On the representation theory of the affine $\operatorname{sl}(4)$ at level $-5 / 2$ and application to the higher ranks

Joint work with D. Adamović, O. Perše and T. Creutzig

Ivana Vukorepa

Representation Theory XVII, Dubrovnik October 6, 2022

Znanstveni centar izvrsnosti za kvantne i kompleksne sustave te reprezentacije Liejevih algebri

Projekt KK.01.1.1.01.0004
Projekt je sufinancirala Europska unija iz Europskog fonda za regionalni razvoj. Sadržaj ovog seminara isključiva je odgovornost Prirodoslovno-matematičkog fakulteta Sveučilišta u Zagrebu te ne predstavlja nužno stajalište Europske unije.

Europska unija Zajedno do fondova EU

Operativni program KONKURENTNOST I KOHEZIJA

EUROPSKA UNIJA Europski fond za regionalni razvoj

Reference:

- D. Adamović, O. Perše, I. Vukorepa, On the representation theory of the vertex algebra $L_{-5 / 2}(s l(4))$, Communications in Contemporary Mathematics (2021), arXiv:2103.02985

Content

(1) Preliminaries
(2) Summary of previous results
(3) Affine vertex algebra associated to $\widehat{s l(4)}$ at level $-5 / 2$
(4) Description of maximal ideal in $V^{-5 / 2}(s l(4))$
(5) Fusion rules for irreducible modules in $K L_{-5 / 2}$
(6) Application to the higher ranks

Affine Lie algebra

Let \mathfrak{g} be a finite-dimensional simple Lie algebra over \mathbb{C} and let (\cdot, \cdot) be a non-degenerate, symmetric bilinear form on \mathfrak{g}.
The affine Lie algebra $\hat{\mathfrak{g}}$ associated with \mathfrak{g} is defined as

$$
\hat{\mathfrak{g}}=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right] \oplus \mathbb{C} K
$$

where K is central element and Lie algebra structure is given by

$$
[x(m), y(n)]=[x, y](m+n)+m \delta_{m,-n}(x, y) K
$$

where $x(m)$ denotes $x \otimes t^{m} \in \mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right]$.
We say that M is a $\hat{\mathfrak{g}}$-module of level $k \in \mathbb{C}$ if the central element K acts on M as a multiplication with k.

Affine vertex algebra

- $V^{k}(\mathfrak{g})$ universal affine vertex algebra of level $k, k \neq-h^{\vee}$
- As $\hat{\mathfrak{g}}$-module, we have

$$
V^{k}(\mathfrak{g})=\mathcal{U}(\hat{\mathfrak{g}}) \otimes_{\mathcal{U}(\mathfrak{g} \otimes \mathbb{C}[t]+\mathbb{C} K)} \mathbb{C} 1
$$

- $L_{k}(\mathfrak{g})$ simple quotient of $V^{k}(\mathfrak{g})$.
- Let $u^{(i)}, u_{(j)}, i, j=1, \ldots, \operatorname{dimg}$ be dual bases of \mathfrak{g} with respect to (\cdot, \cdot). Then

$$
\omega=\frac{1}{k+h^{\vee}} \sum_{i=1}^{\text {dimg }} u^{(i)}(-1) u_{(i)}(-1) \mathbf{1}
$$

is Sugawara Virasoro vector in $L_{k}(\mathfrak{g})$ of central charge $c=\frac{k \cdot \operatorname{dimg}}{k+h^{V}}$.

Summary of previous results

- Non-negative integers levels: Frenkel-Zhu, Li The category of $\mathbb{Z}_{\geq 0}$-graded $L_{k}(\mathfrak{g})$-modules is semi-simple.
- Admissible levels: Adamović-Milas, Dong-Li-Mason, Arakawa, Perše The category of $L_{k}(\mathfrak{g})$-modules which are in the category \mathcal{O} as $\hat{\mathfrak{g}}$-modules is semi-simple.

Negative integer levels which appear in:

- free-field realizations of certain simple affine vertex algebras (Adamović-Perše),
- in the context of affine vertex algebras associated to the Deligne exceptional series (Arakawa-Moreau),
- in the context of collapsing levels for minimal affine \mathcal{W}-algebras (Adamović-Kac-Moseneder Frajria-Papi-Perše).

Admissible and almost admissible levels

- For $\mathfrak{g}=\operatorname{sl}(n)$ level k is admissible if

$$
k+n=\frac{p}{q}, \quad p, q \in \mathbb{N},(p, q)=1, p \geq n
$$

- We are interested in levels which are almost admissible, i.e.

$$
k=-n+\frac{n-1}{q}, \quad q \in \mathbb{N}, \quad(n-1, q)=1 .
$$

- First such example is $V^{-1}(s l(n)), n \geq 3$.
- For $q=2$, we have $k=-\frac{n+1}{2}$.

On the vertex algebra $L_{-1}(s l(4))$

- Adamović and Perše determined an explicit formula for the singular vector in $V^{-1}(s l(4))$ and classified irreducible $L_{-1}(s l(4))$-modules in the category \mathcal{O}.
- Category \mathcal{O} for $L_{-1}(s l(n))$ is not semi-simple unlike the admissible case.
- Description of the maximal ideal in $V^{-1}(s l(4))$ was obtained using minimal QHR functor $H_{f_{\theta}}$ (Arakawa-Moreau).
- Level $k=-1$ is collapsing for $W^{k}\left(s l(4), f_{\theta}\right)$ and $W_{-1}\left(s l(4), f_{\theta}\right)=M(1)$.
- Category $K L_{-1}$ is semi-simple (AKMPP).
- Category $K L_{-1}$ is a rigid braided tensor category (Creutzig-Yang).

Vertex algebra $L_{-5 / 2}(s l(4))$

- New example of non-admissible, half-integer level.
- It appears in conformal embedding
$L_{-5 / 2}(s l(4)) \otimes M(1) \hookrightarrow L_{-5 / 2}(s l(5))(\mathrm{AKMPP})$,
where $M(1)$ denotes the Heisenberg vertex algebra associated to abelian Lie algebra of rank one.
- The level $k=-5 / 2$ is admissible for $\widehat{s l(5)}$.

The singular vector in $V^{-5 / 2}(s l(4))$

Theorem

Let $\mathfrak{g}=\operatorname{sl}(4)$. The following vector v is a singular vector of weight $-\frac{5}{2} \Lambda_{0}-4 \delta+2 \omega_{2}$ in $V^{-5 / 2}(\mathfrak{g})$:

$$
\begin{aligned}
v & =e_{\varepsilon_{1}-\varepsilon_{3}}(-1) e_{\varepsilon_{2}-\varepsilon_{4}}(-3) \mathbf{1}+e_{\varepsilon_{1}-\varepsilon_{3}}(-3) e_{\varepsilon_{2}-\varepsilon_{4}}(-1) \mathbf{1}+\frac{1}{2} e_{\varepsilon_{1}-\varepsilon_{3}}(-2) e_{\varepsilon_{2}-\varepsilon_{4}}(-2) \mathbf{1} \\
& -e_{\varepsilon_{1}-\varepsilon_{4}}(-1) e_{\varepsilon_{2}-\varepsilon_{3}}(-3) \mathbf{1}-e_{\varepsilon_{1}-\varepsilon_{4}}(-3) e_{\varepsilon_{2}-\varepsilon_{3}}(-1) \mathbf{1}-\frac{1}{2} e_{\varepsilon_{1}-\varepsilon_{4}}(-2) e_{\varepsilon_{2}-\varepsilon_{3}}(-2) \mathbf{1} \\
& +e_{\varepsilon_{2}-\varepsilon_{4}}(-1) e_{\varepsilon_{2}-\varepsilon_{3}}(-2) e_{\varepsilon_{1}-\varepsilon_{2}}(-1) \mathbf{1}-e_{\varepsilon_{2}-\varepsilon_{4}}(-2) e_{\varepsilon_{2}-\varepsilon_{3}}(-1) e_{\varepsilon_{1}-\varepsilon_{2}}(-1) \mathbf{1} \\
& -e_{\varepsilon_{1}-\varepsilon_{3}}(-1) e_{\varepsilon_{2}-\varepsilon_{3}}(-2) e_{\varepsilon_{3}-\varepsilon_{4}}(-1) \mathbf{1}-3 e_{\varepsilon_{1}-\varepsilon_{3}}(-2) e_{\varepsilon_{2}-\varepsilon_{3}}(-1) e_{\varepsilon_{3}-\varepsilon_{4}}(-1) \mathbf{1} \\
& +2 e_{\varepsilon_{1}-\varepsilon_{2}}(-1) e_{\varepsilon_{2}-\varepsilon_{3}}(-1)^{2} e_{\varepsilon_{3}-\varepsilon_{4}}(-1) \mathbf{1}-\frac{2}{3} e_{\varepsilon_{1}-\varepsilon_{3}}(-1) e_{\varepsilon_{2}-\varepsilon_{4}}(-1) h_{2}(-2) \mathbf{1}+\cdots
\end{aligned}
$$

The remaining terms can be found in the referenced paper.
Let us denote

$$
\widetilde{L}_{-5 / 2}(\mathfrak{g})=V^{-5 / 2}(\mathfrak{g}) /\langle v\rangle
$$

A certain automorphism of $\widetilde{L}_{-5 / 2}(\mathfrak{g})$

Vertex algebra $V^{-5 / 2}(\mathfrak{g})$ has an order two automorphism σ which is lifted from the automorphism of the Dynkin diagram of \mathfrak{g}, defined by:

$$
\sigma\left(\alpha_{1}\right)=\alpha_{3}, \sigma\left(\alpha_{2}\right)=\alpha_{2}, \sigma\left(\alpha_{3}\right)=\alpha_{1} .
$$

- One easily checks that $\sigma(v)=v$ for the singular vector v.
- This implies that σ induces an automorphism of $\widetilde{L}_{-5 / 2}(\mathfrak{g})$.

Theorem

The complete list of irreducible $\widetilde{L}_{-5 / 2}(s l(4))$-modules in the category \mathcal{O} is given by

$$
\left\{L_{-5 / 2}\left(\mu_{i}(t)\right) \mid i=1, \ldots, 16, t \in \mathbb{C}\right\}
$$

where:

$$
\begin{aligned}
& \mu_{1}(t)=t \omega_{1} \\
& \mu_{2}(t)=t \omega_{3} \\
& \mu_{3}(t)=t \omega_{1}+\left(-t-\frac{5}{2}\right) \omega_{2} \\
& \mu_{4}(t)=t \omega_{2}+\left(-t-\frac{5}{2}\right) \omega_{3} \\
& \mu_{5}(t)=t \omega_{1}-\frac{3}{2} \omega_{2} \\
& \mu_{6}(t)=-\frac{3}{2} \omega_{2}+t \omega_{3} \\
& \mu_{7}(t)=t \omega_{1}+(-t-1) \omega_{2} \\
& \mu_{8}(t)=t \omega_{2}+(-t-1) \omega_{3}
\end{aligned}
$$

$$
\mu_{9}(t)=-\frac{3}{2} \omega_{1}+t \omega_{3}
$$

$$
\mu_{10}(t)=t \omega_{1}-\frac{3}{2} \omega_{3}
$$

$$
\mu_{11}(t)=-\frac{3}{2} \omega_{1}+t \omega_{2}+(-t-1) \omega_{3}
$$

$$
\mu_{12}(t)=(-t-1) \omega_{1}+t \omega_{2}-\frac{3}{2} \omega_{3}
$$

$$
\mu_{13}(t)=-\frac{1}{2} \omega_{1}-\frac{1}{2} \omega_{2}+t \omega_{3}
$$

$$
\mu_{14}(t)=-\frac{1}{2} \omega_{1}+t \omega_{2}+\left(-t-\frac{3}{2}\right) \omega_{3}
$$

$$
\mu_{15}(t)=t \omega_{1}-\frac{1}{2} \omega_{2}-\frac{1}{2} \omega_{3}
$$

$$
\mu_{16}(t)=\left(-t-\frac{3}{2}\right) \omega_{1}+t \omega_{2}-\frac{1}{2} \omega_{3}
$$

Corollary

The complete list of irreducible $\widetilde{L}_{-5 / 2}(s l(4))$-modules in the category $K L_{-5 / 2}$ is given by

$$
\left\{L_{-5 / 2}\left(t \omega_{1}\right) \mid t \in \mathbb{Z}_{\geq 0}\right\} \cup\left\{L_{-5 / 2}\left(t \omega_{3}\right) \mid t \in \mathbb{Z}_{\geq 0}\right\}
$$

Next goal: Prove the simplicity of $\widetilde{L}_{-5 / 2}(s l(4))$.

- It turns out that in this case we can not use \mathcal{W}-algebra $W^{k}\left(s l(4), f_{\theta}\right)$ as in the case $k=-1$.

\mathcal{W}-algebra $W^{-5 / 2}\left(s l(4), f_{\text {subreg }}\right)$

- We use subregular nilpotent element

$$
f=f_{\text {subreg }}=f_{\varepsilon_{2}-\varepsilon_{3}}+f_{\varepsilon_{3}-\varepsilon_{4}} .
$$

- Let

$$
x=\omega_{2}+\omega_{3}
$$

be a semisimple element of $\operatorname{sl}(4)$ which defines a good grading with respect to f.

- Vertex algebra $W^{-5 / 2}(s l(4), f)$ is strongly generated by five elements; $J, \bar{L}=L+\partial J, W, G^{+}, G^{-}$having conformal weights $1,2,3,1,3$, respectively.
- The OPE formulas are presented by T. Creutzig and A. Linshaw.

\mathcal{W}-algebra $W^{-5 / 2}\left(s l(4), f_{\text {subreg }}\right)$

Let us denote $\mathfrak{g}=\operatorname{sl}(4)$.

Theorem

Level $k=-5 / 2$ is a collapsing level for $W^{k}\left(\mathfrak{g}, f_{\text {subreg }}\right)$ and

$$
W_{-5 / 2}\left(\mathfrak{g}, f_{\text {subreg }}\right) \cong M_{J}(1),
$$

where $M_{J}(1)$ is the Heisenberg vertex algebra generated by J.

Lemma

The image of singular vector v in $W^{-5 / 2}\left(\mathfrak{g}, f_{\text {subreg }}\right)$ coincides (up to a non-zero scalar) with the vector G^{+}.

Some results on the QHR functor $H_{f_{\text {subreg }}}(\cdot)$

Proposition

We have:
(1) $H_{f_{\text {subreg }}}\left(\widetilde{L}_{-5 / 2}(\mathfrak{g})\right) \cong M_{J}(1)$.
(2) $H_{f_{\text {subreg }}}\left(L_{-5 / 2}(\mathfrak{g})\right) \cong M_{J}(1)$.

Problem: The properties of the QHR functor $H_{f_{\text {subreg }}}(\cdot)$ are not presented so explicitly as in the case of the minimal reduction.

- In the case $k=-1$ we have $H_{f_{\theta}}\left(L_{-1}\left(n \omega_{i}\right)\right) \neq\{0\}, i=1,3$.

Main properties of the QHR functor $H_{f_{\text {subreg }}}(\cdot)$

Theorem

For any $n \in \mathbb{Z}_{>0}$ we have:
(P) $H_{f_{\text {subreg }}}\left(L_{-5 / 2}\left(n \omega_{3}\right)\right) \neq\{0\}$ and $H_{f_{\text {subreg }}}(M)=\{0\}$ for any highest weight $\widetilde{L}_{-5 / 2}(\mathfrak{g})-$ module M in $K L_{-5 / 2}$ of \mathfrak{g}-weight $n \omega_{1}$.

- The proof is based on a construction of singular vectors in generalized Verma modules $V^{-5 / 2}\left(n \omega_{i}\right), i=1,3$, and the description of their submodules $\langle v\rangle \cdot V^{-5 / 2}\left(n \omega_{i}\right)$.
- As a consequence, we obtain a description of the universal $\widetilde{L}_{-5 / 2}(\mathfrak{g})$-modules

$$
\bar{M}\left(n \omega_{i}\right)=\frac{V^{-5 / 2}\left(n \omega_{i}\right)}{\langle v\rangle \cdot V^{-5 / 2}\left(n \omega_{i}\right)}
$$

for which we prove vanishing and non-vanishing of $H_{f_{\text {subreg }}}\left(\bar{M}\left(n \omega_{i}\right)\right)$.

Simplicity of $\widetilde{L}_{-5 / 2}(\mathfrak{g})$ and semi-simplicity of $K L_{-5 / 2}$

The main idea in the case $k=-5 / 2$ is to use property (P) and the automorphism σ which interchanges the weights $n \omega_{1}$ and $n \omega_{3}$.

Theorem

We have:
(i) $\langle v\rangle$ is the maximal ideal in $V^{-5 / 2}(s l(4))$, i.e.

$$
L_{-5 / 2}(s l(4)) \cong V^{-5 / 2}(s l(4)) /\langle v\rangle .
$$

(ii) The category $K L_{-5 / 2}$ is semi-simple.

Sketch of proof: (i)

- We have $H_{f_{\text {subreg }}}\left(\widetilde{L}_{-5 / 2}(\mathfrak{g})\right)=W_{-5 / 2}\left(\mathfrak{g}, f_{\text {subreg }}\right)=M_{J}(1)$.
- If $\widetilde{L}_{-5 / 2}(\mathfrak{g})$ is not simple, it must contain singular vector w_{μ} of \mathfrak{g}-weight $\mu=n \omega_{1}$ or $\mu=n \omega_{3}$, for $n \in \mathbb{Z}_{>0}$.
- Using an automorphism σ we conclude that $\widetilde{L}_{-5 / 2}(\mathfrak{g})$ contains a singular vector of \mathfrak{g}-weight $\mu=n \omega_{3}$.
- Property (P) implies that ideal generated by this vector is mapped by QHR functor $H_{f_{\text {subreg }}}$ to a non-trivial ideal in $W_{-5 / 2}\left(\mathfrak{g}, f_{\text {subreg }}\right)$, which is simple.
- Using exactness of $H_{f_{\text {subreg }}}$ in the category $K L_{-5 / 2}$, we get $H_{f_{\text {subreg }}}\left(L_{-5 / 2}(\mathfrak{g})\right)=\{0\}$, which is a contradiction.
(ii) The similar arguments as in (i) prove that any highest weight module in $K L_{-5 / 2}$ is irreducible. Then the result of AKMPP implies that $K L_{-5 / 2}$ is semi-simple.

Conformal embedding $g l(2 n) \hookrightarrow s l(2 n+1)$ at $k=-\frac{2 n+1}{2}$

Proposition (AKMPP (2016))

There is a conformal embedding

$$
L_{k}(s l(2 n)) \otimes M(1) \hookrightarrow L_{k}(s l(2 n+1)), \quad k=-\frac{2 n+1}{2}, n \geq 2
$$

and we have the following decomposition of $L_{k}(s l(2 n+1))$ as an $L_{k}(s l(2 n)) \otimes M(1)-m o d u l e:$

$$
L_{k}(s l(2 n+1))=\bigoplus_{i=0}^{\infty} L_{k}\left(i \omega_{1}\right) \otimes M(1, i) \oplus \bigoplus_{i=1}^{\infty} L_{k}\left(i \omega_{2 n-1}\right) \otimes M(1,-i)
$$

We introduce the following notation for the irreducible $L_{k}(s l(2 n))$-modules in the category $K L_{k}(s l(2 n))$:

$$
U_{i}^{(n)}=L_{k}\left(i \omega_{1}\right), U_{-i}^{(n)}=L_{k}\left(i \omega_{2 n-1}\right), i \in \mathbb{Z}_{\geq 0}
$$

Fusion rules between irreducible modules in $K L_{-5 / 2}$

Proposition

Let $i, j \in \mathbb{Z}$. We have the following fusion rule:

$$
U_{i}^{(2)} \times U_{j}^{(2)}=U_{i+j}^{(2)} .
$$

This means that for $i, j, k \in \mathbb{Z}$:

$$
\operatorname{dim} I\binom{U_{k}^{(2)}}{U_{i}^{(2)} U_{j}^{(2)}}=\delta_{i+j, k}
$$

Corollary

$K L_{-5 / 2}$ is a semi-simple rigid braided tensor category with the fusion rules

$$
U_{i}^{(2)} \boxtimes U_{j}^{(2)}=U_{i+j}^{(2)} \quad(i, j \in \mathbb{Z})
$$

Tensor categories and conformal embeddings

- Creutzig, McRae, Yang and collaborators use tensor category approach for studying VOAs.
- Let us consider conformal embeddings $L_{k}\left(\mathfrak{g}_{0}\right) \hookrightarrow L_{k}(\mathfrak{g})$ from AKMPP.
- Based on their results, one expects that the category $K L_{k}$ of ordinary $L_{k}\left(\mathfrak{g}_{0}\right)$-modules will have the structure of a rigid braided tensor category.
- Together with the decompositions of $L_{k}(\mathfrak{g})$ as $L_{k}\left(\mathfrak{g}_{0}\right)$-modules from AKMPP, their results should imply also the fusion rules in $K L_{k}$.

Singlet $\mathcal{M}(2)$

Goal: Using tensor category approach, extend results on $K L_{-5 / 2}(s l(4))$ to $K L_{k}(s l(2 n)), k=-\frac{2 n+1}{2}$.

Results on singlet $\mathcal{M}(2)$ [A'03] [AM'17], [CMY'21]:

- The category of all C_{1}-cofinite $\mathcal{M}(2)$-modules $\mathcal{O}_{\mathcal{M}(2)}$ is a rigid braided tensor category.
- Let $\mathcal{M}_{i}, i \in \mathbb{Z}$ be all atypical $\mathcal{M}(2)$-modules. Modules $\mathcal{M}_{i}, i \in \mathbb{Z}$ are simple currents in $\mathcal{O}_{\mathcal{M}(2)}$ with the following fusion rules

$$
\mathcal{M}_{i} \times \mathcal{M}_{j}=\mathcal{M}_{i+j}, \quad i, j \in \mathbb{Z}
$$

Structure of $W_{-7 / 2}\left(s l(6), f_{\theta}\right)$

Using that $K L_{-5 / 2}(s l(4))$ is a braided tensor category and above results on singlet, we obtain:

- $W_{-7 / 2}\left(s l(6), f_{\theta}\right)$ is a simple current extension of $L_{-5 / 2}(s l(4)) \otimes \mathcal{H} \otimes \mathcal{M}(2)$, where \mathcal{H} denotes the rank one Heisenberg vertex algebra generated by h previously denoted by $M(1)$.
- We have the following decomposition

$$
W_{-7 / 2}\left(s l(6), f_{\theta}\right)=\bigoplus_{i \in \mathbb{Z}} U_{i}^{(2)} \otimes \mathcal{F}_{i} \otimes \mathcal{M}_{i}
$$

where \mathcal{F}_{i} denotes Fock \mathcal{H}-module generated by highest weight vector v_{i} such that

$$
h(n) v_{i}=\delta_{n, 0} i v_{i}(n \geq 0)
$$

previously denoted by $M(1, i)$.

Category $K L_{-7 / 2}(\operatorname{sl}(6))$

Theorem

(1) Set $\left\{U_{i}^{(3)} \mid i \in \mathbb{Z}\right\}$ provides all irreducible modules in $K L_{-7 / 2}(s l(6))$ and we have the following fusion rules:

$$
U_{i}^{(3)} \times U_{j}^{(3)}=U_{i+j}^{(3)}, \quad i, j \in \mathbb{Z}
$$

(2) $K L_{-7 / 2}(s l(6))$ is a semi-simple rigid braided tensor category.

By mathematical induction for $m=2 n$ we proved that above is true for any $m \geq 4$ even and $k=-\frac{m+1}{2}$.

Tensor category $K L_{k}(s l(2 n))$, for $k=-\frac{2 n+1}{2}$

Theorem

(1) Set $\left\{U_{i}^{(n)} \mid i \in \mathbb{Z}\right\}$ provides all irreducible modules in $K L_{k}(s l(2 n))$ and we have the following fusion rules:

$$
U_{i}^{(n)} \times U_{j}^{(n)}=U_{i+j}^{(n)}, \quad i, j \in \mathbb{Z}
$$

(2) $K L_{k}(s l(2 n))$ is a semi-simple rigid braided tensor category.
(3) For $n \geq 3, W_{k}\left(s l(2 n), f_{\theta}\right)$ is a simple current extension of $L_{k+1}(s l(2 n-2)) \otimes \mathcal{H} \otimes \mathcal{M}(2)$, and we have the following decomposition

$$
W_{k}\left(s l(2 n), f_{\theta}\right)=\bigoplus_{i \in \mathbb{Z}} U_{i}^{(n-1)} \otimes \mathcal{F}_{i} \otimes \mathcal{M}_{i}
$$

Thank you!

