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Twisted modules for finite order automorphisms

Let (V ,Y , 1, ω) by a vertex operator algebra and g ∈ Aut(V ) be
an automorphism of order k .

Then V can be decomposed as

V =
∐

j∈Z/kZ

V j

where
V j = {v ∈ V |gv = ηjv}

for j ∈ Z/kZ, where η = e
2
√
−1π
k
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Twisted modules for finite order automorphisms

Definition A g -twisted V-module is a C-graded vector space
W =

∐
n∈CW(n) be a C-graded vector space equipped with a

linear map

Y g
W :V ⊗W →W [[x1/k , x−1/k ]],

v ⊗ w 7→ Y g
W (v , x)w =

∑
n∈ 1

k
Z

(Y g
W )n(v)wx−n−1

satisfying the following axioms:

The grading-restriction condition: For each n ∈ C we have
dimW(n) <∞ and Wn+l/k = 0 for sufficiently negative
integers l .

The formal monodromy condition: For j ∈ Z/kZ and v ∈ V j

we have that

Y g (v , x) =
∑

n∈j/k+Z

(Y g
W )n(v)x−n−1
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Twisted modules for finite order automorphisms

The lower-truncation condition: For v ∈ V and w ∈W we
have

(Y g
W )n(v)w = 0

for n sufficiently large

The identity property:

Y g (1, x) = IdW

The Jacobi identity: For u, v ∈ V and w ∈W :

x−1
0 δ

(
x1 − x2

x0

)
Y g

W (u, x1)Y
g
W (v , x2)− x−1

0 δ

(
x2 − x1

−x0

)
Y g

W (v , x2)Y
g
W (u, x1)

=
1

k

∑
j∈Z/kZ

x−1
2 δ

(
ηj
(x1 − x0)

1/k

x
1/k
2

)
Y g

W (Y (g ju, x0)v , x2)
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Twisted modules for finite order automorphisms

And finally some conditions regarding ω: Let
LgW (n) = (Y g

W )n+1(ω) i.e.

Y g
W (ω, x) =

∑
n∈Z

LgW (n)x−n−2

The L(0)-grading condition: LgW (0)w = nw for w ∈W(n).

The L(−1)-derivative condition:

Y g
W (L(−1)v , x) =

d

dx
Y g
W (v , x)

In order to generalize the definition of twisted module to arbitrary
automorphisms of V we need to somehow deal with the
appearance of k in both the formal monodromy condition and in
the Jacobi identity.
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Twisted modules for finite order automorphisms

Notation and complex variables

For any z ∈ C× we take

log z = log |z |+ i arg z

for 0 ≤ arg z < 2π.

In general, we define

lp(z) = log z + 2p
√
−1π

for p ∈ Z.
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Twisted modules for finite order automorphisms

Notation and complex variables

For vector spaces W1,W2,W3 be C-graded vector spaces and let x1/k

have degree −1/k .

Then we have a C-grading on W1 ⊗W2 and on
W3[[x1/k , x−1/k ]]. Let

X :W1 ⊗W2 →W3[[x1/k , x−1/k ]],

w1 ⊗ w2 7→ X (w1, x)w2 =
∑
n∈ 1

k Z

Xn(w1)w2x
−n−1

be a linear map preserving the gradings.Define for w1 ∈W1 and w2 ∈W2

the map

X p(w1, z)w2 = X (w1, x)w2|xn=enlp̃ (z) ∈W3 =
∏
n∈C

W(n)

where for p ∈ Z/kZ we have p̃ is the integer satisfying 0 ≤ p̃ < k.
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Twisted modules for finite order automorphisms

Notation and complex variables For p ∈ Z/kZ we have a map

X :C× → Hom(W1 ⊗W2,W3)

z 7→ X (·, z)·

which we call the p-th analytic branch of X .

We have the following
theorem by Huang:

Theorem (Huang 2010)

The formal monodromy condition in the definition of twisted module can
be replaced by the following property, which we call equivariance:
For p ∈ Z/kZ, z ∈ C×, and v ∈ V ,

Y g ;p+1(gv , z) = Y g ;p(v , z)
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Twisted modules for finite order automorphisms

Theorem (Huang 2010)

The Jacobi identity in the definition of twisted module can be replaced by the
following property, which we call duality:

For any u, v ∈ V , w ∈W and w ′ ∈W ′ there
exists a multivalued analytic function of the form

f (z1, z2) =

N2∑
r,s=N1

arsz
r/k
1 z

s/k
2 (z1 − z2)−N

for N1,N2 ∈ Z and N ∈ Z+such that the series

〈w ′,Y g ;p(u, z1)Y g ;p(v , z2)w〉 =
∑
n∈C
〈w ′,Y g ;p(u, z1)πnY

g ;p(v , z2)w〉

along with 〈w ′,Y g ;p(v , z2)Y g ;p(u, z1)w〉 and 〈w ′,Y g ;p(Y (u, z1 − z2)v , z2)w〉 are
absolutely convergent to the branch

N2∑
r,s=N1

arse
(r/k)lp(z1)e(s/k)lp(z2)(z1 − z2)−N

of f (z1, z2) in the regions |z1| > |z2| > 0, |z2| > |z1| > 0, and |z2| > |z1 − z2| > 0,
respectively.
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Twisted modules for arbitrary automorphisms

Using these theorems as motivation, we generalize the above
definition to arbitrary automorphisms of V .

As before, if W1,W2,W3 are graded vector spaces and

X :W1 ⊗W2 →W3{x}[log x ],

w1 ⊗ w2 7→ X (w1, x)w2 =
∑
n∈C

K∑
k=1

Xn(w1)w2x
−n−1(log x)k

is a grading-preserving linear map(we take the degree of x to
be -1 and the degree of the formal variable log x to be 0), we
can define the map

X p : W1 ⊗W2 →W3

by
X p(w1, z)w2 = X (w1, x)w2|xn=enlp(z),log x=lp(z)
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Twisted modules for arbitrary automorphisms

Definition

Let V be a vertex operator algebra and g ∈ Aut(V ).

A C/Z-graded generalized g -twisted V-module is a

C× C/Z-graded vector space W =
∐

n∈C,α∈C/ZW
[α]
[n] equipped

with an action of g and a linear map

Y g
W : V ⊗W → W {x}[log x ]

v ⊗ w 7→ Y g
W (v , x)w

satisfying the following conditions:

The equivariance property: For p ∈ Z, z ∈ C×, v ∈ V and
w ∈W , we have

Y g ;p+1
W (gv , z)w = Y g ;p

W (v , z)w

The identity property: For w ∈W , Y g
W (1, x)w = w .
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Twisted modules for arbitrary automorphisms

The duality property:

Let W ′ =
∐

n∈C,α∈C/Z(W
[α]
[n]

)∗ and, for n ∈ C,

πn : W →W[n] be the projection. For any u, v ∈ V , w ∈W and w ′ ∈W ′,
there exists a multivalued analytic function of the form

f (z1, z2) =
N∑

i,j,k,l=0

aijklz
mi
1 z

ni
2 (log z1)k (log z2)l (z1 − z2)−t

for N ∈ N, m1, . . . ,mN , n1, . . . , nN ∈ C and t ∈ Z+, such that the series

〈w ′,Y g ;p(u, z1)Y g ;p(v , z2)w〉 =
∑
n∈C
〈w ′,Y g ;p(u, z1)πnY

g ;p(v , z2)w〉, (1)

〈w ′,Y g ;p(v , z2)Y g ;p(u, z1)w〉 =
∑
n∈C
〈w ′,Y g ;p(v , z2)πnY

g ;p(u, z1)w〉, (2)

〈w ′,Y g ;p(Y (u, z1 − z2)v , z2)w〉 =
∑
n∈C
〈w ′,Y g ;p(πnY (u, z1 − z2)v , z2)w〉

are absolutely convergent in the regions |z1| > |z2| > 0, |z2| > |z1| > 0,
|z2| > |z1 − z2| > 0, respectively, to the branch

N∑
i,j,k,l=0

aijkle
mi lp(z1)e

nj lp(z2) lp(z1)k lp(z2)l (z1 − z2)−t

of f (z1, z2).
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Twisted modules for arbitrary automorphisms

Let
Y g
W (ω, x) =

∑
n∈Z

LgW (n)x−n−2

Properties about the gradings: We have a decomposition of
W into generalized eigenspaces of LgW (0) and g satisfying:

1 The L(0)-grading condition: For each

w ∈W[n] =
∐
α∈C/Z W

[α]
[n] , there exists K ∈ Z+ such that

(LgW (0)− n)Kw = 0.

2 The g -grading condition: For each w ∈W [α] =
∐

n∈C W
[α]
[n] ,

there exists Λ ∈ Z+ such that

(g − e2πiα)Λw = 0

The L(−1)-derivative property: For v ∈ V

d

dx
Y g
W (v , x) = Y g

W (L(−1)v , x)
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Twisted modules for arbitrary automorphisms

Bakalov, using a slightly more general definition (no assumption of an
action of g on W ), defined twisted modules using a Borcherds identity
(in component form).

Huang and Yang later showed that the duality property can be replaced
by a Jacobi identity:

x−1
0 δ

(
x1 − x2

x0

)
Y g
W (u, x1)Y g

W (v , x2)− x−1
0 δ

(
−x2 + x1

x0

)
Y g
W (v , x2)Y g

W (u, x1)

= x−1
1 δ

(
x2 + x0

x1

)
Y g
W

(
Y

((
x2 + x0

x1

)Lg

u, x0

)
v , x2

)

along with the lower truncation property:
For all v ∈ V and w ∈W , Y g

W (v , x)w is lower truncated, that is,
(Y g

W )n(v)w = 0 when <(n) is sufficiently negative.

Here, we define Lg = Sg +Ng to be a linear operator such that
g = e2πiLg = e2πiSg e2πiNg where Sg is semisimple on V and Ng is
locally nilpotent on V .
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Twisted modules for arbitrary automorphisms

We note that for Lg = Sg +Ng we define

xLg = xSg eNg log x

In particular, if v is a generalized eigenvector of Lg with

eigenvalue λ, we have that

xLg v = xλeNg log xv

where eNg log xv is a finite sum since Ng is locally nilpotent.

We define

Pg
V := {α ∈ [0, 1) + iR|e2πiα is an eigenvalue of g}.
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Twisted modules for arbitrary automorphisms

Finally...

We call a generalized g -twisted V -module lower-bounded if
W[n] = 0 for n ∈ C such that <(n) is sufficiently negative.

We call a lower bounded generalized g -twisted V -module
grading-restricted (or simply a g -twisted V -module) if for
each n ∈ C we have dimW[n] <∞.

We call a lower bounded generalized g -twisted V -module
strongly C/Z-graded if

dimW
[α]
[n] <∞

and
W

[α]
[n+l ] = 0

for sufficiently negative real l .
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Some more definitions

We say that V has a C-graded vertex operator algebra structure
compatible with g if V has an additional grading

V =
∐
α∈C

V [α] =
∐

n∈Z,α∈C
V

[α]
(n)

such that V [α] is a generalized eigenspace of g with eigenvalue
e2πiα.

For such a VOA V a C-graded generalized g -twisted V -module is

a C× C-graded vector space W =
∐

n,α∈CW
[α]
[n] equipped with an

action of g and a vertex operator map as before satisfying all the
axioms above where C/Z is replaced by C and also

The grading compatibility condition: for α, β ∈ C, v ∈ V [α],
and w ∈W [β] we have

Y g
W (v , x)w ∈W [α+β]{x}[log x ]
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Some results of Li

We recall a 1995 result of Haisheng Li.

Let V be a vertex operator
algebra, g an automorphism of V of finite order, and let u ∈ V
such that:

L(n)u = δn,0u, g(u) = u, [Ym(u),Yn(u)] = 0 for m, n ∈ Z+

and also assume that Spec Y0(u) ⊂ 1
T Z for some T ∈ Z+.

Consider the automorphism gu = e2πiY0(u) of order T .

Theorem (Li 1995)

Let (M,Y g
M) be a g -twisted V -module and consider

∆(u, z) = xY0(u) exp

∑
n≥1

Yn(u)

−n
(−z)−n


Then (M,Y ggu

M ) is a weak ggu-twisted V -module, where we define

Y ggu
M (v , x) = Y g

M(∆(u, x)v , x).

(here, weak means we have all the axioms of a twisted module
except axioms related to gradings and the L(0) operator).
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Generalizing ∆
(u)
V (x)

Throughout we let V be a vertex operator algebra, u ∈ V(1) such
that L(1)u = 0.

We consider the formal series

∆
(u)
V (x) = x−Y0(u) exp

∑
n≥1

Yn(u)

n
(−x)−n


Here we define

x−Y0(u) = x−Y0(u)S exp
(
eY0(u)N log x

)
where Y0(u)S and Y0(u)N are the semisimple and nilpotent parts
of Y0(u), respectively.
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Generalizing ∆
(u)
V (x)

∆
(u)
V (x) enjoys many of the same properties as Li’s ∆.

In particular,
the following properties are important in our proofs:

∆
(u)
V (x)Y (v , x2) = Y (∆

(u)
V (x + x2)v , x2)∆

(u)
V (x)

[L(−1),∆
(u)
V (x)] = − d

dx ∆
(u)
V (x)

∆
(0)
V (x) = 1V

If u1, u2 ∈ V such that [Y (u1, x),Y (u2, x)] = 0 then

∆
(u1+u2)
V (x) = ∆

(u1)
V (x)∆

(u2)
V (x)

If g ∈ Aut(V ) such that g(u) = u then [g ,∆
(u)
V (x)] = 0.

Using these properties, it is now just a matter of some direct
calculation to prove our main theorem.
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The main theorem

Theorem (Huang, S. 2022)

Let V be a vertex operator algebra satisfying

V(0) = C1 and V(n) = 0 for n < 0

Let u ∈ V(1) such that L(1)u = 0

Let g ∈ Aut(V ) such that g(u) = u.

Let (W ,Y g
W ) be a C/Z-graded (or C-graded) generalized

g -twisted V -module and gu = e2πiY0(u) ∈ Aut(V ).Then the map

Y ggu
W : V ⊗W →W {x}[log x ]

defined by

Y ggu
W (v , x) = Y g

W (∆
(u)
V (x)v , x)

satisfies the identity property, the lower truncation property, the
L(−1)-derivative property, the equivariance property and the
Jacobi identity.
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Some theorems about C/Z-gradings

Theorem (Huang, S. 2022)

Let V , g , u be as in the previous theorem and let (W ,Y g
W ) be a

C/Z-graded generalized g -twisted V -module.

Assume that W is a
direct sum of generalized eigenspaces of (YW )0(u). Then
(W ,Y ggu) is a C/Z-graded generalized ggu-twisted V -module.

The proof of this result uses the fact that

LgguW (0) = LgW (0)− (Y g
W )0(u) +

1

2
µ

where µ is a constant determined by Y1(u)u = µ1 and...
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Some theorems about C/Z-gradings

By assumption, we have that

W =
∐

n∈C,α∈Pg
W

W
[α]
[n]

where the lower grading is given by LgW (0)-eigenvalues and the
upper grading is given by g -eigenvalues.

We then decompose

W
[α]
[n] =

∐
β̃∈Pgu

W +Z

W
[α],[β̃]
[n]

which we use to define the LgguW (0) generalized eigenspaces with
eigenvalue n:

W
[α],[β]
〈n〉 =

∐
β̃∈β+Z

W
[α],[β̃]

[n+β̃− 1
2
µ]
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Some theorems about C/Z-gradings

This leaves us with a triple grading:

W =
∐

n∈C,α∈Pg
W ,β∈P

gu
W

W
[α],[β]
〈n〉

and finally we define a new C/Z-grading on W by:

W =
∐

n∈C,γ∈Pggu
W

W
〈γ〉
〈n〉

where
W
〈γ〉
〈n〉 =

∐
α∈Pg

W ,β∈P
gu
W ,α+β∈γ+Z

W
[α],[β]
〈n〉

which gives us our desired C/Z-grading.
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Some results on C-gradings

We also have some results on C-graded generalized twisted
modules.

A similar approach with some more assumptions gives us
the following result:

Theorem (Huang, S. 2022)

Suppose V , g , and u are as in the main theorem and let W be a
C-graded generalized g -twisted V -module. Assume that there is a
semisimple operator S̃g on V such that g = e2πi(S̃g+Ng ) and that
YV (u, x)v ∈ V [α̃1+α̃2][[x , x−1]] for u ∈ V [α̃1] and v ∈ V [α̃2] where
for α ∈ Pg

V we have that V [α̃] is the S̃g -eigenspace with eigenvalue
α̃.

Assume also that S̃g acts on W semisimply and the actions of

e2πiSg and e2πi S̃g are equal on W and that Y g
W (v , x)w ∈W [α̃1+α̃2]

for u ∈ V [α̃1] and w ∈W [α̃2].

Then (W ,Y ggu
W ) is a C-graded generalized ggu-twisted module.
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C-graded generalized g -twisted V -module. Assume that there is a
semisimple operator S̃g on V such that g = e2πi(S̃g+Ng ) and that
YV (u, x)v ∈ V [α̃1+α̃2][[x , x−1]] for u ∈ V [α̃1] and v ∈ V [α̃2] where
for α ∈ Pg

V we have that V [α̃] is the S̃g -eigenspace with eigenvalue
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Strongly graded modules

Our final general result gives conditions which ensure a strongly C-graded
generalized g -twisted V -module gets mapped to a strongly C-graded
generalized ggu-twisted V -module.

We don’t state it here because the assumptions are quite technical, but
the general idea is that we require all the above assumptions, along with:

The corresponding C/Z-grading on the g -twisted module

W =
∐
α∈Pg

W

W (α)

where
W (α) =

∐
k∈Z

W [α+k]

gives a strong C/Z-grading on W .

A condition which ensures that the graded pieces in new grading on
the ggu-twisted module W are made up of a finite direct sum of g -
and gu-generalized eigenspaces.
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An Open Question

We will see later that, in general, ∆
(u)
V (x) does not map a

lower-bounded, grading restricted generalized g -twisted module
map to a lower-bounded, grading restricted generalized ggu-module

Question: Under what conditions does a lower-bounded, grading
restricted generalized g -twisted module map to a lower-bounded,
grading restricted generalized ggu-module?
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A bit on categories, from the title of the talk

Let C be the category of all generalized twisted V -modules.

Let
u ∈ V(1) and Gu be the subgroup of Aut(V ) which fix u. Let Cu
be the subcategory of C consisting of generalized g -twisted
modules for g ∈ Gu. Then, we also have that ggu ∈ Gu and thus
we have a functor

∆u : Cu → Cu

defined for any object (W ,Y g
W ) in Cu

∆u(W ,Y g
W ) = (W ,Y ggu

W )

which also respects morphisms.

In fact, we also have that C−u = Cu and that ∆−u is a functor
from Cu to itself. Moreover, we have

∆u ◦∆−u = ∆−u ◦∆u = 1u

so that ∆u is an automorphism of the category Cu.
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Application to affine vertex operator algebras

Let g be a finite-dimensional simple Lie algebra and (·, ·) be its
normalized Killing form.

Let g be an automorphism of g which
leaves (·, ·) invariant. We can decompose

g = e2πiSg e2πiNg

into semisimple and unipotent parts. Huang showed that

σ := e2πiSg = τσµe
2πiadhτ−1

σ

where h ∈ h, µ is a diagram automorphism of g such that
µ(h) = h and τσ is some automorphism of g.

We also have that Ng = adaNg
where aNg is fixed by g .
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Application to affine vertex operator algebras

A straightforward calculation now gives us:

g = τσµe
2πiadhe

2πiad
τ−1
σ aNg τ−1

σ

We let

gσ = µe2πiadhe
2πiadτσ−1aNg

where we define
gσ,s := µe2πiadh

to be the semisimple part of gσ.

Using a result of Huang, there is an invertible functor φτσ from the
category of generalized gσ-twisted modules to the category of
g -twisted modules (category isomorphism). In particular, to
construct g -twisted modules we need only construct gσ-twisted
modules and then apply this functor.

Our goal is to construct a gσ-twisted module for any
automorphism g of g
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Moving between twisted modules

Let V be either M(`, 0) or L(`, 0) throughout, with ` 6= −hv .

Our automorphisms gσ and gσ,s give automorphisms of V and we
retain their notations. Moreover, adh and adτσ−1aNg

will act as

h(0) and
(
τσ
−1aNg

)
(0)
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Moving between twisted modules

We have the following application of our earlier theorem:

Theorem

Let (W ,Y µ
W ) be a C/Z-graded generalized µ-twisted V -module.

Assume that hW (0) = ResxY
µ
W (h(−1)1, x) acts on W semisimply.

Define
Y

gσ,s
W (v , x) = Y µ

W (∆
(h)
V (x)v , x)

Then (W ,Y
gσ,s
W ), equipped with the earlier gradings, is a

C/Z-graded generalized gσ,s -twisted V -module.

Conversely, if (W ,Y gσ,s ) is a C/Z-graded generalized gσ,s -twisted
V -module, then we may apply the earlier theorem to obtain a
C/Z-graded generalized µ-twisted module (W ,Y µ

W ) where

Y µ
W (v , x) = Y

gσ,s
W (∆

(−h)
V (x)v , x)
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Moving between twisted modules

One utility of this construction is that the underlying vector space
W stays the same, but one can explicitly compute the actions of
elements of V on twisted modules.

For example, if we take b ∈ g such that µ(b) = e
2πij
k we have that

Y
gσ,s
W (b(−n−1)1, x) =

1

n!

n∑
k=0

(
−λ
k

)
k!

((
∂

∂x

)n−k

Y µ
W (b(−1)1, x)

)
x−λ−k

(3)
where we have [h, b] = λb and λ 6= 0 and where

Y µ
W (b(−1)1, x) =

∑
m∈ j

k +Z

bµW (m)x−m−1
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Moving between twisted modules

Now, we move from a C/Z-graded generalized gσ,s -twisted
V -module to a C/Z-graded generalized gσ-twisted V -module. We
have the following application of our earlier theorems:

Theorem

Let (W ,Y gσ,s ) be a C/Z-graded generalized gσ,s -twisted
V -module. Assume that gσ,s acts on W semisimply and
τ−1aNg (0) on W is locally nilpotent. Let u = τ−1

σ aNg (−1)1. Then
the pair (W ,Y gσ

W ) has the structure of a C/Z-graded generalized
gσ-twisted V -module where

Y gσ
W (v , x) := Y

gσ,s
W (∆

(u)
V (x)v , x)

for v ∈ V .
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Moving between twisted modules

Adding this unipotent part of the automorphism now introduces
powers of log x . For example, take b ∈ g to be a generalized
eigenvector of gσ with eigenvalue λ. We have

Y gσ
W (b(−1)1, x)

=
M∑
j=0

∑
m∈λ+Z

(−1)j

j!
(adj

(τ−1
σ aNg )

(b))
gσs
W (m)x−m−1(log x)j − (τ−1

σ aNg , b)`x−1

and we can use the L(−1)-derivative property to compute Y gσ
W (b(−n − 1)1, x).
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Moving between twisted modules

One can, of course, start with a (untwisted) V -module W and
construct modules twisted by inner automorphisms the same way.

In earlier work, Huang showed that ∆
(u)
V (x) maps a strongly

C-graded V -module W to a strongly C-graded generalized
e2πiY0(u)-twisted V -module.

It is unclear, however, what conditions are needed to move from
one lower-bounded, grading restricted twisted module to another.
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Moving between twisted modules

We have some more results when starting with a strongly C-graded
generalized V -module (W ,YW ). Let a ∈ g with Jordan-Chevalley
decomposition a = s + n. Let ga = e2πia(0) and gs = e2πis(0)

Theorem

Assume sW (0) acts semisimply on W . Then, the pair (W ,Y gs
W )

can be given the structure of a strongly C-graded generalized
gs -twisted module where

Y gs
W (v , x) = YW (∆

(s(−1)1)
V (x)v , x)

Theorem

Let (W ,Y gs
W ) be a C-graded generalized gs -twisted V -module.

The pair (W ,Y ga
W ) can be given the structure of a C-graded

generalized ga-twisted V -module. Moreover, if (W ,Y gs ) is grading
restricted, the (W ,Y ga

W ) is also grading restricted.
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Moving between twisted modules

Let g be a finite-dimensional simple Lie algebra. Consider
V = M(`, 0), the generalized Verma module and W = M(`, 0). W
is lower bounded and grading restricted by definition.

Let {eα, fα, hα} be an sl(2)-triple where

[eα, fα] = hα, [hα, eα] = 2eα [hα, fα] = −2fα.

Consider s = 1
2hα and the automorphism gs := e2πis(0) of V . We

may apply our theorem to obtain a gs -twisted module structure on
M(`, 0) where

LgsW (0) = LW (0)− s(0) +
1

2
(s, s)`

Then, the set
{eα(−1)k1|k ≥ 0}

is an infinite linearly independent subset of W〈 1
2

(s,s)`〉 and so this

twisted module structure doesn’t satisfy the grading-restriction
condition.
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Let g be a finite-dimensional simple Lie algebra. Consider
V = M(`, 0), the generalized Verma module and W = M(`, 0). W
is lower bounded and grading restricted by definition.

Let {eα, fα, hα} be an sl(2)-triple where

[eα, fα] = hα, [hα, eα] = 2eα [hα, fα] = −2fα.

Consider s = 1
2hα and the automorphism gs := e2πis(0) of V . We

may apply our theorem to obtain a gs -twisted module structure on
M(`, 0) where

LgsW (0) = LW (0)− s(0) +
1

2
(s, s)`

Then, the set
{eα(−1)k1|k ≥ 0}

is an infinite linearly independent subset of W〈 1
2

(s,s)`〉 and so this

twisted module structure doesn’t satisfy the grading-restriction
condition.
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Moving between twisted modules

Let g be a finite-dimensional simple Lie algebra. Consider
V = M(`, 0), the generalized Verma module and W = M(`, 0). W
is lower bounded and grading restricted by definition.

Let {eα, fα, hα} be an sl(2)-triple where

[eα, fα] = hα, [hα, eα] = 2eα [hα, fα] = −2fα.

Consider s = 1
2hα and the automorphism gs := e2πis(0) of V . We

may apply our theorem to obtain a gs -twisted module structure on
M(`, 0) where

LgsW (0) = LW (0)− s(0) +
1

2
(s, s)`

Then, the set
{eα(−1)k1|k ≥ 0}

is an infinite linearly independent subset of W〈 1
2

(s,s)`〉 and so this

twisted module structure doesn’t satisfy the grading-restriction
condition.
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Thank you!
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