Combinatorial relations among relations for level 2 standard $C_{n}^{(1)}$-modules

Tomislav Šikić

University of Zagreb, Faculty of Electrical Engineering and Computing Department of Applied Mathematics

Representation Theory XVII
October 3-8, 2022, IUC Dubrovnik, Croatia

Joint work with Mirko Primc

Znanstveni centar izvrsnosti za kvantne i kompleksne sustave te reprezentacije Liejevih algebri

Projekt KK.01.1.1.01.0004

Projekt je sufinancirala Europska unija iz Europskog fonda za regionalni razvoj. Sadržaj ovog seminara isključiva je odgovornost Prirodoslovno-matematičkog fakulteta Sveučilišta u Zagrebu te ne predstavlja nužno stajalište Europske unije.

Europska unija
Zajedno do fondova EU

Operativni program KONKURENTNOST I KOHEZIJA

EUROPSKA UNIJA Europese fond za regionalni razvoj
provedoba vrhunskih istrazivanja u sklopu ZNANSTVENOG CENTRA IZVRSNOSTI ZA KVANTNE I KOMPLEKSNE SUSTAVE TE REPREZENTACIJE LIEJEVIH ALGEBRI \square EUROPSKA UNIJA
Zajedno do fondova EU

Affine Lie algebras

- Let \mathfrak{g} be a simple complex Lie algebra, \mathfrak{h} a Cartan subalgebra of \mathfrak{g} and \langle,$\rangle a symmetric invariant bilinear form on \mathfrak{g}$ and we assume that $\langle\theta, \theta\rangle=2$ for the maximal root θ
- Denote by $\Delta\left(=\Delta_{+} \cup \Delta_{-}\right)$roots (positive and negative roots)
- Triangular decomposition $\mathfrak{g}=\mathfrak{N}_{+}+\mathfrak{h}+\mathfrak{N}_{-}$
- Fix root vectors X_{α}
- $\hat{\mathfrak{g}}=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right]+\mathbb{C} c \quad, \quad \tilde{\mathfrak{g}}=\hat{\mathfrak{g}}+\mathbb{C} d$ is the associated untwisted affine Kac-Moody Lie algebra
- $x(m)=x \otimes t^{m}$ for $x \in \mathfrak{g}$ and $i \in \mathbb{Z}, c$ is the canonical central element, and $[d, x(m)]=m x(m)$
$-\hat{\mathfrak{g}}=\hat{\mathfrak{g}}_{<0}+(\mathfrak{g}+\mathbb{C} c)+\hat{\mathfrak{g}}_{>0} \quad, \quad \hat{\mathfrak{g}}_{<0}=\sum_{m<0} \mathfrak{g}(m)$

Highest weight modules

- \wedge highest weight, v_{Λ} highest weight vector
- Verma modul $M(\Lambda), L(\Lambda)$ irr. modul
- level of representation $k=\Lambda(c)$ (for us $k=1,2, \cdots$)
- we can form the induced $\tilde{\mathfrak{g}}$-module (a generalized Verma modul)

$$
N\left(k \Lambda_{0}\right)=\mathcal{U}(\tilde{\mathfrak{g}}) \otimes_{\mathcal{U}(\tilde{\mathfrak{g}})_{\geq 0}} \mathbb{C} v_{k \Lambda_{0}}
$$

- $N\left(k \Lambda_{0}\right) \cong \mathcal{U}(\tilde{\mathfrak{g}})_{<0}$ (as vector space)

Vertex operator algebras

- $\left(N\left(k \Lambda_{0}\right), Y, \mathbb{1}, \omega\right)$ is VOA with generating fields $x(z)=\sum_{m \in \mathbb{Z}} x_{m} z^{-m-1}, x \in \mathfrak{g}$
- max. $\tilde{\mathfrak{g}}$-submodul $N^{1}\left(k \Lambda_{0}\right) \subset N\left(k \Lambda_{0}\right)$ generated by singular vector $x_{\theta}(-1)^{k+1} \mathbb{1}$
- we define the irr \mathfrak{g}-module $R=\mathcal{U}(\mathfrak{g}) \cdot X_{\theta}(-1)^{k+1} \mathbb{1} \subset N\left(k \Lambda_{0}\right)$ and the corresponding loop $\tilde{\mathfrak{g}}$-module $\bar{R}=\left\langle r_{i} \mid r \in R, i \in \mathbb{Z}\right\rangle_{\mathbb{C}}$
- M is a standard module $\Leftrightarrow \bar{R}$ annihilates M
- $L(\Lambda)=M(\Lambda) / M^{1}(\Lambda)=M(\Lambda) /(\bar{R} M(\Lambda))$
- we shall call elements r_{i} relations and $Y(v, z), v \in N^{1}\left(k \Lambda_{0}\right)$ annihilating fields (of standard modules)

Annihilating fields

- Field $Y\left(x_{\theta}(-1)^{k+1}, z\right)=x_{\theta}(z)^{k+1}$ generates all annihilating fields of $L\left(k \Lambda_{0}\right)$
- $x_{\theta}(z)^{k+1}=\sum_{m \in \mathbb{Z}} r_{(k+1) \theta}(m) z^{-m-k-1}$
- L(k $\left.\Lambda_{0}\right)=N\left(k \Lambda_{0}\right) / N^{1}\left(k \Lambda_{0}\right)$
-L $L\left(k \Lambda_{0}\right)=N\left(k \Lambda_{0}\right) /\left(\bar{R} N\left(k \Lambda_{0}\right)\right)$
- $N^{1}\left(k \Lambda_{0}\right)=\bar{R} N\left(k \Lambda_{0}\right)=\mathcal{U}(\tilde{\mathfrak{g}}) \bar{R} v_{\wedge} \rightsquigarrow \bar{R}$ Relations

Combinatorial and Gröbner bases

Problem:
Find a combinatorial basis of $L\left(k \Lambda_{0}\right) \Leftrightarrow$ Find a "Gröbner basis" of $\bar{R} N\left(k \Lambda_{0}\right)$

- solved for all $\tilde{\mathfrak{s l}}_{2}$-modules $L(\Lambda)$
[Meurman - Primc: Annihilating Fields of Standard Modules of $\tilde{\mathfrak{s}}_{2}$ and Combinatorial Identities; Memoirs of AMS 1999]
- solved for basic modules $L\left(\Lambda_{0}\right)$ for all affine symplectic Lie algebras $C_{n}^{(1)}$
[Primc-Š: Combinatorial bases of basic modules for affine Lie algebras $C_{n}^{(1)}$;J. Math. Phys. 2016]
- conjectured for standard modules $L\left(k \Lambda_{0}\right)$ for affine symplectic Lie algebras $C_{n}^{(1)}$
[Primc-Š: Leading terms of relations for standard modules of affine Lie algebras $C_{n}^{(1)}$; Ramanujan J. 2019]

Starting point of this talk

New frontiers

- Case $C_{n}^{(1)}$ for $k=2$
- Case $C_{2}^{(1)}$ for $k \geq 2$
- Case $C_{n}^{(1)}$ for $n \geq 2$ and $k \geq 2$

Colored partitions

- let B be the ordered basis of \mathfrak{g}
- We fix the basis \bar{B} of $\overline{\mathfrak{g}}=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right]$,

$$
\bar{B}=\bigcup_{j \in \mathbb{Z}} B \otimes t^{j},
$$

- Let \preceq be a linear order on \bar{B} such that

$$
i<j \quad \text { implies } \quad b(i) \prec b^{\prime}(j) .
$$

- degree $|b(i)|=i$

Colored partitions

$$
\pi=\prod_{i=1}^{\ell} b_{i}\left(j_{i}\right), \quad b_{i}\left(j_{i}\right) \in \bar{B}
$$

- π is a colored partition of degree $|\pi|=\sum_{i=1}^{\ell} j_{i} \in \mathbb{Z}$ and length $\ell(\pi)=\ell$, with parts $b_{i}\left(j_{i}\right)$ of degree j_{i} and color b_{i}
- we shall usually assume that parts of π are indexed so that

$$
b_{1}\left(j_{1}\right) \preceq b_{2}\left(j_{2}\right) \preceq \cdots \preceq b_{\ell}\left(j_{\ell}\right) .
$$

- we associate with a colored partition π its shape sh π,

$$
j_{1} \leq j_{2} \leq \cdots \leq j_{\ell} \quad(" \text { plain" partition }) .
$$

- the set of all colored partitions with parts $b_{i}\left(j_{i}\right)$ of degree $j_{i}\left(j_{i}<0\right)$ is denoted as $\mathcal{P}\left(\mathcal{P}_{<0}\right)$

Colored partitions

- $N\left(k \Lambda_{0}\right) \cong \mathcal{U}\left(\hat{\mathfrak{g}}_{<0}\right) \cong \mathcal{S}\left(\mathfrak{g}_{<0}\right)$
(Thx to PBW Thm ; like vec.space)
$\left(\prod_{b \in \bar{B}} b^{m u l t(b)}\right) \cdot v_{k} \Lambda_{0} \cong \prod_{b \in \bar{B}} b^{m u l t(b)} \quad$ ordered monomials as in $\mathcal{P}_{<0}$

Colored partitions - example

Case: $\left.\hat{\mathfrak{s}}\right|_{2} ; B=\{x, h, y\} ; y \prec h \prec x$
ordered monomial $u(\pi)=x(-4) h(-3)^{2} y(-1) x(-1) v_{k \Lambda_{0}}$

\[

\]

Relations on $L(\Lambda)$

On level k standard module $L(\Lambda)$ we have vertex operator relations

$$
x_{\theta}(z)^{k+1}=\sum_{m \in \mathbb{Z}} r_{(k+1) \theta}(m) z^{-m-k-1}=0
$$

i.e. the coefficient (relations) of above annihilating fields are

$$
r_{(k+1) \theta}(m)=\sum_{j_{1}+\cdots+j_{k+1}=m} x_{\theta}\left(j_{1}\right) \cdots x_{\theta}\left(j_{k+1}\right) .
$$

The smallest summand in this sum is proportional to

$$
x_{\theta}(-j-1)^{b} x_{\theta}(-j)^{a}
$$

for $a+b=k+1$ and $(-j-1) b+(-j) a=m$. Moreover, the shape of every other term Φ which appears in the sum is greater than the shape $(-j-1)^{b}(-j)^{a}$, so we can write

$$
r_{(k+1) \theta}(m)=c x_{\theta}(-j-1)^{b} x_{\theta}(-j)^{a}+\sum_{\operatorname{sh} \Phi \succ(-j-1)^{b}(-j)^{a}} c_{\Phi} X(\Phi)
$$

Leading terms of relation - example

Remark:
For $a+b=k+1$ and $(-j-1) b+(-j) a=m$ we have only one possible shape. $b=|m|-(k+1) j$ i.e. $b \equiv|m|(k+1)$.

$$
k=4, m=-12 \Rightarrow b=2 \Rightarrow a=3 \Rightarrow j=-2
$$

Leading terms of relation $r(m)$

The adjoint action of $U(\mathfrak{g})$ on $r_{(k+1) \theta}(m), m \in \mathbb{Z}$, gives all other relations in \bar{R}. For $u \in U(\mathfrak{g})$ the relation $r(m)=u \cdot r_{(k+1) \theta}(m)$ can be written as

$$
r(m)=\sum_{\operatorname{sh} \psi=(-j-1)^{b}(-j)^{a}} c_{\psi} X(\Psi)+\sum_{\operatorname{sh} \Psi \succ(-j-1)^{b}(-j)^{a}} c_{\psi} X(\Psi)+\sum_{\ell(\Psi)<k+1} .
$$

The actions of $u \in U(\mathfrak{g})$ in \mathfrak{g}-modules \mathcal{U} and \mathcal{S} are different, but we have $u\left(c x_{\theta}(-j-1)^{b} x_{\theta}(-j)^{a}\right)=\sum_{\text {sh } \psi=(-j-1)^{b}(-j)^{a}} c_{\psi} \psi$ with the same coefficients C_{ψ} as in the first summand in above equation. The smallest $\psi \in \mathcal{P}^{k+1}(m)$ which appears in the first sum we call the leading term of relation $r(m)$ and we denote it as $\ell t r(m)$. Hence we can rewrite above equation as

$$
r(m)=c_{\phi} X(\Phi)+\sum_{\psi \succ \phi} c_{\psi} X(\Psi), \quad \Phi=\ell t r(m)
$$

Embeddings of leading terms

- $\ldots \ell t \bar{R}=\{\ell t r(m)\}$ parametrize a basis $\{r(\rho) \mid \rho \in \ell t \bar{R}\}$ of \bar{R}
- for $\kappa \in \mathcal{P}, \rho \in \ell t \bar{R}$ and $\pi=\kappa \rho$ we say that ρ is embedded in π (we write $\rho \subset \pi$)
- $u(\rho \subset \pi)=u(\kappa) r(\rho)$
- $\ell t(u(\rho \subset \pi))=\pi$

Let's summarize

- L(k $\left.\Lambda_{0}\right)=N\left(k \Lambda_{0}\right) / N^{1}\left(k \Lambda_{0}\right)=N\left(k \Lambda_{0}\right) /\left(\bar{R} N\left(k \Lambda_{0}\right)\right)$
- $\bar{R} N\left(k \Lambda_{0}\right)=\mathcal{U}(\tilde{\mathfrak{g}}) \bar{R} v_{\Lambda} \rightsquigarrow \bar{R}$ Relations
- $r_{(k+1) \theta}=x_{\theta}(-1)^{k+1} \mathbb{1} ; \ell t\left(r_{(k+1) \theta}(n)\right)=x_{\theta}(-j-1)^{a} x_{\theta}(-j)^{b}$
- all other elements $r(n)$ for $r \in R$ by the adjoint action of \mathfrak{g}, which does not change the length and degree, and sh $\ell t(r(n))=(-j-1)^{a}(-j)^{b}$
- $\mathcal{D}=\ell t(\bar{R}) \cap \mathcal{P}_{<0}, \quad \mathcal{R} \mathcal{R}=P_{<0} \backslash\left(\mathcal{D} \cdot P_{<0}\right)$
- $u(\pi) \mathbb{1}, \pi \in \mathcal{R} \mathcal{R}$ will be a basis of the standard module $L\left(k \Lambda_{0}\right)$ with certain additional conditions (for $C_{n}^{(1)}$)

digression:Simple Lie algebra of type $C_{n}\left(\mathfrak{s p}_{2 n}\right)$:

These vectors form a basis B of \mathfrak{g} which we shall write in a triangular scheme, e.g. for $n=3$ the basis B is

11
$12 \quad 22$
$\begin{array}{lll}13 & 23 & 33\end{array}$
$1 \underline{3} \quad 2 \underline{3} \quad 3 \underline{3} \quad \underline{33}$
$\begin{array}{lllll}1 \underline{2} & 2 \underline{2} & 3 \underline{2} & \underline{32} & \underline{22}\end{array}$
$1 \underline{1} \quad 2 \underline{1} \quad 31 \quad \underline{31} \quad 21 \quad 11$

digression: Case $C_{n}^{(1)}$

For general rank we may visualize admissible pair of cascades as figure below

digression: Case $C_{n}^{(1)}$

Theorem

Let $(-j-1)^{b}(-j)^{a}, \quad j \in \mathbb{Z}, \quad a+b=k+1, \quad b \geq 0$, be a fixed shape and let \mathcal{B} and \mathcal{A} be two cascades in degree $-j-1$ and $-j$, with multiplicities $\left(m_{\beta, j+1}, \beta \in \mathcal{B}\right)$ and $\left(m_{\alpha, j}, \alpha \in \mathcal{A}\right)$, such that $\sum_{\beta \in \mathcal{B}} m_{\beta, j+1}=b, \quad \sum_{\alpha \in \mathcal{A}} m_{\alpha, j}=$ a. Let $r \in\{1, \cdots, n, \underline{n}, \cdots, \underline{1}\}$. If the points of cascade \mathcal{B} lie in the upper triangle \triangle_{r} and the points of cascade \mathcal{A} lie in the lower triangle ${ }^{r} \Delta$, then

$$
\prod_{\beta \in \mathcal{B}} X_{\beta}(-j-1)^{m_{\beta, j+1}} \prod_{\alpha \in \mathcal{A}} X_{\alpha}(-j)^{m_{\beta, j}}
$$

is the leading term of a relation for level k standard module for affine Lie algebra of the type $C_{n}^{(1)}$.

digression: Conjecture

Let $n \geq 2$ and $k \geq 2$. We consider the standard module $L\left(k \Lambda_{0}\right)$ for the aff $\mathcal{L A}$ of type $C_{n}^{(1)}\left(\left\{X_{a b}(j) \mid a b \in B, j \in \mathbb{Z}\right\} \cup\{c, d\}\right.$ base $)$. We conjecture that the set of monomial vectors

$$
\prod_{a b \in B, j>0} X_{a b}(-j)^{m_{a b ; j}} v_{0}
$$

satisfying difference conditions $\sum_{a b \in \mathcal{B}} m_{a b ; j+1}+\sum_{a b \in \mathcal{A}} m_{a b ; j} \leq k$ for any admissible pair of cascades $(\mathcal{B}, \mathcal{A})$, is a basis of $L\left(k \Lambda_{0}\right)$.
The conjecture is true for

- $n=1$ and all $k \geq 1$ [Meurman-Primc]
- $k=1$ for all $n \geq 2$ [Primc-Š]

still digression: Proposition

If for each $\ell \in\{k+2, \ldots, 2 k+1\}$ there exists a finite-dimensional subspace $Q_{\ell} \subset \operatorname{ker}\left(\Phi \mid(\bar{R} \mathbf{1} \otimes V)_{\ell}\right)$ such that $\ell(\pi)=\ell$ for all $\pi \in \ell t\left(Q_{\ell}(n)\right)$ and

$$
\sum_{\pi \in \mathcal{P}^{\ell}(n)} N(\pi)=\operatorname{dim} Q_{\ell}(n)
$$

for all $n \leq-k-2$, then the set of vectors

$$
u(\pi) \mathbf{1}, \quad \pi \in \mathcal{R} \mathcal{R}
$$

is a basis of the standard module $L\left(k \Lambda_{0}\right)$.

end of digression: Why is $\ell \in\{k+2, \ldots, 2 k+1\}$ important?

$$
k=1 \Rightarrow k+2=2 k+1=3 \leadsto \begin{aligned}
& x_{\alpha} \square \square \square \\
& x_{\beta} \square \square \square \\
& \\
& \\
& x_{\gamma} \square \square
\end{aligned}
$$

$$
k=2 \Rightarrow k+2=4 \text { and } 2 k+1=5
$$

Embeddings of leading terms

Thm: Vectors of the form

$$
u(\rho \subset \pi) \mathbb{1}, \rho \in(\ell t \bar{R}) \cap \mathcal{P}_{<0}
$$

are the spanning set of $N^{1}\left(k \Lambda_{0}\right)$.

- Conjecture $\mathrm{B}\left(C_{n}^{(1)}\right.$ case): For each $\pi \in \mathcal{P}_{<0}$ which alows at least one embedding take (only) one vector of the form

$$
u(\rho \subset \pi) \mathbb{1}
$$

these vectors are the basis of $N^{1}\left(k \Lambda_{0}\right)$

- Conjecture A ($C_{n}^{(1)}$ case): For any π with two embeddings $\rho_{1} \subset \pi$ and $\rho_{2} \subset \pi$ we have a relation among relations

$$
u\left(\rho_{2} \subset \pi\right) \mathbb{1}=u\left(\rho_{1} \subset \pi\right) \mathbb{1}+\text { higher terms }
$$

Relation among relations

Conjecture B: For any π with two embeddings $\rho_{1} \subset \pi$ and $\rho_{2} \subset \pi$ we have a relation among relations

$$
u\left(\rho_{2} \subset \pi\right) \mathbb{1}=u\left(\rho_{1} \subset \pi\right) \mathbb{1}+\text { higher terms }
$$

$\square \square=\square \square+$ higher terms
\square

\square

\square

Relation among relations - $C_{n}^{(1)}$ case

By using representation theory and the relation

$$
x_{\theta}(z) \frac{d}{d z}\left(x_{\theta}(z)^{k+1}\right)=(k+1) x_{\theta}(z)^{k+1} \frac{d}{d z} x_{\theta}(z)
$$

for element $u \mathbb{1}$ in $N^{1}\left(k \Lambda_{0}\right)$ with the leading terms $\ell t(u)$ of $\ell(\pi)=k+2$ and $|\pi|=m$ we get linearly independent relation

$$
\operatorname{dim} L((k+1) \theta)+\operatorname{dim} L((k+2) \theta)+\operatorname{dim} L\left((k+2) \theta-\alpha^{*}\right)
$$

For level $2 C_{n}^{(1)}$-standard modul above relation is equal to

$$
2 n\binom{2 n+2 k+2}{2 k+3}
$$

Relation among relations - $C_{n}^{(1)}$ case

Moreover, the following inequality holds

$$
\begin{gathered}
(\star) \quad 2 n\binom{2 n+2 k+2}{2 k+3} \leq \sum_{|\pi|=m ; \ell(\pi)=k+2} N(\pi) \text { where } \\
N(\pi)=\max \{\operatorname{card}(\varepsilon(\pi))-1,0\}, \varepsilon(\pi)=\{\rho \in \ell t(\bar{R}) \mid \rho \subset \pi\} .
\end{gathered}
$$

If in (\star) equality holds for all m than Conjecture \mathbf{A} is true for all π of lenght $\ell(\pi)=k+2$.

A much more appropriate notation

For general rank we may visualize admissible pair of cascades as figure below

Figure 1

A much more appropriate notation

We will reinterpret the term of cascade. It is interesting to observe the following figure

which consists of two identical triangles from Figure 1, but one is rotated and mirrored.

A much more appropriate notation

If we rotate the Figure 2 we have

Figure 3
From Figure 3, it is already obvious that the pair of admissible cascades has become a zig-zag line.

A much more appropriate notation

In order to simplify the counting of embeddings of leading terms we introduce a slightly different indexation of a triangular scheme for a basis B. For instance for C_{3} we have

Figure 4

A much more appropriate notation

and for the arbitrary C_{n} triangular decomposition looks like this

Figure 5

A much more appropriate notation

Figure 6

A much more appropriate notation

Figure 7

A much more appropriate notation

Figure 8

A much more appropriate notation

Figure 9

Case $C_{2}^{(1)}$ for $k=2$

$$
\text { (*) } \begin{aligned}
2 n\binom{2 n+2 k+2}{2 k+3}=? & =\sum_{|\pi|=m ; \ell(\pi)=k+2} N(\pi) \text { where } \\
2 n\binom{2 n+2 k+2}{2 k+3} & =4\binom{10}{7}=480
\end{aligned}
$$

Case $C_{2}^{(1)}$ for $k=2$ and $m=4, \cdots, 12$

Young Diagrams

Case $C_{2}^{(1)}$ for $k=2$ and $m=8$

Tomislav Šikić Combinatorial relations among relations

Case $C_{2}^{(1)}$ for $k=2$

THE END

THANK YOU!

