Weight one elements of vertex operator algebras and automorphisms of categories of generalized twisted modules

Christopher Sadowski
Based on joint work with Yi-Zhi Huang
Department of Mathematics and Computer Science
Ursinus College
Collegeville, PA, USA

Representation Theory XVII
October 3-8, 2022

Outline

- Definitions of twisted modules

Outline

- Definitions of twisted modules
- Results of Haisheng Li on twisted modules

Outline

- Definitions of twisted modules
- Results of Haisheng Li on twisted modules
- The function $\Delta_{V}^{(u)}(x)$ and the main theorem

Outline

- Definitions of twisted modules
- Results of Haisheng Li on twisted modules
- The function $\Delta_{V}^{(u)}(x)$ and the main theorem
- Results on gradings

Outline

- Definitions of twisted modules
- Results of Haisheng Li on twisted modules
- The function $\Delta_{V}^{(u)}(x)$ and the main theorem
- Results on gradings
- Applications to affine vertex operator algebras.

Let $(V, Y, \mathbf{1}, \omega)$ by a vertex operator algebra and $g \in \operatorname{Aut}(V)$ be an automorphism of order k.

Let $(V, Y, \mathbf{1}, \omega)$ by a vertex operator algebra and $g \in \operatorname{Aut}(V)$ be an automorphism of order k.

Then V can be decomposed as

$$
V=\coprod_{j \in \mathbb{Z} / k \mathbb{Z}} V^{j}
$$

where

$$
V^{j}=\left\{v \in V \mid g v=\eta^{j} v\right\}
$$

for $j \in \mathbb{Z} / k \mathbb{Z}$, where $\eta=e^{\frac{2 \sqrt{-1} \pi}{k}}$

Definition A g-twisted V-module is a \mathbb{C}-graded vector space $W=\coprod_{n \in \mathbb{C}} W_{(n)}$ be a \mathbb{C}-graded vector space equipped with a linear map

$$
\begin{aligned}
Y_{W}^{g} & : V \otimes W \\
& \rightarrow W\left[\left[x^{1 / k}, x^{-1 / k}\right]\right] \\
& v \otimes w \mapsto Y_{W}^{g}(v, x) w=\sum_{n \in \frac{1}{k} \mathbb{Z}}\left(Y_{W}^{g}\right)_{n}(v) w x^{-n-1}
\end{aligned}
$$

satisfying the following axioms:

Definition A g-twisted V-module is a \mathbb{C}-graded vector space $W=\coprod_{n \in \mathbb{C}} W_{(n)}$ be a \mathbb{C}-graded vector space equipped with a linear map

$$
\begin{aligned}
Y_{W}^{g} & : V \otimes W \\
& \rightarrow W\left[\left[x^{1 / k}, x^{-1 / k}\right]\right] \\
& v \otimes W Y_{W}^{g}(v, x) w=\sum_{n \in \frac{1}{k} \mathbb{Z}}\left(Y_{W}^{g}\right)_{n}(v) w x^{-n-1}
\end{aligned}
$$

satisfying the following axioms:

- The grading-restriction condition: For each $n \in \mathbb{C}$ we have $\operatorname{dim} W_{(n)}<\infty$ and $W_{n+1 / k}=0$ for sufficiently negative integers 1 .

Definition A g-twisted V-module is a \mathbb{C}-graded vector space $W=\coprod_{n \in \mathbb{C}} W_{(n)}$ be a \mathbb{C}-graded vector space equipped with a linear map

$$
\begin{aligned}
Y_{W}^{g} & : V \otimes W \\
& \rightarrow W\left[\left[x^{1 / k}, x^{-1 / k}\right]\right] \\
& v \otimes Y_{W}^{g}(v, x) w=\sum_{n \in \frac{1}{k} \mathbb{Z}}\left(Y_{W}^{g}\right)_{n}(v) w x^{-n-1}
\end{aligned}
$$

satisfying the following axioms:

- The grading-restriction condition: For each $n \in \mathbb{C}$ we have $\operatorname{dim} W_{(n)}<\infty$ and $W_{n+I / k}=0$ for sufficiently negative integers l.
- The formal monodromy condition: For $j \in \mathbb{Z} / k \mathbb{Z}$ and $v \in V^{j}$ we have that

$$
Y^{g}(v, x)=\sum_{n \in j / k+\mathbb{Z}}\left(Y_{W}^{g}\right)_{n}(v) x^{-n-1}
$$

- The lower-truncation condition: For $v \in V$ and $w \in W$ we have

$$
\left(Y_{W}^{g}\right)_{n}(v) w=0
$$

for n sufficiently large

- The lower-truncation condition: For $v \in V$ and $w \in W$ we have

$$
\left(Y_{W}^{g}\right)_{n}(v) w=0
$$

for n sufficiently large

- The identity property:

$$
Y^{g}(1, x)=l d_{W}
$$

- The lower-truncation condition: For $v \in V$ and $w \in W$ we have

$$
\left(Y_{W}^{g}\right)_{n}(v) w=0
$$

for n sufficiently large

- The identity property:

$$
Y^{g}(1, x)=l d_{W}
$$

- The Jacobi identity: For $u, v \in V$ and $w \in W$:

$$
\begin{aligned}
& x_{0}^{-1} \delta\left(\frac{x_{1}-x_{2}}{x_{0}}\right) Y_{W}^{g}\left(u, x_{1}\right) Y_{W}^{g}\left(v, x_{2}\right)-x_{0}^{-1} \delta\left(\frac{x_{2}-x_{1}}{-x_{0}}\right) Y_{W}^{g}\left(v, x_{2}\right) Y_{W}^{g}\left(u, x_{1}\right) \\
& =\frac{1}{k} \sum_{j \in \mathbb{Z} / k \mathbb{Z}} x_{2}^{-1} \delta\left(\eta^{j} \frac{\left(x_{1}-x_{0}\right)^{1 / k}}{x_{2}^{1 / k}}\right) Y_{W}^{g}\left(Y\left(g^{j} u, x_{0}\right) v, x_{2}\right)
\end{aligned}
$$

Twisted modules for finite order automorphisms
And finally some conditions regarding ω : Let $L_{W}^{g}(n)=\left(Y_{W}^{g}\right)_{n+1}(\omega)$ i.e.

$$
Y_{W}^{g}(\omega, x)=\sum_{n \in \mathbb{Z}} L_{W}^{g}(n) x^{-n-2}
$$

Twisted modules for finite order automorphisms
And finally some conditions regarding ω : Let $L_{W}^{g}(n)=\left(Y_{W}^{g}\right)_{n+1}(\omega)$ i.e.

$$
Y_{W}^{g}(\omega, x)=\sum_{n \in \mathbb{Z}} L_{W}^{g}(n) x^{-n-2}
$$

- The $L(0)$-grading condition: $L_{W}^{g}(0) w=n w$ for $w \in W_{(n)}$.

And finally some conditions regarding ω : Let $L_{W}^{g}(n)=\left(Y_{W}^{g}\right)_{n+1}(\omega)$ i.e.

$$
Y_{W}^{g}(\omega, x)=\sum_{n \in \mathbb{Z}} L_{W}^{g}(n) x^{-n-2}
$$

- The $L(0)$-grading condition: $L_{W}^{g}(0) w=n w$ for $w \in W_{(n)}$.
- The $L(-1)$-derivative condition:

$$
Y_{W}^{g}(L(-1) v, x)=\frac{d}{d x} Y_{W}^{g}(v, x)
$$

Twisted modules for finite order automorphisms

And finally some conditions regarding ω : Let $L_{W}^{g}(n)=\left(Y_{W}^{g}\right)_{n+1}(\omega)$ i.e.

$$
Y_{W}^{g}(\omega, x)=\sum_{n \in \mathbb{Z}} L_{W}^{g}(n) x^{-n-2}
$$

- The $L(0)$-grading condition: $L_{W}^{g}(0) w=n w$ for $w \in W_{(n)}$.
- The $L(-1)$-derivative condition:

$$
Y_{W}^{g}(L(-1) v, x)=\frac{d}{d x} Y_{W}^{g}(v, x)
$$

In order to generalize the definition of twisted module to arbitrary automorphisms of V we need to somehow deal with the appearance of k in both the formal monodromy condition and in the Jacobi identity.

Notation and complex variables
For any $z \in \mathbb{C}^{\times}$we take

$$
\log z=\log |z|+i \arg z
$$

for $0 \leq \arg z<2 \pi$.

Notation and complex variables
For any $z \in \mathbb{C}^{\times}$we take

$$
\log z=\log |z|+i \arg z
$$

for $0 \leq \arg z<2 \pi$. In general, we define

$$
I_{p}(z)=\log z+2 p \sqrt{-1} \pi
$$

for $p \in \mathbb{Z}$.

Twisted modules for finite order automorphisms

Notation and complex variables
For vector spaces W_{1}, W_{2}, W_{3} be \mathbb{C}-graded vector spaces and let $x^{1 / k}$ have degree $-1 / k$.

Notation and complex variables
For vector spaces W_{1}, W_{2}, W_{3} be \mathbb{C}-graded vector spaces and let $x^{1 / k}$ have degree $-1 / k$. Then we have a \mathbb{C}-grading on $W_{1} \otimes W_{2}$ and on $W_{3}\left[\left[x^{1 / k}, x^{-1 / k}\right]\right]$.

Notation and complex variables
For vector spaces W_{1}, W_{2}, W_{3} be \mathbb{C}-graded vector spaces and let $x^{1 / k}$ have degree $-1 / k$. Then we have a \mathbb{C}-grading on $W_{1} \otimes W_{2}$ and on $W_{3}\left[\left[x^{1 / k}, x^{-1 / k}\right]\right]$. Let

$$
\begin{aligned}
X: & W_{1} \otimes W_{2} \rightarrow W_{3}\left[\left[x^{1 / k}, x^{-1 / k}\right]\right], \\
& w_{1} \otimes w_{2} \mapsto X\left(w_{1}, x\right) w_{2}=\sum_{n \in \frac{1}{k} \mathbb{Z}} X_{n}\left(w_{1}\right) w_{2} x^{-n-1}
\end{aligned}
$$

be a linear map preserving the gradings.

Twisted modules for finite order automorphisms

Notation and complex variables

For vector spaces W_{1}, W_{2}, W_{3} be \mathbb{C}-graded vector spaces and let $x^{1 / k}$ have degree $-1 / k$. Then we have a \mathbb{C}-grading on $W_{1} \otimes W_{2}$ and on $W_{3}\left[\left[x^{1 / k}, x^{-1 / k}\right]\right]$. Let

$$
\begin{aligned}
X: & W_{1} \otimes W_{2} \rightarrow W_{3}\left[\left[x^{1 / k}, x^{-1 / k}\right]\right], \\
& w_{1} \otimes w_{2} \mapsto X\left(w_{1}, x\right) w_{2}=\sum_{n \in \frac{1}{k} \mathbb{Z}} X_{n}\left(w_{1}\right) w_{2} x^{-n-1}
\end{aligned}
$$

be a linear map preserving the gradings.Define for $w_{1} \in W_{1}$ and $w_{2} \in W_{2}$ the map

$$
X^{p}\left(w_{1}, z\right) w_{2}=\left.X\left(w_{1}, x\right) w_{2}\right|_{x^{n}=e^{e^{n}(z)}} \in \overline{W_{3}}=\prod_{n \in \mathbb{C}} W_{(n)}
$$

where for $p \in \mathbb{Z} / k \mathbb{Z}$ we have \tilde{p} is the integer satisfying $0 \leq \tilde{p}<k$.

Notation and complex variables For $p \in \mathbb{Z} / k \mathbb{Z}$ we have a map

$$
\begin{aligned}
X & : \mathbb{C}^{\times} \rightarrow H o m\left(W_{1} \otimes W_{2}, \overline{W_{3}}\right) \\
& z \mapsto X(\cdot, z) .
\end{aligned}
$$

which we call the p-th analytic branch of X.

Twisted modules for finite order automorphisms

Notation and complex variables For $p \in \mathbb{Z} / k \mathbb{Z}$ we have a map

$$
\begin{aligned}
X: & : \mathbb{C}^{\times} \rightarrow \operatorname{Hom}\left(W_{1} \otimes W_{2}, \overline{W_{3}}\right) \\
& z \mapsto X(\cdot, z) .
\end{aligned}
$$

which we call the p-th analytic branch of X. We have the following theorem by Huang:

Theorem (Huang 2010)

The formal monodromy condition in the definition of twisted module can be replaced by the following property, which we call equivariance: For $p \in \mathbb{Z} / k \mathbb{Z}, z \in \mathbb{C}^{\times}$, and $v \in V$,

$$
Y^{g ; p+1}(g v, z)=Y^{g ; p}(v, z)
$$

Twisted modules for finite order automorphisms

Theorem (Huang 2010)
The Jacobi identity in the definition of twisted module can be replaced by the following property, which we call duality:

Twisted modules for finite order automorphisms

Theorem (Huang 2010)

The Jacobi identity in the definition of twisted module can be replaced by the following property, which we call duality:For any $u, v \in V, w \in W$ and $w^{\prime} \in W^{\prime}$ there exists a multivalued analytic function of the form

$$
f\left(z_{1}, z_{2}\right)=\sum_{r, s=N_{1}}^{N_{2}} a_{r s} z_{1}^{r / k} z_{2}^{s / k}\left(z_{1}-z_{2}\right)^{-N}
$$

for $N_{1}, N_{2} \in \mathbb{Z}$ and $N \in \mathbb{Z}_{+}$

Twisted modules for finite order automorphisms

Theorem (Huang 2010)

The Jacobi identity in the definition of twisted module can be replaced by the following property, which we call duality:For any $u, v \in V, w \in W$ and $w^{\prime} \in W^{\prime}$ there exists a multivalued analytic function of the form

$$
f\left(z_{1}, z_{2}\right)=\sum_{r, s=N_{1}}^{N_{2}} a_{r s} z_{1}^{r / k} z_{2}^{s / k}\left(z_{1}-z_{2}\right)^{-N}
$$

for $N_{1}, N_{2} \in \mathbb{Z}$ and $N \in \mathbb{Z}_{+}$such that the series

$$
\left\langle w^{\prime}, Y^{g ; p}\left(u, z_{1}\right) Y^{g ; p}\left(v, z_{2}\right) w\right\rangle=\sum_{n \in \mathbb{C}}\left\langle w^{\prime}, Y^{g ; p}\left(u, z_{1}\right) \pi_{n} Y^{g ; p}\left(v, z_{2}\right) w\right\rangle
$$

along with $\left\langle w^{\prime}, Y^{g ; p}\left(v, z_{2}\right) Y^{g ; p}\left(u, z_{1}\right) w\right\rangle$ and $\left\langle w^{\prime}, Y^{g ; p}\left(Y\left(u, z_{1}-z_{2}\right) v, z_{2}\right) w\right\rangle$ are absolutely convergent to the branch

$$
\sum_{r, s=N_{1}}^{N_{2}} a_{r s} e^{(r / k) I_{p}\left(z_{1}\right)} e^{(s / k) l_{p}\left(z_{2}\right)}\left(z_{1}-z_{2}\right)^{-N}
$$

of $f\left(z_{1}, z_{2}\right)$ in the regions $\left|z_{1}\right|>\left|z_{2}\right|>0,\left|z_{2}\right|>\left|z_{1}\right|>0$, and $\left|z_{2}\right|>\left|z_{1}-z_{2}\right|>0$, respectively.

Using these theorems as motivation, we generalize the above definition to arbitrary automorphisms of V.

Using these theorems as motivation, we generalize the above definition to arbitrary automorphisms of V.

- As before, if W_{1}, W_{2}, W_{3} are graded vector spaces and
$X: W_{1} \otimes W_{2} \rightarrow W_{3}\{x\}[\log x]$,

$$
w_{1} \otimes w_{2} \mapsto X\left(w_{1}, x\right) w_{2}=\sum_{n \in \mathbb{C}} \sum_{k=1}^{K} X_{n}\left(w_{1}\right) w_{2} x^{-n-1}(\log x)^{k}
$$

is a grading-preserving linear map

Twisted modules for arbitrary automorphisms

Using these theorems as motivation, we generalize the above definition to arbitrary automorphisms of V.

- As before, if W_{1}, W_{2}, W_{3} are graded vector spaces and
$X: W_{1} \otimes W_{2} \rightarrow W_{3}\{x\}[\log x]$,

$$
w_{1} \otimes w_{2} \mapsto X\left(w_{1}, x\right) w_{2}=\sum_{n \in \mathbb{C}} \sum_{k=1}^{K} X_{n}\left(w_{1}\right) w_{2} x^{-n-1}(\log x)^{k}
$$

is a grading-preserving linear map(we take the degree of x to be -1 and the degree of the formal variable $\log x$ to be 0),

Twisted modules for arbitrary automorphisms

Using these theorems as motivation, we generalize the above definition to arbitrary automorphisms of V.

- As before, if W_{1}, W_{2}, W_{3} are graded vector spaces and

$$
X: W_{1} \otimes W_{2} \rightarrow W_{3}\{x\}[\log x]
$$

$$
w_{1} \otimes w_{2} \mapsto X\left(w_{1}, x\right) w_{2}=\sum_{n \in \mathbb{C}} \sum_{k=1}^{K} X_{n}\left(w_{1}\right) w_{2} x^{-n-1}(\log x)^{k}
$$

is a grading-preserving linear map(we take the degree of x to be -1 and the degree of the formal variable $\log x$ to be 0), we can define the map

$$
X^{p}: W_{1} \otimes W_{2} \rightarrow \overline{W_{3}}
$$

by

$$
X^{p}\left(w_{1}, z\right) w_{2}=\left.X\left(w_{1}, x\right) w_{2}\right|_{x^{n}=e^{n l_{p}(z)}, \log x=l_{p}(z)}
$$

Twisted modules for arbitrary automorphisms

Definition

Let V be a vertex operator algebra and $g \in \operatorname{Aut}(V)$.

Twisted modules for arbitrary automorphisms

Definition

Let V be a vertex operator algebra and $g \in \operatorname{Aut}(V)$.
$\mathrm{A} \mathbb{C} / \mathbb{Z}$-graded generalized g-twisted V -module is a
$\mathbb{C} \times \mathbb{C} / \mathbb{Z}$-graded vector space $W=\coprod_{n \in \mathbb{C}, \alpha \in \mathbb{C} / \mathbb{Z}} W_{[n]}^{[\alpha]}$ equipped with an action of g and a linear map

$$
\begin{aligned}
Y_{W}^{g}: V \otimes W & \rightarrow W\{x\}[\log x] \\
v \otimes w & \mapsto Y_{W}^{g}(v, x) w
\end{aligned}
$$

satisfying the following conditions:

Twisted modules for arbitrary automorphisms

Definition

Let V be a vertex operator algebra and $g \in \operatorname{Aut}(V)$.
$\mathrm{A} \mathbb{C} / \mathbb{Z}$-graded generalized g-twisted V -module is a
$\mathbb{C} \times \mathbb{C} / \mathbb{Z}$-graded vector space $W=\coprod_{n \in \mathbb{C}, \alpha \in \mathbb{C} / \mathbb{Z}} W_{[n]}^{[\alpha]}$ equipped with an action of g and a linear map

$$
\begin{aligned}
Y_{W}^{g}: V \otimes W & \rightarrow W\{x\}[\log x] \\
v \otimes w & \mapsto Y_{W}^{g}(v, x) w
\end{aligned}
$$

satisfying the following conditions:

- The equivariance property: For $p \in \mathbb{Z}, z \in \mathbb{C}^{\times}, v \in V$ and $w \in W$, we have

$$
Y_{W}^{g ; p+1}(g v, z) w=Y_{W}^{g ; p}(v, z) w
$$

Twisted modules for arbitrary automorphisms

Definition

Let V be a vertex operator algebra and $g \in \operatorname{Aut}(V)$.
$\mathrm{A} \mathbb{C} / \mathbb{Z}$-graded generalized g-twisted V -module is a
$\mathbb{C} \times \mathbb{C} / \mathbb{Z}$-graded vector space $W=\coprod_{n \in \mathbb{C}, \alpha \in \mathbb{C} / \mathbb{Z}} W_{[n]}^{[\alpha]}$ equipped with an action of g and a linear map

$$
\begin{aligned}
Y_{W}^{g}: V \otimes W & \rightarrow W\{x\}[\log x] \\
v \otimes w & \mapsto Y_{W}^{g}(v, x) w
\end{aligned}
$$

satisfying the following conditions:

- The equivariance property: For $p \in \mathbb{Z}, z \in \mathbb{C}^{\times}, v \in V$ and $w \in W$, we have

$$
Y_{W}^{g ; p+1}(g v, z) w=Y_{W}^{g ; p}(v, z) w
$$

- The identity property: For $w \in W, Y_{W}^{g}(\mathbf{1}, x) w=w$.

Twisted modules for arbitrary automorphisms

- The duality property:
- The duality property: Let $W^{\prime}=\coprod_{n \in \mathbb{C}, \alpha \in \mathbb{C} / \mathbb{Z}}\left(W_{[n]}^{[\alpha]}\right)^{*}$ and, for $n \in \mathbb{C}$, $\pi_{n}: W \rightarrow W_{[n]}$ be the projection. For any $u, v \in V, w \in W$ and $w^{\prime} \in W^{\prime}$, there exists a multivalued analytic function of the form

$$
f\left(z_{1}, z_{2}\right)=\sum_{i, j, k, l=0}^{N} a_{i j k l} z_{1}^{m_{i}} z_{2}^{n_{i}}\left(\log z_{1}\right)^{k}\left(\log z_{2}\right)^{\prime}\left(z_{1}-z_{2}\right)^{-t}
$$

for $N \in \mathbb{N}, m_{1}, \ldots, m_{N}, n_{1}, \ldots, n_{N} \in \mathbb{C}$ and $t \in \mathbb{Z}_{+}$, such that the series

$$
\begin{align*}
\left\langle w^{\prime}, Y^{g ; p}\left(u, z_{1}\right) Y^{g ; p}\left(v, z_{2}\right) w\right\rangle & =\sum_{n \in \mathbb{C}}\left\langle w^{\prime}, Y^{g ; p}\left(u, z_{1}\right) \pi_{n} Y^{g ; p}\left(v, z_{2}\right) w\right\rangle, \tag{1}\\
\left\langle w^{\prime}, Y^{g ; p}\left(v, z_{2}\right) Y^{g ; p}\left(u, z_{1}\right) w\right\rangle & =\sum_{n \in \mathbb{C}}\left\langle w^{\prime}, Y^{g ; p}\left(v, z_{2}\right) \pi_{n} Y^{g ; p}\left(u, z_{1}\right) w\right\rangle, \tag{2}\\
\left\langle w^{\prime}, Y^{g ; p}\left(Y\left(u, z_{1}-z_{2}\right) v, z_{2}\right) w\right\rangle & =\sum_{n \in \mathbb{C}}\left\langle w^{\prime}, Y^{g ; p}\left(\pi_{n} Y\left(u, z_{1}-z_{2}\right) v, z_{2}\right) w\right\rangle
\end{align*}
$$

are absolutely convergent in the regions $\left|z_{1}\right|>\left|z_{2}\right|>0,\left|z_{2}\right|>\left|z_{1}\right|>0$, $\left|z_{2}\right|>\left|z_{1}-z_{2}\right|>0$, respectively, to the branch

$$
\sum_{i, j, k, l=0}^{N} a_{i j k l} e^{m_{i} l_{p}\left(z_{1}\right)} e^{n_{j} / \rho_{p}\left(z_{2}\right) l_{p}\left(z_{1}\right)^{k} l_{p}\left(z_{2}\right)^{\prime}\left(z_{1}-z_{2}\right)^{-t}}
$$

of $f\left(z_{1}, z_{2}\right)$.

Twisted modules for arbitrary automorphisms
Let

$$
Y_{W}^{g}(\omega, x)=\sum_{n \in \mathbb{Z}} L_{W}^{g}(n) x^{-n-2}
$$

Twisted modules for arbitrary automorphisms

Let

$$
Y_{W}^{g}(\omega, x)=\sum_{n \in \mathbb{Z}} L_{W}^{g}(n) x^{-n-2}
$$

- Properties about the gradings: We have a decomposition of W into generalized eigenspaces of $L_{W}^{g}(0)$ and g satisfying:

Let

$$
Y_{W}^{g}(\omega, x)=\sum_{n \in \mathbb{Z}} L_{W}^{g}(n) x^{-n-2}
$$

- Properties about the gradings: We have a decomposition of W into generalized eigenspaces of $L_{W}^{g}(0)$ and g satisfying:
(1) The $L(0)$-grading condition: For each
$w \in W_{[n]}=\coprod_{\alpha \in \mathbb{C} / \mathbb{Z}} W_{[n]}^{[\alpha]}$, there exists $K \in \mathbb{Z}_{+}$such that

$$
\left(L_{W}^{g}(0)-n\right)^{K} w=0 .
$$

Twisted modules for arbitrary automorphisms

Let

$$
Y_{W}^{g}(\omega, x)=\sum_{n \in \mathbb{Z}} L_{W}^{g}(n) x^{-n-2}
$$

- Properties about the gradings: We have a decomposition of W into generalized eigenspaces of $L_{W}^{g}(0)$ and g satisfying:
(1) The $L(0)$-grading condition: For each
$w \in W_{[n]}=\coprod_{\alpha \in \mathbb{C} / \mathbb{Z}} W_{[n]}^{[\alpha]}$, there exists $K \in \mathbb{Z}_{+}$such that

$$
\left(L_{W}^{g}(0)-n\right)^{K} w=0 .
$$

(2) The g-grading condition: For each $w \in W^{[\alpha]}=\coprod_{n \in \mathbb{C}} W_{[n]}^{[\alpha]}$, there exists $\Lambda \in \mathbb{Z}_{+}$such that

$$
\left(g-e^{2 \pi i \alpha}\right)^{\wedge} w=0
$$

Twisted modules for arbitrary automorphisms

Let

$$
Y_{W}^{g}(\omega, x)=\sum_{n \in \mathbb{Z}} L_{W}^{g}(n) x^{-n-2}
$$

- Properties about the gradings: We have a decomposition of W into generalized eigenspaces of $L_{W}^{g}(0)$ and g satisfying:
(1) The $L(0)$-grading condition: For each

$$
\begin{gathered}
w \in W_{[n]}=\coprod_{\alpha \in \mathbb{C} / \mathbb{Z}} W_{[n]}^{[\alpha]} \text {, there exists } K \in \mathbb{Z}_{+} \text {such that } \\
\left(L_{W}^{g}(0)-n\right)^{K} w=0 .
\end{gathered}
$$

(2) The g-grading condition: For each $w \in W^{[\alpha]}=\coprod_{n \in \mathbb{C}} W_{[n]}^{[\alpha]}$, there exists $\Lambda \in \mathbb{Z}_{+}$such that

$$
\left(g-e^{2 \pi i \alpha}\right)^{\wedge} w=0
$$

- The $L(-1)$-derivative property: For $v \in V$

$$
\frac{d}{d x} Y_{W}^{g}(v, x)=Y_{W}^{g}(L(-1) v, x)
$$

Bakalov, using a slightly more general definition (no assumption of an action of g on W), defined twisted modules using a Borcherds identity (in component form).

Bakalov, using a slightly more general definition (no assumption of an action of g on W), defined twisted modules using a Borcherds identity (in component form).

Huang and Yang later showed that the duality property can be replaced by a Jacobi identity:

Twisted modules for arbitrary automorphisms

Bakalov, using a slightly more general definition (no assumption of an action of g on W), defined twisted modules using a Borcherds identity (in component form).

Huang and Yang later showed that the duality property can be replaced by a Jacobi identity:

$$
\begin{aligned}
& x_{0}^{-1} \delta\left(\frac{x_{1}-x_{2}}{x_{0}}\right) Y_{W}^{g}\left(u, x_{1}\right) Y_{W}^{g}\left(v, x_{2}\right)-x_{0}^{-1} \delta\left(\frac{-x_{2}+x_{1}}{x_{0}}\right) Y_{W}^{g}\left(v, x_{2}\right) Y_{W}^{g}\left(u, x_{1}\right) \\
& \quad=x_{1}^{-1} \delta\left(\frac{x_{2}+x_{0}}{x_{1}}\right) Y_{W}^{g}\left(Y\left(\left(\frac{x_{2}+x_{0}}{x_{1}}\right)^{\mathcal{L}_{g}} u, x_{0}\right) v, x_{2}\right)
\end{aligned}
$$

Twisted modules for arbitrary automorphisms

Bakalov, using a slightly more general definition (no assumption of an action of g on W), defined twisted modules using a Borcherds identity (in component form).

Huang and Yang later showed that the duality property can be replaced by a Jacobi identity:

$$
\begin{aligned}
& x_{0}^{-1} \delta\left(\frac{x_{1}-x_{2}}{x_{0}}\right) Y_{W}^{g}\left(u, x_{1}\right) Y_{W}^{g}\left(v, x_{2}\right)-x_{0}^{-1} \delta\left(\frac{-x_{2}+x_{1}}{x_{0}}\right) Y_{W}^{g}\left(v, x_{2}\right) Y_{W}^{g}\left(u, x_{1}\right) \\
& \quad=x_{1}^{-1} \delta\left(\frac{x_{2}+x_{0}}{x_{1}}\right) Y_{W}^{g}\left(Y\left(\left(\frac{x_{2}+x_{0}}{x_{1}}\right)^{\mathcal{L}_{g}} u, x_{0}\right) v, x_{2}\right)
\end{aligned}
$$

along with the lower truncation property:

Bakalov, using a slightly more general definition (no assumption of an action of g on W), defined twisted modules using a Borcherds identity (in component form).

Huang and Yang later showed that the duality property can be replaced by a Jacobi identity:

$$
\begin{aligned}
& x_{0}^{-1} \delta\left(\frac{x_{1}-x_{2}}{x_{0}}\right) Y_{W}^{g}\left(u, x_{1}\right) Y_{W}^{g}\left(v, x_{2}\right)-x_{0}^{-1} \delta\left(\frac{-x_{2}+x_{1}}{x_{0}}\right) Y_{W}^{g}\left(v, x_{2}\right) Y_{W}^{g}\left(u, x_{1}\right) \\
& \quad=x_{1}^{-1} \delta\left(\frac{x_{2}+x_{0}}{x_{1}}\right) Y_{W}^{g}\left(Y\left(\left(\frac{x_{2}+x_{0}}{x_{1}}\right)^{\mathcal{L}_{g}} u, x_{0}\right) v, x_{2}\right)
\end{aligned}
$$

along with the lower truncation property:
For all $v \in V$ and $w \in W, Y_{W}^{g}(v, x) w$ is lower truncated, that is,
$\left(Y_{W}^{g}\right)_{n}(v) w=0$ when $\Re(n)$ is sufficiently negative.

Bakalov, using a slightly more general definition (no assumption of an action of g on W), defined twisted modules using a Borcherds identity (in component form).

Huang and Yang later showed that the duality property can be replaced by a Jacobi identity:

$$
\begin{aligned}
& x_{0}^{-1} \delta\left(\frac{x_{1}-x_{2}}{x_{0}}\right) Y_{W}^{g}\left(u, x_{1}\right) Y_{W}^{g}\left(v, x_{2}\right)-x_{0}^{-1} \delta\left(\frac{-x_{2}+x_{1}}{x_{0}}\right) Y_{W}^{g}\left(v, x_{2}\right) Y_{W}^{g}\left(u, x_{1}\right) \\
& \quad=x_{1}^{-1} \delta\left(\frac{x_{2}+x_{0}}{x_{1}}\right) Y_{W}^{g}\left(Y\left(\left(\frac{x_{2}+x_{0}}{x_{1}}\right)^{\mathcal{L}_{g}} u, x_{0}\right) v, x_{2}\right)
\end{aligned}
$$

along with the lower truncation property:
For all $v \in V$ and $w \in W, Y_{W}^{g}(v, x) w$ is lower truncated, that is, $\left(Y_{W}^{g}\right)_{n}(v) w=0$ when $\Re(n)$ is sufficiently negative.

Here, we define $\mathcal{L}_{g}=\mathcal{S}_{g}+\mathcal{N}_{g}$ to be a linear operator such that $g=e^{2 \pi i \mathcal{L}_{g}}=e^{2 \pi i \mathcal{S}_{g}} e^{2 \pi i \mathcal{N}_{g}}$ where \mathcal{S}_{g} is semisimple on V and \mathcal{N}_{g} is locally nilpotent on V.

Twisted modules for arbitrary automorphisms

We note that for $\mathcal{L}_{g}=\mathcal{S}_{g}+\mathcal{N}_{g}$ we define

$$
x^{\mathcal{L}_{g}}=x^{\mathcal{S}_{g}} e^{\mathcal{N}_{g} \log x}
$$

We note that for $\mathcal{L}_{g}=\mathcal{S}_{g}+\mathcal{N}_{g}$ we define

$$
x^{\mathcal{L}_{g}}=x^{\mathcal{S}_{g}} e^{\mathcal{N}_{g} \log x}
$$

In particular, if v is a generalized eigenvector of \mathcal{L}_{g} with eigenvalue λ, we have that

$$
x^{\mathcal{L}_{g}} v=x^{\lambda} e^{\mathcal{N}_{g} \log x} v
$$

where $e^{\mathcal{N}_{g} \log x_{v}}$ is a finite sum since \mathcal{N}_{g} is locally nilpotent.

We note that for $\mathcal{L}_{g}=\mathcal{S}_{g}+\mathcal{N}_{g}$ we define

$$
x^{\mathcal{L}_{g}}=x^{\mathcal{S}_{g}} e^{\mathcal{N}_{g} \log x}
$$

In particular, if v is a generalized eigenvector of \mathcal{L}_{g} with eigenvalue λ, we have that

$$
x^{\mathcal{L}_{g}} v=x^{\lambda} e^{\mathcal{N}_{g} \log x} v
$$

where $e^{\mathcal{N}_{g} \log x_{v}}$ is a finite sum since \mathcal{N}_{g} is locally nilpotent.
We define

$$
P_{V}^{g}:=\left\{\alpha \in[0,1)+i \mathbb{R} \mid e^{2 \pi i \alpha} \text { is an eigenvalue of } g\right\}
$$

Twisted modules for arbitrary automorphisms

Finally...

Twisted modules for arbitrary automorphisms

Finally...

- We call a generalized g-twisted V-module lower-bounded if $W_{[n]}=0$ for $n \in \mathbb{C}$ such that $\Re(n)$ is sufficiently negative.

Finally...

- We call a generalized g-twisted V-module lower-bounded if $W_{[n]}=0$ for $n \in \mathbb{C}$ such that $\Re(n)$ is sufficiently negative.
- We call a lower bounded generalized g-twisted V-module grading-restricted (or simply a g-twisted V-module) if for each $n \in \mathbb{C}$ we have $\operatorname{dim} W_{[n]}<\infty$.

Twisted modules for arbitrary automorphisms

Finally...

- We call a generalized g-twisted V-module lower-bounded if $W_{[n]}=0$ for $n \in \mathbb{C}$ such that $\Re(n)$ is sufficiently negative.
- We call a lower bounded generalized g-twisted V-module grading-restricted (or simply a g-twisted V-module) if for each $n \in \mathbb{C}$ we have $\operatorname{dim} W_{[n]}<\infty$.
- We call a lower bounded generalized g-twisted V-module strongly \mathbb{C} / \mathbb{Z}-graded if

$$
\operatorname{dim} W_{[n]}^{[\alpha]}<\infty
$$

and

$$
W_{[n+l]}^{[\alpha]}=0
$$

for sufficiently negative real I.

Some more definitions

We say that V has a \mathbb{C}-graded vertex operator algebra structure compatible with g if V has an additional grading

$$
V=\coprod_{\alpha \in \mathbb{C}} V^{[\alpha]}=\coprod_{n \in \mathbb{Z}, \alpha \in \mathbb{C}} V_{(n)}^{[\alpha]}
$$

such that $V^{[\alpha]}$ is a generalized eigenspace of g with eigenvalue $e^{2 \pi i \alpha}$.

Some more definitions

We say that V has a \mathbb{C}-graded vertex operator algebra structure compatible with g if V has an additional grading

$$
V=\coprod_{\alpha \in \mathbb{C}} V^{[\alpha]}=\coprod_{n \in \mathbb{Z}, \alpha \in \mathbb{C}} V_{(n)}^{[\alpha]}
$$

such that $V^{[\alpha]}$ is a generalized eigenspace of g with eigenvalue $e^{2 \pi i \alpha}$.

For such a VOA V a \mathbb{C}-graded generalized g-twisted V-module is a $\mathbb{C} \times \mathbb{C}$-graded vector space $W=\coprod_{n, \alpha \in \mathbb{C}} W_{[n]}^{[\alpha]}$ equipped with an action of g and a vertex operator map as before satisfying all the axioms above where \mathbb{C} / \mathbb{Z} is replaced by \mathbb{C}

Some more definitions

We say that V has a \mathbb{C}-graded vertex operator algebra structure compatible with g if V has an additional grading

$$
V=\coprod_{\alpha \in \mathbb{C}} V^{[\alpha]}=\coprod_{n \in \mathbb{Z}, \alpha \in \mathbb{C}} V_{(n)}^{[\alpha]}
$$

such that $V^{[\alpha]}$ is a generalized eigenspace of g with eigenvalue $e^{2 \pi i \alpha}$.

For such a VOA V a \mathbb{C}-graded generalized g-twisted V-module is a $\mathbb{C} \times \mathbb{C}$-graded vector space $W=\coprod_{n, \alpha \in \mathbb{C}} W_{[n]}^{[\alpha]}$ equipped with an action of g and a vertex operator map as before satisfying all the axioms above where \mathbb{C} / \mathbb{Z} is replaced by \mathbb{C} and also

- The grading compatibility condition: for $\alpha, \beta \in \mathbb{C}, v \in V^{[\alpha]}$, and $w \in W^{[\beta]}$ we have

$$
Y_{W}^{g}(v, x) w \in W^{[\alpha+\beta]}\{x\}[\log x]
$$

Some results of Li

We recall a 1995 result of Haisheng Li.

Some results of Li

We recall a 1995 result of Haisheng Li. Let V be a vertex operator algebra, g an automorphism of V of finite order, and let $u \in V$ such that:

$$
L(n) u=\delta_{n, 0} u, \quad g(u)=u, \quad\left[Y_{m}(u), Y_{n}(u)\right]=0 \text { for } m, n \in \mathbb{Z}_{+}
$$ and also assume that $\operatorname{Spec} Y_{0}(u) \subset \frac{1}{T} \mathbb{Z}$ for some $T \in \mathbb{Z}_{+}$.

Some results of Li

We recall a 1995 result of Haisheng Li. Let V be a vertex operator algebra, g an automorphism of V of finite order, and let $u \in V$ such that:

$$
L(n) u=\delta_{n, 0} u, \quad g(u)=u, \quad\left[Y_{m}(u), Y_{n}(u)\right]=0 \text { for } m, n \in \mathbb{Z}_{+}
$$

and also assume that Spec $Y_{0}(u) \subset \frac{1}{T} \mathbb{Z}$ for some $T \in \mathbb{Z}_{+}$.
Consider the automorphism $g_{u}=e^{2 \pi i Y_{0}(u)}$ of order T.

We recall a 1995 result of Haisheng Li. Let V be a vertex operator algebra, g an automorphism of V of finite order, and let $u \in V$ such that:

$$
L(n) u=\delta_{n, 0} u, \quad g(u)=u, \quad\left[Y_{m}(u), Y_{n}(u)\right]=0 \text { for } m, n \in \mathbb{Z}_{+}
$$ and also assume that Spec $Y_{0}(u) \subset \frac{1}{T} \mathbb{Z}$ for some $T \in \mathbb{Z}_{+}$.

Consider the automorphism $g_{u}=e^{2 \pi i Y_{0}(u)}$ of order T.

Theorem (Li 1995)

Let $\left(M, Y_{M}^{g}\right)$ be a g-twisted V-module and consider

$$
\Delta(u, z)=x^{Y_{0}(u)} \exp \left(\sum_{n \geq 1} \frac{Y_{n}(u)}{-n}(-z)^{-n}\right)
$$

Then $\left(M, Y_{M}^{g g_{u}}\right)$ is a weak $g g_{u}$-twisted V-module, where we define

$$
Y_{M}^{g g_{u}}(v, x)=Y_{M}^{g}(\Delta(u, x) v, x)
$$

Generalizing $\Delta_{V}^{(u)}(x)$

Throughout we let V be a vertex operator algebra, $u \in V_{(1)}$ such that $L(1) u=0$.

Generalizing $\Delta_{V}^{(u)}(x)$

Throughout we let V be a vertex operator algebra, $u \in V_{(1)}$ such that $L(1) u=0$.

We consider the formal series

$$
\Delta_{V}^{(u)}(x)=x^{-Y_{0}(u)} \exp \left(\sum_{n \geq 1} \frac{Y_{n}(u)}{n}(-x)^{-n}\right)
$$

Generalizing $\Delta_{V}^{(u)}(x)$

Throughout we let V be a vertex operator algebra, $u \in V_{(1)}$ such that $L(1) u=0$.

We consider the formal series

$$
\Delta_{V}^{(u)}(x)=x^{-Y_{0}(u)} \exp \left(\sum_{n \geq 1} \frac{Y_{n}(u)}{n}(-x)^{-n}\right)
$$

Here we define

$$
x^{-Y_{0}(u)}=x^{-Y_{0}(u)_{s}} \exp \left(e^{Y_{0}(u)_{N} \log x}\right)
$$

where $Y_{0}(u)_{S}$ and $Y_{0}(u)_{N}$ are the semisimple and nilpotent parts of $Y_{0}(u)$, respectively.

Generalizing $\Delta_{V}^{(u)}(x)$

$\Delta_{V}^{(u)}(x)$ enjoys many of the same properties as Li's Δ.

Generalizing $\Delta_{V}^{(u)}(x)$

$\Delta_{V}^{(u)}(x)$ enjoys many of the same properties as Li's Δ.In particular, the following properties are important in our proofs:

Generalizing $\Delta_{V}^{(u)}(x)$

$\Delta_{V}^{(u)}(x)$ enjoys many of the same properties as Li's Δ.In particular, the following properties are important in our proofs:

- $\Delta_{V}^{(u)}(x) Y\left(v, x_{2}\right)=Y\left(\Delta_{V}^{(u)}\left(x+x_{2}\right) v, x_{2}\right) \Delta_{V}^{(u)}(x)$

Generalizing $\Delta_{V}^{(u)}(x)$

$\Delta_{V}^{(u)}(x)$ enjoys many of the same properties as Li's Δ.In particular, the following properties are important in our proofs:

- $\Delta_{V}^{(u)}(x) Y\left(v, x_{2}\right)=Y\left(\Delta_{V}^{(\nu)}\left(x+x_{2}\right) v, x_{2}\right) \Delta_{V}^{(u)}(x)$
- $\left[L(-1), \Delta_{V}^{(u)}(x)\right]=-\frac{d}{d x} \Delta_{V}^{(u)}(x)$

Generalizing $\Delta_{V}^{(u)}(x)$

$\Delta_{V}^{(u)}(x)$ enjoys many of the same properties as Li's Δ.In particular, the following properties are important in our proofs:

- $\Delta_{V}^{(u)}(x) Y\left(v, x_{2}\right)=Y\left(\Delta_{V}^{(u)}\left(x+x_{2}\right) v, x_{2}\right) \Delta_{V}^{(u)}(x)$
- $\left[L(-1), \Delta_{V}^{(u)}(x)\right]=-\frac{d}{d x} \Delta_{V}^{(u)}(x)$
- $\Delta_{V}^{(0)}(x)=1_{V}$

Generalizing $\Delta_{V}^{(u)}(x)$

$\Delta_{V}^{(u)}(x)$ enjoys many of the same properties as Li's Δ.In particular, the following properties are important in our proofs:

- $\Delta_{V}^{(u)}(x) Y\left(v, x_{2}\right)=Y\left(\Delta_{V}^{(u)}\left(x+x_{2}\right) v, x_{2}\right) \Delta_{V}^{(u)}(x)$
- $\left[L(-1), \Delta_{V}^{(u)}(x)\right]=-\frac{d}{d x} \Delta_{V}^{(u)}(x)$
- $\Delta_{V}^{(0)}(x)=1_{V}$
- If $u_{1}, u_{2} \in V$ such that $\left[Y\left(u_{1}, x\right), Y\left(u_{2}, x\right)\right]=0$ then

$$
\Delta_{V}^{\left(\nu_{1}+u_{2}\right)}(x)=\Delta_{V}^{\left(\nu_{1}\right)}(x) \Delta_{V}^{\left(\nu_{2}\right)}(x)
$$

Generalizing $\Delta_{V}^{(u)}(x)$

$\Delta_{V}^{(u)}(x)$ enjoys many of the same properties as Li's Δ.In particular, the following properties are important in our proofs:

- $\Delta_{V}^{(u)}(x) Y\left(v, x_{2}\right)=Y\left(\Delta_{V}^{(\nu)}\left(x+x_{2}\right) v, x_{2}\right) \Delta_{V}^{(u)}(x)$
- $\left[L(-1), \Delta_{V}^{(u)}(x)\right]=-\frac{d}{d x} \Delta_{V}^{(u)}(x)$
- $\Delta_{V}^{(0)}(x)=1_{V}$
- If $u_{1}, u_{2} \in V$ such that $\left[Y\left(u_{1}, x\right), Y\left(u_{2}, x\right)\right]=0$ then

$$
\Delta_{V}^{\left(\nu_{1}+\mu_{2}\right)}(x)=\Delta_{V}^{\left(\nu_{1}\right)}(x) \Delta_{V}^{\left(\nu_{2}\right)}(x)
$$

- If $g \in \operatorname{Aut}(V)$ such that $g(u)=u$ then $\left[g, \Delta_{V}^{(u)}(x)\right]=0$.

Generalizing $\Delta_{V}^{(u)}(x)$

$\Delta_{V}^{(u)}(x)$ enjoys many of the same properties as Li's Δ.In particular, the following properties are important in our proofs:

- $\Delta_{V}^{(u)}(x) Y\left(v, x_{2}\right)=Y\left(\Delta_{V}^{(u)}\left(x+x_{2}\right) v, x_{2}\right) \Delta_{V}^{(u)}(x)$
- $\left[L(-1), \Delta_{V}^{(u)}(x)\right]=-\frac{d}{d x} \Delta_{V}^{(u)}(x)$
- $\Delta_{V}^{(0)}(x)=1_{V}$
- If $u_{1}, u_{2} \in V$ such that $\left[Y\left(u_{1}, x\right), Y\left(u_{2}, x\right)\right]=0$ then

$$
\Delta_{V}^{\left(\nu_{1}+u_{2}\right)}(x)=\Delta_{V}^{\left(\nu_{1}\right)}(x) \Delta_{V}^{\left(\nu_{2}\right)}(x)
$$

- If $g \in \operatorname{Aut}(V)$ such that $g(u)=u$ then $\left[g, \Delta_{V}^{(u)}(x)\right]=0$. Using these properties, it is now just a matter of some direct calculation to prove our main theorem.

The main theorem

Theorem (Huang, S. 2022)
 Let V be a vertex operator algebra satisfying

The main theorem
Theorem (Huang, S. 2022)
Let V be a vertex operator algebra satisfying

- $V_{(0)}=\mathbb{C} 1$ and $V_{(n)}=0$ for $n<0$

The main theorem
Theorem (Huang, S. 2022)
Let V be a vertex operator algebra satisfying

- $V_{(0)}=\mathbb{C} 1$ and $V_{(n)}=0$ for $n<0$
- Let $u \in V_{(1)}$ such that $L(1) u=0$

The main theorem

Theorem (Huang, S. 2022)

Let V be a vertex operator algebra satisfying

- $V_{(0)}=\mathbb{C} 1$ and $V_{(n)}=0$ for $n<0$
- Let $u \in V_{(1)}$ such that $L(1) u=0$
- Let $g \in \operatorname{Aut}(V)$ such that $g(u)=u$.

The main theorem

Theorem (Huang, S. 2022)

Let V be a vertex operator algebra satisfying

- $V_{(0)}=\mathbb{C} 1$ and $V_{(n)}=0$ for $n<0$
- Let $u \in V_{(1)}$ such that $L(1) u=0$
- Let $g \in \operatorname{Aut}(V)$ such that $g(u)=u$.

Let $\left(W, Y_{W}^{g}\right)$ be a \mathbb{C} / \mathbb{Z}-graded (or \mathbb{C}-graded) generalized g-twisted V-module and $g_{u}=e^{2 \pi i Y_{0}(u)} \in \operatorname{Aut}(V)$.

Theorem (Huang, S. 2022)

Let V be a vertex operator algebra satisfying

- $V_{(0)}=\mathbb{C} 1$ and $V_{(n)}=0$ for $n<0$
- Let $u \in V_{(1)}$ such that $L(1) u=0$
- Let $g \in \operatorname{Aut}(V)$ such that $g(u)=u$.

Let $\left(W, Y_{W}^{g}\right)$ be a \mathbb{C} / \mathbb{Z}-graded (or \mathbb{C}-graded) generalized g-twisted V-module and $g_{u}=e^{2 \pi i Y_{0}(u)} \in \operatorname{Aut}(V)$. Then the map

$$
Y_{W}^{g g_{u}}: V \otimes W \rightarrow W\{x\}[\log x]
$$

defined by

$$
Y_{W}^{g g_{u}}(v, x)=Y_{W}^{g}\left(\Delta_{V}^{(u)}(x) v, x\right)
$$

satisfies the identity property, the lower truncation property, the $L(-1)$-derivative property, the equivariance property and the Jacobi identity.

Some theorems about \mathbb{C} / \mathbb{Z}-gradings

> Theorem (Huang, S. 2022)
> Let V, g, u be as in the previous theorem and let $\left(W, Y_{W}^{g}\right)$ be a \mathbb{C} / \mathbb{Z}-graded generalized g-twisted V-module.

Some theorems about \mathbb{C} / \mathbb{Z}-gradings

Theorem (Huang, S. 2022)

Let V, g, u be as in the previous theorem and let $\left(W, Y_{W}^{g}\right)$ be a \mathbb{C} / \mathbb{Z}-graded generalized g-twisted V-module.Assume that W is a direct sum of generalized eigenspaces of $\left(Y_{W}\right)_{0}(u)$.

Some theorems about \mathbb{C} / \mathbb{Z}-gradings

Theorem (Huang, S. 2022)

Let V, g, u be as in the previous theorem and let $\left(W, Y_{W}^{g}\right)$ be a \mathbb{C} / \mathbb{Z}-graded generalized g-twisted V-module.Assume that W is a direct sum of generalized eigenspaces of $\left(Y_{W}\right)_{0}(u)$. Then $\left(W, Y^{g g_{u}}\right)$ is a \mathbb{C} / \mathbb{Z}-graded generalized ggu $_{u}$-twisted V-module.

Some theorems about \mathbb{C} / \mathbb{Z}-gradings

Theorem (Huang, S. 2022)

Let V, g, u be as in the previous theorem and let $\left(W, Y_{W}^{g}\right)$ be a \mathbb{C} / \mathbb{Z}-graded generalized g-twisted V-module.Assume that W is a direct sum of generalized eigenspaces of $\left(Y_{W}\right)_{0}(u)$. Then $\left(W, Y^{g g_{u}}\right)$ is a \mathbb{C} / \mathbb{Z}-graded generalized ggu-twisted V-module.

The proof of this result uses the fact that

$$
L_{W}^{g g_{u}}(0)=L_{W}^{g}(0)-\left(Y_{W}^{g}\right)_{0}(u)+\frac{1}{2} \mu
$$

where μ is a constant determined by $Y_{1}(u) u=\mu \mathbf{1}$ and...

Some theorems about \mathbb{C} / \mathbb{Z}-gradings

By assumption, we have that

$$
W=\coprod_{n \in \mathbb{C}, \alpha \in P_{W}^{g}} W_{[n]}^{[\alpha]}
$$

where the lower grading is given by $L_{W}^{g}(0)$-eigenvalues and the upper grading is given by g-eigenvalues.

Some theorems about \mathbb{C} / \mathbb{Z}-gradings

By assumption, we have that

$$
W=\coprod_{n \in \mathbb{C}, \alpha \in P_{W}^{g}} W_{[n]}^{[\alpha]}
$$

where the lower grading is given by $L_{W}^{g}(0)$-eigenvalues and the upper grading is given by g-eigenvalues. We then decompose

$$
W_{[n]}^{[\alpha]}=\coprod_{\tilde{\beta} \in P_{W}^{S_{W}}+\mathbb{Z}} W_{[n]}^{[\alpha], \tilde{\beta}]}
$$

Some theorems about \mathbb{C} / \mathbb{Z}-gradings

By assumption, we have that

$$
W=\coprod_{n \in \mathbb{C}, \alpha \in P_{W}^{g}} W_{[n]}^{[\alpha]}
$$

where the lower grading is given by $L_{W}^{g}(0)$-eigenvalues and the upper grading is given by g-eigenvalues. We then decompose

$$
W_{[n]}^{[\alpha]}=\coprod_{\tilde{\beta} \in P_{W}^{g_{W}}+\mathbb{Z}} W_{[n]}^{[\alpha], \tilde{\beta}]}
$$

which we use to define the $L_{W}^{g g_{u}}(0)$ generalized eigenspaces with eigenvalue n :

$$
W_{\langle n\rangle}^{[\alpha],[\beta]}=\coprod_{\tilde{\beta} \in \beta+\mathbb{Z}} W_{\left[n+\tilde{\beta}-\frac{1}{2} \mu\right]}^{[\alpha],[\tilde{\beta}]}
$$

Some theorems about \mathbb{C} / \mathbb{Z}-gradings

This leaves us with a triple grading:

$$
W=\coprod_{n \in \mathbb{C}, \alpha \in P_{W}^{g}, \beta \in P_{W}^{g_{u}}} W_{\langle n\rangle}^{[\alpha],[\beta]}
$$

Some theorems about \mathbb{C} / \mathbb{Z}-gradings

This leaves us with a triple grading:

$$
W=\coprod_{n \in \mathbb{C}, \alpha \in P_{W}^{g}, \beta \in P_{W}^{g_{U}}} W_{\langle n\rangle}^{[\alpha],[\beta]}
$$

and finally we define a new \mathbb{C} / \mathbb{Z}-grading on W by:

$$
W=\coprod_{n \in \mathbb{C}, \gamma \in P_{W}^{g g_{u}}} W_{\langle n\rangle}^{\langle\gamma\rangle}
$$

where

$$
W_{\langle n\rangle}^{\langle\gamma\rangle}=\coprod_{\alpha \in P_{W}^{g}, \beta \in P_{W}^{g_{U}^{g}, \alpha+\beta \in \gamma+\mathbb{Z}}} W_{\langle n\rangle}^{[\alpha],[\beta]}
$$

which gives us our desired \mathbb{C} / \mathbb{Z}-grading.

Some results on \mathbb{C}-gradings

We also have some results on \mathbb{C}-graded generalized twisted modules.

Some results on \mathbb{C}-gradings

We also have some results on \mathbb{C}-graded generalized twisted modules. A similar approach with some more assumptions gives us the following result:

Some results on \mathbb{C}-gradings

We also have some results on \mathbb{C}-graded generalized twisted modules. A similar approach with some more assumptions gives us the following result:

Theorem (Huang, S. 2022)

Suppose V, g, and u are as in the main theorem and let W be a \mathbb{C}-graded generalized g-twisted V-module.

Some results on \mathbb{C}-gradings

We also have some results on \mathbb{C}-graded generalized twisted modules. A similar approach with some more assumptions gives us the following result:

Theorem (Huang, S. 2022)

Suppose V, g, and u are as in the main theorem and let W be a \mathbb{C}-graded generalized g-twisted V-module. Assume that there is a semisimple operator $\tilde{\mathcal{S}}_{g}$ on V such that $g=e^{2 \pi i\left(\tilde{\mathcal{S}}_{g}+\mathcal{N}_{g}\right)}$ and that $Y_{V}(u, x) v \in V^{\left[\tilde{\alpha}_{1}+\tilde{\alpha_{2}}\right]}\left[\left[x, x^{-1}\right]\right]$ for $u \in V^{\left[\tilde{\alpha}_{1}\right]}$ and $v \in V^{\left[\tilde{\alpha}_{2}\right]}$ where for $\alpha \in P_{V}^{g}$ we have that $V^{[\tilde{\alpha}]}$ is the $\tilde{\mathcal{S}}_{g}$-eigenspace with eigenvalue $\tilde{\alpha}$.

Some results on \mathbb{C}-gradings

We also have some results on \mathbb{C}-graded generalized twisted modules. A similar approach with some more assumptions gives us the following result:

Theorem (Huang, S. 2022)

Suppose V, g, and u are as in the main theorem and let W be a \mathbb{C}-graded generalized g-twisted V-module. Assume that there is a semisimple operator $\tilde{\mathcal{S}_{g}}$ on V such that $g=e^{2 \pi i\left(\tilde{\mathcal{S}_{g}}+\mathcal{N}_{g}\right)}$ and that $Y_{V}(u, x) v \in V^{\left[\tilde{\alpha}_{1}+\tilde{\alpha_{2}}\right]}\left[\left[x, x^{-1}\right]\right]$ for $u \in V^{\left[\tilde{\alpha}_{1}\right]}$ and $v \in V^{\left[\tilde{\alpha}_{2}\right]}$ where for $\alpha \in P_{V}^{g}$ we have that $V^{[\tilde{\alpha}]}$ is the $\tilde{\mathcal{S}}_{g}$-eigenspace with eigenvalue ${ }^{2}$.

Assume also that $\tilde{\mathcal{S}_{g}}$ acts on W semisimply and the actions of $e^{2 \pi i \mathcal{S}_{g}}$ and $e^{2 \pi i \tilde{S}_{g}}$ are equal on W and that $Y_{W}^{g}(v, x) w \in W^{\left[\tilde{\alpha}_{1}+\tilde{\alpha}_{2}\right]}$ for $u \in V^{\left[\tilde{\alpha_{1}}\right]}$ and $w \in W^{\left[\tilde{\alpha_{2}}\right]}$.

Some results on \mathbb{C}-gradings

We also have some results on \mathbb{C}-graded generalized twisted modules. A similar approach with some more assumptions gives us the following result:

Theorem (Huang, S. 2022)

Suppose V, g, and u are as in the main theorem and let W be a \mathbb{C}-graded generalized g-twisted V-module. Assume that there is a semisimple operator $\tilde{\mathcal{S}}_{g}$ on V such that $g=e^{2 \pi i\left(\tilde{\mathcal{S}}_{g}+\mathcal{N}_{g}\right)}$ and that $Y_{V}(u, x) v \in V^{\left[\tilde{\alpha}_{1}+\tilde{\alpha_{2}}\right]}\left[\left[x, x^{-1}\right]\right]$ for $u \in V^{\left[\tilde{\alpha}_{1}\right]}$ and $v \in V^{\left[\tilde{\alpha}_{2}\right]}$ where for $\alpha \in P_{V}^{g}$ we have that $V^{[\tilde{\alpha}]}$ is the $\tilde{\mathcal{S}}_{g}$-eigenspace with eigenvalue ${ }^{2}$.

Assume also that $\tilde{\mathcal{S}_{g}}$ acts on W semisimply and the actions of $e^{2 \pi i \mathcal{S}_{g}}$ and $e^{2 \pi i \tilde{\mathcal{S}_{g}}}$ are equal on W and that $Y_{W}^{g}(v, x) w \in W^{\left[\tilde{\alpha}_{1}+\tilde{\alpha}_{2}\right]}$ for $u \in V^{\left[\tilde{\alpha_{1}}\right]}$ and $w \in W^{\left[\tilde{\alpha_{2}}\right]}$.

Then $\left(W, Y_{W}^{g g_{u}}\right)$ is a \mathbb{C}-graded generalized g_{u}-twisted module.

Strongly graded modules

Our final general result gives conditions which ensure a strongly \mathbb{C}-graded generalized g-twisted V-module gets mapped to a strongly \mathbb{C}-graded generalized $g g_{u}$-twisted V-module.

Strongly graded modules

Our final general result gives conditions which ensure a strongly \mathbb{C}-graded generalized g-twisted V-module gets mapped to a strongly \mathbb{C}-graded generalized $g g_{u}$-twisted V-module.

We don't state it here because the assumptions are quite technical, but the general idea is that we require all the above assumptions, along with:

Strongly graded modules

Our final general result gives conditions which ensure a strongly \mathbb{C}-graded generalized g-twisted V-module gets mapped to a strongly \mathbb{C}-graded generalized $g g_{u}$-twisted V-module.

We don't state it here because the assumptions are quite technical, but the general idea is that we require all the above assumptions, along with:

- The corresponding \mathbb{C} / \mathbb{Z}-grading on the g-twisted module

$$
W=\coprod_{\alpha \in P_{W}^{g}} W^{(\alpha)}
$$

where

$$
W^{(\alpha)}=\coprod_{k \in \mathbb{Z}} W^{[\alpha+k]}
$$

gives a strong \mathbb{C} / \mathbb{Z}-grading on W.

Strongly graded modules

Our final general result gives conditions which ensure a strongly \mathbb{C}-graded generalized g-twisted V-module gets mapped to a strongly \mathbb{C}-graded generalized $g g_{u}$-twisted V-module.

We don't state it here because the assumptions are quite technical, but the general idea is that we require all the above assumptions, along with:

- The corresponding \mathbb{C} / \mathbb{Z}-grading on the g-twisted module

$$
W=\coprod_{\alpha \in P_{W}^{g}} W^{(\alpha)}
$$

where

$$
W^{(\alpha)}=\coprod_{k \in \mathbb{Z}} W^{[\alpha+k]}
$$

gives a strong \mathbb{C} / \mathbb{Z}-grading on W.

- A condition which ensures that the graded pieces in new grading on the $g g_{u}$-twisted module W are made up of a finite direct sum of g and g_{u}-generalized eigenspaces.

An Open Question

We will see later that, in general, $\Delta_{V}^{(u)}(x)$ does not map a lower-bounded, grading restricted generalized g-twisted module map to a lower-bounded, grading restricted generalized $g g_{u}$-module

An Open Question

We will see later that, in general, $\Delta_{V}^{(u)}(x)$ does not map a lower-bounded, grading restricted generalized g-twisted module map to a lower-bounded, grading restricted generalized $g g_{u}$-module

Question: Under what conditions does a lower-bounded, grading restricted generalized g-twisted module map to a lower-bounded, grading restricted generalized $g g_{u}$-module?

A bit on categories, from the title of the talk

Let \mathcal{C} be the category of all generalized twisted V-modules.

A bit on categories, from the title of the talk

Let \mathcal{C} be the category of all generalized twisted V-modules.Let $u \in V_{(1)}$ and G^{u} be the subgroup of Aut (V) which fix u.

A bit on categories, from the title of the talk

Let \mathcal{C} be the category of all generalized twisted V-modules.Let $u \in V_{(1)}$ and G^{u} be the subgroup of $\operatorname{Aut}(V)$ which fix u. Let \mathcal{C}^{u} be the subcategory of \mathcal{C} consisting of generalized g-twisted modules for $g \in G^{u}$.

A bit on categories, from the title of the talk

Let \mathcal{C} be the category of all generalized twisted V-modules. Let $u \in V_{(1)}$ and G^{u} be the subgroup of $\operatorname{Aut}(V)$ which fix u. Let \mathcal{C}^{u} be the subcategory of \mathcal{C} consisting of generalized g-twisted modules for $g \in G^{u}$. Then, we also have that $g g_{u} \in G^{u}$ and thus we have a functor

$$
\Delta^{u}: \mathcal{C}^{u} \rightarrow \mathcal{C}^{u}
$$

defined for any object $\left(W, Y_{W}^{g}\right)$ in \mathcal{C}^{u}

$$
\Delta^{u}\left(W, Y_{W}^{g}\right)=\left(W, Y_{W}^{g g_{u}}\right)
$$

which also respects morphisms.

A bit on categories, from the title of the talk

Let \mathcal{C} be the category of all generalized twisted V-modules. Let $u \in V_{(1)}$ and G^{u} be the subgroup of $\operatorname{Aut}(V)$ which fix u. Let \mathcal{C}^{u} be the subcategory of \mathcal{C} consisting of generalized g-twisted modules for $g \in G^{u}$. Then, we also have that $g g_{u} \in G^{u}$ and thus we have a functor

$$
\Delta^{u}: \mathcal{C}^{u} \rightarrow \mathcal{C}^{u}
$$

defined for any object $\left(W, Y_{W}^{g}\right)$ in \mathcal{C}^{u}

$$
\Delta^{u}\left(W, Y_{W}^{g}\right)=\left(W, Y_{W}^{g g_{u}}\right)
$$

which also respects morphisms.
In fact, we also have that $\mathcal{C}^{-u}=\mathcal{C}^{u}$ and that Δ^{-u} is a functor from \mathcal{C}^{u} to itself.

A bit on categories, from the title of the talk

Let \mathcal{C} be the category of all generalized twisted V-modules. Let $u \in V_{(1)}$ and G^{u} be the subgroup of $\operatorname{Aut}(V)$ which fix u. Let \mathcal{C}^{u} be the subcategory of \mathcal{C} consisting of generalized g-twisted modules for $g \in G^{u}$. Then, we also have that $g g_{u} \in G^{u}$ and thus we have a functor

$$
\Delta^{u}: \mathcal{C}^{u} \rightarrow \mathcal{C}^{u}
$$

defined for any object $\left(W, Y_{W}^{g}\right)$ in \mathcal{C}^{u}

$$
\Delta^{u}\left(W, Y_{W}^{g}\right)=\left(W, Y_{W}^{g g_{u}}\right)
$$

which also respects morphisms.
In fact, we also have that $\mathcal{C}^{-u}=\mathcal{C}^{u}$ and that Δ^{-u} is a functor from \mathcal{C}^{u} to itself. Moreover, we have

$$
\Delta^{u} \circ \Delta^{-u}=\Delta^{-u} \circ \Delta^{u}=1_{u}
$$

so that Δ^{u} is an automorphism of the category \mathcal{C}^{u}.

Application to affine vertex operator algebras

Let \mathfrak{g} be a finite-dimensional simple Lie algebra and (\cdot, \cdot) be its normalized Killing form.

Application to affine vertex operator algebras

Let \mathfrak{g} be a finite-dimensional simple Lie algebra and (\cdot, \cdot) be its normalized Killing form. Let g be an automorphism of \mathfrak{g} which leaves (\cdot, \cdot) invariant.

Application to affine vertex operator algebras

Let \mathfrak{g} be a finite-dimensional simple Lie algebra and (\cdot, \cdot) be its normalized Killing form. Let g be an automorphism of \mathfrak{g} which leaves (\cdot, \cdot) invariant. We can decompose

$$
g=e^{2 \pi i \mathcal{S}_{g}} e^{2 \pi i \mathcal{N}_{g}}
$$

into semisimple and unipotent parts.

Application to affine vertex operator algebras

Let \mathfrak{g} be a finite-dimensional simple Lie algebra and (\cdot, \cdot) be its normalized Killing form. Let g be an automorphism of \mathfrak{g} which leaves (\cdot, \cdot) invariant. We can decompose

$$
g=e^{2 \pi i \mathcal{S}_{g}} e^{2 \pi i \mathcal{N}_{g}}
$$

into semisimple and unipotent parts. Huang showed that

$$
\sigma:=e^{2 \pi i \mathcal{S}_{g}}=\tau_{\sigma} \mu e^{2 \pi i \mathrm{ad}_{h}} \tau_{\sigma}^{-1}
$$

where $h \in \mathfrak{h}, \mu$ is a diagram automorphism of \mathfrak{g} such that $\mu(h)=h$ and τ_{σ} is some automorphism of \mathfrak{g}.

Application to affine vertex operator algebras

Let \mathfrak{g} be a finite-dimensional simple Lie algebra and (\cdot, \cdot) be its normalized Killing form. Let g be an automorphism of \mathfrak{g} which leaves (\cdot, \cdot) invariant. We can decompose

$$
g=e^{2 \pi i \mathcal{S}_{g}} e^{2 \pi i \mathcal{N}_{g}}
$$

into semisimple and unipotent parts. Huang showed that

$$
\sigma:=e^{2 \pi i \mathcal{S}_{g}}=\tau_{\sigma} \mu e^{2 \pi i \mathrm{ad}_{h}} \tau_{\sigma}^{-1}
$$

where $h \in \mathfrak{h}, \mu$ is a diagram automorphism of \mathfrak{g} such that $\mu(h)=h$ and τ_{σ} is some automorphism of \mathfrak{g}.

We also have that $\mathcal{N}_{g}=a d_{\mathcal{N}_{g}}$ where $a_{\mathcal{N}_{g}}$ is fixed by g.

Application to affine vertex operator algebras

A straightforward calculation now gives us:

$$
g=\tau_{\sigma} \mu e^{2 \pi i a d_{h}} e^{2 \pi i a d_{\tau_{\sigma}}^{-1}{ }_{a_{\mathcal{N}}}} \tau_{\sigma}^{-1}
$$

Application to affine vertex operator algebras

A straightforward calculation now gives us:

$$
g=\tau_{\sigma} \mu e^{2 \pi i a d_{h}} e^{2 \pi i a d_{\tau_{\sigma}^{-1}}{ }_{\mathcal{N}_{g}}} \tau_{\sigma}^{-1}
$$

We let

$$
g_{\sigma}=\mu e^{2 \pi i a d_{h}} e^{2 \pi i a d_{\tau_{\sigma}-1_{a_{\mathcal{N}}}}}
$$

where we define

$$
g_{\sigma, s}:=\mu e^{2 \pi i a d_{h}}
$$

to be the semisimple part of g_{σ}.

Application to affine vertex operator algebras

A straightforward calculation now gives us:

$$
g=\tau_{\sigma} \mu \mathrm{e}^{2 \pi i_{h}} e^{2 \pi i a d_{\tau_{\sigma}}^{-1}{ }^{\mathcal{N}_{g}}} \tau_{\sigma}^{-1}
$$

We let

$$
g_{\sigma}=\mu e^{2 \pi i a d_{h}} e^{2 \pi i a d_{\tau_{\sigma}}-1_{\mathrm{N}_{g}}}
$$

where we define

$$
g_{\sigma, s}:=\mu e^{2 \pi i a d_{h}}
$$

to be the semisimple part of g_{σ}.
Using a result of Huang, there is an invertible functor $\phi_{\tau_{\sigma}}$ from the category of generalized g_{σ}-twisted modules to the category of g-twisted modules (category isomorphism). In particular, to construct g-twisted modules we need only construct g_{σ}-twisted modules and then apply this functor.

Application to affine vertex operator algebras

A straightforward calculation now gives us:

$$
g=\tau_{\sigma} \mu e^{2 \pi i a d_{h}} e^{2 \pi i a d_{\tau_{\sigma}}^{-1}{ }_{\mathcal{N}_{g}}} \tau_{\sigma}^{-1}
$$

We let

$$
g_{\sigma}=\mu e^{2 \pi i a d_{h}} e^{2 \pi i a d_{\tau_{\sigma}}-1_{a_{\mathcal{N}_{g}}}}
$$

where we define

$$
g_{\sigma, s}:=\mu e^{2 \pi i a d_{h}}
$$

to be the semisimple part of g_{σ}.
Using a result of Huang, there is an invertible functor $\phi_{\tau_{\sigma}}$ from the category of generalized g_{σ}-twisted modules to the category of g-twisted modules (category isomorphism). In particular, to construct g-twisted modules we need only construct g_{σ}-twisted modules and then apply this functor.

Our goal is to construct a g_{σ}-twisted module for any automorphism g of \mathfrak{g}

Moving between twisted modules

Let V be either $M(\ell, 0)$ or $L(\ell, 0)$ throughout, with $\ell \neq-h^{\nu}$.

Moving between twisted modules

Let V be either $M(\ell, 0)$ or $L(\ell, 0)$ throughout, with $\ell \neq-h^{\nu}$.
Our automorphisms g_{σ} and $g_{\sigma, s}$ give automorphisms of V and we retain their notations. Moreover, $a d_{h}$ and $a d_{\tau_{\sigma}{ }^{-1} a_{\mathcal{N g}^{\prime}}}$ will act as $h(0)$ and $\left(\tau_{\sigma}{ }^{-1} a_{\mathcal{N}_{g}}\right)(0)$

Moving between twisted modules

We have the following application of our earlier theorem:

Theorem

Let $\left(W, Y_{W}^{\mu}\right)$ be a \mathbb{C} / \mathbb{Z}-graded generalized μ-twisted V-module. Assume that $h_{W}(0)=\operatorname{Res}_{x} Y_{W}^{\mu}(h(-1) \mathbf{1}, x)$ acts on W semisimply. Define

$$
Y_{W}^{g_{\sigma, s}}(v, x)=Y_{W}^{\mu}\left(\Delta_{V}^{(h)}(x) v, x\right)
$$

Then $\left(W, Y_{W}^{g_{\sigma, s}}\right)$, equipped with the earlier gradings, is a \mathbb{C} / \mathbb{Z}-graded generalized $g_{\sigma, s}$-twisted V-module.

Moving between twisted modules

We have the following application of our earlier theorem:

Theorem

Let $\left(W, Y_{W}^{\mu}\right)$ be a \mathbb{C} / \mathbb{Z}-graded generalized μ-twisted V-module. Assume that $h_{W}(0)=\operatorname{Res}_{x} Y_{W}^{\mu}(h(-1) \mathbf{1}, x)$ acts on W semisimply. Define

$$
Y_{W}^{g_{\sigma, s}}(v, x)=Y_{W}^{\mu}\left(\Delta_{V}^{(h)}(x) v, x\right)
$$

Then $\left(W, Y_{W}^{g_{\sigma, s}}\right)$, equipped with the earlier gradings, is a \mathbb{C} / \mathbb{Z}-graded generalized $g_{\sigma, s}$-twisted V-module.

Conversely, if $\left(W, Y^{g_{\sigma, s}}\right)$ is a \mathbb{C} / \mathbb{Z}-graded generalized $g_{\sigma, s}$-twisted V-module, then we may apply the earlier theorem to obtain a \mathbb{C} / \mathbb{Z}-graded generalized μ-twisted module $\left(W, Y_{W}^{\mu}\right)$ where

$$
Y_{W}^{\mu}(v, x)=Y_{W}^{g_{\sigma, s}}\left(\Delta_{V}^{(-h)}(x) v, x\right)
$$

Moving between twisted modules

One utility of this construction is that the underlying vector space W stays the same, but one can explicitly compute the actions of elements of V on twisted modules.

Moving between twisted modules

One utility of this construction is that the underlying vector space W stays the same, but one can explicitly compute the actions of elements of V on twisted modules.
For example, if we take $b \in \mathfrak{g}$ such that $\mu(b)=e^{\frac{2 \pi i j}{k}}$ we have that

$$
\begin{equation*}
Y_{W}^{g_{\sigma, s}}(b(-n-1) \mathbf{1}, x)=\frac{1}{n!} \sum_{k=0}^{n}\binom{-\lambda}{k} k!\left(\left(\frac{\partial}{\partial x}\right)^{n-k} Y_{W}^{\mu}(b(-1) \mathbf{1}, x)\right) x^{-\lambda-k} \tag{3}
\end{equation*}
$$

where we have $[h, b]=\lambda b$ and $\lambda \neq 0$ and where

$$
Y_{W}^{\mu}(b(-1) \mathbf{1}, x)=\sum_{m \in \frac{j}{k}+\mathbb{Z}} b_{W}^{\mu}(m) x^{-m-1}
$$

Moving between twisted modules

Now, we move from a \mathbb{C} / \mathbb{Z}-graded generalized $g_{\sigma, s}$-twisted V-module to a \mathbb{C} / \mathbb{Z}-graded generalized g_{σ}-twisted V-module. We have the following application of our earlier theorems:

Moving between twisted modules

Now, we move from a \mathbb{C} / \mathbb{Z}-graded generalized $g_{\sigma, s}$-twisted V-module to a \mathbb{C} / \mathbb{Z}-graded generalized g_{σ}-twisted V-module. We have the following application of our earlier theorems:

Theorem

Let $\left(W, Y^{g_{\sigma, s}}\right)$ be a \mathbb{C} / \mathbb{Z}-graded generalized $g_{\sigma, s}$-twisted V-module. Assume that $g_{\sigma, s}$ acts on W semisimply and $\tau^{-1} a_{\mathcal{N}_{g}}(0)$ on W is locally nilpotent. Let $u=\tau_{\sigma}^{-1} a_{\mathcal{N}_{g}}(-1) 1$. Then the pair $\left(W, Y_{W}^{g_{\sigma}}\right)$ has the structure of a \mathbb{C} / \mathbb{Z}-graded generalized g_{σ}-twisted V-module where

$$
Y_{W}^{g_{\sigma}}(v, x):=Y_{W}^{g_{\sigma, s}}\left(\Delta_{V}^{(u)}(x) v, x\right)
$$

for $v \in V$.

Moving between twisted modules

Adding this unipotent part of the automorphism now introduces powers of $\log x$. For example, take $b \in \mathfrak{g}$ to be a generalized eigenvector of g_{σ} with eigenvalue λ. We have

$$
\begin{aligned}
& Y_{W}^{g_{\sigma}}(b(-1) \mathbf{1}, x) \\
& =\sum_{j=0}^{M} \sum_{m \in \lambda+\mathbb{Z}} \frac{(-1)^{j}}{j!}\left(\operatorname{ad}_{\left(\tau_{\sigma}^{-1} a_{\mathcal{N}_{g}}\right)}^{j}(b)\right)_{W}^{g_{\sigma_{s}}}(m) x^{-m-1}(\log x)^{j}-\left(\tau_{\sigma}^{-1} a_{\mathcal{N}_{g}}, b\right) \ell x^{-1}
\end{aligned}
$$

and we can use the $L(-1)$-derivative property to compute $Y_{W}^{g_{\sigma}}(b(-n-1) \mathbf{1}, x)$.

Moving between twisted modules

One can, of course, start with a (untwisted) V-module W and construct modules twisted by inner automorphisms the same way.

Moving between twisted modules

One can, of course, start with a (untwisted) V-module W and construct modules twisted by inner automorphisms the same way. In earlier work, Huang showed that $\Delta_{V}^{(u)}(x)$ maps a strongly \mathbb{C}-graded V-module W to a strongly \mathbb{C}-graded generalized $e^{2 \pi i Y_{0}(u)}$-twisted V-module.

Moving between twisted modules

One can, of course, start with a (untwisted) V-module W and construct modules twisted by inner automorphisms the same way. In earlier work, Huang showed that $\Delta_{V}^{(u)}(x)$ maps a strongly \mathbb{C}-graded V-module W to a strongly \mathbb{C}-graded generalized $e^{2 \pi i Y_{0}(u)}$-twisted V-module.

It is unclear, however, what conditions are needed to move from one lower-bounded, grading restricted twisted module to another.

Moving between twisted modules

We have some more results when starting with a strongly \mathbb{C}-graded generalized V-module $\left(W, Y_{W}\right)$. Let $a \in \mathfrak{g}$ with Jordan-Chevalley decomposition $a=s+n$. Let $g_{a}=e^{2 \pi i a(0)}$ and $g_{s}=e^{2 \pi i s(0)}$

Theorem

Assume $s_{W}(0)$ acts semisimply on W. Then, the pair $\left(W, Y_{W}^{g_{s}}\right)$ can be given the structure of a strongly \mathbb{C}-graded generalized g_{s}-twisted module where

$$
Y_{W}^{g_{s}}(v, x)=Y_{W}\left(\Delta_{V}^{(s(-1) \mathbf{1})}(x) v, x\right)
$$

Theorem

Let $\left(W, Y_{W}^{g_{s}}\right)$ be a \mathbb{C}-graded generalized g_{s}-twisted V-module. The pair $\left(W, Y_{W}^{g_{a}}\right)$ can be given the structure of a \mathbb{C}-graded generalized g_{a}-twisted V-module. Moreover, if $\left(W, Y^{g_{s}}\right)$ is grading restricted, the $\left(W, Y_{W}^{g_{a}}\right)$ is also grading restricted.

Moving between twisted modules

Let \mathfrak{g} be a finite-dimensional simple Lie algebra. Consider $V=M(\ell, 0)$, the generalized Verma module and $W=M(\ell, 0)$. W is lower bounded and grading restricted by definition.

Moving between twisted modules

Let \mathfrak{g} be a finite-dimensional simple Lie algebra. Consider $V=M(\ell, 0)$, the generalized Verma module and $W=M(\ell, 0)$. W is lower bounded and grading restricted by definition.

Let $\left\{e_{\alpha}, f_{\alpha}, h_{\alpha}\right\}$ be an $\mathfrak{s l}(2)$-triple where

$$
\left[e_{\alpha}, f_{\alpha}\right]=h_{\alpha}, \quad\left[h_{\alpha}, e_{\alpha}\right]=2 e_{\alpha}\left[h_{\alpha}, f_{\alpha}\right]=-2 f_{\alpha} .
$$

Moving between twisted modules

Let \mathfrak{g} be a finite-dimensional simple Lie algebra. Consider $V=M(\ell, 0)$, the generalized Verma module and $W=M(\ell, 0)$. W is lower bounded and grading restricted by definition.

Let $\left\{e_{\alpha}, f_{\alpha}, h_{\alpha}\right\}$ be an $\mathfrak{s l}(2)$-triple where

$$
\left[e_{\alpha}, f_{\alpha}\right]=h_{\alpha}, \quad\left[h_{\alpha}, e_{\alpha}\right]=2 e_{\alpha} \quad\left[h_{\alpha}, f_{\alpha}\right]=-2 f_{\alpha}
$$

Consider $s=\frac{1}{2} h_{\alpha}$ and the automorphism $g_{s}:=e^{2 \pi i s(0)}$ of V.

Moving between twisted modules

Let \mathfrak{g} be a finite-dimensional simple Lie algebra. Consider $V=M(\ell, 0)$, the generalized Verma module and $W=M(\ell, 0)$. W is lower bounded and grading restricted by definition.

Let $\left\{e_{\alpha}, f_{\alpha}, h_{\alpha}\right\}$ be an $\mathfrak{s l}(2)$-triple where

$$
\left[e_{\alpha}, f_{\alpha}\right]=h_{\alpha}, \quad\left[h_{\alpha}, e_{\alpha}\right]=2 e_{\alpha} \quad\left[h_{\alpha}, f_{\alpha}\right]=-2 f_{\alpha} .
$$

Consider $s=\frac{1}{2} h_{\alpha}$ and the automorphism $g_{s}:=e^{2 \pi i s(0)}$ of V. We may apply our theorem to obtain a g_{s}-twisted module structure on $M(\ell, 0)$ where

$$
L_{W}^{g_{s}}(0)=L_{W}(0)-s(0)+\frac{1}{2}(s, s) \ell
$$

Moving between twisted modules

Let \mathfrak{g} be a finite-dimensional simple Lie algebra. Consider $V=M(\ell, 0)$, the generalized Verma module and $W=M(\ell, 0)$. W is lower bounded and grading restricted by definition.

Let $\left\{e_{\alpha}, f_{\alpha}, h_{\alpha}\right\}$ be an $\mathfrak{s l}(2)$-triple where

$$
\left[e_{\alpha}, f_{\alpha}\right]=h_{\alpha}, \quad\left[h_{\alpha}, e_{\alpha}\right]=2 e_{\alpha} \quad\left[h_{\alpha}, f_{\alpha}\right]=-2 f_{\alpha} .
$$

Consider $s=\frac{1}{2} h_{\alpha}$ and the automorphism $g_{s}:=e^{2 \pi i s(0)}$ of V. We may apply our theorem to obtain a g_{s}-twisted module structure on $M(\ell, 0)$ where

$$
L_{W}^{g_{s}}(0)=L_{W}(0)-s(0)+\frac{1}{2}(s, s) \ell
$$

Then, the set

$$
\left\{e_{\alpha}(-1)^{k} \mathbf{1} \mid k \geq 0\right\}
$$

is an infinite linearly independent subset of $W_{\left\langle\frac{1}{2}(s, s) \ell\right\rangle}$ and so this twisted module structure doesn't satisfy the grading-restriction condition.

Thank you!

