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Affine Lie algebra

Let g be a finite-dimensional simple Lie algebra over C and let (·, ·) be a
non-degenerate, symmetric bilinear form on g.
The affine Lie algebra ĝ associated with g is defined as

ĝ = g⊗ C[t, t−1]⊕ CK,

where K is central element and Lie algebra structure is given by

[x(m), y(n)] = [x, y](m+ n) +mδm,−n(x, y)K,

where x(m) denotes x⊗ tm ∈ g⊗ C[t, t−1].

We say that M is a ĝ–module of level k ∈ C if the central element K acts
on M as a multiplication with k.
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Affine vertex algebra

V k(g) universal affine vertex algebra of level k, k ̸= −h∨

As ĝ–module, we have

V k(g) = U(ĝ)⊗U(g⊗C[t]+CK) C1.

Lk(g) simple quotient of V k(g).

Let u(i), u(j), i, j = 1, . . . ,dimg be dual bases of g with respect to
(·, ·). Then

ω =
1

k + h∨

dimg∑
i=1

u(i)(−1)u(i)(−1)1

is Sugawara Virasoro vector in Lk(g) of central charge c = k·dimg
k+h∨ .
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Summary of previous results

Non-negative integers levels: Frenkel-Zhu, Li

The category of Z≥0–graded Lk(g)–modules is semi-simple.

Admissible levels: Adamović-Milas, Dong-Li-Mason, Arakawa, Peřse

The category of Lk(g)–modules which are in the category O as
ĝ–modules is semi-simple.

Negative integer levels which appear in:

free-field realizations of certain simple affine vertex algebras
(Adamović-Peřse),

in the context of affine vertex algebras associated to the Deligne
exceptional series (Arakawa-Moreau),

in the context of collapsing levels for minimal affine W–algebras
(Adamović-Kac-Moseneder Frajria-Papi-Peřse).
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Admissible and almost admissible levels

For g = sl(n) level k is admissible if

k + n =
p

q
, p, q ∈ N, (p, q) = 1, p ≥ n.

We are interested in levels which are almost admissible, i.e.

k = −n+
n− 1

q
, q ∈ N, (n− 1, q) = 1.

First such example is V −1(sl(n)), n ≥ 3.

For q = 2, we have k = −n+1
2 .
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On the vertex algebra L−1(sl(4))

Adamović and Peřse determined an explicit formula for the singular
vector in V −1(sl(4)) and classified irreducible L−1(sl(4))–modules in
the category O.

Category O for L−1(sl(n)) is not semi-simple unlike the admissible
case.

Description of the maximal ideal in V −1(sl(4)) was obtained using
minimal QHR functor Hfθ (Arakawa-Moreau).

Level k = −1 is collapsing for W k(sl(4), fθ) and
W−1(sl(4), fθ) = M(1).

Category KL−1 is semi-simple (AKMPP).

Category KL−1 is a rigid braided tensor category (Creutzig-Yang).
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Vertex algebra L−5/2(sl(4))

New example of non-admissible, half-integer level.

It appears in conformal embedding
L−5/2(sl(4))⊗M(1) ↪→ L−5/2(sl(5)) (AKMPP),

where M(1) denotes the Heisenberg vertex algebra associated to
abelian Lie algebra of rank one.

The level k = −5/2 is admissible for ŝl(5).
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The singular vector in V −5/2(sl(4))

Theorem

Let g = sl(4). The following vector v is a singular vector of weight
−5

2Λ0 − 4δ + 2ω2 in V −5/2(g):

v = eε1−ε3 (−1)eε2−ε4 (−3)1+ eε1−ε3 (−3)eε2−ε4 (−1)1+
1

2
eε1−ε3 (−2)eε2−ε4 (−2)1

− eε1−ε4 (−1)eε2−ε3 (−3)1− eε1−ε4 (−3)eε2−ε3 (−1)1−
1

2
eε1−ε4 (−2)eε2−ε3 (−2)1

+ eε2−ε4 (−1)eε2−ε3 (−2)eε1−ε2 (−1)1− eε2−ε4 (−2)eε2−ε3 (−1)eε1−ε2 (−1)1

− eε1−ε3 (−1)eε2−ε3 (−2)eε3−ε4 (−1)1− 3eε1−ε3 (−2)eε2−ε3 (−1)eε3−ε4 (−1)1

+ 2eε1−ε2 (−1)eε2−ε3 (−1)2eε3−ε4 (−1)1−
2

3
eε1−ε3 (−1)eε2−ε4 (−1)h2(−2)1+ · · ·

The remaining terms can be found in the referenced paper.

Let us denote
L̃−5/2(g) = V −5/2(g)/⟨v⟩.
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A certain automorphism of L̃−5/2(g)

Vertex algebra V −5/2(g) has an order two automorphism σ which is lifted
from the automorphism of the Dynkin diagram of g, defined by:

σ(α1) = α3, σ(α2) = α2, σ(α3) = α1.

One easily checks that σ(v) = v for the singular vector v.

This implies that σ induces an automorphism of L̃−5/2(g).
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L̃−5/2(sl(4))–modules

Theorem
The complete list of irreducible L̃−5/2 (sl(4))–modules in the category O
is given by {

L−5/2(µi(t)) | i = 1, . . . , 16, t ∈ C
}
,

where:
µ1(t) = tω1, µ9(t) = −3

2ω1 + tω3,

µ2(t) = tω3, µ10(t) = tω1 − 3
2ω3,

µ3(t) = tω1 + (−t− 5
2)ω2, µ11(t) = −3

2ω1 + tω2 + (−t− 1)ω3,

µ4(t) = tω2 + (−t− 5
2)ω3, µ12(t) = (−t− 1)ω1 + tω2 − 3

2ω3,

µ5(t) = tω1 − 3
2ω2, µ13(t) = −1

2ω1 − 1
2ω2 + tω3,

µ6(t) = −3
2ω2 + tω3, µ14(t) = −1

2ω1 + tω2 + (−t− 3
2)ω3,

µ7(t) = tω1 + (−t− 1)ω2, µ15(t) = tω1 − 1
2ω2 − 1

2ω3,

µ8(t) = tω2 + (−t− 1)ω3, µ16(t) = (−t− 3
2)ω1 + tω2 − 1

2ω3.
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L̃−5/2(sl(4))–modules

Corollary

The complete list of irreducible L̃−5/2 (sl(4))–modules in the category
KL−5/2 is given by{

L−5/2(tω1) | t ∈ Z≥0

}
∪
{
L−5/2(tω3) | t ∈ Z≥0

}
.

Next goal: Prove the simplicity of L̃−5/2(sl(4)).

It turns out that in this case we can not use W–algebra W k(sl(4), fθ)
as in the case k = −1.

Ivana Vukorepa Affine sl(4) at level −5/2 and application to the higher ranks 14 / 28



W–algebra W−5/2(sl(4), fsubreg)

We use subregular nilpotent element

f = fsubreg = fε2−ε3 + fε3−ε4 .

Let
x = ω2 + ω3

be a semisimple element of sl(4) which defines a good grading with
respect to f .

Vertex algebra W−5/2(sl(4), f) is strongly generated by five elements;
J, L̄ = L+ ∂J,W,G+, G− having conformal weights 1,2,3,1,3,
respectively.

The OPE formulas are presented by T. Creutzig and A. Linshaw.
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W–algebra W−5/2(sl(4), fsubreg)

Let us denote g = sl(4).

Theorem

Level k = −5/2 is a collapsing level for W k(g, fsubreg) and

W−5/2(g, fsubreg) ∼= MJ(1),

where MJ(1) is the Heisenberg vertex algebra generated by J .

Lemma

The image of singular vector v in W−5/2(g, fsubreg) coincides (up to a
non-zero scalar) with the vector G+.

Ivana Vukorepa Affine sl(4) at level −5/2 and application to the higher ranks 16 / 28



Some results on the QHR functor Hfsubreg(·)

Proposition

We have:

(1) Hfsubreg(L̃−5/2(g)) ∼= MJ(1).

(2) Hfsubreg(L−5/2(g)) ∼= MJ(1).

Problem: The properties of the QHR functor Hfsubreg(·) are not presented
so explicitly as in the case of the minimal reduction.

In the case k = −1 we have Hfθ(L−1(nωi)) ̸= {0}, i = 1, 3.

Ivana Vukorepa Affine sl(4) at level −5/2 and application to the higher ranks 17 / 28



Main properties of the QHR functor Hfsubreg(·)

Theorem

For any n ∈ Z>0 we have:
(P) Hfsubreg(L−5/2(nω3)) ̸= {0} and Hfsubreg(M) = {0} for any highest

weight L̃−5/2(g)–module M in KL−5/2 of g–weight nω1.

The proof is based on a construction of singular vectors in generalized
Verma modules V −5/2(nωi), i = 1, 3 , and the description of their
submodules ⟨v⟩ · V −5/2(nωi).

As a consequence, we obtain a description of the universal
L̃−5/2(g)–modules

M(nωi) =
V −5/2(nωi)

⟨v⟩ · V −5/2(nωi)

for which we prove vanishing and non-vanishing of Hfsubreg(M(nωi)).
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Simplicity of L̃−5/2(g) and semi-simplicity of KL−5/2

The main idea in the case k = −5/2 is to use property (P) and the
automorphism σ which interchanges the weights nω1 and nω3.

Theorem

We have:

(i) ⟨v⟩ is the maximal ideal in V −5/2(sl(4)), i.e.
L−5/2 (sl(4)) ∼= V −5/2(sl(4))/⟨v⟩.

(ii) The category KL−5/2 is semi-simple.

Sketch of proof: (i)

We have Hfsubreg(L̃−5/2(g)) = W−5/2(g, fsubreg) = MJ(1).

If L̃−5/2(g) is not simple, it must contain singular vector wµ of
g–weight µ = nω1 or µ = nω3, for n ∈ Z>0.
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Simplicity of L̃−5/2(g) and semi-simplicity of KL−5/2

Sketch of proof

Using an automorphism σ we conclude that L̃−5/2(g) contains a
singular vector of g–weight µ = nω3.

Property (P) implies that ideal generated by this vector is mapped by
QHR functor Hfsubreg to a non-trivial ideal in W−5/2(g, fsubreg),
which is simple.

Using exactness of Hfsubreg in the category KL−5/2, we get
Hfsubreg(L−5/2(g)) = {0}, which is a contradiction.

(ii) The similar arguments as in (i) prove that any highest weight module
in KL−5/2 is irreducible. Then the result of AKMPP implies that KL−5/2

is semi-simple.
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Conformal embedding gl(2n) ↪→ sl(2n+ 1) at k = −2n+1
2

Proposition (AKMPP (2016))

There is a conformal embedding

Lk(sl(2n))⊗M(1) ↪→ Lk(sl(2n+ 1)), k = −2n+ 1

2
, n ≥ 2,

and we have the following decomposition of Lk(sl(2n+ 1)) as an
Lk(sl(2n))⊗M(1)–module:

Lk(sl(2n+ 1)) =

∞⊕
i=0

Lk(iω1)⊗M(1, i) ⊕
∞⊕
i=1

Lk(iω2n−1)⊗M(1,−i).

We introduce the following notation for the irreducible
Lk(sl(2n))–modules in the category KLk(sl(2n)):

U
(n)
i = Lk(iω1), U

(n)
−i = Lk(iω2n−1), i ∈ Z≥0.
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Fusion rules between irreducible modules in KL−5/2

Proposition

Let i, j ∈ Z. We have the following fusion rule:

U
(2)
i × U

(2)
j = U

(2)
i+j .

This means that for i, j, k ∈ Z:

dim I

(
U

(2)
k

U
(2)
i U

(2)
j

)
= δi+j,k.

Corollary

KL−5/2 is a semi-simple rigid braided tensor category with the fusion rules

U
(2)
i ⊠ U

(2)
j = U

(2)
i+j (i, j ∈ Z).
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Tensor categories and conformal embeddings

Creutzig, McRae, Yang and collaborators use tensor category
approach for studying VOAs.

Let us consider conformal embeddings Lk(g0) ↪→ Lk(g) from
AKMPP.

Based on their results, one expects that the category KLk of ordinary
Lk(g0)–modules will have the structure of a rigid braided tensor
category.

Together with the decompositions of Lk(g) as Lk(g0)–modules from
AKMPP, their results should imply also the fusion rules in KLk.
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Singlet M(2)

Goal: Using tensor category approach, extend results on KL−5/2(sl(4)) to

KLk(sl(2n)), k = −2n+1
2 .

Results on singlet M(2) [A’03] [AM’17], [CMY’21]:

The category of all C1–cofinite M(2)–modules OM(2) is a rigid
braided tensor category.

Let Mi, i ∈ Z be all atypical M(2)–modules.

Modules Mi, i ∈ Z are simple currents in OM(2) with the following
fusion rules

Mi ×Mj = Mi+j , i, j ∈ Z.
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Structure of W−7/2(sl(6), fθ)

Using that KL−5/2(sl(4)) is a braided tensor category and above results
on singlet, we obtain:

W−7/2(sl(6), fθ) is a simple current extension of
L−5/2(sl(4))⊗H⊗M(2), where H denotes the rank one Heisenberg
vertex algebra generated by h previously denoted by M(1).

We have the following decomposition

W−7/2(sl(6), fθ) =
⊕
i∈Z

U
(2)
i ⊗Fi ⊗Mi,

where Fi denotes Fock H–module generated by highest weight vector
vi such that

h(n)vi = δn,0ivi (n ≥ 0),

previously denoted by M(1, i).

Ivana Vukorepa Affine sl(4) at level −5/2 and application to the higher ranks 25 / 28



Category KL−7/2(sl(6))

Theorem

(1) Set {U (3)
i | i ∈ Z} provides all irreducible modules in KL−7/2(sl(6))

and we have the following fusion rules:

U
(3)
i × U

(3)
j = U

(3)
i+j , i, j ∈ Z.

(2) KL−7/2(sl(6)) is a semi-simple rigid braided tensor category.

By mathematical induction for m = 2n we proved that above is true for
any m ≥ 4 even and k = −m+1

2 .
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Tensor category KLk(sl(2n)), for k = −2n+1
2

Theorem

(1) Set {U (n)
i | i ∈ Z} provides all irreducible modules in KLk(sl(2n))

and we have the following fusion rules:

U
(n)
i × U

(n)
j = U

(n)
i+j , i, j ∈ Z.

(2) KLk(sl(2n)) is a semi-simple rigid braided tensor category.

(3) For n ≥ 3, Wk(sl(2n), fθ) is a simple current extension of
Lk+1(sl(2n− 2))⊗H⊗M(2), and we have the following
decomposition

Wk(sl(2n), fθ) =
⊕
i∈Z

U
(n−1)
i ⊗Fi ⊗Mi.
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Thank you!
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