The Zelevinsky classification of unramified representations of the metaplectic group

Igor Ciganović
Faculty of Science - University of Zagreb
joint work with Neven Grbac
Representation theory XVIII, Dubrovnik, IUC
June 2023

F nonarchimedean field, char $F=0$,
\mathcal{O} ring of integers
$\mathfrak{p}=(\pi)$ maximal ideal
$q=p^{f}=|\mathcal{O} / \mathfrak{p}|$
$p \neq 2$ residual characteristic
Hilbert simbol of F is the function:

$$
(,): F^{\times} \times F^{\times} \longrightarrow\{ \pm 1\}
$$

$(a, b)_{F}=\left\{\begin{aligned} 1, & \text { if } z^{2}=a x^{2}+b y^{2} \text { has a non trivial solution in } F^{3}, \\ -1, & \text { else. }\end{aligned}\right.$
$p \neq 2 \Longrightarrow\left(\mathcal{O}^{\times}, \mathcal{O}^{\times}\right)_{F}=1$.
$\left|\left.\right|_{F}\right.$ normalized absolute value on $F,|\pi|_{F}=\frac{1}{q}$
ν character of $G L(n, F)$:

$$
\nu(g)=|\operatorname{det} g|_{F}, g \in G L(n, F)
$$

$W_{n} 2 n$ dimensional vector space over F.
\langle,$\rangle nondegenerate bilinear antisymmetric form on W_{n}$,
$(e)=\left\{e_{1}, \ldots, e_{n}, e_{1}^{\prime}, \ldots, e_{n}^{\prime}\right\}$ basis of W_{n} such that:

$$
\left\langle e_{i}, e_{j}\right\rangle=0,\left\langle e_{i}^{\prime}, e_{j}^{\prime}\right\rangle=0,\left\langle e_{i}, e_{j}^{\prime}\right\rangle=\delta_{i, j}, i, j=1, \ldots, n .
$$

$\operatorname{Sp}\left(W_{n}\right)$, acts on W_{n}, on right, and we have a matrix representation

$$
S p(n, F)=\left\{h \in G L(2 n, F) \left\lvert\, h\left(\begin{array}{cc}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right) h^{t}=\left(\begin{array}{cc}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right)\right.\right\}
$$

where I_{n} is unit $n \times n$ matrix.

$$
\operatorname{Sp}(n, \mathcal{O})=\left\{\left(a_{i, j}\right) \in \operatorname{Sp}(n, F) \mid a_{i, j} \in \mathcal{O}\right\}
$$

is a maximal compact subgroup. It is open, and it is the stabilizer of the \mathcal{O} lattice of the base (e).
The stabilizer of the \mathcal{O} lattice of $\left\{\pi^{-1} e_{1}, \ldots, \pi^{-1} e_{n}, e_{1}^{\prime}, \ldots, e_{n}^{\prime}\right\}$ gives the other conjugacy class of maximal compact subgroups.

The metaplectic group,

$$
\widetilde{S p(n, F)}=S p(n, F) \times \mu_{2}, \text { as a set }
$$

where $\mu_{2}=\{ \pm 1\}$, is the unique non-trivial two-fold central extension of the $S p(n, F)$:

$$
1 \longrightarrow\{-1,1\} \xrightarrow{i} \widetilde{\longrightarrow} S p(n, F) \xrightarrow{p} S p(n, F) \longrightarrow 1
$$

The multiplication is given by

$$
\left[h_{1}, \epsilon_{1}\right]\left[h_{2}, \epsilon_{2}\right]=\left[h_{1} h_{2}, \epsilon_{1} \epsilon_{2} c_{R a o}\left(h_{1}, h_{2}\right)\right], h_{i} \in \operatorname{Sp}(n, F), \epsilon_{i} \in \mu_{2}
$$

where $c_{\text {Rao }}$ is the Rao cocycle.
$S p(n, \mathcal{O})$ splits into its cover, making $\widetilde{S p(n, F)}$ an $/$-group.

Similarly,

$$
G L(n, F) \rightarrow S p(n, F), \quad g \mapsto\left[\begin{array}{cc}
g & 0 \\
0 & g^{-t}
\end{array}\right], g \in G L(n, F)
$$

where ()$^{-t}$ is an inverse of the transposition.

$$
\widetilde{G L(n, F)}=G L(n, F) \times \mu_{2} \quad \text { as a set, and }
$$

$\left[g_{1}, \epsilon_{1}\right]\left[g_{2}, \epsilon_{2}\right]=\left[g_{1} g_{2}, \epsilon_{1} \epsilon_{2}\left(\operatorname{det} h_{1}, \operatorname{det} h_{2}\right)_{F}\right], g_{i} \in G L(n, F), \epsilon_{i} \in \mu_{2}$
We have

$$
1 \longrightarrow \mu_{2} \xrightarrow{i} \widetilde{G L(n, F)} \xrightarrow{p} G L(n, F) \longrightarrow 1
$$

The mapping $g \mapsto[g, 1]$ is splitting of $G L(n, \mathcal{O})$, the maximal compact subgroup of $G L(n, F)$, into $G L(n, \mathcal{O})$.

Let G be either $G L(n, F)$, or $S p(n, F)$, and $K=G L(n, \mathcal{O})$, or $S p(n, \mathcal{O})$, the fixed maximal compact subgroup of G. Let \bar{K} be the image of the splitting of K into its cover.

A smooth representation of $\widetilde{G}(G)$ is said to be unramified if it contains a nontrivial vector fixed by $\bar{K}(K)$.

Fix a non-trivial additive character ψ of F of even conductor. Define

$$
\chi_{\psi}([g, \epsilon])=\epsilon \gamma\left(\psi_{\frac{1}{2}}\right) \gamma\left(\psi_{\frac{\operatorname{det} g}{2}}\right)^{-1}, \quad g \in G L(n, F), \epsilon \in \mu_{2},
$$

where $\psi_{a}(x)=\psi(a x)$, and $\gamma(\psi)$ is the Weil index, an 8-th root of unity associated to ψ by Weil.
χ_{ψ} is a genuine unramified representation of $\widetilde{G L(n, F)}$, moreover

$$
\begin{aligned}
\pi & \longmapsto \chi_{\psi} \pi \\
\operatorname{Irr}_{u n r} G L(n, F) & \longleftrightarrow \operatorname{Irr}_{u n r} G \widetilde{G(n, F)} .
\end{aligned}
$$

Fix B the Borel subgroup of $S p(n, F)$ of upper triangular matrices. Standard parabolic subgroups of $S p(n, F)$ are parameterized by ordered partitions of n

$$
s=\left(n_{1}, \ldots, n_{k} ; n_{0}\right) \longleftrightarrow P_{s}=M_{s} N_{s}
$$

where M_{s} is the Levi factor and N_{s} the unipotent radical. Let $\widetilde{P_{s}}$ and $\widetilde{M_{s}}$ be the preimages of P_{s} and M_{s} in $\widetilde{S p(n, F)}$ and $N_{s}^{\prime}=N_{s} \times\{1\}$. We have parabolic subgroups in $S p(n, F)$:

$$
\widetilde{P_{s}}=\widetilde{M_{s}} N_{s}^{\prime}
$$

and an epimorphism ϕ with finite kernel

$$
G \widetilde{G L\left(n_{1}, F\right)} \times \cdots \times G \widetilde{G\left(n_{k}, F\right)} \times \widetilde{S p\left(n_{0}, F\right)} \xrightarrow{\phi} \widetilde{M_{s}} .
$$

We have functors of normalised parabolic induction and Jacquet module

$$
\begin{array}{r}
\operatorname{Ind} \frac{\widetilde{M}_{s}}{\widetilde{\widetilde{M}}_{s}}: A \lg \widetilde{M}_{s} \rightarrow A \lg \widetilde{G}, \\
r_{s}=\operatorname{Jacq}_{s}=\operatorname{Jacq} \frac{\widetilde{\tilde{M}_{s}}}{\sim}: A \lg \widetilde{G} \rightarrow A \lg \widetilde{M}_{s}
\end{array}
$$

We have the Frobenius reciprocity: for σ in $\operatorname{Alg} \widetilde{G}$ and ρ in $\operatorname{Alg} \widetilde{M}_{s}$,

$$
\operatorname{Hom}_{\widetilde{G}}\left(\sigma, \operatorname{Ind} \frac{\widetilde{M_{s}}}{\widetilde{G}}(\rho)\right) \cong \operatorname{Hom}_{\widetilde{M_{s}}}\left(\operatorname{Jacq}_{\underset{\widetilde{M}_{s}}{\widetilde{G}}}(\sigma), \rho\right) .
$$

For π_{1}, π_{2} smooth irreducible representations of $G L$

$$
\chi_{\psi}\left(\pi_{1} \times \pi_{2}\right) \cong \chi_{\psi} \pi_{1} \times \chi_{\psi} \pi_{2}
$$

If π is an irreducible unramified representation of $G L(n, F)$, then there exist unramified characters $\chi_{1}, \ldots, \chi_{n}$ of F^{\times}such that

$$
\pi \leq \chi_{1} \times \cdots \times \chi_{n}
$$

is a unique irreducible unramified subquotient.
If π is an irreducible unramified (genuine) representation of $S p(n, F)$, then there exist unramified characters $\chi_{1}, \ldots, \chi_{n}$ of F^{\times} such that

$$
\pi \leq \chi_{\psi} \chi_{1} \times \cdots \times \chi_{\psi} \chi_{n} \rtimes \omega_{0}
$$

is a unique irreducible unramified subquotient. Here ω_{0} is an irreducible representation of $\mu_{2}=\{ \pm 1\}$

Lemma. Let G be either $G L(n, F)$ or $S p(n, F)$, and K the fixed maximal compact subgroup of G. Let \bar{K} be the image of the splitting of K. In the notation as above, we have
(1) $\widetilde{G}=\widetilde{P_{s}} \bar{K}$ (Iwasawa decomposition)
(2) $\widetilde{P_{s}} \cap \bar{K}=\left(\widetilde{M_{s}} \cap \bar{K}\right)\left(N_{s}^{\prime} \cap \bar{K}\right)$
(3) if $G=G L(n, F)$ then,

$$
\overline{G L\left(n_{1}, \mathcal{O}\right)} \times \cdots \times \overline{G L\left(n_{k}, \mathcal{O}\right)} \stackrel{\phi}{\cong} \widetilde{M}_{s} \cap \bar{K}
$$

(9) if $G=S p(n, F)$ then,

$$
\overline{G L\left(n_{1}, \mathcal{O}\right)} \times \cdots \times \overline{G L\left(n_{k}, \mathcal{O}\right)} \times \overline{S p\left(n_{0}, \mathcal{O}\right)} \stackrel{\phi}{\cong} \widetilde{M_{s}} \cap \bar{K}
$$

Lemma. Let G be either $G L(n, F)$ or $S p(n, F)$, and K its fixed maximal compact subgroup.
(1) Let σ be a smooth $\widetilde{M}_{s} \cap \bar{K}$-spherical representation of \widetilde{M}_{s}. Then $\operatorname{In} d \frac{\widetilde{G}}{\bar{M}_{s}}(\sigma)$ is \bar{K}-spherical.
(2) Let σ be a smooth representation of finite length of \widetilde{M}_{s} such that $\operatorname{Ind} \frac{\widetilde{G}}{\widetilde{M}_{s}}(\sigma)$ contains a \bar{K}-spherical subquotient. Then σ is $\widetilde{M_{s}} \cap \bar{K}$-spherical.
(3) Let π_{1}, \ldots, π_{k} be smooth genuine representations of finite length of $G L\left(n_{i}, F\right), i=1, \ldots, k$, and ρ a smooth genuine representation of finite length of $\widetilde{\operatorname{Sp(n_{0},F)} \text {. Then }}$ $\pi_{1} \times \cdots \times \pi_{k}$ (resp., $\pi_{1} \times \cdots \times \pi_{k} \rtimes \rho$) is unramified if and only if π_{i} 's (resp., π_{i} 's and ρ) are unramified.

Let χ be a character of F^{\times}and $\alpha, \beta \in \mathbb{R}$ such that $\alpha+\beta+1 \in \mathbb{Z}_{>0}$.

We have a unique irreducible subrepresentation, called Zelevinsky segment representation of the induced representation

$$
\chi_{\psi}(\chi \circ \operatorname{det}) \nu^{\frac{-\beta+\alpha}{2}} \cong \zeta\left(-\beta, \alpha, \chi_{\psi} \chi\right) \longrightarrow \chi_{\psi} \nu^{-\beta} \chi \times \cdots \times \chi_{\psi} \nu^{\alpha} \chi
$$

Lemma. Let π be a genuine unramified irreducible representation of $\widetilde{G L(n, F)}$. Then there exist a sequence of Zelevinsky segment representations, unique up to permutation, such that:

$$
\pi \cong \zeta\left(-\beta_{1}, \alpha_{1}, \chi_{\psi} \chi_{1}^{u}\right) \times \cdots \times \zeta\left(-\beta_{k}, \alpha_{k}, \chi_{\psi} \chi_{k}^{u}\right)
$$

where $\chi_{1}^{u}, \ldots, \chi_{k}^{u}$ are unramified unitary characters of F^{\times}.

Let σ be a genuine irreducible unramified representation of $\widetilde{S p(n, F)}$. We call σ negative if for every embedding of form $\sigma \hookrightarrow \chi_{1} \chi_{\psi} \times \cdots \times \chi_{n} \chi_{\psi} \rtimes \omega_{0}$, where $\chi_{1}, \ldots, \chi_{n}$ are characters of F^{\times}, we have

$$
\begin{aligned}
& e\left(\chi_{1}\right) \leq 0 \\
& e\left(\chi_{1}\right)+e\left(\chi_{2}\right) \leq 0 \\
& \ldots \\
& e\left(\chi_{1}\right)+\cdots+e\left(\chi_{n}\right) \leq 0 .
\end{aligned}
$$

If above inequalities are strict, σ is said to be strongly negative.

Theorem 1. (Weak form) Let σ be a genuine irreducible unramified representation of $\operatorname{Sp}(n, F)$. Then, either σ is negative, or there exist $k \in \mathbb{Z}_{>0}, \alpha_{i}, \beta_{i} \in \mathbb{R}$ such that $\alpha_{i}-\beta_{i}, \alpha_{i}+\beta_{i}+1 \in \mathbb{Z}_{>0}$, unitary unramified characters χ_{i} of $F^{\times}, i=1, \ldots, k$, and a genuine unramified irreducible negative representation $\sigma_{\text {neg }}$ of the metaplectic group such that

$$
\sigma \hookrightarrow \zeta\left(-\beta_{1}, \alpha_{1}, \chi_{\psi} \chi_{1}\right) \times \cdots \times \zeta\left(-\beta_{k}, \alpha_{k}, \chi_{\psi} \chi_{k}\right) \rtimes \sigma_{n e g}
$$

as unique irreducible subrepresentation, and $\zeta\left(-\beta_{1}, \alpha_{1}, \chi_{\psi} \chi_{1}\right) \times \cdots \times \zeta\left(-\beta_{k}, \alpha_{k}, \chi_{\psi} \chi_{k}\right)$ is irreducible. Data $\zeta\left(-\beta_{1}, \alpha_{1}, \chi_{\psi} \chi_{1}\right), \ldots, \zeta\left(-\beta_{k}, \alpha_{k}, \chi_{\psi} \chi_{k}\right)$ are unique up to permutation, while $\sigma_{\text {neg }}$ is unique up to an isomorphism.

Theorem 2. Let σ be a genuine irreducible unramified negative representation of $\operatorname{Sp}(n, F)$. Then, either σ is strongly negative, or there exist $k \in \mathbb{Z}_{>0}$, unramified unitary characters $\chi_{1}, \ldots, \chi_{k}$ of $F^{\times}, \beta_{i} \in \mathbb{R}$ such that $2 \beta_{i}+1 \in \mathbb{Z}_{>0}, i=1, \ldots, k$, and a genuine irreducible unramified strongly negative representation $\sigma_{s n}$ of the metaplectic group such that

$$
\sigma \hookrightarrow \zeta\left(-\beta_{1}, \beta_{1}, \chi_{\psi} \chi_{1}\right) \times \cdots \times \zeta\left(-\beta_{k}, \beta_{k}, \chi_{\psi} \chi_{n}\right) \rtimes \sigma_{s n} .
$$

Data $\zeta\left(-\beta_{1}, \beta_{1}, \chi_{\psi} \chi_{1}\right), \ldots, \zeta\left(-\beta_{k}, \beta_{k}, \chi_{\psi} \chi_{k}\right)$ are unique up to permutation and replacing χ_{i} with χ_{i}^{-1}, while $\sigma_{s n}$ is unique up to isomorphism.

Theta correspondance (with respect to ψ)

$$
\operatorname{Irr} \operatorname{Mp}(W) \longleftrightarrow \operatorname{Irr} S O\left(V^{+}\right) \cup \operatorname{Irr} S O\left(V^{-}\right)
$$

Let $\chi_{0}=\nu^{\pi \sqrt{-1} / \ln q}$ be the unique unramified character of order two, and 1 the trivial character of F^{\times}.
For $\chi \in\left\{1, \chi_{0}\right\}$

$$
\sigma \hookrightarrow \chi_{\psi} \chi \nu^{-\frac{1}{2}} \rtimes \omega_{0} \quad \text { (reduces) }
$$

is unramified, and strongly negative.

$$
\operatorname{Jacq}_{(1,1)}(\sigma) \cong \chi_{\psi} \chi \nu^{-\frac{1}{2}} \otimes \omega_{0}
$$

$$
\text { Let } \chi \in\left\{1, \chi_{0}\right\} \text {. }
$$

Jordan block is a pair $\left(m, \chi_{\psi} \chi\right)$, where m is a positive integer and $\chi \in\left\{1, \chi_{0}\right\}$. Jord is a set built of Jordan blocks. Given $\chi \in\left\{1, \chi_{0}\right\}$ we denote $\operatorname{Jord}\left(\chi_{\psi} \chi\right)=\left\{m \mid\left(m, \chi_{\psi} \chi\right) \in \operatorname{Jord}\right\}$. Let $k, I \in \mathbb{Z}_{\geq 0}$ and
$\operatorname{Jord}\left(\chi_{\psi}\right)=\left\{2 m_{1}+1<2 m_{2}+1<\cdots<2 m_{l}+1\right\}, m_{i} \in \frac{1}{2}+\mathbb{Z}_{\geq 0}$,
$\operatorname{Jord}\left(\chi_{\psi} \chi_{0}\right)=\left\{2 n_{1}+1<2 n_{2}+1<\cdots<2 n_{k}+1\right\}, n_{j} \in \frac{1}{2}+\mathbb{Z}_{\geq 0}$.

We denote by σ (Jord) the unique unramified irreducible subquotient of the induced representation

$$
\begin{array}{r}
\zeta\left(-m_{l-1}, m_{l}, \chi_{\psi}\right) \times \zeta\left(-m_{l-3}, m_{l-2}, \chi_{\psi}\right) \times \cdots \times \zeta\left(-n_{k-1}, n_{k}, \chi_{\psi} \chi_{0}\right) \\
\times \zeta\left(-n_{k-3}, n_{k-2}, \chi_{\psi} \chi_{0}\right) \times \cdots \rtimes \sigma_{0}(\text { Jord })
\end{array}
$$

where $\sigma_{0}($ Jord $)$ is the unique unramified irreducible subquotient of

$$
\begin{aligned}
\zeta\left(\frac{1}{2}, m_{1}, \chi_{\psi}\right) \times \zeta\left(\frac{1}{2}, n_{1}, \chi_{\psi} \chi_{0}\right) \rtimes \omega_{0} & \text { if } k, l \in 2 \mathbb{Z}+1, \\
\zeta\left(\frac{1}{2}, m_{1}, \chi_{\psi}\right) \rtimes \omega_{0} & \text { if } k \in 2 \mathbb{Z}, I \in 2 \mathbb{Z}+1, \\
\zeta\left(\frac{1}{2}, n_{1}, \chi_{\psi} \chi_{0}\right) \rtimes \omega_{0} & \text { if } k \in 2 \mathbb{Z}+1, I \in 2 \mathbb{Z}, \\
\omega_{0} & \text { if } k, l \in 2 \mathbb{Z} .
\end{aligned}
$$

When $k=I=0$, we have Jord $=\emptyset$, and $\sigma($ Jord $)=\omega_{0}$, which is by definition strongly negative.
$R_{\text {gen }}(G L(n, F))$ - the Grothendieck group of the category of smooth genuine representations of $G L(n, F)$ of a finite length.

$$
R^{g e n}=\bigoplus_{n \geq 0} R_{\operatorname{gen}}(\widetilde{G L(n, F)})
$$

Similarly

$$
R_{1}^{g e n}=\bigoplus_{n \geq 0} R_{\operatorname{gen}}(\widetilde{S p(n, F)})
$$

We have a map $\mu^{*}: R_{1}^{\text {gen }} \rightarrow R^{\text {gen }} \otimes R_{1}^{\text {gen }}$,

$$
\begin{gathered}
\mu^{*}(\sigma)=\sum_{k=0}^{n} \text { s.s. }\left(\operatorname{Jacq}_{(k, n-k)}(\sigma)\right), \sigma \in R_{1}^{g e n} \\
\mu^{*}\left(\zeta\left(-\beta, \alpha, \chi_{\psi} \chi\right) \rtimes \sigma\right)=\sum_{\zeta \otimes \sigma^{\prime} \leq \mu^{*}(\sigma)} \sum_{i=0}^{\alpha+\beta+1} \sum_{j=0}^{i} \\
\zeta\left(-\alpha, \beta-i, \chi_{\psi} \chi^{-1}\right) \times \zeta\left(-\beta,-\beta-1+j, \chi_{\psi} \chi\right) \times \zeta \\
\otimes \zeta\left(-\beta+j,-\beta-1+i, \chi_{\psi} \chi\right) \rtimes \sigma^{\prime}
\end{gathered}
$$

Lemma. Let $m, n \in-\frac{1}{2}+\mathbb{Z}_{\geq 0}$, and let $\sigma_{m, n}$ be the unramified irreducible subquotient of $\zeta\left(\frac{1}{2}, m, \chi_{\psi}\right) \times \zeta\left(\frac{1}{2}, n, \chi_{\psi} \chi_{0}\right) \rtimes \omega_{0}$, Then $\sigma_{m, n}$ is strongly negative, and

$$
\begin{aligned}
\mu^{*}\left(\sigma_{m, n}\right) & =\sum_{i=0}^{m+\frac{1}{2}} \sum_{i^{\prime}=0}^{n+\frac{1}{2}} \\
& \zeta\left(-m,-\frac{1}{2}-i, \chi_{\psi}\right) \times \zeta\left(-n,-\frac{1}{2}-i^{\prime}, \chi_{\psi} \chi_{0}\right) \otimes \sigma_{i-\frac{1}{2}, i^{\prime}-\frac{1}{2}}
\end{aligned}
$$

and

$$
\sigma_{m, n} \hookrightarrow \zeta\left(-m,-\frac{1}{2}, \chi_{\psi}\right) \times \zeta\left(-n,-\frac{1}{2}, \chi_{\psi} \chi_{0}\right) \rtimes \omega_{0} .
$$

Lemma

- Let σ be a genuine irreducible unramified strongly negative representation of $\operatorname{Sp}(n, F)$. Then there exist
-an unramified unitary character χ of F^{\times},
$-\alpha, \beta \in \mathbb{R}$ such that $\alpha+\beta \in \mathbb{Z}_{\geq 0}$,
-an irreducible unramified representation σ^{\prime} of the metaplectic group such that

$$
\sigma \hookrightarrow \zeta\left(-\beta, \alpha, \chi_{\psi} \chi\right) \rtimes \sigma^{\prime}
$$

Also $\alpha-\beta<0$ and $\zeta\left(-\beta, \alpha, \chi_{\psi} \chi\right) \rtimes \sigma^{\prime}$ reduces. If α is the largest possible for such embedding, then σ^{\prime} is strongly negative.

- Let $\beta>0$ be the maximal, such that $\nu^{ \pm \beta} \chi_{\psi} \chi$ appears in the cuspidal support of σ, where χ is a unitary character of F^{\times}. Then there exist $\alpha \in \mathbb{R}$ such that $\alpha+\beta \in \mathbb{Z}_{\geq 0}$, and
$\sigma^{\prime} \in \operatorname{Irr}_{u n r}\left(S p\left(n^{\prime}, F\right)\right)$ such that

$$
\sigma \hookrightarrow \zeta\left(-\beta, \alpha, \chi_{\psi} \chi\right) \rtimes \sigma^{\prime} .
$$

Theorem 3. The representation σ (Jord), attached to a set Jord of Jordan blocks, is strongly negative, and we have

$$
\begin{array}{r}
\sigma(\text { Jord }) \hookrightarrow \zeta\left(-m_{l}, m_{l-1}, \chi_{\psi}\right) \times \zeta\left(-m_{l-2}, m_{l-3}, \chi_{\psi}\right) \times \ldots \\
\times \zeta\left(-n_{k}, n_{k-1}, \chi_{\psi} \chi_{0}\right) \times \zeta\left(-n_{k-2}, n_{k-3}, \chi_{\psi} \chi_{0}\right) \times \ldots \\
\rtimes \sigma_{0}(\text { Jord }) .
\end{array}
$$

If $\chi \in\left\{1, \chi_{0}\right\}$ and $\operatorname{card}\left(\operatorname{Jord}\left(\chi_{\psi} \chi\right)\right) \geq 2$, let $2 \beta+1>2 \alpha+1$ be two largest elements in $\operatorname{Jord}\left(\chi_{\psi} \chi\right)$. Put J^{\prime} J $^{\prime}=$ Jord $\backslash\left\{\left(2 \beta+1, \chi_{\psi} \chi\right),\left(2 \alpha+1, \chi_{\psi} \chi\right)\right\}$ and $\sigma^{\prime}=\sigma\left(\right.$ Jord $\left.^{\prime}\right), \sigma=\sigma($ Jord $)$. Then:

$$
\sigma \hookrightarrow \zeta\left(-\beta, \alpha, \chi_{\psi} \chi\right) \rtimes \sigma^{\prime} .
$$

Every strongly negative representation corresponds to some σ (Jord).

Theorem [Zelevinsky Classification] Let σ be a genuine irreducible unramified representation of $\widehat{\operatorname{Sp}(n, F) \text {. Then, either } \sigma \text { is negative, }}$ or there exist $k \in \mathbb{Z}_{>0}$, and a sequence $\chi_{1}, \ldots, \chi_{k}$ of unramified unitary characters of F^{\times}, and there exist real numbers α_{i}, β_{i}, such that $\alpha_{i}+\beta_{i} \in \mathbb{Z}_{\geq 0}$ and $-\beta_{i}+\alpha_{i}>0$, for $i=1, \ldots, k$ and there exists a genuine irreducible unramified negative representation $\sigma_{\text {neg }}$ of the metaplectic group, such that
$\sigma \hookrightarrow \zeta\left(-\beta_{1}, \alpha_{1}, \chi_{\psi} \chi_{1}\right) \times \cdots \times \zeta\left(-\beta_{k}, \alpha_{k}, \chi_{\psi} \chi_{k}\right) \rtimes \sigma_{\text {neg }}$. Data $\zeta\left(-\beta_{1}, \alpha_{1}, \chi_{\psi} \chi_{1}\right), \ldots, \zeta\left(-\beta_{k}, \alpha_{k}, \chi_{\psi} \chi_{k}\right)$ are unique up to permutation, while $\sigma_{\text {neg }}$ is unique up to isomorphism. Moreover

$$
\sigma \cong \zeta\left(-\beta_{1}, \alpha_{1}, \chi_{\psi} \chi_{1}\right) \times \cdots \times \zeta\left(-\beta_{k}, \alpha_{k}, \chi_{\psi} \chi_{k}\right) \rtimes \sigma_{\text {neg }} .
$$

thank you

