On the representation theory of the affine sl(4) at level -5/2 and application to the higher ranks

Joint work with D. Adamović, O. Perše and T. Creutzig

Ivana Vukorepa

Representation Theory XVII, Dubrovnik October 6, 2022

Znanstveni centar izvrsnosti za kvantne i kompleksne sustave te reprezentacije Liejevih algebri

Projekt KK.01.1.1.01.0004

Projekt je sufinancirala Europska unija iz Europskog fonda za regionalni razvoj. Sadržaj ovog seminara isključiva je odgovornost Prirodoslovno-matematičkog fakulteta Sveučilišta u Zagrebu te ne predstavlja nužno stajalište Europske unije.

Europska unija Zajedno do fondova EU

EUROPSKA UNIJA Europski fond za regionalni razvoj

< □ > < □ > < □ > < □ > < □ > < □ >

 D. Adamović, O. Perše, I. Vukorepa, On the representation theory of the vertex algebra L_{-5/2}(sl(4)), Communications in Contemporary Mathematics (2021), arXiv:2103.02985

Preliminaries

- 2 Summary of previous results
- 3 Affine vertex algebra associated to $\widehat{sl(4)}$ at level -5/2
- 4 Description of maximal ideal in $V^{-5/2}(sl(4))$
- **5** Fusion rules for irreducible modules in $KL_{-5/2}$
- 6 Application to the higher ranks

Let \mathfrak{g} be a finite-dimensional simple Lie algebra over \mathbb{C} and let (\cdot, \cdot) be a non-degenerate, symmetric bilinear form on \mathfrak{g} . The **affine Lie algebra** $\hat{\mathfrak{g}}$ associated with \mathfrak{g} is defined as

 $\hat{\mathfrak{g}} = \mathfrak{g} \otimes \mathbb{C}[t, t^{-1}] \oplus \mathbb{C}K,$

where K is central element and Lie algebra structure is given by

$$[x(m), y(n)] = [x, y](m+n) + m\delta_{m, -n}(x, y)K_{n}(x, y) = 0$$

where x(m) denotes $x \otimes t^m \in \mathfrak{g} \otimes \mathbb{C}[t, t^{-1}]$.

We say that M is a $\hat{\mathfrak{g}}$ -module of level $k \in \mathbb{C}$ if the central element K acts on M as a multiplication with k.

- $V^k(\mathfrak{g})$ universal affine vertex algebra of level $k,\,k \neq -h^{\vee}$
- As ĝ–module, we have

$$V^k(\mathfrak{g}) = \mathcal{U}(\hat{\mathfrak{g}}) \otimes_{\mathcal{U}(\mathfrak{g} \otimes \mathbb{C}[t] + \mathbb{C}K)} \mathbb{C}1.$$

- $L_k(\mathfrak{g})$ simple quotient of $V^k(\mathfrak{g})$.
- Let $u^{(i)}, u_{(j)}, \, i,j=1,\ldots, \dim \mathfrak{g}$ be dual bases of \mathfrak{g} with respect to $(\cdot, \cdot).$ Then

$$\omega = \frac{1}{k+h^{\vee}} \sum_{i=1}^{\dim \mathfrak{g}} u^{(i)}(-1)u_{(i)}(-1)\mathbf{1}$$

is Sugawara Virasoro vector in $L_k(\mathfrak{g})$ of central charge $c = \frac{k \cdot \dim \mathfrak{g}}{k+h^{\vee}}$.

- Non-negative integers levels: Frenkel-Zhu, Li The category of Z_{≥0}-graded L_k(𝔅)-modules is semi-simple.
- Admissible levels: Adamović-Milas, Dong-Li-Mason, Arakawa, Perše The category of L_k(g)-modules which are in the category O as ĝ-modules is semi-simple.

Negative integer levels which appear in:

- free-field realizations of certain simple affine vertex algebras (Adamović-Perše),
- in the context of affine vertex algebras associated to the Deligne exceptional series (Arakawa-Moreau),
- in the context of collapsing levels for minimal affine *W*-algebras (Adamović-Kac-Moseneder Frajria-Papi-Perše).

• For $\mathfrak{g} = sl(n)$ level k is <u>admissible</u> if

$$k + n = \frac{p}{q}, \ p, q \in \mathbb{N}, \ (p,q) = 1, \ p \ge n.$$

We are interested in levels which are <u>almost admissible</u>, i.e.

$$k = -n + \frac{n-1}{q}, \quad q \in \mathbb{N}, \quad (n-1,q) = 1.$$

- First such example is $V^{-1}(sl(n))$, $n \ge 3$.
- For q = 2, we have $k = -\frac{n+1}{2}$.

- Adamović and Perše determined an explicit formula for the singular vector in $V^{-1}(sl(4))$ and classified irreducible $L_{-1}(sl(4))$ -modules in the category \mathcal{O} .
- Category ${\mathcal O}$ for $L_{-1}(sl(n))$ is not semi-simple unlike the admissible case.
- Description of the maximal ideal in $V^{-1}(sl(4))$ was obtained using minimal QHR functor $H_{f_{\theta}}$ (Arakawa-Moreau).
- Level k = -1 is collapsing for $W^k(sl(4), f_{\theta})$ and $W_{-1}(sl(4), f_{\theta}) = M(1).$
- Category KL_{-1} is semi-simple (AKMPP).
- Category KL_{-1} is a rigid braided tensor category (Creutzig-Yang).

• • = • • = •

- New example of non-admissible, half-integer level.
- It appears in conformal embedding $L_{-5/2}(sl(4)) \otimes M(1) \hookrightarrow L_{-5/2}(sl(5))$ (AKMPP), where M(1) denotes the Heisenberg vertex algebra associated to abelian Lie algebra of rank one.
- The level k = -5/2 is admissible for $\widehat{sl(5)}$.

Theorem

Let $\mathfrak{g} = sl(4)$. The following vector v is a singular vector of weight $-\frac{5}{2}\Lambda_0 - 4\delta + 2\omega_2$ in $V^{-5/2}(\mathfrak{g})$: $v = e_{\varepsilon_1 - \varepsilon_3}(-1)e_{\varepsilon_2 - \varepsilon_4}(-3)\mathbf{1} + e_{\varepsilon_1 - \varepsilon_3}(-3)e_{\varepsilon_2 - \varepsilon_4}(-1)\mathbf{1} + \frac{1}{2}e_{\varepsilon_1 - \varepsilon_3}(-2)e_{\varepsilon_2 - \varepsilon_4}(-2)\mathbf{1}$ $- e_{\varepsilon_1 - \varepsilon_4}(-1)e_{\varepsilon_2 - \varepsilon_3}(-3)\mathbf{1} - e_{\varepsilon_1 - \varepsilon_4}(-3)e_{\varepsilon_2 - \varepsilon_3}(-1)\mathbf{1} - \frac{1}{2}e_{\varepsilon_1 - \varepsilon_4}(-2)e_{\varepsilon_2 - \varepsilon_3}(-2)\mathbf{1}$ $+ e_{\varepsilon_2 - \varepsilon_4}(-1)e_{\varepsilon_2 - \varepsilon_3}(-2)e_{\varepsilon_1 - \varepsilon_2}(-1)\mathbf{1} - e_{\varepsilon_2 - \varepsilon_4}(-2)e_{\varepsilon_2 - \varepsilon_3}(-1)e_{\varepsilon_1 - \varepsilon_2}(-1)\mathbf{1}$ $- e_{\varepsilon_1 - \varepsilon_3}(-1)e_{\varepsilon_2 - \varepsilon_3}(-2)e_{\varepsilon_3 - \varepsilon_4}(-1)\mathbf{1} - 3e_{\varepsilon_1 - \varepsilon_3}(-2)e_{\varepsilon_2 - \varepsilon_3}(-1)e_{\varepsilon_3 - \varepsilon_4}(-1)\mathbf{1}$ $+ 2e_{\varepsilon_1 - \varepsilon_2}(-1)e_{\varepsilon_2 - \varepsilon_3}(-1)^2e_{\varepsilon_3 - \varepsilon_4}(-1)\mathbf{1} - \frac{2}{3}e_{\varepsilon_1 - \varepsilon_3}(-1)e_{\varepsilon_2 - \varepsilon_4}(-1)h_2(-2)\mathbf{1} + \cdots$

The remaining terms can be found in the referenced paper.

Let us denote

$$\widetilde{L}_{-5/2}(\mathfrak{g}) = V^{-5/2}(\mathfrak{g})/\langle v \rangle.$$

Vertex algebra $V^{-5/2}(\mathfrak{g})$ has an order two automorphism σ which is lifted from the automorphism of the Dynkin diagram of \mathfrak{g} , defined by:

$$\sigma(\alpha_1) = \alpha_3, \ \sigma(\alpha_2) = \alpha_2, \ \sigma(\alpha_3) = \alpha_1.$$

- One easily checks that $\sigma(v) = v$ for the singular vector v.
- This implies that σ induces an automorphism of $\widetilde{L}_{-5/2}(\mathfrak{g})$.

$\widetilde{L}_{-5/2}(sl(4))$ -modules

Theorem

The complete list of irreducible $\widetilde{L}_{-5/2}\,(sl(4))\text{-modules}$ in the category $\mathcal O$ is given by

$$\left\{ \begin{aligned} L_{-5/2}(\mu_i(t)) \mid i = 1, \dots, 16, \ t \in \mathbb{C} \\ \right\}, \\ \text{where:} \\ \mu_1(t) = t\omega_1, & \mu_9(t) = -\frac{3}{2}\omega_1 + t\omega_3, \\ \mu_2(t) = t\omega_3, & \mu_{10}(t) = t\omega_1 - \frac{3}{2}\omega_3, \\ \mu_3(t) = t\omega_1 + (-t - \frac{5}{2})\omega_2, & \mu_{11}(t) = -\frac{3}{2}\omega_1 + t\omega_2 + (-t - 1)\omega_3, \\ \mu_4(t) = t\omega_2 + (-t - \frac{5}{2})\omega_3, & \mu_{12}(t) = (-t - 1)\omega_1 + t\omega_2 - \frac{3}{2}\omega_3, \\ \mu_5(t) = t\omega_1 - \frac{3}{2}\omega_2, & \mu_{13}(t) = -\frac{1}{2}\omega_1 - \frac{1}{2}\omega_2 + t\omega_3, \\ \mu_6(t) = -\frac{3}{2}\omega_2 + t\omega_3, & \mu_{14}(t) = -\frac{1}{2}\omega_1 + t\omega_2 + (-t - \frac{3}{2})\omega_3, \\ \mu_7(t) = t\omega_1 + (-t - 1)\omega_2, & \mu_{15}(t) = t\omega_1 - \frac{1}{2}\omega_2 - \frac{1}{2}\omega_3, \\ \mu_8(t) = t\omega_2 + (-t - 1)\omega_3, & \mu_{16}(t) = (-t - \frac{3}{2})\omega_1 + t\omega_2 - \frac{1}{2}\omega_3. \end{aligned}$$

▶ < ∃ >

Corollary

The complete list of irreducible $\widetilde{L}_{-5/2}\,(sl(4))-{\rm modules}$ in the category $KL_{-5/2}$ is given by

$$\left\{ L_{-5/2}(t\omega_1) \mid t \in \mathbb{Z}_{\geq 0} \right\} \cup \left\{ L_{-5/2}(t\omega_3) \mid t \in \mathbb{Z}_{\geq 0} \right\}.$$

<u>Next goal</u>: Prove the simplicity of $\widetilde{L}_{-5/2}(sl(4))$.

• It turns out that in this case we can not use \mathcal{W} -algebra $W^k(sl(4), f_{\theta})$ as in the case k = -1.

 \mathcal{W} -algebra $W^{-5/2}(sl(4), f_{subreg})$

• We use subregular nilpotent element

$$f = f_{subreg} = f_{\varepsilon_2 - \varepsilon_3} + f_{\varepsilon_3 - \varepsilon_4}.$$

Let

$$x = \omega_2 + \omega_3$$

be a semisimple element of sl(4) which defines a good grading with respect to $f. \label{eq:semisimple}$

- Vertex algebra $W^{-5/2}(sl(4), f)$ is strongly generated by five elements; $J, \bar{L} = L + \partial J, W, G^+, G^-$ having conformal weights 1,2,3,1,3, respectively.
- The OPE formulas are presented by T. Creutzig and A. Linshaw.

 $\mathcal W$ –algebra $W^{-5/2}(sl(4), f_{subreg})$

Let us denote $\mathfrak{g} = sl(4)$.

Theorem

Level k = -5/2 is a collapsing level for $W^k(\mathfrak{g}, f_{subreg})$ and

$$W_{-5/2}(\mathfrak{g}, f_{subreg}) \cong M_J(1),$$

where $M_J(1)$ is the Heisenberg vertex algebra generated by J.

Lemma

The image of singular vector v in $W^{-5/2}(\mathfrak{g}, f_{subreg})$ coincides (up to a non-zero scalar) with the vector G^+ .

Proposition

We have:

(1) $H_{f_{subreg}}(\widetilde{L}_{-5/2}(\mathfrak{g})) \cong M_J(1).$ (2) $H_{f_{subreg}}(L_{-5/2}(\mathfrak{g})) \cong M_J(1).$

<u>Problem</u>: The properties of the QHR functor $H_{f_{subreg}}(\cdot)$ are not presented so explicitly as in the case of the minimal reduction.

• In the case k=-1 we have $H_{f_\theta}(L_{-1}(n\omega_i))\neq \{0\},\,i=1,3.$

Theorem

For any $n \in \mathbb{Z}_{>0}$ we have: (P) $H_{f_{subreg}}(L_{-5/2}(n\omega_3)) \neq \{0\}$ and $H_{f_{subreg}}(M) = \{0\}$ for any highest weight $\widetilde{L}_{-5/2}(\mathfrak{g})$ -module M in $KL_{-5/2}$ of \mathfrak{g} -weight $n\omega_1$.

- The proof is based on a construction of singular vectors in generalized Verma modules $V^{-5/2}(n\omega_i)$, i=1,3, and the description of their submodules $\langle v \rangle \cdot V^{-5/2}(n\omega_i)$.
- As a consequence, we obtain a description of the universal $\widetilde{L}_{-5/2}(\mathfrak{g})\text{-modules}$

$$\overline{M}(n\omega_i) = \frac{V^{-5/2}(n\omega_i)}{\langle v \rangle \cdot V^{-5/2}(n\omega_i)}$$

for which we prove vanishing and non-vanishing of $H_{f_{subreg}}(\overline{M}(n\omega_i))$.

Simplicity of $\widetilde{L}_{-5/2}(\mathfrak{g})$ and semi-simplicity of $KL_{-5/2}$

The main idea in the case k = -5/2 is to use property (P) and the automorphism σ which interchanges the weights $n\omega_1$ and $n\omega_3$.

Theorem

We have:

(i)
$$\langle v \rangle$$
 is the maximal ideal in $V^{-5/2}(sl(4))$, i.e. $L_{-5/2}(sl(4)) \cong V^{-5/2}(sl(4))/\langle v \rangle$.

(ii) The category $KL_{-5/2}$ is semi-simple.

Sketch of proof: (i)

- We have $H_{f_{subreg}}(\widetilde{L}_{-5/2}(\mathfrak{g})) = W_{-5/2}(\mathfrak{g}, f_{subreg}) = M_J(1).$
- If $L_{-5/2}(\mathfrak{g})$ is not simple, it must contain singular vector w_{μ} of \mathfrak{g} -weight $\mu = n\omega_1$ or $\mu = n\omega_3$, for $n \in \mathbb{Z}_{>0}$.

Simplicity of $\widetilde{L}_{-5/2}(\mathfrak{g})$ and semi-simplicity of $KL_{-5/2}$. Sketch of proof

- Using an automorphism σ we conclude that $\widetilde{L}_{-5/2}(\mathfrak{g})$ contains a singular vector of \mathfrak{g} -weight $\mu = n\omega_3$.
- Property (P) implies that ideal generated by this vector is mapped by QHR functor $H_{fsubreg}$ to a non-trivial ideal in $W_{-5/2}(\mathfrak{g}, f_{subreg})$, which is simple.
- Using exactness of $H_{f_{subreg}}$ in the category $KL_{-5/2}$, we get $H_{f_{subreg}}(L_{-5/2}(\mathfrak{g})) = \{0\}$, which is a contradiction.

(ii) The similar arguments as in (i) prove that any highest weight module in $KL_{-5/2}$ is irreducible. Then the result of AKMPP implies that $KL_{-5/2}$ is semi-simple.

A (1) < A (2) < A (2) </p>

Conformal embedding $gl(2n) \hookrightarrow sl(2n+1)$ at $k = -\frac{2n+1}{2}$

Proposition (AKMPP (2016))

There is a conformal embedding

$$L_k(sl(2n)) \otimes M(1) \hookrightarrow L_k(sl(2n+1)), \ \ k = -\frac{2n+1}{2}, \ n \ge 2,$$

and we have the following decomposition of $L_k(sl(2n+1))$ as an $L_k(sl(2n)) \otimes M(1)$ -module:

$$L_k(sl(2n+1)) = \bigoplus_{i=0}^{\infty} L_k(i\omega_1) \otimes M(1,i) \oplus \bigoplus_{i=1}^{\infty} L_k(i\omega_{2n-1}) \otimes M(1,-i).$$

We introduce the following notation for the irreducible $L_k(sl(2n))$ -modules in the category $KL_k(sl(2n))$:

$$U_i^{(n)} = L_k(i\omega_1), \ U_{-i}^{(n)} = L_k(i\omega_{2n-1}), \ i \in \mathbb{Z}_{\geq 0}.$$

Proposition

Let $i, j \in \mathbb{Z}$. We have the following fusion rule:

$$U_i^{(2)} \times U_j^{(2)} = U_{i+j}^{(2)}.$$

This means that for $i, j, k \in \mathbb{Z}$:

$$\dim I \begin{pmatrix} U_k^{(2)} \\ U_i^{(2)} & U_j^{(2)} \end{pmatrix} = \delta_{i+j,k}.$$

Corollary

 $KL_{-5/2}$ is a semi-simple rigid braided tensor category with the fusion rules

$$U_i^{(2)} \boxtimes U_j^{(2)} = U_{i+j}^{(2)} \quad (i, j \in \mathbb{Z}).$$

- Creutzig, McRae, Yang and collaborators use tensor category approach for studying VOAs.
- Let us consider conformal embeddings $L_k(\mathfrak{g}_0) \hookrightarrow L_k(\mathfrak{g})$ from AKMPP.
- Based on their results, one expects that the category KL_k of ordinary $L_k(\mathfrak{g}_0)$ -modules will have the structure of a rigid braided tensor category.
- Together with the decompositions of $L_k(\mathfrak{g})$ as $L_k(\mathfrak{g}_0)$ -modules from AKMPP, their results should imply also the fusion rules in KL_k .

<u>Goal</u>: Using tensor category approach, extend results on $KL_{-5/2}(sl(4))$ to $KL_k(sl(2n))$, $k = -\frac{2n+1}{2}$.

Results on singlet $\mathcal{M}(2)$ [A'03] [AM'17], [CMY'21]:

- The category of all C_1 -cofinite $\mathcal{M}(2)$ -modules $\mathcal{O}_{\mathcal{M}(2)}$ is a rigid braided tensor category.
- Let M_i, i ∈ Z be all atypical M(2)-modules.
 Modules M_i, i ∈ Z are simple currents in O_{M(2)} with the following fusion rules

$$\mathcal{M}_i \times \mathcal{M}_j = \mathcal{M}_{i+j}, \quad i, j \in \mathbb{Z}.$$

Using that $KL_{-5/2}(sl(4))$ is a braided tensor category and above results on singlet, we obtain:

- $W_{-7/2}(sl(6), f_{\theta})$ is a simple current extension of $L_{-5/2}(sl(4)) \otimes \mathcal{H} \otimes \mathcal{M}(2)$, where \mathcal{H} denotes the rank one Heisenberg vertex algebra generated by h previously denoted by M(1).
- We have the following decomposition

$$W_{-7/2}(sl(6), f_{\theta}) = \bigoplus_{i \in \mathbb{Z}} U_i^{(2)} \otimes \mathcal{F}_i \otimes \mathcal{M}_i,$$

where \mathcal{F}_i denotes Fock \mathcal{H} -module generated by highest weight vector v_i such that

$$h(n)v_i = \delta_{n,0}iv_i \ (n \ge 0),$$

previously denoted by M(1, i).

Theorem

(1) Set $\{U_i^{(3)} | i \in \mathbb{Z}\}$ provides all irreducible modules in $KL_{-7/2}(sl(6))$ and we have the following fusion rules:

$$U_i^{(3)} \times U_j^{(3)} = U_{i+j}^{(3)}, \quad i, j \in \mathbb{Z}.$$

(2) $KL_{-7/2}(sl(6))$ is a semi-simple rigid braided tensor category.

By mathematical induction for m = 2n we proved that above is true for any $m \ge 4$ even and $k = -\frac{m+1}{2}$.

Theorem

(1) Set $\{U_i^{(n)} | i \in \mathbb{Z}\}$ provides all irreducible modules in $KL_k(sl(2n))$ and we have the following fusion rules:

$$U_i^{(n)} \times U_j^{(n)} = U_{i+j}^{(n)}, \quad i, j \in \mathbb{Z}.$$

(2) $KL_k(sl(2n))$ is a semi-simple rigid braided tensor category.

(3) For $n \geq 3$, $W_k(sl(2n), f_\theta)$ is a simple current extension of $L_{k+1}(sl(2n-2)) \otimes \mathcal{H} \otimes \mathcal{M}(2)$, and we have the following decomposition

$$W_k(sl(2n), f_{\theta}) = \bigoplus_{i \in \mathbb{Z}} U_i^{(n-1)} \otimes \mathcal{F}_i \otimes \mathcal{M}_i.$$

Thank you!

æ

ヨト・イヨト