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Definitions

Fix a nonzero integer q. A D(q)-pair is a pair {a, b} of positive
integers such that ab + q = □.

How many pairs are such that a < b ⩽ N? Denote

Dq(N) := D2,q(N) := the number of D(q)-pairs up to N.

If ab + q = x2, then a = x2−q
b , i. e.

x2 ≡ q (mod b).
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Reducing the problem to congruences

x2 ≡ q (mod b) (1)

Almost all solutions of (1) such that x ⩽ b induce a D(q)-pair by
setting a = x2−q

b (there are at most O(
√q) solutions giving a

negative a – even if b varies).

If a < b ⩽ N form a D(q)-pair such that a > x2−q
b for all solutions

of (1) with x ⩽ b, then

b > a ⩾ (b + 1)2 − q
b =⇒ b ⩽ q − 1

2 .

Essentially, we count solutions x ∈ {1, 2, . . . , b} of (1) where b
runs up to N.
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Counting solutions of congruences

Fix a nonzero integer q. Let b vary from 1 to N. How many
solutions x ∈ {1, 2, . . . , b} of

x2 ≡ q (mod b),

in total, are there?
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Previous results I

For q = 1, Duje (2008) found that

D2,1(N) =
6
π2 N logN + O(N).

Lao (2010) found the error term.

A D(q)-m-tuple is a set {a1, a2, . . . , am} of positive integers such
that aiaj + q = □ for all 1 ⩽ i < j ⩽ m.
Denote by D3,q the number of D(q)-triples up to N, and by D4,q
the number of D(q)-quadruples up to N.

Nikola Adžaga Asymptotics of the number of D(q)-pairs and D(q)-triples via L-functions



Previous results II

For q = 1, Duje has also shown that

D3,1(N) =
3
π2 N logN + O(N),

and that the true order of magnitude of D4,1(N) is 3√N logN.

Martin and Sitar (2011) have then shown that

D4,1(N) ∼ 24/3

3Γ(2/3)3
3√N logN.

So far, infinitely many D(q)-quadruples have been found only for
square numbers q.
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Our results I

Theorem 1 (A.-Dražić-Dujella-Pethő, 2023+)
The number of D(2)-pairs up to N satisfies

D2,2(N) ∼ L(1, χ8,5)

ζ(2) · N ≈ 0.37888N,

whereas the number of D(−2)-pairs with both elements in the set
{1, 2, . . . ,N} satisfies

D2,−2(N) ∼ L(1, χ8,3)

ζ(2) · N ≈ 0.67524N.

The results for other primes q depend on the remainder of q
modulo 8 (i. e. on the power of 2 dividing q − 1).
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Our results II

Theorem 2 (A.-Dražić-Dujella-Pethő, 2023+)
Let q be an integer such that |q| is a prime or q = −1.

a) If q ≡ 3 (mod 4), then

D2,q(N) ∼
L(1, χ4|q|,4|q|−1)

ζ(2) · N.

b) If q ≡ 5 (mod 8), then

D2,q(N) ∼
2L(1, χ|q|,|q|−1)

ζ(2) · N.

c) If q ≡ 1 (mod 8), then

D2,q(N) ∼
L(1, χ|q|,|q|−1)

ζ(2) · N.
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Our results III

Theorem 3 (A.-Dražić-Dujella-Pethő, 2023+)
Let n be a non-zero integer. The number of D(n)-triples with all
elements in the set {1, 2, . . . ,N} is asymptotically equal to half the
number of D(n)-pairs:

D3,n(N) ∼ D2,n(N)

2 .

Nikola Adžaga Asymptotics of the number of D(q)-pairs and D(q)-triples via L-functions



Number of congruence solutions (with fixed modulus)

Let ω(n) denote the number of distinct prime factors of n.
Lemma 4
Let q be an odd prime and b ∈ N such that gcd(b, 2q) = 1. Then
the number of solutions of the congruence

x2 ≡ 1 (mod b) (2)

such that 1 ⩽ x ⩽ b is 2ω(b). Consequently, the number of
solutions x of the congruence

x2 ≡ q (mod b) (1)

such that 1 ⩽ x ⩽ b is either zero or 2ω(b).
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Proof of lemma

Proof.
If there is no solution to Equation (1), we are done. If there exists
a solution xq, then every other solution x′ satisfies(

x′
xq

)2
≡ 1 (mod b).

Also, if x1 is any solution to Equation (2), then x1xq is a solution
of Equation (1) and all solutions obtained in such a way have
different residues mod b.
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Similarity with Duje’s proof

For D(1)-pairs, the problem is reduced to estimating the sum

N∑
n=1

2ω(n).

For D(q)-pairs, we have to estimate a weighted version of this
sum. The weights are binary, depending on whether the
congruence x2 ≡ q (mod n) is soluble.
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Is the congruence soluble? (Ex. q = 3)

Whether
x2 ≡ 3 (mod n)

has solutions or not depends on the prime factors of n. The first
observation is that 2 and 3 can divide n at most once. For other
primes p, we can look at their Legendre symbol modulo q = 3.
Lemma 5
Let prime q = 3 (mod 4). Equation (1) has a solution if and only if
b = δ

∏
pi ̸=q

pαi
i such that

(
q
pi

)
= 1 for all i, and

δ ∈ {1, 2, q = 3, 2q = 6}. The condition
(

q
pi

)
= 1 is equivalent to(

pi
q

)
= (−1)

pi−1
2 .
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Good primes

The previous lemma motivates the following definition. We call a
prime p good for q if

(
p
q

)
= (−1)

p−1
2 .

Sketch of proof (of lemma):
• powers of 2 and q.
• quadratic reciprocity for each prime p|n.
• if n is composed of ”good” primes then there exists a solution

(Hensel lemma argument).
For q = 3, the set of good primes is

G3 = {p ≡ ±1 (mod 12)}.
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The number of solutions

Lemma 6
(Extension of Lemma 4) Let b ∈ N such that gcd(b, 2q) = 1, and
b has only good prime factors for q ≡ 3 (mod 4). The following
table gives the number of solutions of the congruence equation

equation interval the number of solutions
x2 ≡ q (mod 2b) 1 ⩽ x ⩽ 2b 2ω(2b)−1

x2 ≡ q (mod qb) 1 ⩽ x ⩽ qb 2ω(qb)−1

x2 ≡ q (mod 2qb) 1 ⩽ x ⩽ 2qb 2ω(2qb)−2
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Accompanying arithmetic functions

G = G3 = {p ≡ ±1 (mod 12)}.

Let

λG(n) =
{

1, if n = pα1
1 . . . pαk

k , pi ∈ G
0, otherwise

,

along with
b3(n) = 2ω(n) · λG(n).
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The weighted sum

We want to estimate

B3(N) =
∑

1⩽n⩽N
2ω(n) · λG(n) =

∑
1⩽n⩽N

b3(n).

B3(N) counts the total number of solutions x ∈ {1, . . . , n} of all
congruences x2 ≡ 3 (mod n), where gcd(n, 6) = 1 and 1 ⩽ n ⩽ N.
We will account for possible factors of 2 and 3 in n later;
understanding the asymptotic behavior of B3(N) will be enough to
understand D2,3(N).
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Dirichlet characters

Definition 7
A Dirichlet character of modulus m (where m is a positive integer)
is a function χ : Z → C which satisfies

1) χ(a)χ(b) = χ(ab),
2) χ(a + m) = χ(a),
3) χ(a) is nonzero iff gcd(a,m) = 1.
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Dirichlet characters we use
1) χ8,1, χ8,3 and χ8,5, of modulus 8, as well as χ4,3 of modulus 4

defined by
1 3 5 7

χ8,1 1 1 1 1
χ8,3 1 1 -1 -1
χ8,5 1 -1 -1 1
χ4,3 1 -1

2) For any prime q ≡ 1 (mod 4) we denote

χq,q−1(a) =
(q

a
)

3) For any prime q ≡ 3 (mod 4) we denote

χ4q,4q−1(a) =
(

4q
a

)
,
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Dirichlet L-functions

Definition 8
A Dirichlet L-series is a function of the form

L(s, χ) =
∞∑

n=1

χ(n)
ns ,

where χ is a Dirichlet character and s is a complex variable (with
ℜs > 1). This function can be extended to a meromorphic function
on the whole plane and is then called a Dirichlet L-function, also
denoted by L(s, χ).
Dirichlet had shown that L(s, χ) is non-zero at s = 1. An
L-function is entire whenever χ is not principal.
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Dirichlet series

Euler (1737) proved the existence of infinitely many primes by
showing that the series

∑
p∈P

p−1 diverges. He deduced that ζ(s),

given by

ζ(s) =
∞∑

n=1

1
ns

for real s > 1, tends to ∞ as s → 1.
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Dirichlet series II

Dirichlet (1837) proved his theorem on primes in arithmetical
progression by studying

L(s, χ) =
∞∑

n=1

χ(n)
ns

where χ is a Dirichlet character. Both ζ(s) and L(s, χ) are
examples of Dirichlet series, i. e. they are of the form

∞∑
n=1

f (n)
ns

where f(n) is an arithmetical function.
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Dirichlet series III

Some facts on them: if
∞∑

n=1
|f(n)n−s| does not converge for all s or

does not diverge for all s, then there is a σa ∈ R, the abscissa of

absolute convergence, such that the series
∞∑

n=1

f(n)
ns converges

absolutely if ℜs > σa, but does not converge absolutely if σ < σa.

Riemann’s ζ(s) has σa = 1. L-series of Dirichlet characters have
σa ⩽ 1.
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Dirichlet series IV (from Apostol’s book)
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Euler products

Theorem 9 ([2, Theorem 1.9])

If f is multiplicative and
∞∑

n=1

|f(n)|
nσ < ∞, where σ is the real part of

s, then the Dirichlet series of f has an Euler product, i. e.
∞∑

n=1

f(n)
ns =

∏
p∈P

(
1 +

f(p)
ps +

f(p2)

p2s + . . .

)
.
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The weighted sum estimation
We define the following Dirichlet series:

βq(s) := Dbq(s) =
∑ bq(n)

ns .

Lemma 10
Let G be a set of primes (called good primes). Let λG : N → {0, 1}
be the indicator function of a multiplicative monoid in N generated
by G. Then the Dirichlet series β(s) of b(n) = 2ω(n) ·λG(n) satisfies

β(s) =
ζ2
G(s)

ζG(2s) ,

for ℜs > 1, where ζG(s) is

ζG(s) := DλG(s) =
∞∑

n=1

λG(n)
ns .
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Lemma proof I

We wish to express b(n) as a convolution of two arithmetic
functions. We need the G-modified Möbius function which we
define as

µG(n) =
{
(−1)ω(n), if n squarefree and p | n ⇒ p ∈ G

0, otherwise
.
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Lemma proof II

Now we can express

b(n) = 2ω(n) · λG(n) =
∑
d|n

µ2
G(d) · λG(n)

(∗∗)
=
∑
d|n

µ2
G(d) · λG

(n
d
)
=
(
µ2
G ∗ λG

)
(n)
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Lemma proof III

Since D(µ2
G ∗ λG)(s) = Dµ2

G(s)DλG(s), we only need to calculate
Dµ2

G(s). We can expand Dµ2
G(s) into an Euler product to obtain

D(µ2
G) =

∏
p∈G

(
1 +

1
ps

)
=

∏
p∈G

(
1 − 1

p2s

)
∏

p∈G

(
1 − 1

ps

)
=

∏
p∈G

(
1 − 1

ps

)−1

∏
p∈G

(
1 − 1

p2s

)−1 =
ζG(s)
ζG(2s)
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Recap

We have the set of good primes G = G3 = {p ≡ ±1 (mod 12)}.

We’re estimating

B(N) = B3(N) =
∑

1⩽n⩽N
2ω(n) · λG(n) =

∑
1⩽n⩽N

b3(n)

via its Dirichlet series β(s) satisfying

β(s) =
ζ2
G(s)

ζG(2s) ,

where ζG(s) is

ζG(s) := DλG(s) =
∞∑

n=1

λG(n)
ns .
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Estimation – next step

Rewrite ζG(s):

ζG(s) =
∏
p∈G

(1 − p−s)−1 = ζ(s)
∏
p ̸∈G

(1 − p−s)

= ζ(s) · (1 − 2−s)(1 − 3−s) ·
∏
p≡5

(1 − p−s)
∏
p≡7

(1 − p−s).
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Estimation – the ugliest slide
Plugging this in the expression for βq(s) we have

ζ2
G(s)

ζG(2s) =
ζ2(s)
ζ(2s) ·

(1 − 2−s)2(1 − 3−s)2

(1 − 2−2s)(1 − 3−2s)
·
∏
p≡5

(1 − p−s)2

(1 − p−2s)

∏
p≡7

(1 − p−s)2

(1 − p−2s)

=
ζ2(s)
ζ(2s) ·

(1 − 2−s)(1 − 3−s)

(1 + 2−s)(1 + 3−s)
·
∏
p≡5

(1 − p−s)

(1 + p−s)
·
∏
p≡7

(1 − p−s)

(1 + p−s)
.

We further analyze the two last products by introducing other
remainders modulo 12:∏
p≡1

(1 − p−s)−1

(1 − p−s)−1 ·
∏
p≡5

(1 + p−s)−1

(1 − p−s)−1

∏
p≡7

(1 + p−s)−1

(1 − p−s)−1 ·
∏

p≡11

(1 − p−s)−1

(1 − p−s)−1

Finally,

β(s) = ζ2(s)
ζ(2s)

(1 − 2−s)(1 − 3−s)

(1 + 2−s)(1 + 3−s)
· L(s, χ12,11)

L(s, χ12,1)
=

ζ(s)
ζ(2s) ·

L(s, χ12,11)

(1 + 2−s)(1 + 3−s)
.
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Lemma about our Dirichlet series

Lemma 11
The Dirichlet series of b3(n) = 2ω(n) · λG(n) satisfies

β3(s) =
ζ(s)
ζ(2s) ·

L(s, χ12,11)

(1 + 2−s)(1 + 3−s)
.

For general prime q ≡ 3 (mod 4),

βq(s) =
ζ2
G(s)

ζG(2s) =
ζ(s)
ζ(2s) ·

L(s, χ4|q|,4|q|−1)

(1 + 2−s)(1 + |q|−s)
.
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Tauberian theorem

Theorem 12 (Corollary of Wiener-Ikehara [3])
Let a(n) ⩾ 0. If the Dirichlet series of the form

∞∑
n=1

a(n)n−s

converges to an analytic function in the half-plane ℜ(s) > 1 with a
simple pole of residue c at s = 1, then∑

n⩽N
a(n) ∼ cN.
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Application of Wiener-Ikehara

β3(s) =
ζ2
G(s)

ζG(2s) =
ζ(s)
ζ(2s) ·

L(s, χ12,11)

(1 + 2−s)(1 + 3−s)

is analytic on the half-plane for ℜ(s) > 1, so we need its residue at
s = 1.
Only ζ(s) is not holomorphic at s = 1 & denominators have no
zeroes for ℜ(s) > 1

2 . The residue of β3(s) at s = 1 is

L(1, χ12,11)

ζ(2) · 3/2 · 4/3 =
L(1, χ12,11)

2ζ(2) .

Hence B(N) ∼ L(1,χ12,11)
2ζ(2) N.
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Accounting for factors of 2 and q = 3

B(N) ∼ L(1, χ12,11)

2ζ(2) N.

Theorem 13
Let prime q ≡ 3 (mod 4). Then D2,q(N), the number of D(q)-pairs
up to N, satisfies

D2,q(N) ∼
(

1 +
1
2 +

1
q +

1
2q

)
B(N) =

L(1, χ4|q|,4|q|−1)

ζ(2) N.
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One slide about the final part for q ≡ 3 (mod 4)

D2,q(N) =
∑

1⩽n⩽N
2ω(n) · λG(n) +

∑
1⩽n⩽N

2||n

2ω(n)−1 · λG

(n
2
)
+

+
∑

1⩽n⩽N
q||n

2ω(n)−1 · λG

(
n
q

)
+
∑

1⩽n⩽N
2,q||n

2ω(n)−2 · λG

(
n
2q

)

=B(N) + B
(⌊

N
2

⌋)
+ B

(⌊
N
q

⌋)
+ B

(⌊
N
2q

⌋)
=

(
1 +

1
2 +

1
q +

1
2q

)
B(N) + O(1).
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Counting D(n)-triples

Definition 14
Let a < b < c. A D(n)-triple {a, b, c} is called regular if
c = a + b + 2r, where r2 = ab + n. A D(n)-triple {a, b, c} is called
irregular if it is not regular.
Let Dreg

3,n(N) denote the number of regular D(n)-triples {a, b, c}
such that a < b < c ⩽ N.

The following theorem holds for all integers n, and its proof is
mostly concerned with showing that different cases give at most
O(1)-triples.
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Counting D(n)-triples II

Theorem 15 (Minor refinement of Theorem 3)
Let n be an integer. The number of D(n)-triples with all elements
in the set {1, 2, . . . ,N} is asymptotically equal to the number of
regular D(n)-triples, which is in turn half the number of D(n)-pairs.
More precisely,

D3,n(N) ∼ Dreg
3,n(N) ∼ D2,n(N)

2 .
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Proof of the theorem

Since {a, b, c} is a D(n)-triple, there exist positive integers r, s, t
satisfying ab + n = r2, ac + n = s2, bc + n = t2. According to [1,
Lemma 3]1, there exist integers e, x, y, z such that

ae + n2 = x2, be + n2 = y2, ce + n2 = z2,

and
c = a + b +

e
n +

2
n2 (abe + rxy), (1)

We consider three cases, depending on the sign of e.

1A. Dujella, “On the size of Diophantine m-tuples”, Math. Proc.
Cambridge Philos. Soc. 132, no. 1 (2002): 23–33.
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Proof of the theorem II

1) If e < 0, then c ⩽ n2. Hence, the number of such triples is
O(1) (it is less then n6

6 , so the implied constant in O depends
on n ).

2) If e = 0, then c = a + b + 2r. Also, b = a + c − 2s, where
ac + n = s2, s ⩾ 0. Every pair {a, c}, ac + n = s2, a < c ⩽ N
induces a regular D(n) triple {a, a+ c− 2s, c} ⊆ {1, 2, . . . ,N},
unless a + c − 2s > N, a + c − 2s ⩽ 0, or a + c − 2s = a, or
a + c − 2s = c. The inequality a + c − 2s > N implies
a − 2s > N − c ⩾ 0. However, a > 2s implies
a2 > 4s2 = 4ac+ 4n, i. e. −4n > a(4c− a) > a · 3c, which can
hold only if c < 4

3 |n|. Therefore the contribution of this case
is O(n) = O(1). Similar arguments hold for other degenerate
cases (in one of them, one gets (c − a)2 = 4n).
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Proof of the theorem III
2) cont’d Every regular D(n)-triple {a, b, c} is obtained twice by this

construction: from {a, c} and from {b, c}. Thus, the total
contribution of the case 2), i. e. the number of regular
D(n)-triples, is

D3,n =
1
2 (D2,n(N)− N · [n is a square] + O(1)) .

3) If e ⩾ 1, then

c = a+b+ e
n+

2abe
n2 +

2
√
(ab + n) (ae + n2) (be + n2)

n2 >
2ab
n2 .

For now, let us assume that ab > n. We have
N ⩾ c ⩾ 2ab

n2 > r2

n2 .
Let us estimate the number of such pairs {a, b} satisfying

ab + n = r2, r < n
√

N.
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Proof of the theorem IV – 3) cont’d

Consider the congruence x2 ≡ n(moda). In each interval of size a,
there are at most 2ω(a)+1 solutions. Hence, the number of pairs
{a, b} is bounded above by

n
√

N∑
a=1

2ω(a)+1 ·

(
n
√

N
a + 1

)
= 2n

√
N

n
√

N∑
a=1

2ω(a)
a + 2

n
√

N∑
a=1

2ω(a)

= O
(√

N log2 N
)
+ O(

√
N logN)

= O
(√

N log2 N
)

On the other hand, if ab ⩽ n, adding at most O(n2)-pairs {a, b} to
the above estimate does not change it.
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Proof of the theorem V – 3) cont’d

If a and b are given, then finding c is equivalent to choosing a
solution of the Pellian equation

bs2 − at2 = n(b − a).

In each sequence there are O(logN) solutions with s ⩽ N.
The number of the sequences is bounded by 2k+ω(n)+1, where
k = ω(b − a). We have b − a ⩾ p1 · · · pk and
log b > log(b − a) > 1

2pk > 1
2k log k. We get

k <
2 log b
log k .
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Proof of the theorem VI – 3) finished

Therefore, we can conclude that

2k < 2
2 log b
log k < b

1.4
log k .

If 2k ⩾ b0.01, then we have k < e140 and b < 2100·e140 , hence, the
number of such sequences is O(1). If 2k < b0.01, then the number
of the corresponding sequences is less that 2 · 2ω(n) · N0.01.
Therefore, the contribution of the case 3) is

O
(√

N log2 N · N0.01 · logN
)
= O

(
N0.52) .
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Byproduct of our proof

Corollary 16
If an irregular D(n)-triple {a, b, c} satisfies a < b < c and c > n2,
then

c ⩾ 2
n2 ab.

For positive n, this lower bound can be improved to c ⩾ 4
n2 ab.
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The number of D(q)-triples for prime q

Corollary 17
Let q be an integer such that |q| is a prime or q = −1. The
number of D(q)-triples is given by the following.

a) For even q,

D3,2(N) ∼ L(1, χ8,5)

2ζ(2) · N, while D3,−2(N) ∼ L(1, χ8,3)

2ζ(2) · N.

b) Let q ≡ 3 (mod 4) such that |q| is prime, or q = −1. Then

D3,q(N) ∼
L(1, χ4|q|,4|q|−1)

2ζ(2) · N.
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The number of D(q)-triples for prime q II

c) Let q ≡ 5 (mod 8) such that |q| is prime. Then

D3,q(N) ∼
L(1, χ|q|,|q|−1)

ζ(2) · N.

d) Let q ≡ 1 (mod 8) such that |q| is prime. Then

D3,q(N) ∼
L(1, χ|q|,|q|−1)

2ζ(2) · N.
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Further work

▶ the number of D(n)-pairs for composite n-s

▶ estimating the error terms?

▶ finding infinitely many D(n)-quadruples for non-square ns???
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