- One attaches to $\Gamma \varrho_{A, \ell}$ an Euler product:

$$
L(\Gamma(A), s):=\prod_{\mathfrak{p}} \operatorname{det}\left(1-\Gamma \varrho_{A, \ell}\left(\operatorname{Frob}_{\mathfrak{p}}\right) \operatorname{Nm}(\mathfrak{p})^{-s-w_{\Gamma}} \mid V_{\Gamma}^{\ell_{\mathfrak{p}}}\right)^{-1}
$$

which is absolutely convergent for $\Re(s)>1$.

Theorem (Serre '68)

Suppose that for every irreducible nontrivial representation Γ of $\mathrm{ST}(A)$
$L(\Gamma(A), s)$ extends to a holomorphic function on an open neighborhood of $\Re(s) \geq 1$ and that does not vanish at $\Re(s)=1$.
Then the Sato-Tate conjecture holds for A.

Ingredients in the proof (I): Murty's estimate

- $L(\Gamma(A), s)$ gives rise to a completed L-function

$$
\Lambda(\Gamma(A), s):=B^{s / 2} \cdot L(\Gamma(A), s) \cdot L_{\infty}(\Gamma(A), s)
$$

- $\Lambda(\Gamma(A), s)$ extends to a meromorphic function over \mathbb{C}. It has simple poles at $s=0,1$ if Γ is trivial and it is analytic otherwise.
\square
- All zeroes of $\Lambda(\Gamma(A), s)$ lie on the line $\Re(s)=1 / 2$.

Ingredients in the proof (I): Murty's estimate

- $L(\Gamma(A), s)$ gives rise to a completed L-function

$$
\Lambda(\Gamma(A), s):=B^{s / 2} \cdot L(\Gamma(A), s) \cdot L_{\infty}(\Gamma(A), s)
$$

Conjecture (Generalized Riemann hypothesis for $\Lambda(\Gamma(A), s)$)

- $\Lambda(\Gamma(A), s)$ extends to a meromorphic function over \mathbb{C}. It has simple poles at $s=0,1$ if Γ is trivial and it is analytic otherwise.
- $\Lambda(\Gamma(A), s)=\varepsilon \cdot \Lambda\left(\Gamma^{\vee}(A), 1-s\right)$ for some $\varepsilon \in \mathbb{C}$ with $|\varepsilon|=1$.
- All zeroes of $\Lambda(\Gamma(A), s)$ lie on the line $\Re(s)=1 / 2$.

Let Γ be nontrivial. Suppose that GRH holds for $\Lambda(\Gamma(A), s)$. Let $\chi=\operatorname{Tr}(\Gamma), d_{\chi}=\operatorname{dim}(\Gamma)$, and $w_{\chi}=w_{\Gamma}$. Then

Ingredients in the proof (I): Murty's estimate

- $L(\Gamma(A), s)$ gives rise to a completed L-function

$$
\Lambda(\Gamma(A), s):=B^{s / 2} \cdot L(\Gamma(A), s) \cdot L_{\infty}(\Gamma(A), s)
$$

Conjecture (Generalized Riemann hypothesis for $\Lambda(\Gamma(A), s)$)

- $\Lambda(\Gamma(A), s)$ extends to a meromorphic function over \mathbb{C}. It has simple poles at $s=0,1$ if Γ is trivial and it is analytic otherwise.
- $\Lambda(\Gamma(A), s)=\varepsilon \cdot \Lambda\left(\Gamma^{\vee}(A), 1-s\right)$ for some $\varepsilon \in \mathbb{C}$ with $|\varepsilon|=1$.
- All zeroes of $\Lambda(\Gamma(A), s)$ lie on the line $\Re(s)=1 / 2$.

Theorem (Murty '83; Bucur-Kedlaya 2015)
Let Γ be nontrivial. Suppose that GRH holds for $\Lambda(\Gamma(A), s)$. Let $\chi=\operatorname{Tr}(\Gamma), d_{\chi}=\operatorname{dim}(\Gamma)$, and $w_{\chi}=w_{\Gamma}$. Then

$$
\sum_{N m(\mathfrak{p}) \leq x} \chi\left(\operatorname{Frob}_{\mathfrak{p}}\right)=O_{k, g}\left(d_{\chi} x^{1 / 2} \log \left(N\left(x+w_{\chi}\right)\right)\right)
$$

Ingredients in the proof (II): the Vinogradov function

We construct a function:

with the properties:

- F_{I} is a continuous approximation of the characteristic function of $\pi^{-1} T_{r}^{-1}(I)$.

$$
\text { - } F_{I}(\theta)=\sum_{m \in \mathbb{K}^{9}} c_{m} e^{2 \pi i \theta \cdot m} \text { has }
$$

Fourier coefficients of rapid decay.

Ingredients of the proof (III): Gupta's formula

- $\varrho_{A, \ell}\left(\operatorname{Frob}_{\mathfrak{p}}\right)$ uniquely determines $\theta_{\mathfrak{p}} \in \operatorname{Conj}(\mathrm{ST}(A)) \simeq[0,1]^{a} / \mathcal{W}$.

We have $\operatorname{Tr}\left(\theta_{\mathfrak{p}}\right)=\bar{a}_{\mathfrak{p}}$.

- By construction

$$
\#\left\{\mathfrak{p} \mid N m(\mathfrak{p}) \leq x \text { and } \bar{a}_{\mathfrak{p}} \in I\right\} \approx \sum_{N m(\mathfrak{p}) \leq x} F_{I}\left(\theta_{\mathfrak{p}}\right)
$$

- F_{l} is a class function of $\operatorname{ST}(A)$, and hence is a linear combination of irreducible characters

Ingredients of the proof (III): Gupta's formula

- $\varrho_{A, \ell}\left(\operatorname{Frob}_{\mathfrak{p}}\right)$ uniquely determines $\theta_{\mathfrak{p}} \in \operatorname{Conj}(\mathrm{ST}(A)) \simeq[0,1]^{q} / \mathcal{W}$. We have $\operatorname{Tr}\left(\theta_{\mathfrak{p}}\right)=\bar{a}_{\mathfrak{p}}$.
- By construction

$$
\#\left\{\mathfrak{p} \mid N m(\mathfrak{p}) \leq x \text { and } \bar{a}_{\mathfrak{p}} \in I\right\} \approx \sum_{N m(\mathfrak{p}) \leq x} F_{I}\left(\theta_{\mathfrak{p}}\right)
$$

- F_{l} is a class function of $\mathrm{ST}(A)$, and hence is a linear combination of irreducible characters

$$
F_{l}(\theta)=\sum_{\theta \in \mathbb{Z}^{q}} c_{m} e^{2 \pi i \theta \cdot m}=\sum_{\chi} c_{\chi} \chi .
$$

- Gupta's formula expresses the c_{χ} in terms of the c_{m}. It allows to see that the c_{χ} are still of rapid decay.

Ingredients of the proof (III): Gupta's formula

- $\varrho_{A, \ell}\left(\operatorname{Frob}_{\mathfrak{p}}\right)$ uniquely determines $\theta_{\mathfrak{p}} \in \operatorname{Conj}(\mathrm{ST}(A)) \simeq[0,1]^{q} / \mathcal{W}$. We have $\operatorname{Tr}\left(\theta_{\mathfrak{p}}\right)=\bar{a}_{\mathfrak{p}}$.
- By construction

$$
\#\left\{\mathfrak{p} \mid N m(\mathfrak{p}) \leq x \text { and } \bar{a}_{\mathfrak{p}} \in I\right\} \approx \sum_{N m(\mathfrak{p}) \leq x} F_{l}\left(\theta_{\mathfrak{p}}\right)
$$

- F_{I} is a class function of $\mathrm{ST}(A)$, and hence is a linear combination of irreducible characters

$$
F_{l}(\theta)=\sum_{\theta \in \mathbb{Z}^{q}} c_{m} e^{2 \pi i \theta \cdot m}=\sum_{\chi} c_{\chi} \chi
$$

- Gupta's formula expresses the c_{χ} in terms of the c_{m}. It allows to see that the c_{χ} are still of rapid decay.

The three ingredients combined

- One has $c_{1} \approx \mu(I)$, and then

$$
\begin{aligned}
\#\left\{\mathfrak{p} \mid \operatorname{Nm}(\mathfrak{p}) \leq x \text { and } \bar{a}_{\mathfrak{p}} \in I\right\} & \approx \sum_{N m(\mathfrak{p}) \leq x} F_{I}\left(\theta_{\mathfrak{p}}\right) \\
& \approx \mu(I) \operatorname{Li}(x)+\sum_{\chi \neq 1} c_{\chi} \sum_{N m(\mathfrak{p}) \leq x} \chi\left(\theta_{\mathfrak{p}}\right)
\end{aligned}
$$

- For $\chi \neq 1$ Murty's estimate gives

- The rapid decay of the coefficients c_{χ} compensates the rapid growth of the dimensions d. which is exnonential in 6.

The three ingredients combined

- One has $c_{1} \approx \mu(I)$, and then

$$
\begin{aligned}
\#\left\{\mathfrak{p} \mid \operatorname{Nm}(\mathfrak{p}) \leq x \text { and } \bar{a}_{\mathfrak{p}} \in I\right\} & \approx \sum_{N m(\mathfrak{p}) \leq x} F_{I}\left(\theta_{\mathfrak{p}}\right) \\
& \approx \mu(I) \operatorname{Li}(x)+\sum_{\chi \neq 1} c_{\chi} \sum_{N m(\mathfrak{p}) \leq x} \chi\left(\theta_{\mathfrak{p}}\right) .
\end{aligned}
$$

- For $\chi \neq 1$ Murty's estimate gives

$$
\sum_{N m(\mathfrak{p}) \leq x} \chi\left(\operatorname{Frob}_{\mathfrak{p}}\right)=O_{k, g}\left(d_{\chi} x^{1 / 2} \log \left(N\left(x+w_{\chi}\right)\right)\right) .
$$

- The rapid decay of the coefficients c_{χ} compensates the rapid growth of the dimensions d_{χ}, which is exponential in φ.

The three ingredients combined

- One has $c_{1} \approx \mu(I)$, and then

$$
\begin{aligned}
\#\left\{\mathfrak{p} \mid \operatorname{Nm}(\mathfrak{p}) \leq x \text { and } \bar{a}_{\mathfrak{p}} \in I\right\} & \approx \sum_{N m(\mathfrak{p}) \leq x} F_{I}\left(\theta_{\mathfrak{p}}\right) \\
& \approx \mu(I) \operatorname{Li}(x)+\sum_{\chi \neq 1} c_{\chi} \sum_{N m(\mathfrak{p}) \leq x} \chi\left(\theta_{\mathfrak{p}}\right)
\end{aligned}
$$

- For $\chi \neq 1$ Murty's estimate gives

$$
\sum_{N m(\mathfrak{p}) \leq x} \chi\left(\operatorname{Frob}_{\mathfrak{p}}\right)=O_{k, g}\left(d_{\chi} x^{1 / 2} \log \left(N\left(x+w_{\chi}\right)\right)\right) .
$$

- The rapid decay of the coefficients c_{χ} compensates the rapid growth of the dimensions d_{χ}, which is exponential in φ.

Interval variant of Linnik's problem for abelian varieties

Corollary 1

Assume the hypotheses of the main result.
For any nonempty subinterval $I \subseteq[-2 g, 2 g]$, there exists a prime $\mathfrak{p} \nmid N$ such that $\bar{a}_{\mathfrak{p}} \in I$ and

$$
N m(\mathfrak{p})=O_{k, g, l}\left(\log (2 N)^{2} \cdot \log (\log (4 N))^{4}\right)
$$

- This generalizes work of Chen-Park-Swaminathan, who considered the case in which A is an elliptic curve.

One needs to ensure that:
The main term $\frac{x}{\log (x)}$ dominates the error term $\frac{x^{1-6} \log (N x)^{28}}{\log (x)^{1-48}}$
This amounts to asking $x \gg_{k, g, l} \log (x)^{4} \log (N x)^{2}$

Interval variant of Linnik's problem for abelian varieties

Corollary 1

Assume the hypotheses of the main result.
For any nonempty subinterval $I \subseteq[-2 g, 2 g]$, there exists a prime $\mathfrak{p} \nmid N$ such that $\bar{a}_{\mathfrak{p}} \in I$ and

$$
N m(\mathfrak{p})=O_{k, g, l}\left(\log (2 N)^{2} \cdot \log (\log (4 N))^{4}\right) .
$$

- This generalizes work of Chen-Park-Swaminathan, who considered the case in which A is an elliptic curve.

Proof

One needs to ensure that:
The main term $\frac{x}{\log (x)}$ dominates the error term $\frac{x^{1-\varepsilon} \log (N x)^{2 \varepsilon}}{\log (x)^{1-4 \varepsilon}}$.
This amounts to asking $x \gg_{k, g, l} \log (x)^{4} \log (N x)^{2}$.

Sign variant of Linnik's problem for two elliptic curves

- On this slide, let $A, A^{\prime} \mathbb{Q}$ be elliptic curves of conductors N, N^{\prime}.

Theorem (Faltings '83; corollary of the Isogeny theorem) If A. A^{\prime} are not isogenous, then there exists $p \nmid N N^{\prime}$ such that $a_{p}(A) \neq a_{p}\left(A^{\prime}\right)$

- Under GRH for Artin L-functions, such a p can be taken with $p=O\left(\log \left(N N^{\prime}\right)^{2} \log \left(\log \left(2 N N^{\prime}\right)\right)^{+2}\right)$

Sign variant of Linnik's problem for two elliptic curves

- On this slide, let $A, A^{\prime} \mathbb{Q}$ be elliptic curves of conductors N, N^{\prime}.

Theorem (Faltings '83; corollary of the Isogeny theorem)
If A, A^{\prime} are not isogenous, then there exists $p \nmid N N^{\prime}$ such that $a_{p}(A) \neq a_{p}\left(A^{\prime}\right)$.

- Under GRH for Artin L-functions, such a p can be taken with

$$
p=O\left(\log \left(N N^{\prime}\right)^{2} \log \left(\log \left(2 N N^{\prime}\right)\right)^{12}\right)
$$

(Serre '86; using "Effective Chebotarev").

Sign variant of Linnik's problem for two elliptic curves

- On this slide, let $A, A^{\prime} / \mathbb{Q}$ be elliptic curves of conductors N, N^{\prime}.

Theorem (Faltings '83; corollary of the Isogeny theorem) If A, A^{\prime} are not isogenous, then there exists $p \nmid N N^{\prime}$ such that $a_{p}(A) \neq a_{p}\left(A^{\prime}\right)$.

- Under GRH for Artin L-functions, such a p can be taken with

$$
p=O\left(\log \left(N N^{\prime}\right)^{2} \log \left(\log \left(2 N N^{\prime}\right)\right)^{12}\right)
$$

(Serre '86; using "Effective Chebotarev").
\qquad

Sign variant of Linnik's problem for two elliptic curves

- On this slide, let $A, A^{\prime} / \mathbb{Q}$ be elliptic curves of conductors N, N^{\prime}.

Theorem (Faltings '83; corollary of the Isogeny theorem) If A, A^{\prime} are not isogenous, then there exists $p \nmid N N^{\prime}$ such that $a_{p}(A) \neq a_{p}\left(A^{\prime}\right)$.

- Under GRH for Artin L-functions, such a p can be taken with

$$
p=O\left(\log \left(N N^{\prime}\right)^{2} \log \left(\log \left(2 N N^{\prime}\right)\right)^{12}\right)
$$

(Serre '86; using "Effective Chebotarev").
Theorem (Harris '09; corollary of Sato-Tate for $A \times A^{\prime}$ over \mathbb{Q})
If A, A^{\prime} are not isogenous, then there exists $p \nmid N N^{\prime}$ such that $a_{p}(A) \cdot a_{p}\left(A^{\prime}\right)<0$.

- Under GRH for Symmetric power L-functions, such a p can be taken with
(Bucur and Kedlaya 2015; using "Effective Sato-Tate").

Sign variant of Linnik's problem for two elliptic curves

- On this slide, let $A, A^{\prime} / \mathbb{Q}$ be elliptic curves of conductors N, N^{\prime}.

Theorem (Faltings '83; corollary of the Isogeny theorem)

If A, A^{\prime} are not isogenous, then there exists $p \nmid N N^{\prime}$ such that $a_{p}(A) \neq a_{p}\left(A^{\prime}\right)$.

- Under GRH for Artin L-functions, such a p can be taken with

$$
p=O\left(\log \left(N N^{\prime}\right)^{2} \log \left(\log \left(2 N N^{\prime}\right)\right)^{12}\right)
$$

(Serre '86; using "Effective Chebotarev").
Theorem (Harris '09; corollary of Sato-Tate for $A \times A^{\prime}$ over \mathbb{Q})
If A, A^{\prime} are not isogenous, then there exists $p \nmid N N^{\prime}$ such that $a_{p}(A) \cdot a_{p}\left(A^{\prime}\right)<0$.

- Under GRH for Symmetric power L-functions, such a p can be taken with

$$
p=O\left(\log \left(N N^{\prime}\right)^{2} \log \left(\log \left(2 N N^{\prime}\right)\right)^{6}\right)
$$

(Bucur and Kedlaya 2015; using "Effective Sato-Tate").

Sign variant of Linnik's problem for two abelian varieties

Corollary 2

Let A, A^{\prime} be abelian varieties. Suppose:

- The Mumford-Tate conjecture holds for A and A^{\prime};
- $\mathrm{ST}(A), \mathrm{ST}\left(A^{\prime}\right)$ are connected;
- GRH holds for $\Lambda\left(\Gamma(A) \otimes \Gamma^{\prime}\left(A^{\prime}\right), s\right)$ for all irreducible rep. Γ, Γ^{\prime}.
- $\mathrm{ST}\left(A \times A^{\prime}\right) \simeq \mathrm{ST}(A) \times \mathrm{ST}\left(A^{\prime}\right)$.

Then, there exists $\mathfrak{p} \nmid N N^{\prime}$ such that $a_{\mathfrak{p}}(A) \cdot a_{\mathfrak{p}}\left(A^{\prime}\right)<0$ and

$$
N m(\mathfrak{p})=O_{k, g}\left(\log \left(2 N N^{\prime}\right)^{2} \log \left(\log \left(4 N N^{\prime}\right)\right)^{6}\right) .
$$

- Condition $\mathrm{ST}\left(A \times A^{\prime}\right) \simeq \mathrm{ST}(A) \times \mathrm{ST}\left(A^{\prime}\right)$ can be replaced by the weaker condition $\operatorname{Hom}\left(A, A^{\prime}\right)=0$.

