Weight one elements of vertex operator algebras and automorphisms of categories of generalized twisted modules

Christopher Sadowski

Based on joint work with Yi-Zhi Huang

Department of Mathematics and Computer Science Ursinus College Collegeville, PA, USA

> Representation Theory XVII October 3-8, 2022

• Definitions of twisted modules

▲□ ▶ ▲□ ▶ ▲ □ ▶ ▲

문 문 문

- Definitions of twisted modules
- Results of Haisheng Li on twisted modules

э

- Definitions of twisted modules
- Results of Haisheng Li on twisted modules
- The function $\Delta_V^{(u)}(x)$ and the main theorem

- Definitions of twisted modules
- Results of Haisheng Li on twisted modules
- The function $\Delta_V^{(u)}(x)$ and the main theorem
- Results on gradings

- Definitions of twisted modules
- Results of Haisheng Li on twisted modules
- The function $\Delta_V^{(u)}(x)$ and the main theorem
- Results on gradings
- Applications to affine vertex operator algebras.

Let $(V, Y, \mathbf{1}, \omega)$ by a vertex operator algebra and $g \in Aut(V)$ be an automorphism of order k. Let $(V, Y, \mathbf{1}, \omega)$ by a vertex operator algebra and $g \in Aut(V)$ be an automorphism of order k.

Then V can be decomposed as

$$V = \coprod_{j \in \mathbb{Z}/k\mathbb{Z}} V^j$$

where

$$V^j = \{ v \in V | gv = \eta^j v \}$$

for $j \in \mathbb{Z}/k\mathbb{Z}$, where $\eta = e^{\frac{2\sqrt{-1\pi}}{k}}$

Definition A *g*-twisted V-module is a \mathbb{C} -graded vector space $W = \coprod_{n \in \mathbb{C}} W_{(n)}$ be a \mathbb{C} -graded vector space equipped with a linear map

$$Y_{W}^{g}: V \otimes W \to W[[x^{1/k}, x^{-1/k}]],$$
$$v \otimes w \mapsto Y_{W}^{g}(v, x)w = \sum_{n \in \frac{1}{k}\mathbb{Z}} (Y_{W}^{g})_{n}(v)wx^{-n-1}$$

satisfying the following axioms:

Definition A *g*-twisted V-module is a \mathbb{C} -graded vector space $W = \coprod_{n \in \mathbb{C}} W_{(n)}$ be a \mathbb{C} -graded vector space equipped with a linear map

$$Y_W^g: V \otimes W \to W[[x^{1/k}, x^{-1/k}]],$$
$$v \otimes w \mapsto Y_W^g(v, x)w = \sum_{n \in \frac{1}{k}\mathbb{Z}} (Y_W^g)_n(v)wx^{-n-1}$$

satisfying the following axioms:

• The grading-restriction condition: For each $n \in \mathbb{C}$ we have dim $W_{(n)} < \infty$ and $W_{n+l/k} = 0$ for sufficiently negative integers *l*.

Definition A *g*-twisted V-module is a \mathbb{C} -graded vector space $W = \coprod_{n \in \mathbb{C}} W_{(n)}$ be a \mathbb{C} -graded vector space equipped with a linear map

$$Y_W^g: V \otimes W \to W[[x^{1/k}, x^{-1/k}]],$$
$$v \otimes w \mapsto Y_W^g(v, x)w = \sum_{n \in \frac{1}{k}\mathbb{Z}} (Y_W^g)_n(v)wx^{-n-1}$$

satisfying the following axioms:

- The grading-restriction condition: For each $n \in \mathbb{C}$ we have $\dim W_{(n)} < \infty$ and $W_{n+l/k} = 0$ for sufficiently negative integers *l*.
- The formal monodromy condition: For $j \in \mathbb{Z}/k\mathbb{Z}$ and $v \in V^j$ we have that

$$Y^{g}(v,x) = \sum_{n \in j/k+\mathbb{Z}} (Y^{g}_{W})_{n}(v) x^{-n-1}$$

The *lower-truncation condition*: For v ∈ V and w ∈ W we have

$$(Y_W^g)_n(v)w=0$$

for n sufficiently large

The *lower-truncation condition*: For v ∈ V and w ∈ W we have

$$(Y_W^g)_n(v)w=0$$

for n sufficiently large

• The *identity property*:

$$Y^g(\mathbf{1},x) = Id_W$$

The *lower-truncation condition*: For v ∈ V and w ∈ W we have

$$(Y_W^g)_n(v)w=0$$

for n sufficiently large

• The *identity property*:

$$Y^g(\mathbf{1},x) = Id_W$$

• The Jacobi identity: For $u, v \in V$ and $w \in W$:

$$\begin{aligned} x_0^{-1}\delta\left(\frac{x_1-x_2}{x_0}\right) Y_W^g(u,x_1) Y_W^g(v,x_2) &- x_0^{-1}\delta\left(\frac{x_2-x_1}{-x_0}\right) Y_W^g(v,x_2) Y_W^g(u,x_1) \\ &= \frac{1}{k} \sum_{j \in \mathbb{Z}/k\mathbb{Z}} x_2^{-1}\delta\left(\eta^j \frac{(x_1-x_0)^{1/k}}{x_2^{1/k}}\right) Y_W^g(Y(g^j u,x_0)v,x_2) \end{aligned}$$

And finally some conditions regarding ω : Let $L_W^g(n) = (Y_W^g)_{n+1}(\omega)$ i.e.

$$Y_W^g(\omega, x) = \sum_{n \in \mathbb{Z}} L_W^g(n) x^{-n-2}$$

And finally some conditions regarding ω : Let $L_W^g(n) = (Y_W^g)_{n+1}(\omega)$ i.e.

$$Y_W^g(\omega, x) = \sum_{n \in \mathbb{Z}} L_W^g(n) x^{-n-2}$$

• The L(0)-grading condition: $L_W^g(0)w = nw$ for $w \in W_{(n)}$.

And finally some conditions regarding ω : Let $L_W^g(n) = (Y_W^g)_{n+1}(\omega)$ i.e.

$$Y_W^g(\omega, x) = \sum_{n \in \mathbb{Z}} L_W^g(n) x^{-n-2}$$

The L(0)-grading condition: L^g_W(0)w = nw for w ∈ W_(n).
The L(-1)-derivative condition:

$$Y_W^g(L(-1)v,x) = \frac{d}{dx}Y_W^g(v,x)$$

And finally some conditions regarding ω : Let $L_W^g(n) = (Y_W^g)_{n+1}(\omega)$ i.e.

$$Y_W^g(\omega, x) = \sum_{n \in \mathbb{Z}} L_W^g(n) x^{-n-2}$$

The L(0)-grading condition: L^g_W(0)w = nw for w ∈ W_(n).
The L(-1)-derivative condition:

$$Y_W^g(L(-1)v,x) = \frac{d}{dx}Y_W^g(v,x)$$

In order to generalize the definition of twisted module to *arbitrary* automorphisms of V we need to somehow deal with the appearance of k in both the formal monodromy condition and in the Jacobi identity.

Notation and complex variables

For any $z \in \mathbb{C}^{\times}$ we take

$$\log z = \log |z| + i \arg z$$

for $0 \leq \arg z < 2\pi$.

Notation and complex variables

For any $z \in \mathbb{C}^{\times}$ we take

 $\log z = \log |z| + i \arg z$

for $0 \leq \arg z < 2\pi$. In general, we define

$$I_p(z) = \log z + 2p\sqrt{-1}\pi$$

for $p \in \mathbb{Z}$.

Notation and complex variables

For vector spaces W_1, W_2, W_3 be \mathbb{C} -graded vector spaces and let $x^{1/k}$ have degree -1/k.

Notation and complex variables

For vector spaces W_1, W_2, W_3 be \mathbb{C} -graded vector spaces and let $x^{1/k}$ have degree -1/k. Then we have a \mathbb{C} -grading on $W_1 \otimes W_2$ and on $W_3[[x^{1/k}, x^{-1/k}]]$.

Notation and complex variables

For vector spaces W_1, W_2, W_3 be \mathbb{C} -graded vector spaces and let $x^{1/k}$ have degree -1/k. Then we have a \mathbb{C} -grading on $W_1 \otimes W_2$ and on $W_3[[x^{1/k}, x^{-1/k}]]$. Let

$$egin{aligned} X: & \mathcal{W}_1 \otimes \mathcal{W}_2
ightarrow \mathcal{W}_3[[x^{1/k}, x^{-1/k}]], \ & w_1 \otimes w_2 \mapsto X(w_1, x)w_2 = \sum_{n \in rac{1}{2}\mathbb{Z}} X_n(w_1)w_2 x^{-n-1} \end{aligned}$$

be a linear map preserving the gradings.

Notation and complex variables

For vector spaces W_1, W_2, W_3 be \mathbb{C} -graded vector spaces and let $x^{1/k}$ have degree -1/k. Then we have a \mathbb{C} -grading on $W_1 \otimes W_2$ and on $W_3[[x^{1/k}, x^{-1/k}]]$. Let

$$X: W_1 \otimes W_2 \to W_3[[x^{1/k}, x^{-1/k}]],$$

$$w_1 \otimes w_2 \mapsto X(w_1, x)w_2 = \sum_{n \in \frac{1}{k}\mathbb{Z}} X_n(w_1)w_2 x^{-n-1}$$

be a linear map preserving the gradings.Define for $w_1 \in W_1$ and $w_2 \in W_2$ the map

$$X^{p}(w_{1},z)w_{2}=X(w_{1},x)w_{2}|_{x^{n}=e^{nl_{\tilde{p}}(z)}}\in \overline{W_{3}}=\prod_{n\in\mathbb{C}}W_{(n)}$$

where for $p \in \mathbb{Z}/k\mathbb{Z}$ we have \tilde{p} is the integer satisfying $0 \leq \tilde{p} < k$.

Notation and complex variables For $p \in \mathbb{Z}/k\mathbb{Z}$ we have a map

$$X: \mathbb{C}^{ imes} o Hom(W_1 \otimes W_2, \overline{W_3}) \ z \mapsto X(\cdot, z) \cdot$$

which we call the p-th analytic branch of X.

Notation and complex variables For $p \in \mathbb{Z}/k\mathbb{Z}$ we have a map

$$X : \mathbb{C}^{\times} \to Hom(W_1 \otimes W_2, \overline{W_3})$$

 $z \mapsto X(\cdot, z) \cdot$

which we call the p-th analytic branch of X. We have the following theorem by Huang:

Theorem (Huang 2010)

The formal monodromy condition in the definition of twisted module can be replaced by the following property, which we call **equivariance**: For $p \in \mathbb{Z}/k\mathbb{Z}$, $z \in \mathbb{C}^{\times}$, and $v \in V$,

$$Y^{g;p+1}(gv,z) = Y^{g;p}(v,z)$$

Theorem (Huang 2010)

The Jacobi identity in the definition of twisted module can be replaced by the following property, which we call **duality**:

Theorem (Huang 2010)

The Jacobi identity in the definition of twisted module can be replaced by the following property, which we call **duality**:For any $u, v \in V$, $w \in W$ and $w' \in W'$ there exists a multivalued analytic function of the form

$$f(z_1, z_2) = \sum_{r,s=N_1}^{N_2} a_{rs} z_1^{r/k} z_2^{s/k} (z_1 - z_2)^{-N}$$

for $N_1, N_2 \in \mathbb{Z}$ and $N \in \mathbb{Z}_+$

Theorem (Huang 2010)

The Jacobi identity in the definition of twisted module can be replaced by the following property, which we call **duality**: For any $u, v \in V$, $w \in W$ and $w' \in W'$ there exists a multivalued analytic function of the form

$$f(z_1, z_2) = \sum_{r, s=N_1}^{N_2} a_{rs} z_1^{r/k} z_2^{s/k} (z_1 - z_2)^{-N}$$

for $N_1, N_2 \in \mathbb{Z}$ and $N \in \mathbb{Z}_+$ such that the series

$$\langle w', Y^{g;p}(u,z_1)Y^{g;p}(v,z_2)w\rangle = \sum_{n\in\mathbb{C}} \langle w', Y^{g;p}(u,z_1)\pi_n Y^{g;p}(v,z_2)w\rangle$$

along with $\langle w', Y^{g;p}(v, z_2)Y^{g;p}(u, z_1)w \rangle$ and $\langle w', Y^{g;p}(Y(u, z_1 - z_2)v, z_2)w \rangle$ are absolutely convergent to the branch

$$\sum_{r,s=N_1}^{N_2} a_{rs} e^{(r/k)I_p(z_1)} e^{(s/k)I_p(z_2)} (z_1 - z_2)^{-N}$$

of $f(z_1, z_2)$ in the regions $|z_1| > |z_2| > 0$, $|z_2| > |z_1| > 0$, and $|z_2| > |z_1 - z_2| > 0$, respectively.

Using these theorems as motivation, we generalize the above definition to arbitrary automorphisms of V.

Using these theorems as motivation, we generalize the above definition to arbitrary automorphisms of V.

 \bullet As before, if $\mathit{W}_1, \mathit{W}_2, \mathit{W}_3$ are graded vector spaces and

$$\begin{aligned} X : & W_1 \otimes W_2 \to W_3\{x\} [\log x], \\ & w_1 \otimes w_2 \mapsto X(w_1, x) w_2 = \sum_{n \in \mathbb{C}} \sum_{k=1}^K X_n(w_1) w_2 x^{-n-1} (\log x)^k \end{aligned}$$

is a grading-preserving linear map

Using these theorems as motivation, we generalize the above definition to arbitrary automorphisms of V.

 \bullet As before, if $\mathit{W}_1, \mathit{W}_2, \mathit{W}_3$ are graded vector spaces and

$$\begin{aligned} X : & W_1 \otimes W_2 \to W_3\{x\} [\log x], \\ & w_1 \otimes w_2 \mapsto X(w_1, x) w_2 = \sum_{n \in \mathbb{C}} \sum_{k=1}^K X_n(w_1) w_2 x^{-n-1} (\log x)^k \end{aligned}$$

is a grading-preserving linear map(we take the degree of x to be -1 and the degree of the formal variable log x to be 0),

Using these theorems as motivation, we generalize the above definition to arbitrary automorphisms of V.

• As before, if W_1, W_2, W_3 are graded vector spaces and

$$\begin{aligned} X : & W_1 \otimes W_2 \to W_3\{x\} [\log x], \\ & w_1 \otimes w_2 \mapsto X(w_1, x) w_2 = \sum_{n \in \mathbb{C}} \sum_{k=1}^K X_n(w_1) w_2 x^{-n-1} (\log x)^k \end{aligned}$$

is a grading-preserving linear map(we take the degree of x to be -1 and the degree of the formal variable log x to be 0), we can define the map

$$X^p: W_1 \otimes W_2 \to \overline{W_3}$$

by

$$X^{p}(w_{1},z)w_{2} = X(w_{1},x)w_{2}|_{x^{n}=e^{nl_{p}(z)},\log x=l_{p}(z)}$$

Definition

Let V be a vertex operator algebra and $g \in Aut(V)$.

Definition

Let V be a vertex operator algebra and $g \in \operatorname{Aut}(V)$. A \mathbb{C}/\mathbb{Z} -graded generalized g-twisted V-module is a $\mathbb{C} \times \mathbb{C}/\mathbb{Z}$ -graded vector space $W = \coprod_{n \in \mathbb{C}, \alpha \in \mathbb{C}/\mathbb{Z}} W_{[n]}^{[\alpha]}$ equipped with an action of g and a linear map

$$egin{array}{lll} Y^g_W &: V \otimes W &
ightarrow & W\{x\}[\log x] \ v \otimes w & \mapsto & Y^g_W(v,x)w \end{array}$$

satisfying the following conditions:

Definition

Let V be a vertex operator algebra and $g \in \operatorname{Aut}(V)$. A \mathbb{C}/\mathbb{Z} -graded generalized g-twisted V-module is a $\mathbb{C} \times \mathbb{C}/\mathbb{Z}$ -graded vector space $W = \coprod_{n \in \mathbb{C}, \alpha \in \mathbb{C}/\mathbb{Z}} W_{[n]}^{[\alpha]}$ equipped with an action of g and a linear map

$$egin{array}{rcl} Y^g_W &: V \otimes W &
ightarrow & W\{x\}[\log x] \ v \otimes w & \mapsto & Y^g_W(v,x)w \end{array}$$

satisfying the following conditions:

The equivariance property: For p ∈ Z, z ∈ C[×], v ∈ V and w ∈ W, we have

$$Y_W^{g;p+1}(gv,z)w = Y_W^{g;p}(v,z)w$$

Definition

Let V be a vertex operator algebra and $g \in \operatorname{Aut}(V)$. A \mathbb{C}/\mathbb{Z} -graded generalized g-twisted V-module is a $\mathbb{C} \times \mathbb{C}/\mathbb{Z}$ -graded vector space $W = \coprod_{n \in \mathbb{C}, \alpha \in \mathbb{C}/\mathbb{Z}} W_{[n]}^{[\alpha]}$ equipped with an action of g and a linear map

$$egin{array}{rcl} Y^g_W : V \otimes W &
ightarrow & W\{x\}[\log x] \ v \otimes w & \mapsto & Y^g_W(v,x)w \end{array}$$

satisfying the following conditions:

٦

The equivariance property: For p ∈ Z, z ∈ C[×], v ∈ V and w ∈ W, we have

$$Y_W^{g;p+1}(gv,z)w = Y_W^{g;p}(v,z)w$$

• The *identity property*: For $w \in W$, $Y_W^g(\mathbf{1}, x)w = w$.

• The *duality property*:

 The duality property: Let W' = ∐_{n∈C,α∈C/Z}(W^[α]_[n])* and, for n∈C, π_n: W → W_[n] be the projection. For any u, v ∈ V, w ∈ W and w' ∈ W', there exists a multivalued analytic function of the form

$$f(z_1, z_2) = \sum_{i,j,k,l=0}^{N} a_{ijkl} z_1^{m_i} z_2^{n_i} (\log z_1)^k (\log z_2)^l (z_1 - z_2)^{-t}$$

for $N \in \mathbb{N}$, $m_1, \ldots, m_N, n_1, \ldots, n_N \in \mathbb{C}$ and $t \in \mathbb{Z}_+$, such that the series

$$\langle w', Y^{g;p}(u, z_1) Y^{g;p}(v, z_2) w \rangle = \sum_{n \in \mathbb{C}} \langle w', Y^{g;p}(u, z_1) \pi_n Y^{g;p}(v, z_2) w \rangle, \quad (1)$$

$$\langle w', Y^{g;p}(v, z_2) Y^{g;p}(u, z_1) w \rangle = \sum_{n \in \mathbb{C}} \langle w', Y^{g;p}(v, z_2) \pi_n Y^{g;p}(u, z_1) w \rangle, \quad (2)$$

$$\langle w', Y^{g;p}(Y(u,z_1-z_2)v,z_2)w\rangle = \sum_{n\in\mathbb{C}} \langle w', Y^{g;p}(\pi_n Y(u,z_1-z_2)v,z_2)w\rangle$$

are absolutely convergent in the regions $|z_1|>|z_2|>0,\,|z_2|>|z_1|>0,\,|z_2|>|z_1-z_2|>0,$ respectively, to the branch

$$\sum_{i,j,k,l=0}^{N} a_{ijkl} e^{m_i l_p(z_1)} e^{n_j l_{p(z_2)}} l_p(z_1)^k l_p(z_2)^l (z_1 - z_2)^{-1}$$

of $f(z_1, z_2)$.

Let

$$Y_W^g(\omega, x) = \sum_{n \in \mathbb{Z}} L_W^g(n) x^{-n-2}$$

Let

$$Y_W^g(\omega, x) = \sum_{n \in \mathbb{Z}} L_W^g(n) x^{-n-2}$$

 Properties about the gradings: We have a decomposition of W into generalized eigenspaces of L^g_W(0) and g satisfying:

Let

$$Y_W^g(\omega, x) = \sum_{n \in \mathbb{Z}} L_W^g(n) x^{-n-2}$$

Properties about the gradings: We have a decomposition of W into generalized eigenspaces of L^g_W(0) and g satisfying:
The L(0)-grading condition: For each w ∈ W_[n] = ∐_{α∈ℂ/ℤ} W^[α]_[n], there exists K ∈ ℤ₊ such that (L^g_W(0) - n)^Kw = 0.

Let

$$Y_W^g(\omega, x) = \sum_{n \in \mathbb{Z}} L_W^g(n) x^{-n-2}$$

- Properties about the gradings: We have a decomposition of W into generalized eigenspaces of L^g_W(0) and g satisfying:
 The L(0)-grading condition: For each w ∈ W_[n] = ∐_{α∈ℂ/ℤ} W^[α]_[n], there exists K ∈ ℤ₊ such that (L^g_W(0) n)^Kw = 0.
 - **3** The *g*-grading condition: For each $w \in W^{[\alpha]} = \coprod_{n \in \mathbb{C}} W^{[\alpha]}_{[n]}$, there exists $\Lambda \in \mathbb{Z}_+$ such that

$$(g-e^{2\pi i\alpha})^{\Lambda}w=0$$

Let

$$Y_W^g(\omega, x) = \sum_{n \in \mathbb{Z}} L_W^g(n) x^{-n-2}$$

- Properties about the gradings: We have a decomposition of W into generalized eigenspaces of L^g_W(0) and g satisfying:
 The L(0)-grading condition: For each w ∈ W_[n] = ∐_{α∈ℂ/ℤ} W^[α]_[n], there exists K ∈ ℤ₊ such that (L^g_W(0) n)^Kw = 0.
 - 3 The *g*-grading condition: For each $w \in W^{[\alpha]} = \coprod_{n \in \mathbb{C}} W^{[\alpha]}_{[n]}$, there exists $\Lambda \in \mathbb{Z}_+$ such that

$$(g-e^{2\pi i\alpha})^{\Lambda}w=0$$

• The L(-1)-derivative property: For $v \in V$

$$\frac{d}{dx}Y_W^g(v,x)=Y_W^g(L(-1)v,x)$$

Bakalov, using a slightly more general definition (no assumption of an action of g on W), defined twisted modules using a Borcherds identity (in component form).

Bakalov, using a slightly more general definition (no assumption of an action of g on W), defined twisted modules using a Borcherds identity (in component form).

Huang and Yang later showed that the duality property can be replaced by a Jacobi identity:

Bakalov, using a slightly more general definition (no assumption of an action of g on W), defined twisted modules using a Borcherds identity (in component form).

Huang and Yang later showed that the duality property can be replaced by a Jacobi identity:

$$x_0^{-1} \delta\left(\frac{x_1 - x_2}{x_0}\right) Y_W^g(u, x_1) Y_W^g(v, x_2) - x_0^{-1} \delta\left(\frac{-x_2 + x_1}{x_0}\right) Y_W^g(v, x_2) Y_W^g(u, x_1)$$

= $x_1^{-1} \delta\left(\frac{x_2 + x_0}{x_1}\right) Y_W^g\left(Y\left(\left(\frac{x_2 + x_0}{x_1}\right)^{\mathcal{L}_g} u, x_0\right) v, x_2\right)$

Bakalov, using a slightly more general definition (no assumption of an action of g on W), defined twisted modules using a Borcherds identity (in component form).

Huang and Yang later showed that the duality property can be replaced by a Jacobi identity:

$$\begin{aligned} x_0^{-1} \delta\left(\frac{x_1 - x_2}{x_0}\right) Y_W^g(u, x_1) Y_W^g(v, x_2) - x_0^{-1} \delta\left(\frac{-x_2 + x_1}{x_0}\right) Y_W^g(v, x_2) Y_W^g(u, x_1) \\ &= x_1^{-1} \delta\left(\frac{x_2 + x_0}{x_1}\right) Y_W^g\left(Y\left(\left(\frac{x_2 + x_0}{x_1}\right)^{\mathcal{L}_g} u, x_0\right) v, x_2\right) \end{aligned}$$

along with the *lower truncation property*:

Bakalov, using a slightly more general definition (no assumption of an action of g on W), defined twisted modules using a Borcherds identity (in component form).

Huang and Yang later showed that the duality property can be replaced by a Jacobi identity:

$$\begin{aligned} x_0^{-1} \delta\left(\frac{x_1 - x_2}{x_0}\right) Y_W^g(u, x_1) Y_W^g(v, x_2) - x_0^{-1} \delta\left(\frac{-x_2 + x_1}{x_0}\right) Y_W^g(v, x_2) Y_W^g(u, x_1) \\ &= x_1^{-1} \delta\left(\frac{x_2 + x_0}{x_1}\right) Y_W^g\left(Y\left(\left(\frac{x_2 + x_0}{x_1}\right)^{\mathcal{L}_g} u, x_0\right) v, x_2\right) \end{aligned}$$

along with the *lower truncation property*: For all $v \in V$ and $w \in W$, $Y_W^g(v, x)w$ is lower truncated, that is, $(Y_W^g)_n(v)w = 0$ when $\Re(n)$ is sufficiently negative.

Bakalov, using a slightly more general definition (no assumption of an action of g on W), defined twisted modules using a Borcherds identity (in component form).

Huang and Yang later showed that the duality property can be replaced by a Jacobi identity:

$$x_0^{-1} \delta\left(\frac{x_1 - x_2}{x_0}\right) Y_W^g(u, x_1) Y_W^g(v, x_2) - x_0^{-1} \delta\left(\frac{-x_2 + x_1}{x_0}\right) Y_W^g(v, x_2) Y_W^g(u, x_1)$$

$$= x_1^{-1} \delta\left(\frac{x_2 + x_0}{x_1}\right) Y_W^g\left(Y\left(\left(\frac{x_2 + x_0}{x_1}\right)^{\mathcal{L}_g} u, x_0\right) v, x_2\right)$$

along with the *lower truncation property*: For all $v \in V$ and $w \in W$, $Y_W^g(v, x)w$ is lower truncated, that is, $(Y_W^g)_n(v)w = 0$ when $\Re(n)$ is sufficiently negative.

Here, we define $\mathcal{L}_g = \mathcal{S}_g + \mathcal{N}_g$ to be a linear operator such that $g = e^{2\pi i \mathcal{L}_g} = e^{2\pi i \mathcal{S}_g} e^{2\pi i \mathcal{N}_g}$ where \mathcal{S}_g is semisimple on V and \mathcal{N}_g is locally nilpotent on V.

We note that for $\mathcal{L}_g = \mathcal{S}_g + \mathcal{N}_g$ we define

$$x^{\mathcal{L}_g} = x^{\mathcal{S}_g} e^{\mathcal{N}_g \log x}$$

We note that for $\mathcal{L}_g = \mathcal{S}_g + \mathcal{N}_g$ we define

$$x^{\mathcal{L}_g} = x^{\mathcal{S}_g} e^{\mathcal{N}_g \log x}$$

In particular, if v is a generalized eigenvector of \mathcal{L}_g with eigenvalue λ , we have that

$$x^{\mathcal{L}_g}v = x^{\lambda}e^{\mathcal{N}_g \log x}v$$

where $e^{\mathcal{N}_g \log x} v$ is a finite sum since \mathcal{N}_g is locally nilpotent.

We note that for $\mathcal{L}_g = \mathcal{S}_g + \mathcal{N}_g$ we define

$$x^{\mathcal{L}_g} = x^{\mathcal{S}_g} e^{\mathcal{N}_g \log x}$$

In particular, if v is a generalized eigenvector of \mathcal{L}_g with eigenvalue λ , we have that

$$x^{\mathcal{L}_g}v = x^{\lambda}e^{\mathcal{N}_g \log x}v$$

where $e^{\mathcal{N}_g\log x}v$ is a finite sum since \mathcal{N}_g is locally nilpotent. We define

$${\sf P}^{\sf g}_V:=\{lpha\in [0,1)+i\mathbb{R}|e^{2\pi ilpha} ext{ is an eigenvalue of } {\sf g}\}.$$

Finally...

æ

Finally...

• We call a generalized g-twisted V-module lower-bounded if $W_{[n]} = 0$ for $n \in \mathbb{C}$ such that $\Re(n)$ is sufficiently negative.

Finally...

- We call a generalized g-twisted V-module lower-bounded if $W_{[n]} = 0$ for $n \in \mathbb{C}$ such that $\Re(n)$ is sufficiently negative.
- We call a lower bounded generalized g-twisted V-module grading-restricted (or simply a g-twisted V-module) if for each n ∈ C we have dim W_[n] < ∞.

Finally...

- We call a generalized g-twisted V-module lower-bounded if $W_{[n]} = 0$ for $n \in \mathbb{C}$ such that $\Re(n)$ is sufficiently negative.
- We call a lower bounded generalized g-twisted V-module grading-restricted (or simply a g-twisted V-module) if for each n ∈ C we have dim W_[n] < ∞.
- We call a lower bounded generalized g-twisted V-module strongly $\mathbb{C}/\mathbb{Z}\text{-}\mathsf{graded}$ if

$$\dim W^{[lpha]}_{[n]} < \infty$$

and

$$W^{[\alpha]}_{[n+l]} = 0$$

for sufficiently negative real *I*.

Some more definitions

We say that V has a \mathbb{C} -graded vertex operator algebra structure compatible with g if V has an additional grading

$$V = \prod_{\alpha \in \mathbb{C}} V^{[\alpha]} = \prod_{n \in \mathbb{Z}, \alpha \in \mathbb{C}} V_{(n)}^{[\alpha]}$$

such that $V^{[\alpha]}$ is a generalized eigenspace of g with eigenvalue $e^{2\pi i \alpha}$.

Some more definitions

We say that V has a \mathbb{C} -graded vertex operator algebra structure compatible with g if V has an additional grading

$$V = \coprod_{\alpha \in \mathbb{C}} V^{[\alpha]} = \coprod_{n \in \mathbb{Z}, \alpha \in \mathbb{C}} V_{(n)}^{[\alpha]}$$

such that $V^{[\alpha]}$ is a generalized eigenspace of g with eigenvalue $e^{2\pi i \alpha}$.

For such a VOA V a \mathbb{C} -graded generalized g-twisted V-module is a $\mathbb{C} \times \mathbb{C}$ -graded vector space $W = \coprod_{n,\alpha \in \mathbb{C}} W_{[n]}^{[\alpha]}$ equipped with an action of g and a vertex operator map as before satisfying all the axioms above where \mathbb{C}/\mathbb{Z} is replaced by \mathbb{C}

Some more definitions

We say that V has a \mathbb{C} -graded vertex operator algebra structure compatible with g if V has an additional grading

$$V = \coprod_{\alpha \in \mathbb{C}} V^{[\alpha]} = \coprod_{n \in \mathbb{Z}, \alpha \in \mathbb{C}} V^{[\alpha]}_{(n)}$$

such that $V^{[\alpha]}$ is a generalized eigenspace of g with eigenvalue $e^{2\pi i \alpha}$.

For such a VOA V a \mathbb{C} -graded generalized g-twisted V-module is a $\mathbb{C} \times \mathbb{C}$ -graded vector space $W = \coprod_{n,\alpha \in \mathbb{C}} W_{[n]}^{[\alpha]}$ equipped with an action of g and a vertex operator map as before satisfying all the axioms above where \mathbb{C}/\mathbb{Z} is replaced by \mathbb{C} and also

The grading compatibility condition: for α, β ∈ C, v ∈ V^[α], and w ∈ W^[β] we have

$$Y^g_W(v,x)w \in W^{[lpha+eta]}\{x\}[\log x]$$

We recall a 1995 result of Haisheng Li.

æ

We recall a 1995 result of Haisheng Li. Let V be a vertex operator algebra, g an automorphism of V of finite order, and let $u \in V$ such that:

$$L(n)u = \delta_{n,0}u, g(u) = u, [Y_m(u), Y_n(u)] = 0 \text{ for } m, n \in \mathbb{Z}_+$$

and also assume that Spec $Y_0(u) \subset \frac{1}{T}\mathbb{Z}$ for some $T \in \mathbb{Z}_+$.

We recall a 1995 result of Haisheng Li. Let V be a vertex operator algebra, g an automorphism of V of finite order, and let $u \in V$ such that:

$$L(n)u = \delta_{n,0}u, \quad g(u) = u, \quad [Y_m(u), Y_n(u)] = 0 \text{ for } m, n \in \mathbb{Z}_+$$

and also assume that Spec $Y_0(u) \subset \frac{1}{T}\mathbb{Z}$ for some $T \in \mathbb{Z}_+$. Consider the automorphism $g_u = e^{2\pi i Y_0(u)}$ of order T.

We recall a 1995 result of Haisheng Li. Let V be a vertex operator algebra, g an automorphism of V of finite order, and let $u \in V$ such that:

$$L(n)u = \delta_{n,0}u, \hspace{0.2cm} g(u) = u, \hspace{0.2cm} [Y_m(u),Y_n(u)] = 0 \hspace{0.2cm} ext{for} \hspace{0.2cm} m,n \in \mathbb{Z}_+$$

and also assume that Spec $Y_0(u) \subset \frac{1}{T}\mathbb{Z}$ for some $T \in \mathbb{Z}_+$. Consider the automorphism $g_u = e^{2\pi i Y_0(u)}$ of order T.

Theorem (Li 1995)

Let (M, Y_M^g) be a g-twisted V-module and consider

$$\Delta(u,z) = x^{Y_0(u)} \exp\left(\sum_{n\geq 1} \frac{Y_n(u)}{-n} (-z)^{-n}\right)$$

Then $(M, Y_M^{gg_u})$ is a weak gg_u -twisted V-module, where we define

$$Y_{\mathcal{M}}^{gg_{u}}(v,x)=Y_{\mathcal{M}}^{g}(\Delta(u,x)v,x).$$

Throughout we let V be a vertex operator algebra, $u \in V_{(1)}$ such that L(1)u = 0.

Throughout we let V be a vertex operator algebra, $u \in V_{(1)}$ such that L(1)u = 0.

We consider the formal series

$$\Delta_V^{(u)}(x) = x^{-Y_0(u)} \exp\left(\sum_{n \ge 1} \frac{Y_n(u)}{n} (-x)^{-n}\right)$$

Throughout we let V be a vertex operator algebra, $u \in V_{(1)}$ such that L(1)u = 0.

We consider the formal series

$$\Delta_{V}^{(u)}(x) = x^{-Y_{0}(u)} \exp\left(\sum_{n \ge 1} \frac{Y_{n}(u)}{n} (-x)^{-n}\right)$$

Here we define

$$x^{-Y_0(u)} = x^{-Y_0(u)_S} \exp\left(e^{Y_0(u)_N \log x}\right)$$

where $Y_0(u)_S$ and $Y_0(u)_N$ are the semisimple and nilpotent parts of $Y_0(u)$, respectively.

 $\Delta_V^{(u)}(x)$ enjoys many of the same properties as Li's Δ .

A ≥ ▶

•
$$\Delta_V^{(u)}(x)Y(v,x_2) = Y(\Delta_V^{(u)}(x+x_2)v,x_2)\Delta_V^{(u)}(x)$$

•
$$\Delta_V^{(u)}(x)Y(v,x_2) = Y(\Delta_V^{(u)}(x+x_2)v,x_2)\Delta_V^{(u)}(x)$$

•
$$[L(-1), \Delta_V^{(u)}(x)] = -\frac{d}{dx} \Delta_V^{(u)}(x)$$

•
$$\Delta_V^{(u)}(x)Y(v, x_2) = Y(\Delta_V^{(u)}(x + x_2)v, x_2)\Delta_V^{(u)}(x)$$

• $[L(-1), \Delta_V^{(u)}(x)] = -\frac{d}{dx}\Delta_V^{(u)}(x)$
• $\Delta_V^{(0)}(x) = 1_V$

Generalizing $\Delta_V^{(u)}(x)$

 $\Delta_V^{(u)}(x)$ enjoys many of the same properties as Li's Δ .In particular, the following properties are important in our proofs:

•
$$\Delta_V^{(u)}(x)Y(v,x_2) = Y(\Delta_V^{(u)}(x+x_2)v,x_2)\Delta_V^{(u)}(x)$$

• $[L(-1), \Delta_V^{(u)}(x)] = -\frac{d}{dx}\Delta_V^{(u)}(x)$
• $\Delta_V^{(0)}(x) = 1_V$
• If $u_1, u_2 \in V$ such that $[Y(u_1, x), Y(u_2, x)] = 0$ then

$$\Delta_V^{(u_1+u_2)}(x) = \Delta_V^{(u_1)}(x) \Delta_V^{(u_2)}(x)$$

Generalizing $\Delta_V^{(u)}(x)$

 $\Delta_V^{(u)}(x)$ enjoys many of the same properties as Li's Δ .In particular, the following properties are important in our proofs:

•
$$\Delta_V^{(u)}(x)Y(v,x_2) = Y(\Delta_V^{(u)}(x+x_2)v,x_2)\Delta_V^{(u)}(x)$$

• $[L(-1), \Delta_V^{(u)}(x)] = -\frac{d}{dx}\Delta_V^{(u)}(x)$
• $\Delta_V^{(0)}(x) = 1_V$
• If $u_1, u_2 \in V$ such that $[Y(u_1,x), Y(u_2,x)] = 0$ then
 $\Delta_V^{(u_1+u_2)}(x) = \Delta_V^{(u_1)}(x)\Delta_V^{(u_2)}(x)$

• If $g \in \operatorname{Aut}(V)$ such that g(u) = u then $[g, \Delta_V^{(u)}(x)] = 0$.

Generalizing $\Delta_V^{(u)}(x)$

 $\Delta_V^{(u)}(x)$ enjoys many of the same properties as Li's Δ .In particular, the following properties are important in our proofs:

•
$$\Delta_V^{(u)}(x)Y(v, x_2) = Y(\Delta_V^{(u)}(x + x_2)v, x_2)\Delta_V^{(u)}(x)$$

• $[L(-1), \Delta_V^{(u)}(x)] = -\frac{d}{dx}\Delta_V^{(u)}(x)$
• $\Delta_V^{(0)}(x) = 1_V$
• If $u_1, u_2 \in V$ such that $[Y(u_1, x), Y(u_2, x)] = 0$ then
 $\Delta_V^{(u_1+u_2)}(x) = \Delta_V^{(u_1)}(x)\Delta_V^{(u_2)}(x)$

• If $g \in \operatorname{Aut}(V)$ such that g(u) = u then $[g, \Delta_V^{(u)}(x)] = 0$. Using these properties, it is now just a matter of some direct calculation to prove our main theorem.

Theorem (Huang, S. 2022)

Theorem (Huang, S. 2022)

•
$$V_{(0)} = \mathbb{C}\mathbf{1}$$
 and $V_{(n)} = 0$ for $n < 0$

Theorem (Huang, S. 2022)

•
$$V_{(0)} = \mathbb{C}\mathbf{1}$$
 and $V_{(n)} = 0$ for $n < 0$

• Let
$$u \in V_{(1)}$$
 such that $L(1)u = 0$

Theorem (Huang, S. 2022)

- $V_{(0)} = \mathbb{C}\mathbf{1}$ and $V_{(n)} = 0$ for n < 0
- Let $u \in V_{(1)}$ such that L(1)u = 0
- Let $g \in Aut(V)$ such that g(u) = u.

Theorem (Huang, S. 2022)

Let V be a vertex operator algebra satisfying

- $V_{(0)} = \mathbb{C}\mathbf{1}$ and $V_{(n)} = 0$ for n < 0
- Let $u \in V_{(1)}$ such that L(1)u = 0
- Let $g \in Aut(V)$ such that g(u) = u.

Let (W, Y_W^g) be a \mathbb{C}/\mathbb{Z} -graded (or \mathbb{C} -graded) generalized g-twisted V-module and $g_u = e^{2\pi i Y_0(u)} \in Aut(V)$.

Theorem (Huang, S. 2022)

Let V be a vertex operator algebra satisfying

•
$$V_{(0)} = \mathbb{C}\mathbf{1}$$
 and $V_{(n)} = 0$ for $n < 0$

• Let
$$u \in V_{(1)}$$
 such that $L(1)u = 0$

• Let $g \in Aut(V)$ such that g(u) = u.

Let (W, Y_W^g) be a \mathbb{C}/\mathbb{Z} -graded (or \mathbb{C} -graded) generalized g-twisted V-module and $g_u = e^{2\pi i Y_0(u)} \in Aut(V)$. Then the map

$$Y_W^{gg_u}: V \otimes W \to W\{x\}[\log x]$$

defined by

$$Y_W^{gg_u}(v,x) = Y_W^g(\Delta_V^{(u)}(x)v,x)$$

satisfies the identity property, the lower truncation property, the L(-1)-derivative property, the equivariance property and the Jacobi identity.

Let V, g, u be as in the previous theorem and let (W, Y_W^g) be a \mathbb{C}/\mathbb{Z} -graded generalized g-twisted V-module.

Let V, g, u be as in the previous theorem and let (W, Y_W^g) be a \mathbb{C}/\mathbb{Z} -graded generalized g-twisted V-module.Assume that W is a direct sum of generalized eigenspaces of $(Y_W)_0(u)$.

Let V, g, u be as in the previous theorem and let (W, Y_W^g) be a \mathbb{C}/\mathbb{Z} -graded generalized g-twisted V-module.Assume that W is a direct sum of generalized eigenspaces of $(Y_W)_0(u)$. Then (W, Y^{gg_u}) is a \mathbb{C}/\mathbb{Z} -graded generalized gg_u-twisted V-module.

Let V, g, u be as in the previous theorem and let (W, Y_W^g) be a \mathbb{C}/\mathbb{Z} -graded generalized g-twisted V-module.Assume that W is a direct sum of generalized eigenspaces of $(Y_W)_0(u)$. Then (W, Y^{gg_u}) is a \mathbb{C}/\mathbb{Z} -graded generalized gg_u-twisted V-module.

The proof of this result uses the fact that

$$L_W^{gg_u}(0) = L_W^g(0) - (Y_W^g)_0(u) + \frac{1}{2}\mu$$

where μ is a constant determined by $Y_1(u)u = \mu \mathbf{1}$ and...

By assumption, we have that

$$W = \coprod_{n \in \mathbb{C}, \alpha \in P_W^g} W_{[n]}^{[\alpha]}$$

where the lower grading is given by $L_W^g(0)$ -eigenvalues and the upper grading is given by *g*-eigenvalues.

By assumption, we have that

$$W = \coprod_{n \in \mathbb{C}, \alpha \in P_W^g} W_{[n]}^{[\alpha]}$$

where the lower grading is given by $L_W^g(0)$ -eigenvalues and the upper grading is given by *g*-eigenvalues. We then decompose

$$\mathcal{W}_{[n]}^{[\alpha]} = \coprod_{ ilde{eta} \in \mathcal{P}_{W}^{g_{u}} + \mathbb{Z}} \mathcal{W}_{[n]}^{[\alpha], [ilde{eta}]}$$

By assumption, we have that

$$W = \coprod_{n \in \mathbb{C}, \alpha \in P_W^g} W_{[n]}^{[\alpha]}$$

where the lower grading is given by $L_W^g(0)$ -eigenvalues and the upper grading is given by *g*-eigenvalues. We then decompose

$$\mathcal{W}_{[n]}^{[lpha]} = \coprod_{ ilde{eta} \in \mathcal{P}_W^{m{g}_u} + \mathbb{Z}} \mathcal{W}_{[n]}^{[lpha],[ilde{eta}]}$$

which we use to define the $L_W^{gg_u}(0)$ generalized eigenspaces with eigenvalue *n*:

$$\mathcal{W}_{\langle n
angle}^{[lpha],[eta]} = \coprod_{ ilde{eta}\ineta+\mathbb{Z}}\mathcal{W}_{[n+ ilde{eta}-rac{1}{2}\mu]}^{[lpha],[ilde{eta}]}$$

This leaves us with a triple grading:

$$W = \coprod_{n \in \mathbb{C}, \alpha \in P^g_W, \beta \in P^{g_u}_W} W^{[\alpha], [\beta]}_{\langle n
angle}$$

This leaves us with a triple grading:

$$\mathcal{W} = \coprod_{n \in \mathbb{C}, \alpha \in \mathcal{P}^g_W, \beta \in \mathcal{P}^{g_u}_W} \mathcal{W}^{[\alpha], [\beta]}_{\langle n \rangle}$$

and finally we define a new $\mathbb{C}/\mathbb{Z}\text{-}\mathsf{grading}$ on W by:

$$W = \coprod_{n \in \mathbb{C}, \gamma \in P_W^{gg_u}} W_{\langle n \rangle}^{\langle \gamma
angle}$$

where

$$\mathcal{W}_{\langle n
angle}^{\langle \gamma
angle} = \coprod_{lpha \in \mathcal{P}_W^{m{g}}, eta \in \mathcal{P}_W^{m{g}u}, lpha + eta \in \gamma + \mathbb{Z}} \mathcal{W}_{\langle n
angle}^{[lpha], [eta]}$$

which gives us our desired \mathbb{C}/\mathbb{Z} -grading.

Some results on $\mathbb{C}\text{-}\mathsf{gradings}$

We also have some results on $\mathbb{C}\text{-}\mathsf{graded}$ generalized twisted modules.

Some results on $\mathbb{C}\text{-}\mathsf{gradings}$

We also have some results on \mathbb{C} -graded generalized twisted modules. A similar approach with some more assumptions gives us the following result:

Some results on \mathbb{C} -gradings

We also have some results on \mathbb{C} -graded generalized twisted modules. A similar approach with some more assumptions gives us the following result:

Theorem (Huang, S. 2022)

Suppose V, g, and u are as in the main theorem and let W be a \mathbb{C} -graded generalized g-twisted V-module.

Some results on \mathbb{C} -gradings

We also have some results on \mathbb{C} -graded generalized twisted modules. A similar approach with some more assumptions gives us the following result:

Theorem (Huang, S. 2022)

Suppose V, g, and u are as in the main theorem and let W be a \mathbb{C} -graded generalized g-twisted V-module. Assume that there is a semisimple operator $\tilde{\mathcal{S}}_g$ on V such that $g = e^{2\pi i (\tilde{\mathcal{S}}_g + \mathcal{N}_g)}$ and that $Y_V(u, x)v \in V^{[\tilde{\alpha}_1 + \tilde{\alpha}_2]}[[x, x^{-1}]]$ for $u \in V^{[\tilde{\alpha}_1]}$ and $v \in V^{[\tilde{\alpha}_2]}$ where for $\alpha \in P_V^g$ we have that $V^{[\tilde{\alpha}]}$ is the $\tilde{\mathcal{S}}_g$ -eigenspace with eigenvalue $\tilde{\alpha}$.

We also have some results on \mathbb{C} -graded generalized twisted modules. A similar approach with some more assumptions gives us the following result:

Theorem (Huang, S. 2022)

Suppose V, g, and u are as in the main theorem and let W be a \mathbb{C} -graded generalized g-twisted V-module. Assume that there is a semisimple operator $\tilde{\mathcal{S}}_g$ on V such that $g = e^{2\pi i (\tilde{\mathcal{S}}_g + \mathcal{N}_g)}$ and that $Y_V(u, x)v \in V^{[\tilde{\alpha}_1 + \tilde{\alpha}_2]}[[x, x^{-1}]]$ for $u \in V^{[\tilde{\alpha}_1]}$ and $v \in V^{[\tilde{\alpha}_2]}$ where for $\alpha \in P_V^g$ we have that $V^{[\tilde{\alpha}]}$ is the $\tilde{\mathcal{S}}_g$ -eigenspace with eigenvalue $\tilde{\alpha}$.

Assume also that \tilde{S}_g acts on W semisimply and the actions of $e^{2\pi i S_g}$ and $e^{2\pi i \tilde{S}_g}$ are equal on W and that $Y_W^g(v, x)w \in W^{[\tilde{\alpha}_1 + \tilde{\alpha}_2]}$ for $u \in V^{[\tilde{\alpha}_1]}$ and $w \in W^{[\tilde{\alpha}_2]}$.

We also have some results on \mathbb{C} -graded generalized twisted modules. A similar approach with some more assumptions gives us the following result:

Theorem (Huang, S. 2022)

Suppose V, g, and u are as in the main theorem and let W be a \mathbb{C} -graded generalized g-twisted V-module. Assume that there is a semisimple operator $\tilde{\mathcal{S}}_g$ on V such that $g = e^{2\pi i (\tilde{\mathcal{S}}_g + \mathcal{N}_g)}$ and that $Y_V(u, x)v \in V^{[\tilde{\alpha}_1 + \tilde{\alpha}_2]}[[x, x^{-1}]]$ for $u \in V^{[\tilde{\alpha}_1]}$ and $v \in V^{[\tilde{\alpha}_2]}$ where for $\alpha \in P_V^g$ we have that $V^{[\tilde{\alpha}]}$ is the $\tilde{\mathcal{S}}_g$ -eigenspace with eigenvalue $\tilde{\alpha}$.

Assume also that \tilde{S}_g acts on W semisimply and the actions of $e^{2\pi i S_g}$ and $e^{2\pi i \tilde{S}_g}$ are equal on W and that $Y_W^g(v, x)w \in W^{[\tilde{\alpha}_1 + \tilde{\alpha}_2]}$ for $u \in V^{[\tilde{\alpha}_1]}$ and $w \in W^{[\tilde{\alpha}_2]}$.

Then $(W, Y_W^{gg_u})$ is a \mathbb{C} -graded generalized gg_u -twisted module.

Our final general result gives conditions which ensure a strongly \mathbb{C} -graded generalized *g*-twisted *V*-module gets mapped to a strongly \mathbb{C} -graded generalized gg_u -twisted *V*-module.

Our final general result gives conditions which ensure a strongly \mathbb{C} -graded generalized *g*-twisted *V*-module gets mapped to a strongly \mathbb{C} -graded generalized gg_u -twisted *V*-module.

We don't state it here because the assumptions are quite technical, but the general idea is that we require all the above assumptions, along with:

Our final general result gives conditions which ensure a strongly \mathbb{C} -graded generalized *g*-twisted *V*-module gets mapped to a strongly \mathbb{C} -graded generalized gg_u -twisted *V*-module.

We don't state it here because the assumptions are quite technical, but the general idea is that we require all the above assumptions, along with:

 $\bullet\,$ The corresponding $\mathbb{C}/\mathbb{Z}\text{-}\mathsf{grading}$ on the $g\text{-}\mathsf{twisted}$ module

$$W = \prod_{\alpha \in P_W^g} W^{(\alpha)}$$

where

$$W^{(\alpha)} = \prod_{k \in \mathbb{Z}} W^{[\alpha+k]}$$

gives a strong \mathbb{C}/\mathbb{Z} -grading on W.

Our final general result gives conditions which ensure a strongly \mathbb{C} -graded generalized *g*-twisted *V*-module gets mapped to a strongly \mathbb{C} -graded generalized gg_u -twisted *V*-module.

We don't state it here because the assumptions are quite technical, but the general idea is that we require all the above assumptions, along with:

 $\bullet\,$ The corresponding $\mathbb{C}/\mathbb{Z}\text{-}\mathsf{grading}$ on the $g\text{-}\mathsf{twisted}$ module

$$W = \prod_{lpha \in \mathcal{P}_W^g} W^{(lpha)}$$

where

$$W^{(\alpha)} = \prod_{k \in \mathbb{Z}} W^{[\alpha+k]}$$

gives a strong \mathbb{C}/\mathbb{Z} -grading on W.

• A condition which ensures that the graded pieces in new grading on the gg_u -twisted module W are made up of a finite direct sum of gand g_u -generalized eigenspaces. We will see later that, in general, $\Delta_V^{(u)}(x)$ does not map a lower-bounded, grading restricted generalized *g*-twisted module map to a lower-bounded, grading restricted generalized gg_u -module

We will see later that, in general, $\Delta_V^{(u)}(x)$ does not map a lower-bounded, grading restricted generalized *g*-twisted module map to a lower-bounded, grading restricted generalized gg_u -module

Question: Under what conditions does a lower-bounded, grading restricted generalized g-twisted module map to a lower-bounded, grading restricted generalized gg_u -module?

Let C be the category of all generalized twisted V-modules.

Let C be the category of all generalized twisted V-modules.Let $u \in V_{(1)}$ and G^u be the subgroup of Aut(V) which fix u.

Let C be the category of all generalized twisted V-modules.Let $u \in V_{(1)}$ and G^u be the subgroup of Aut(V) which fix u. Let C^u be the subcategory of C consisting of generalized g-twisted modules for $g \in G^u$.

Let C be the category of all generalized twisted V-modules.Let $u \in V_{(1)}$ and G^u be the subgroup of Aut(V) which fix u. Let C^u be the subcategory of C consisting of generalized g-twisted modules for $g \in G^u$. Then, we also have that $gg_u \in G^u$ and thus we have a functor

$$\Delta^u: \mathcal{C}^u \to \mathcal{C}^u$$

defined for any object (W, Y_W^g) in \mathcal{C}^u

$$\Delta^u(W, Y_W^g) = (W, Y_W^{gg_u})$$

which also respects morphisms.

Let C be the category of all generalized twisted V-modules.Let $u \in V_{(1)}$ and G^u be the subgroup of Aut(V) which fix u. Let C^u be the subcategory of C consisting of generalized g-twisted modules for $g \in G^u$. Then, we also have that $gg_u \in G^u$ and thus we have a functor

$$\Delta^u: \mathcal{C}^u \to \mathcal{C}^u$$

defined for any object (W, Y_W^g) in \mathcal{C}^u

$$\Delta^u(W, Y_W^g) = (W, Y_W^{gg_u})$$

which also respects morphisms.

In fact, we also have that $\mathcal{C}^{-u} = \mathcal{C}^u$ and that Δ^{-u} is a functor from \mathcal{C}^u to itself.

Let C be the category of all generalized twisted V-modules.Let $u \in V_{(1)}$ and G^u be the subgroup of Aut(V) which fix u. Let C^u be the subcategory of C consisting of generalized g-twisted modules for $g \in G^u$. Then, we also have that $gg_u \in G^u$ and thus we have a functor

$$\Delta^u: \mathcal{C}^u \to \mathcal{C}^u$$

defined for any object (W, Y_W^g) in \mathcal{C}^u

$$\Delta^u(W, Y^g_W) = (W, Y^{gg_u}_W)$$

which also respects morphisms.

In fact, we also have that $C^{-u} = C^u$ and that Δ^{-u} is a functor from C^u to itself. Moreover, we have

$$\Delta^u \circ \Delta^{-u} = \Delta^{-u} \circ \Delta^u = 1_u$$

so that Δ^u is an automorphism of the category \mathcal{C}^u , $\mathcal{C}^$

Let $\mathfrak g$ be a finite-dimensional simple Lie algebra and (\cdot, \cdot) be its normalized Killing form.

∄ ▶ ◀ ⋽ ▶ ◀

Let \mathfrak{g} be a finite-dimensional simple Lie algebra and (\cdot, \cdot) be its normalized Killing form. Let g be an automorphism of \mathfrak{g} which leaves (\cdot, \cdot) invariant.

Let \mathfrak{g} be a finite-dimensional simple Lie algebra and (\cdot, \cdot) be its normalized Killing form. Let g be an automorphism of \mathfrak{g} which leaves (\cdot, \cdot) invariant. We can decompose

$$g = e^{2\pi i \mathcal{S}_g} e^{2\pi i \mathcal{N}_g}$$

into semisimple and unipotent parts.

Let \mathfrak{g} be a finite-dimensional simple Lie algebra and (\cdot, \cdot) be its normalized Killing form. Let g be an automorphism of \mathfrak{g} which leaves (\cdot, \cdot) invariant. We can decompose

$$g = e^{2\pi i \mathcal{S}_g} e^{2\pi i \mathcal{N}_g}$$

into semisimple and unipotent parts. Huang showed that

$$\sigma := e^{2\pi i \mathcal{S}_g} = \tau_\sigma \mu e^{2\pi i \operatorname{ad}_h} \tau_\sigma^{-1}$$

where $h \in \mathfrak{h}$, μ is a diagram automorphism of \mathfrak{g} such that $\mu(h) = h$ and τ_{σ} is some automorphism of \mathfrak{g} .

Let \mathfrak{g} be a finite-dimensional simple Lie algebra and (\cdot, \cdot) be its normalized Killing form. Let g be an automorphism of \mathfrak{g} which leaves (\cdot, \cdot) invariant. We can decompose

$$g = e^{2\pi i \mathcal{S}_g} e^{2\pi i \mathcal{N}_g}$$

into semisimple and unipotent parts. Huang showed that

$$\sigma := e^{2\pi i \mathcal{S}_g} = \tau_\sigma \mu e^{2\pi i \operatorname{ad}_h} \tau_\sigma^{-1}$$

where $h \in \mathfrak{h}$, μ is a diagram automorphism of \mathfrak{g} such that $\mu(h) = h$ and τ_{σ} is some automorphism of \mathfrak{g} .

We also have that $\mathcal{N}_g = a d_{a_{\mathcal{N}_g}}$ where $a_{\mathcal{N}_g}$ is fixed by g.

A straightforward calculation now gives us:

$$g = au_{\sigma} \mu e^{2\pi i a d_h} e^{2\pi i a d_{ au_{\sigma}^{-1}}a_{\mathcal{N}_g}} au_{\sigma}^{-1}$$

A straightforward calculation now gives us:

$$g = au_{\sigma} \mu e^{2\pi i a d_h} e^{2\pi i a d_{ au_{\sigma}^{-1} a_{\mathcal{N}_g}}} au_{\sigma}^{-1}$$

We let

$$g_{\sigma}=\mu e^{2\pi i a d_h} e^{2\pi i a d_{ au_{\sigma}}-1_{a_{\mathcal{N}_g}}}$$

where we define

$$g_{\sigma,s} := \mu e^{2\pi i a d_h}$$

to be the semisimple part of g_{σ} .

A straightforward calculation now gives us:

$$g = au_{\sigma} \mu e^{2\pi i a d_h} e^{2\pi i a d_{ au_{\sigma}^{-1} a_{\mathcal{N}_g}}} au_{\sigma}^{-1}$$

We let

$$g_{\sigma} = \mu e^{2\pi i a d_h} e^{2\pi i a d_{\tau_{\sigma}} - 1_{a_{\mathcal{N}_g}}}$$

where we define

$$g_{\sigma,s} := \mu e^{2\pi i a d_h}$$

to be the semisimple part of g_{σ} .

Using a result of Huang, there is an invertible functor $\phi_{\tau_{\sigma}}$ from the category of generalized g_{σ} -twisted modules to the category of g-twisted modules (category isomorphism). In particular, to construct g-twisted modules we need only construct g_{σ} -twisted modules and then apply this functor.

A straightforward calculation now gives us:

$$g = au_{\sigma} \mu e^{2\pi i a d_h} e^{2\pi i a d_{ au_{\sigma}^{-1} a_{\mathcal{N}_g}}} au_{\sigma}^{-1}$$

We let

$$g_{\sigma} = \mu e^{2\pi i a d_h} e^{2\pi i a d_{\tau_{\sigma}} - 1_{a_{\mathcal{N}_g}}}$$

where we define

$$g_{\sigma,s} := \mu e^{2\pi i a d_h}$$

to be the semisimple part of g_{σ} .

Using a result of Huang, there is an invertible functor $\phi_{\tau_{\sigma}}$ from the category of generalized g_{σ} -twisted modules to the category of g-twisted modules (category isomorphism). In particular, to construct g-twisted modules we need only construct g_{σ} -twisted modules and then apply this functor.

Our goal is to construct a g_{σ} -twisted module for any automorphism g of \mathfrak{g}

Let V be either $M(\ell, 0)$ or $L(\ell, 0)$ throughout, with $\ell \neq -h^{v}$.

AP ► < E ►

Let V be either $M(\ell, 0)$ or $L(\ell, 0)$ throughout, with $\ell \neq -h^{v}$.

Our automorphisms g_{σ} and $g_{\sigma,s}$ give automorphisms of V and we retain their notations. Moreover, ad_h and $ad_{\tau_{\sigma}^{-1}a_{\mathcal{N}_g}}$ will act as h(0) and $(\tau_{\sigma}^{-1}a_{\mathcal{N}_g})(0)$

We have the following application of our earlier theorem:

Theorem

Let (W, Y_W^{μ}) be a \mathbb{C}/\mathbb{Z} -graded generalized μ -twisted V-module. Assume that $h_W(0) = \operatorname{Res}_x Y_W^{\mu}(h(-1)\mathbf{1}, x)$ acts on W semisimply. Define

$$Y_W^{g_{\sigma,s}}(v,x) = Y_W^{\mu}(\Delta_V^{(h)}(x)v,x)$$

Then $(W, Y_W^{g_{\sigma,s}})$, equipped with the earlier gradings, is a \mathbb{C}/\mathbb{Z} -graded generalized $g_{\sigma,s}$ -twisted V-module.

We have the following application of our earlier theorem:

Theorem

Let (W, Y_W^{μ}) be a \mathbb{C}/\mathbb{Z} -graded generalized μ -twisted V-module. Assume that $h_W(0) = \operatorname{Res}_x Y_W^{\mu}(h(-1)\mathbf{1}, x)$ acts on W semisimply. Define

$$Y_W^{g_{\sigma,s}}(v,x) = Y_W^{\mu}(\Delta_V^{(h)}(x)v,x)$$

Then $(W, Y_W^{g_{\sigma,s}})$, equipped with the earlier gradings, is a \mathbb{C}/\mathbb{Z} -graded generalized $g_{\sigma,s}$ -twisted V-module.

Conversely, if $(W, Y^{g_{\sigma,s}})$ is a \mathbb{C}/\mathbb{Z} -graded generalized $g_{\sigma,s}$ -twisted V-module, then we may apply the earlier theorem to obtain a \mathbb{C}/\mathbb{Z} -graded generalized μ -twisted module (W, Y_W^{μ}) where

$$Y_W^{\mu}(v,x) = Y_W^{g_{\sigma,s}}(\Delta_V^{(-h)}(x)v,x)$$

One utility of this construction is that the underlying vector space W stays the same, but one can explicitly compute the actions of elements of V on twisted modules.

One utility of this construction is that the underlying vector space W stays the same, but one can explicitly compute the actions of elements of V on twisted modules.

For example, if we take $b\in \mathfrak{g}$ such that $\mu(b)=e^{rac{2\pi i j}{k}}$ we have that

$$Y_{W}^{g_{\sigma,s}}(b(-n-1)\mathbf{1},x) = \frac{1}{n!} \sum_{k=0}^{n} \binom{-\lambda}{k} k! \left(\left(\frac{\partial}{\partial x}\right)^{n-k} Y_{W}^{\mu}(b(-1)\mathbf{1},x) \right) x^{-\lambda-k}$$
(3)

where we have $[h, b] = \lambda b$ and $\lambda \neq 0$ and where

$$Y^{\mu}_{W}(b(-1)\mathbf{1},x) = \sum_{m \in rac{l}{k} + \mathbb{Z}} b^{\mu}_{W}(m)x^{-m-1}$$

Now, we move from a \mathbb{C}/\mathbb{Z} -graded generalized $g_{\sigma,s}$ -twisted *V*-module to a \mathbb{C}/\mathbb{Z} -graded generalized g_{σ} -twisted *V*-module. We have the following application of our earlier theorems: Now, we move from a \mathbb{C}/\mathbb{Z} -graded generalized $g_{\sigma,s}$ -twisted *V*-module to a \mathbb{C}/\mathbb{Z} -graded generalized g_{σ} -twisted *V*-module. We have the following application of our earlier theorems:

Theorem

Let $(W, Y^{g_{\sigma,s}})$ be a \mathbb{C}/\mathbb{Z} -graded generalized $g_{\sigma,s}$ -twisted V-module. Assume that $g_{\sigma,s}$ acts on W semisimply and $\tau^{-1}a_{\mathcal{N}_g}(0)$ on W is locally nilpotent. Let $u = \tau_{\sigma}^{-1}a_{\mathcal{N}_g}(-1)\mathbf{1}$. Then the pair $(W, Y_W^{g_{\sigma}})$ has the structure of a \mathbb{C}/\mathbb{Z} -graded generalized g_{σ} -twisted V-module where

$$Y_W^{g_\sigma}(v,x) := Y_W^{g_{\sigma,s}}(\Delta_V^{(u)}(x)v,x)$$

for $v \in V$.

Adding this unipotent part of the automorphism now introduces powers of log x. For example, take $b \in \mathfrak{g}$ to be a generalized eigenvector of g_{σ} with eigenvalue λ . We have

$$\begin{aligned} & Y_{W}^{g_{\sigma}}(b(-1)\mathbf{1},x) \\ & = \sum_{j=0}^{M} \sum_{m \in \lambda + \mathbb{Z}} \frac{(-1)^{j}}{j!} (\mathrm{ad}_{(\tau_{\sigma}^{-1}a_{\mathcal{N}_{g}})}^{j}(b))_{W}^{g_{\sigma_{s}}}(m) x^{-m-1} (\log x)^{j} - (\tau_{\sigma}^{-1}a_{\mathcal{N}_{g}},b) \ell x^{-1} \end{aligned}$$

and we can use the L(-1)-derivative property to compute $Y_W^{g_\sigma}(b(-n-1)\mathbf{1},x)$.

One can, of course, start with a (untwisted) V-module W and construct modules twisted by inner automorphisms the same way.

One can, of course, start with a (untwisted) V-module W and construct modules twisted by inner automorphisms the same way.

In earlier work, Huang showed that $\Delta_V^{(u)}(x)$ maps a strongly \mathbb{C} -graded V-module W to a strongly \mathbb{C} -graded generalized $e^{2\pi i Y_0(u)}$ -twisted V-module.

One can, of course, start with a (untwisted) V-module W and construct modules twisted by inner automorphisms the same way.

In earlier work, Huang showed that $\Delta_V^{(u)}(x)$ maps a strongly \mathbb{C} -graded V-module W to a strongly \mathbb{C} -graded generalized $e^{2\pi i Y_0(u)}$ -twisted V-module.

It is unclear, however, what conditions are needed to move from one lower-bounded, grading restricted twisted module to another.

We have some more results when starting with a strongly \mathbb{C} -graded generalized *V*-module (W, Y_W) . Let $a \in \mathfrak{g}$ with Jordan-Chevalley decomposition a = s + n. Let $g_a = e^{2\pi i a(0)}$ and $g_s = e^{2\pi i s(0)}$

Theorem

Assume $s_W(0)$ acts semisimply on W. Then, the pair $(W, Y_W^{g_s})$ can be given the structure of a strongly \mathbb{C} -graded generalized g_s -twisted module where

$$Y_W^{g_s}(v,x) = Y_W(\Delta_V^{(s(-1)1)}(x)v,x)$$

Theorem

Let $(W, Y_W^{g_s})$ be a \mathbb{C} -graded generalized g_s -twisted V-module. The pair $(W, Y_W^{g_a})$ can be given the structure of a \mathbb{C} -graded generalized g_a -twisted V-module. Moreover, if (W, Y^{g_s}) is grading restricted, the $(W, Y_W^{g_a})$ is also grading restricted.

Let \mathfrak{g} be a finite-dimensional simple Lie algebra. Consider $V = M(\ell, 0)$, the generalized Verma module and $W = M(\ell, 0)$. W is lower bounded and grading restricted by definition.

Let g be a finite-dimensional simple Lie algebra. Consider $V = M(\ell, 0)$, the generalized Verma module and $W = M(\ell, 0)$. W is lower bounded and grading restricted by definition.

Let $\{e_{\alpha}, f_{\alpha}, h_{\alpha}\}$ be an $\mathfrak{sl}(2)$ -triple where

$$[e_{\alpha}, f_{\alpha}] = h_{\alpha}, \ [h_{\alpha}, e_{\alpha}] = 2e_{\alpha} \ [h_{\alpha}, f_{\alpha}] = -2f_{\alpha}.$$

Let g be a finite-dimensional simple Lie algebra. Consider $V = M(\ell, 0)$, the generalized Verma module and $W = M(\ell, 0)$. W is lower bounded and grading restricted by definition.

Let $\{e_{\alpha}, f_{\alpha}, h_{\alpha}\}$ be an $\mathfrak{sl}(2)$ -triple where

 $[e_{\alpha}, f_{\alpha}] = h_{\alpha}, \ [h_{\alpha}, e_{\alpha}] = 2e_{\alpha} \ [h_{\alpha}, f_{\alpha}] = -2f_{\alpha}.$

Consider $s = \frac{1}{2}h_{\alpha}$ and the automorphism $g_s := e^{2\pi i s(0)}$ of V.

Let g be a finite-dimensional simple Lie algebra. Consider $V = M(\ell, 0)$, the generalized Verma module and $W = M(\ell, 0)$. W is lower bounded and grading restricted by definition.

Let $\{e_{\alpha}, f_{\alpha}, h_{\alpha}\}$ be an $\mathfrak{sl}(2)$ -triple where

$$[e_{\alpha}, f_{\alpha}] = h_{\alpha}, \ [h_{\alpha}, e_{\alpha}] = 2e_{\alpha} \ [h_{\alpha}, f_{\alpha}] = -2f_{\alpha}.$$

Consider $s = \frac{1}{2}h_{\alpha}$ and the automorphism $g_s := e^{2\pi i s(0)}$ of V. We may apply our theorem to obtain a g_s -twisted module structure on $M(\ell, 0)$ where

$$L^{g_s}_W(0) = L_W(0) - s(0) + rac{1}{2}(s,s)\ell$$

Let g be a finite-dimensional simple Lie algebra. Consider $V = M(\ell, 0)$, the generalized Verma module and $W = M(\ell, 0)$. W is lower bounded and grading restricted by definition.

Let $\{e_{\alpha}, f_{\alpha}, h_{\alpha}\}$ be an $\mathfrak{sl}(2)$ -triple where

$$[e_{\alpha}, f_{\alpha}] = h_{\alpha}, \ [h_{\alpha}, e_{\alpha}] = 2e_{\alpha} \ [h_{\alpha}, f_{\alpha}] = -2f_{\alpha}.$$

Consider $s = \frac{1}{2}h_{\alpha}$ and the automorphism $g_s := e^{2\pi i s(0)}$ of V. We may apply our theorem to obtain a g_s -twisted module structure on $M(\ell, 0)$ where

$$L^{g_s}_W(0) = L_W(0) - s(0) + rac{1}{2}(s,s)\ell$$

Then, the set

$$\{e_{lpha}(-1)^k\mathbf{1}|k\geq 0\}$$

is an infinite linearly independent subset of $W_{\langle \frac{1}{2}(s,s)\ell \rangle}$ and so this twisted module structure doesn't satisfy the grading-restriction condition.

Thank you!

æ