Reflective forms on orthogonal groups and their expansions at 1-dimensional cusps

T. Driscoll-Spittler, N. Scheithauer, J. Wilhelm Work in progress

October 4, 2022

T. Driscoll-Spittler, N. Scheithauer, J. Wilhelm Work in progree Reflective forms on orthogonal groups

Reflective forms on orthogonal groups

- 1. Automorphic forms on orthogonal groups
- 2. Bounds for reflective forms
- 3. Classification of reflective forms of singular weight
- 4. Expansions at 1-dimensional cusps
- 5. Relation to vertex operator algebras
- 6. Summary

Let *L* be a rational lattice and $V = L \otimes_{\mathbb{Z}} \mathbb{Q}$. A primitive element $\alpha \in L$ of positive norm is called a root of *L* if $\sigma_{\alpha} : V \to V$, $x \mapsto x - 2(x, \alpha)\alpha/\alpha^2$ is in O(*L*).

The level of an even lattice L is the smallest positive integer N such that $N\alpha^2/2 \in \mathbb{Z}$ for all $\alpha \in L'$.

An even lattice L of level N is called regular if L'/L contains an isotropic element of order N.

Let *L* be an even lattice of signature (n, 2), n > 2 and $V = L \otimes_{\mathbb{Z}} \mathbb{Q}$. Define $\tilde{\mathcal{H}} = \{Z \in V(\mathbb{C}) | (Z, Z) = 0, (Z, \overline{Z}) < 0\}^+$. Let $\Gamma \subset O(L)^+$ and $\chi : \Gamma \to \mathbb{C}^*$ a character. A meromorphic function $\Psi : \tilde{\mathcal{H}} \to \mathbb{C}$ is called an automorphic form of weight *k* for Γ with character χ if

$$\Psi(MZ) = \chi(M)\Psi(Z)$$

 $\Psi(tZ) = t^{-k}\Psi(Z)$

for all $M \in \Gamma$ and $t \in \mathbb{C}^*$.

If Ψ is holomorphic then k = 0 or $k \ge (n-2)/2$. Ψ has singular weight if k = (n-2)/2.

・ 同 ト ・ ヨ ト ・ ヨ ト …

For $v \in V$ we define the rational quadratic divisor $v^{\perp} = \{Z \in \tilde{\mathcal{H}} \mid (Z, v) = 0\}.$ Ψ is called reflective if the divisor of Ψ is supported on $\bigcup \alpha^{\perp}$ where α ranges over the roots of L.

Let *L* be an even lattice of signature (n, 2), n > 2 and *F* a modular form for the Weil representation of $Mp_2(\mathbb{Z})$ on $\mathbb{C}[L'/L]$. Then Borcherds' singular theta correspondence maps *F* to an automorphic form Ψ for $O(L, F)^+$. The weight of Ψ is explicitly known and its zeros and poles lie on rational quadratic divisors λ^{\perp} with $\lambda \in L$, $\lambda^2 > 0$.

Bruinier's converse theorem states that if L splits $II_{1,1} \oplus II_{1,1}$ and Ψ is an automorphic form for the discriminant kernel of $O(L)^+$ whose divisor is supported on a union of rational quadratic divisors then Ψ is a theta lift.

(日本)(日本)(日本)

Theorem

Let *L* be a regular lattice of signature (n, 2), $n \ge 4$ and *n* even splitting $II_{1,1} \oplus II_{1,1}$. Suppose *L* carries a reflective automorphic form Ψ vanishing or having poles at all divisors λ^{\perp} with $\lambda \in L$, $\lambda^2 = 2$. Then $n \le 26$ and the level *N* of *L* divides *M* where *M* is given in the following table

n	Μ	n	М	n	М
4	$2^7 3^4 5^2 7^2 11^2 13^1 17^1 19^1 23^1$	12	2 ² 3 ¹	20	1
6	$2^5 3^3 5^2 7^1 11^1$	14	$2^{2}3^{1}$	22	1
8	$2^4 3^2 5^1 7^1$	16	2 ¹	24	1
10	$2^3 3^2 5^1$	18	2 ¹	26	1

★ 圖 ▶ ★ 温 ▶ ★ 温 ▶ … 温

Proof: After symmetrization we can assume that Ψ is the theta lift of a vector valued modular form $F = \sum F_{\gamma} e^{\gamma}$ for *L*. A suitable linear combination *f* of the components F_{γ} is a scalar valued modular form for $\Gamma_0(N)$ with small pole orders at the cusps. Then the Riemann-Roch theorem implies bounds on *N*.

向下 イヨト イヨト

<u>Theorem</u>

Let *L* be a regular lattice of signature (n, 2), $n \ge 4$ and *n* even splitting $II_{1,1} \oplus II_{1,1}$. Suppose *L* carries a reflective holomorphic automorphic form Ψ of singular weight for the discriminant kernel of $O(L)^+$ vanishing at all divisors λ^{\perp} with $\lambda \in L$, $\lambda^2 = 2$. Then *L* is one of the following lattices

n	Lattice
	$II_{6,2}(2_{II}^{-2}4_{II}^{-2}5^{+4})$
8	$II_{8,2}(2_{II}^{+4}4_{II}^{-2}3^{+5}), II_{8,2}(2_{1}^{+1}4_{1}^{+1}8_{II}^{+4}), II_{8,2}(7^{-5})$
10	$H_{10,2}(2_{H}^{+6}3^{-6}), H_{10,2}(5^{+6})$
12	$II_{12,2}(2^{+2}_{2}4^{+6}_{II})$
14	$II_{14,2}(2_{II}^{-10}4_{II}^{-2}), II_{14,2}(3^{-8})$
18	$II_{18,2}(2_{II}^{+10})$
26	II _{26,2}

Proof: Ψ is the theta lift of a vector valued modular form $F = \sum F_{\gamma} e^{\gamma}$ for *L*. Pairing *F* with lifts $F_{f,0}$ of Eisenstein series and cusp forms for $\Gamma_0(N)$ imposes restrictions on *L*.

Theorem (Uniqueness)

Let *L* be one of the above lattices. If *L* carries a reflective automorphic form Ψ of singular weight vanishing at all divisors λ^{\perp} with $\lambda \in L$, $\lambda^2 = 2$, then Ψ is unique up to O(*L*).

伺下 イヨト イヨト

Proof: Here we pair F with lifts $F_{f,\gamma}$ of cusp forms for $\Gamma(N)$.

<u>Theorem</u> (Existence)

Let L be one of the above lattices. Then L carries a reflective automorphic form Ψ of singular weight vanishing at all divisors λ^{\perp} with $\lambda \in L$, $\lambda^2 = 2$.

If *L* has squarefree level *N* then Ψ can be constructed as follows. Define $f(\tau) = \prod_{d|N} \eta(d\tau)^{-24/\sigma_1(N)}$. Then the liftings

$$f \mapsto F_{f,0} \mapsto \Psi$$

map f to the desired automorphic form for O(L). Here the second map is Borcherds' singular theta correspondence.

向下 イヨト イヨト

The other cases are similar but more complicated.

Theorem (Classification of 1-dimensional cusps)

Let Ψ be one of the above 11 reflective automorphic forms of singular weight. Then the number of inequivalent 1-dimensional cusps of type $L = K \oplus II_{1,1} \oplus II_{1,1}$ of $O(L, F)^+ \setminus \mathcal{H}$ is given by

L	#	L	#	L	#
II _{26,2}	24	$II_{12,2}(2_2^{+2}4_{II}^{+6})$	5	$II_{8,2}(2_1^{+1}4_1^{+1}8_{II}^{+4})$	1
$H_{18,2}(2_{II}^{+10})$	17	$H_{10,2}(5^{+6})$	2	$II_{8,2}(2_{II}^{+4}4_{II}^{-2}3^{+5})$	2
$II_{14,2}(3^{-8})$	6	$H_{10,2}(2_{II}^{+6}3^{-6})$	2	$II_{6,2}(2_{II}^{-2}4_{II}^{-2}5^{+4})$	1
$H_{14,2}(2_{II}^{-10}4_{II}^{-2})$	9	$II_{8,2}(7^{-5})$	1		

Proof: This amounts to determining the cardinalities of the double cosets

 $\overline{O(L,F)} \setminus O(D) / \overline{O(K)}$

向下 イヨト イヨト

æ

where D = L'/L.

<u>Theorem</u> (First non-vanishing coefficient)

Let Ψ be one of the above 11 reflective automorphic forms of singular weight corresponding to the lattice *L*. Then the first non-vanishing Fourier-Jacobi coefficient of Ψ at a 1-dimensional cusp of type $K \oplus II_{1,1} \oplus II_{1,1}$ is up to a constant of absolute value 1 of the form

$$e^{2\pi i\omega c} \eta(au)^{\mathsf{rk}(\mathcal{K})} \prod_{lpha \in R^+} rac{artheta((z,lpha), au)}{\eta(au)}$$

where R is a root system in K' and $c = (\dim(\mathfrak{g}) - 24)/24$.

The root systems that we obtain in this way are exactly the 70 root systems from Schellekens' list together with their scalings.

向下 イヨト イヨト

Let V be a holomorphic vertex operator algebra of central charge 24 with $\mathfrak{g} = V_1 \neq 0$ semisimple. Choose a Cartan subalgebra \mathfrak{h} of \mathfrak{g} . For $z \in \mathfrak{h}$ define

$$\chi_V(\tau,z) = \operatorname{tr}_V e^{2\pi i z_0} q^{L_0 - 1} \,.$$

Then χ_V is a Jacobi form of weight 0 for M where M is a sum of scaled coroot lattices. It has a theta decomposition

$$\chi_V(\tau,z) = \sum_{\lambda \in \mathcal{M}'/\mathcal{M}} g_\lambda(\tau) \theta^{\mathcal{M}}_\lambda(\tau,z) \,.$$

Dividing by the cominimal simple currents of $\langle V_1
angle$ we can write

$$\chi_V(\tau, z) = \sum_{\lambda \in K'/K} f_\lambda(\tau) \theta^K_\lambda(\tau, z)$$

for some lattice $K \supset M$. Define $L = K \oplus II_{1,1} \oplus II_{1,1}$ and $F = \sum_{\lambda \in K'/K} f_{\lambda} e^{\lambda}$.

<u>Theorem</u>

The theta lift Ψ of F is a reflective automorphic form. It has singular weight and vanishes at all divisors λ^{\perp} with $\lambda \in L$, $\lambda^2 = 2$.

Proof: There is a generalized Kac-Moody algebra $\mathfrak{g}(V)$ associated with V. The expansion of Ψ at the 0-dimensional cusp corresponding to $M \oplus II_{1,1}$ with $M = K \oplus II_{1,1}$ is the denominator function of $\mathfrak{g}(V)$ and antisymmetric under the Weyl group W of $\mathfrak{g}(V)$.

• (1) • (

Hence $\boldsymbol{\Psi}$ is locally reflective and since it is the lift of a modular form also globally.

Theorem

The first non-vanishing coefficient of the expansion of Ψ at the cusp corresponding to $K \oplus II_{1,1} \oplus II_{1,1}$ is

$$\eta(\tau)^{\mathsf{rk}(K)} \prod_{\alpha \in R^+} \frac{\vartheta((z,\alpha),\tau)}{\eta(\tau)}$$

where R is the root system of \mathfrak{g} . We can also recover the scalings.

• • = • • = •

Automorphic forms for $O_{n,2}(\mathbb{Z})$ are natural generalizations of the classical modular forms for $SL_2(\mathbb{Z})$.

Reflective automorphic forms of singular weight can be classified by using the Riemann-Roch Theorem and obstruction theory.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Under certain assumptions there are exactly 11 reflective automorphic forms of singular weight. They have exactly 70 generic 1-dimensional cusps. The expansions at these cusps correspond to the 70 Lie algebras on Schellekens' list. A holomorphic vertex operator algebra of central charge 24 gives rise to a reflective automorphic form Ψ of singular weight. The first non-vanishing coefficient of the expansion of Ψ at the generic 1-dimensional cusp is the denominator function of \hat{V}_1 if V_1 is semisimple or $\Delta(\tau)$.

伺 ト イヨト イヨト

This gives a new approach to classifying holomorphic vertex operator algebras of central charge 24.