On the modularity of reducible Galois representations

Joint work (in progress) with Ricardo Menares

Nicolas Billerey

Laboratoire de mathématiques Blaise Pascal Université Clermont Auvergne

Representation theory XVIII – Dubrovnik June 2023

Table of contents

Eisenstein primes

Galois representations

Reducible Galois representations

More primes in the level

First example

- ► Let $E = X_1(11)$ be the elliptic curve of conductor 11 defined by $y^2 + y = x^3 - x^2$.
- ▶ The curve *E* has a rational point of order 5. For every prime number $p \neq 11$, we have

$$a_p(E) = 1 + p - \left|\widetilde{E}(\mathbf{F}_p)\right| \equiv 1 + p \pmod{5}.$$

 \blacktriangleright The curve E is modular (Eichler) : there exists a newform

$$f_E(z) = \sum_{n \ge 1} a_n q^n = q - 2q^2 + 2q^3 + \dots \in \mathbf{Z}[\![q]\!] \quad (z \in \mathfrak{H}, \ q = e^{2\pi i z})$$

of weight 2 and level $\Gamma_0(11)$ such that $a_n(E) = a_n$ for every $n \ge 1$.

▶ Therefore, for every prime number $p \neq 11$, we have

$$a_p \equiv 1 + p \pmod{5}.$$

Eisenstein primes $0 \bullet 0$

Galois representations 00000 Reducible Galois representations

More primes in the level 00000

Second example

► Let

$$\Delta(z) = q \prod_{n \ge 1} (1 - q^n)^{24} = \sum_{n \ge 1} \tau(n) q^n \in \mathbf{Z}[\![q]\!] \quad (z \in \mathfrak{H}, \ q = e^{2\pi i z})$$

be the unique newform of weight 12 and level 1.

 \blacktriangleright For every prime number p, we have the Ramanujan's congruence

$$\tau(p) \equiv 1 + p^{11} \pmod{691}.$$

Eisenstein primes $00 \bullet$

Galois representations 00000 Reducible Galois representations

More primes in the level 00000

Eisenstein primes

Definition

Let M, k be positive integers. A prime number l is an **Eisenstein** prime of weight k and level M if there exist a **newform**

$$f = \sum_{n \ge 1} a_n q^n \in \mathcal{S}_k^{\text{new}}(\Gamma_0(M))$$

and a prime ideal λ above l in $\overline{\mathbf{Q}}$ such for all but finitely many prime numbers p, we have

$$a_p \equiv 1 + p^{k-1} \pmod{\lambda}.$$

▶ l = 5 is an **Eisenstein prime** of weight 2 and level 11.

▶ l = 691 is an **Eisenstein prime** of weight 12 and level 1.

What are the Eisenstein primes? What are they good for?

Definition

▶ Let $\overline{\mathbf{Q}}$ be an algebraic closure of \mathbf{Q} .

- ▶ For a prime number l, let $\overline{\mathbf{F}}_l$ be an algebraic closure of $\mathbf{F}_l = \mathbf{Z}/l\mathbf{Z}$.
- ▶ We equip Gal(Q/Q) with the profinite topology and GL₂(F_l) with the discrete topology.

Definition

A (mod l) Galois representation is a continuous group homomorphism

 $\rho \colon \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \to \operatorname{GL}_2(\overline{\mathbf{F}}_l).$

▶ With this definition, Galois representations always factors through Galois groups of finite extensions of **Q** and hence they have **finite** image.

Galois representations 00000 Reducible Galois representations

More primes in the level 00000

Examples of Galois representations

- ▶ ν_i : Gal $(\overline{\mathbf{Q}}/\mathbf{Q}) \to \overline{\mathbf{F}}_l^{\times}$ (i = 1, 2) Galois characters $\rightsquigarrow \rho = \nu_1 \oplus \nu_2$
- ▶ (Deligne) Let $f = \sum_{n\geq 1} a_n q^n$ be a **newform** of weight $k \geq 2$, level $N \geq 1$ and Nebentypus character ϵ . Fix a place over l in $\overline{\mathbf{Q}}$ (viewed as a subfield of \mathbf{C}). Up to isomorphism, there is a unique **semisimple** mod l Galois representation

$$\rho_{f,l}: \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \to \operatorname{GL}_2(\overline{\mathbf{F}}_l)$$

satisfying the following property : It is unramified outside Nl and for every prime $p \nmid Nl$, the characteristic polynomial of $\rho_{f,l}(\operatorname{Frob}_p)$ is the reduction of

$$X^2 - a_p X + \epsilon(p) p^{k-1}.$$

Here Frob_p denotes a Frobenius element at p in $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$.

Galois representations 00000

More primes in the level 00000

Serre's weight, level and character

Let $\rho : \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \to \operatorname{GL}_2(\overline{\mathbf{F}}_l)$ be a Galois representation.

- ▶ The weight $k(\rho)$ of ρ
 - ▶ is an integer in the range $2, \ldots, l^2 1$;
 - only depends on the restriction of ρ to an inertia subgroup at l.
- ▶ The level $N(\rho)$ of ρ
 - ⇒ is the prime-to-*l* part of the Artin conductor of ρ ;
 - \blacktriangleright controls the ramification of ρ away from l.

▶ The character $\epsilon(\rho) : (\mathbf{Z}/N(\rho)\mathbf{Z})^{\times} \to \overline{\mathbf{F}}_l^{\times}$ of ρ

- ⇒ satisfies det(ρ) = $\epsilon(\rho)\chi_l^{k(\rho)-1}$, where χ_l denotes the mod l cyclotomic character;
- ⇒ is identified with its unique lift $(\mathbf{Z}/N(\rho)\mathbf{Z})^{\times} \to \mathbf{C}^{\times}$ (w.r.t. a given place above l in $\overline{\mathbf{Q}} \subset \mathbf{C}$) with values in the roots of unity of prime-to-l order.

Galois representations $000 \bullet 0$

Reducible Galois representations

More primes in the level 00000

Modular Galois representations

Definition

A mod l Galois representation $\rho: \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \to \operatorname{GL}_2(\overline{\mathbf{F}}_l)$ is **modular** if there exist a newform f and a place of $\overline{\mathbf{Q}}$ above l such that

 $\rho \simeq \rho_{f,l}.$

In that case, we also say that ρ **arises** from f.

Every modular Galois representation ρ is **semisimple** and **odd** (i.e. det $\rho(c.c.) = -1$).

Serre's modularity conjecture (Khare–Wintenberger, 2005)

Let ρ : $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \to \operatorname{GL}_2(\overline{\mathbf{F}}_l)$ be **odd** and **irreducible**.

- \blacktriangleright (Weak form) The representation ρ is modular.
- ⇒ (Strong form) If $l \ge 5$, then ρ arises from f of the 'optimal' type $(N(\rho), k(\rho), \epsilon(\rho))$.

Galois representations

Reducible Galois representations

More primes in the level 00000

Non-optimal levels

Let $\rho : \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \to \operatorname{GL}_2(\overline{\mathbf{F}}_l)$ be a Galois representation.

► (Carayol, 1986) If ρ arises from a weight- $k(\rho)$ newform of level M, then $N(\rho) \mid M$.

Definition

A **non-optimal level** of ρ is an integer $M > N(\rho)$ such that ρ arises from a weight- $k(\rho)$ **newform** of level M.

(Diamond-Taylor, 1994) Under the assumption l > k(ρ) + 1,
 complete characterization of the non-optimal levels for each irreducible ρ.

Reducible modular Galois representations

▶ It may happen that the mod l representation $\rho_{f,l}$ attached to a newform f is **reducible**.

Example

Let $f = f_E$ be the unique newform of weight 2 and level 11. Then the mod 5 representation of f is reducible and $\rho_{f,5} \simeq \mathbf{1} \oplus \chi_5$.

Example (Ramanujan, Serre–Swinnerton-Dyer)

The representation $\rho_{\Delta,l}$ is reducible if (and only if) $l \in \{2, 3, 5, 7, 691\}$. Moreover, $\rho_{\Delta,691} \simeq \mathbf{1} \oplus \chi_{691}^{11}$ thanks to the Ramanujan's congruence

 $\tau(p) \equiv 1 + p^{11} \pmod{691}$, for p prime.

More primes in the level 00000

Modular reducible Galois representations

Ce sont des représentations irréductibles (sinon ce n'est pas très intéressant)...

J-P. Serre, letter to A. Grothendieck (december 31, 1986)

Let $\rho = \nu_1 \oplus \nu_2 \colon \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \to \operatorname{GL}_2(\overline{\mathbf{F}}_l)$ be an odd (semisimple reducible) Galois representation.

- $\blacktriangleright \text{ (Weak modularity) Is } \rho \text{ modular ?}$
- (Strong modularity) Is ρ modular of 'optimal' type?
- ▶ (Non-optimal levels) What are the non-optimal levels of ρ ?

Galois representations 00000 Reducible Galois representations 0000000000

More primes in the level 00000

Weak modularity

Theorem 1 (B.–Menares, 2016)

Every odd mod l Galois representation $\rho = \nu_1 \oplus \nu_2$ is modular.

▶ First proof by Ghitza (2006) with completely different tools.

Example

The representation $\mathbf{1} \oplus \chi_5^3$ arises in weight 24 and level 1 (Ghitza) and in weight 4 and level $\Gamma_0(7)$ (B.–Menares).

Galois representations 00000 Reducible Galois representations 0000000000

More primes in the level 00000

Running assumptions and notation

- ▶ Let $\rho = \nu_1 \oplus \nu_2$ be a (reducible semisimple) mod *l* Galois representation. If $l > k(\rho) + 1$, then $\rho \simeq \epsilon_1 \oplus \epsilon_2 \chi_l^{k(\rho)-1}$ with ϵ_1, ϵ_2 characters unramified at *l*.
- Conversely, let k be an integer ≥ 2 such that l > k + 1 and let ϵ_1, ϵ_2 be characters unramified at l, then $\rho = \epsilon_1 \oplus \epsilon_2 \chi_l^{k-1}$ has weight $k(\rho) = k$.

From now on, assume $\rho = \epsilon_1 \oplus \epsilon_2 \chi_l^{k-1}$ with

- $\Rightarrow k \ge 2;$
- $\blacktriangleright l > k+1;$

 \blacktriangleright ϵ_1, ϵ_2 unramified at l, of conductors of ϵ_1, ϵ_2 respectively.

▶ We have $(N(\rho), k(\rho), \epsilon(\rho)) = (\mathfrak{c}_1 \mathfrak{c}_2, k, \epsilon_1 \epsilon_2)$. Set

$$\eta = \epsilon_1^{-1} \epsilon_2$$
 and $N = \mathfrak{c}_1 \mathfrak{c}_2$,

• Moreover, ρ is odd if and only if $(\epsilon_1 \epsilon_2)(-1) = (-1)^k$.

Galois representations 00000 Reducible Galois representations 0000000000

More primes in the level 00000

Strong modularity

Definition

We say that a representation ρ is **strongly modular** if it arises from a newform of its optimal type $(N(\rho), k(\rho), \epsilon(\rho))$.

• A reducible ρ need not be strongly modular! Counterex. : $\mathbf{1} \oplus \chi_l$.

Theorem 2 (B.–Menares, 2018)

Let $\rho = \epsilon_1 \oplus \epsilon_2 \chi_l^{k-1}$ be an odd mod l Galois representation as before. Then ρ is **strongly modular** if and only if $\frac{B_{k,\eta}}{2k} \prod_{p|N} (\eta(p)p^k - 1) = 0$,

where p runs through the prime divisors of N. [Here $B_{k,\eta}$ is the k-th generalized mod l Bernoulli number associated with η .]

• Generalization to N > 1 of a result by Ribet (1975).

Galois representations 00000 Reducible Galois representations 0000000000

More primes in the level 00000

Refined non-optimal levels

▶ Restrict further to the special case $\rho = \mathbf{1} \oplus \chi_l^{k-1}$ with $k \ge 2$ even and l > k + 1. Recall that $(N(\rho), k(\rho), \epsilon(\rho)) = (1, k, \mathbf{1})$.

Definition

A refined non-optimal level of $\rho = \mathbf{1} \oplus \chi_l^{k-1}$ is an integer M > 1such that ρ arises in $\mathcal{S}_k^{\text{new}}(M, \mathbf{1}) = \mathcal{S}_k^{\text{new}}(\Gamma_0(M))$.

▶ Note that *l* is an **Eisenstein prime** of weight *k* and level M > 1 if and only if *M* is a **refined non-optimal level** of $\rho = \mathbf{1} \oplus \chi_l^{k-1}$.

$k \setminus M$	1 (optimal)	M prime
2	$\times \times $	$M \equiv 1 \pmod{l} \pmod{l}$ (Mazur, 1977)
≥ 4	$l \mid \operatorname{Num}(B_k)$	See next slide
	(Ribet, 1975) (or Theorem 2)	

TABLE – NSC for having a refined non-optimal level of $\mathbf{1} \oplus \chi_l^{k-1}$

Galois representations 00000 Reducible Galois representations 00000000000

More primes in the level 00000

Eisenstein primes in prime levels

Theorem 3 (B.–Menares, 2016)

Let $k \ge 4$ be an even integer and let l be a prime number such that l > k + 1. Then, l is an Eisenstein prime of weight k and **prime** level $M \ne l$ if and only if the following assertions hold :

(1) *l* divides
$$(M^k - 1)(M^{k-2} - 1)$$
 and

- (2) l divides $\frac{B_k}{2k}(M^k 1)$.
 - Different proofs of (refined versions of) this theorem by Gaba–Popa (2018) and by Kumar–Kumari–Moree–Singh (2021).

Galois representations 00000 Reducible Galois representations 00000000000

More primes in the level 00000

Example

- We have $691 \mid \text{Num}(B_{12})$ and $691 \mid 89^{10} 1$.
- Let $f = \sum_{n \ge 1} a_n q^n$ be a newform generating the 37-dimensional conjugacy class in $\mathcal{S}_{12}^{\text{new}}(\Gamma_0(89))$.
- Its coefficient field is $\mathbf{Q}_f = \mathbf{Q}(a_2)$.
- Let λ be a place of $\overline{\mathbf{Q}}$ over the prime ideal in \mathbf{Q}_f generated by 691 and $a_2 + 24$.

▶ We check that

 $a_p \equiv 1 + p^{11} \pmod{\lambda}$, for every prime p < 90.

- ▶ This proves that $\rho_{f,691} \simeq \mathbf{1} \oplus \chi_{691}^{11}$.
- ▶ It is possible to determine and certify such isomorphisms for higher weights/levels using Peaucelle's work and his PARI/GP code.

Application (statement)

For integers $k \ge 2$ and $M \ge 1$, set

 $d_k(M) = \max \{ [\mathbf{Q}_f : \mathbf{Q}]; f \text{ newform of weight } k \text{ and level } \Gamma_0(M) \}.$

Serre :
$$d_k(M) \to +\infty$$
 when $k + M \to +\infty$.

For $M \to \infty$ prime :

- ▶ Royer (2000), Murty–Sinha (2009) : $d_k(M) \gg_k \sqrt{\log \log M}$.
 - Lipnowski–Schaeffer (2018, k = 2) Bettin–Perret-Gentil–Radziwiłł (2019) $d_k(M) \gg_k \log \log(M)$.

Theorem 4 (B.–Menares, 2016)

Let $k \ge 2$ be a fixed even integer. There is an **explicit** set of primes \mathcal{P} of natural lower density > 3/4 such that for every $M \in \mathcal{P}$ with $M > (k+1)^4$, we have

$$d_k(M) \ge c_k \log(M)$$
, with $c_k = \left(8 \log\left(1 + 2^{(k-1)/2}\right)\right)^{-1}$

Galois representations 00000 Reducible Galois representations

More primes in the level 00000

Application (proof)

- ▶ Let M be a (large enough) prime and let l be a prime divisor of M 1 such that l > k + 1 (if it exists).
- ► Since $M 1 | M^k 1$, there exist a newform $f = \sum_{n \ge 1} a_n q^n$ of weight k and level $\Gamma_0(M)$ and a prime ideal λ above l in its coefficient field \mathbf{Q}_f such that

$$a_p \equiv 1 + p^{k-1} \pmod{\lambda}$$
, for every prime $p \neq l, M$.

▶ Taking p = 2, by Deligne's bounds, we have $a_2 \neq 1 + 2^{k-1}$ and

$$l \mid \operatorname{Norm}_{\mathbf{Q}_{f}/\mathbf{Q}} \left(a_{2} - \left(1 + 2^{k-1}\right) \right) \leq \left(1 + 2^{(k-1)/2}\right)^{2[\mathbf{Q}_{f}:\mathbf{Q}]}$$

Hence $[\mathbf{Q}_f : \mathbf{Q}] \ge 4c_k \log l$. • If P(n) denotes the largest prime divisor of $n \ge 2$, apply this with $M \in \mathcal{P} = \left\{ N \text{ prime s.t. } P(N-1) > N^{1/4} \right\}$ and l = P(M-1).

Two primes in the level

• Here p, q, l are distinct primes with l > k + 1.

$k \setminus M$	p^2	pq
2	$p \equiv -1 \pmod{l}$	$p \equiv 1 \pmod{l}$ and
	(Lang-Wake, 2022)	1) either $q \equiv 1 \pmod{l}$
		2) or q is an l th power mod p
		[or same with p, q swapped]
		(Ribet-Yoo, 2019)
≥ 4	???????????????????????????????????????	See next slide

TABLE – Sufficient (and necessary) conditions for having a refined non-optimal level of $\mathbf{1} \oplus \chi_l^{k-1}$.

Lang–Wake's result above is crucial in their proof of the following.

Theorem (Lang–Wake, 2022)

Let p, l be prime numbers such that $l \ge 5$ and $p \equiv -1 \pmod{l}$. Then, l divides the class number of $\mathbf{Q}(p^{1/l})$. Galois representations 00000 More primes in the level 0000

Adding squarefree integers to the level

► Let $\rho = \epsilon_1 \oplus \epsilon_2 \chi_l^{k-1}$ be an odd mod *l* Galois representation as before. Recall : $\eta = \epsilon_1^{-1} \epsilon_2$ and $(N(\rho), k(\rho), \epsilon(\rho)) = (N, k, \epsilon_1 \epsilon_2)$.

Conjecture

Let $r \geq 1$ be squarefree and coprime to Nl.

Assume r = 1 or $(N, k) \neq (1, 2)$.

The representation $\rho = \epsilon_1 \oplus \epsilon_2 \chi_l^{k-1}$ arises from a **newform** of weight k, level Nr which is $\Gamma_1(N) \cap \Gamma_0(r)$ -invariant if and only if the following conditions hold :

(1)
$$(\eta(p)p^k - 1)(\eta(p)p^{k-2} - 1) = 0$$
 for every prime $p \mid r$;
(2) $\frac{B_{k,\eta}}{2k} \prod_{p \mid Nr} (\eta(p)p^k - 1) = 0$, where p runs through the prime divisors of Nr .

Galois representations 00000 Reducible Galois representations

More primes in the level 00000

Eisenstein primes in squarefree levels

Conjecture (special case N = 1, that is $\rho = \mathbf{1} \oplus \chi_l^{k-1}$)

Let $k \ge 4$ be an even integer such that l > k + 1 and let $r \ge 1$ be a squarefree integer such that $l \nmid r$.

Then l is an **Eisenstein prime** of weight k and level r if and only if the following conditions hold :

(1) *l* divides
$$(p^k - 1)(p^{k-2} - 1) = 0$$
 for every prime $p \mid r$;

(2) l divides $\frac{B_k}{2k} \prod_{p|r} (p^k - 1) = 0$, where p runs through the prime

divisors of r.

Galois representations 00000

Known results towards the conjecture

- ▶ r = 1 (and arbitrary $N \ge 1$) : Theorem 2 (B.–Menares, 2018);
- ▶ N = 1 and r prime : Theorem 3 (B.–Menares, 2016);
- ▶ N = 1 et r squarefree : partial (and/or conditional) results by Deo (2022).

Sample theorem (Deo, 2022)

Let $k \ge 4$ be an even integer and let p_0, p_1, \ldots, p_k, l be distinct prime numbers such that l > k + 1. Assume the following assertions hold :

Then, l is an Eisenstein prime of weight k and level $p_0p_1\cdots p_k$.

Galois representations 00000 Reducible Galois representations

More primes in the level 00000

Forthcoming results

Theorem 5 (B.–Menares, 2023?)

The conjecture holds :

(a) for r prime (and arbitrary N);

(b) for r a product of **two** distinct prime numbers **and** N > 1.

- ▶ Part (a) is a straightforward generalization of Theorem 3.
- ► The proof of (b) is much more involved and follows Diamond-Taylor's approach for the irreducible case.
- ▶ Unfortunately it misses the determination of Eisenstein primes in levels that are product of two distinct primes...

Thank you for your attention!