Associated varieties and finite extensions of vertex algebras

Anne Moreau, Université Paris-Saclay

joint work in progress with Jethro Van Ekeren (IMPA)

Representation Theory XVII — Dubrovnik, Croatia, October 3-8, 2022
universite
PARIS-SACLAY

Associated variety of vertex algebras

Associated variety of vertex algebras

There is a contravariant functor
$\begin{aligned}\{\text { vertex algebras }\} & \longrightarrow\{\text { affine Poisson varieties }\} \\ V & \longmapsto X_{V},\end{aligned}$

Associated variety of vertex algebras

There is a contravariant functor

where X_{V} is the associated variety of V :

Associated variety of vertex algebras

There is a contravariant functor

where X_{V} is the associated variety of V :

$$
X_{v}:=\left(\operatorname{Spec} R_{V}\right)_{\text {red }}
$$

Associated variety of vertex algebras

There is a contravariant functor

where X_{V} is the associated variety of V :

$$
X_{v}:=\left(\operatorname{Spec} R_{V}\right)_{\text {red }}
$$

Here $R_{V}=V / C_{2}(V)$ is the Zhu's C_{2} algebra, with

$$
C_{2}(V):=\operatorname{span}_{\mathbb{C}}\left\{a_{(-2)} b: a, b \in V\right\} .
$$

Associated variety of vertex algebras

There is a contravariant functor

where X_{V} is the associated variety of V :

$$
X_{V}:=\left(\operatorname{Spec} R_{V}\right)_{\mathrm{red}}
$$

Here $R_{V}=V / C_{2}(V)$ is the Zhu's C_{2} algebra, with

$$
C_{2}(V):=\operatorname{span}_{\mathbb{C}}\left\{a_{(-2)} b: a, b \in V\right\} .
$$

It is a Poisson algebra by

$$
\bar{a} \cdot \bar{b}=\overline{a_{(-1)} b}, \quad\{\bar{a}, \bar{b}\}=\overline{a_{(0)} b}
$$

Associated variety of vertex algebras

There is a contravariant functor

$$
\begin{aligned}
&\{\text { vertex algebras }\} \longrightarrow \\
& V\longmapsto \text { affine Poisson varieties }\} \\
& X_{V},
\end{aligned}
$$

where X_{V} is the associated variety of V :

$$
X_{v}:=\left(\operatorname{Spec} R_{V}\right)_{\text {red }}
$$

Here $R_{V}=V / C_{2}(V)$ is the Zhu's C_{2} algebra, with

$$
C_{2}(V):=\operatorname{span}_{\mathbb{C}}\left\{a_{(-2)} b: a, b \in V\right\} .
$$

It is a Poisson algebra by

$$
\bar{a} \cdot \bar{b}=\overline{a_{(-1)} b}, \quad\{\bar{a}, \bar{b}\}=\overline{a_{(0)} b}
$$

- The associated variety X_{V} captures important properties of V.

Finite extensions

Finite extensions

A vertex algebra W is a finite extension of a vertex algebra V if V is a conformal vertex subalgebra of W, and W is a finite direct sum of simple V-modules.

Finite extensions

A vertex algebra W is a finite extension of a vertex algebra V if V is a conformal vertex subalgebra of W, and W is a finite direct sum of simple V-modules.

The natural embedding $V \longleftrightarrow W$ induces a Poisson algebra morphism

$$
\varphi: R_{V} \longrightarrow R_{w}
$$

Finite extensions

A vertex algebra W is a finite extension of a vertex algebra V if V is a conformal vertex subalgebra of W, and W is a finite direct sum of simple V-modules.

The natural embedding $V \longleftrightarrow W$ induces a Poisson algebra morphism

$$
\varphi: R_{V} \longrightarrow R_{w}
$$

hence a morphism of Poisson varieties

$$
\pi:=\varphi_{\mathrm{red}}^{*}: X_{w} \longrightarrow X_{V}
$$

Finite extensions

A vertex algebra W is a finite extension of a vertex algebra V if V is a conformal vertex subalgebra of W, and W is a finite direct sum of simple V-modules.

The natural embedding $V \longleftrightarrow W$ induces a Poisson algebra morphism

$$
\varphi: R_{V} \longrightarrow R_{w}
$$

hence a morphism of Poisson varieties

$$
\pi:=\varphi_{\mathrm{red}}^{*}: X_{W} \longrightarrow X_{V}
$$

Conjecture [Arakawa-Van Ekeren-M. '21].

Finite extensions

A vertex algebra W is a finite extension of a vertex algebra V if V is a conformal vertex subalgebra of W, and W is a finite direct sum of simple V-modules.

The natural embedding $V \longleftrightarrow W$ induces a Poisson algebra morphism

$$
\varphi: R_{V} \longrightarrow R_{w}
$$

hence a morphism of Poisson varieties

$$
\pi:=\varphi_{\mathrm{red}}^{*}: X_{w} \longrightarrow X_{V}
$$

Conjecture [Arakawa-Van Ekeren-M. '21].
If W is a finite extension of V, then the morphism $\pi: X_{W} \longrightarrow X_{V}$ is dominant.

Finite extensions

A vertex algebra W is a finite extension of a vertex algebra V if V is a conformal vertex subalgebra of W, and W is a finite direct sum of simple V-modules.

The natural embedding $V \longleftrightarrow W$ induces a Poisson algebra morphism

$$
\varphi: R_{V} \longrightarrow R_{w}
$$

hence a morphism of Poisson varieties

$$
\pi:=\varphi_{\mathrm{red}}^{*}: X_{w} \longrightarrow X_{V}
$$

Conjecture [Arakawa-Van Ekeren-M. '21].
If W is a finite extension of V, then the morphism $\pi: X_{W} \longrightarrow X_{V}$ is dominant.

- It is known that if V is lisse, that is, $X_{V}=\{\mathrm{pt}\}$, then W is lisse.

Finite extensions

A vertex algebra W is a finite extension of a vertex algebra V if V is a conformal vertex subalgebra of W, and W is a finite direct sum of simple V-modules.

The natural embedding $V \hookrightarrow W$ induces a Poisson algebra morphism

$$
\varphi: R_{V} \longrightarrow R_{w}
$$

hence a morphism of Poisson varieties

$$
\pi:=\varphi_{\mathrm{red}}^{*}: X_{W} \longrightarrow X_{V}
$$

Conjecture [Arakawa-Van Ekeren-M. '21].
If W is a finite extension of V, then the morphism $\pi: X_{W} \longrightarrow X_{V}$ is dominant.

- It is known that if V is lisse, that is, $X_{V}=\{\mathrm{pt}\}$, then W is lisse.

The conjecture suggests that the converse holds as well.

Finite extensions

A vertex algebra W is a finite extension of a vertex algebra V if V is a conformal vertex subalgebra of W, and W is a finite direct sum of simple V-modules.

The natural embedding $V \longleftrightarrow W$ induces a Poisson algebra morphism

$$
\varphi: R_{V} \longrightarrow R_{w}
$$

hence a morphism of Poisson varieties

$$
\pi:=\varphi_{\mathrm{red}}^{*}: X_{w} \longrightarrow X_{V}
$$

Conjecture [Arakawa-Van Ekeren-M. '21].
If W is a finite extension of V, then the morphism $\pi: X_{W} \longrightarrow X_{V}$ is dominant.

- It is known that if V is lisse, that is, $X_{V}=\{\mathrm{pt}\}$, then W is lisse. The conjecture suggests that the converse holds as well.
- The conjecture is not true for infinite extensions of vertex algebras.

Finite extensions

A vertex algebra W is a finite extension of a vertex algebra V if V is a conformal vertex subalgebra of W, and W is a finite direct sum of simple V-modules.

The natural embedding $V \hookrightarrow W$ induces a Poisson algebra morphism

$$
\varphi: R_{V} \longrightarrow R_{W}
$$

hence a morphism of Poisson varieties

$$
\pi:=\varphi_{\mathrm{red}}^{*}: X_{W} \longrightarrow X_{V}
$$

Conjecture [Arakawa-Van Ekeren-M. '21].

If W is a finite extension of V, then the morphism $\pi: X_{W} \longrightarrow X_{V}$ is dominant.

- It is known that if V is lisse, that is, $X_{V}=\{p t\}$, then W is lisse. The conjecture suggests that the converse holds as well.
- The conjecture is not true for infinite extensions of vertex algebras.

Let L be an even integral lattice and $\mathfrak{h}=\mathbb{C} \otimes L$, and consider the Heisenberg vertex algebra $V=V^{1}(\mathfrak{h})$ inside the lattice vertex algebra $W=V_{L}$.

Finite extensions

A vertex algebra W is a finite extension of a vertex algebra V if V is a conformal vertex subalgebra of W, and W is a finite direct sum of simple V-modules.

The natural embedding $V \hookrightarrow W$ induces a Poisson algebra morphism

$$
\varphi: R_{V} \longrightarrow R_{w}
$$

hence a morphism of Poisson varieties

$$
\pi:=\varphi_{\mathrm{red}}^{*}: X_{W} \longrightarrow X_{V}
$$

Conjecture [Arakawa-Van Ekeren-M. '21].
If W is a finite extension of V, then the morphism $\pi: X_{W} \longrightarrow X_{V}$ is dominant.

- It is known that if V is lisse, that is, $X_{V}=\{p t\}$, then W is lisse. The conjecture suggests that the converse holds as well.
- The conjecture is not true for infinite extensions of vertex algebras.

Let L be an even integral lattice and $\mathfrak{h}=\mathbb{C} \otimes L$, and consider the Heisenberg vertex algebra $V=V^{1}(\mathfrak{h})$ inside the lattice vertex algebra $W=V_{L}$.
Then $R_{V} \cong S(\mathfrak{h})$ while R_{W} is finite dimensional.

Finite extensions of affine vertex algebras

Finite extensions of affine vertex algebras

Let V be a quotient of the universal affine vertex algebra $V^{\kappa}(\mathfrak{g})$ associated with a bilinear form κ and a finite-dimensional Lie algebra \mathfrak{g}.

Finite extensions of affine vertex algebras

Let V be a quotient of the universal affine vertex algebra $V^{\kappa}(\mathfrak{g})$ associated with a bilinear form κ and a finite-dimensional Lie algebra \mathfrak{g}.
So V is strongly generated by the Lie algebra V_{1}.

Finite extensions of affine vertex algebras

Let V be a quotient of the universal affine vertex algebra $V^{\kappa}(\mathfrak{g})$ associated with a bilinear form κ and a finite-dimensional Lie algebra \mathfrak{g}.
So V is strongly generated by the Lie algebra V_{1}.
Proposition [Van Ekeren-M. '22].

Finite extensions of affine vertex algebras

Let V be a quotient of the universal affine vertex algebra $V^{\kappa}(\mathfrak{g})$ associated with a bilinear form κ and a finite-dimensional Lie algebra \mathfrak{g}.
So V is strongly generated by the Lie algebra V_{1}.

Proposition [Van Ekeren-M. '22].

If V is a simple affine vertex algebra and W decomposes as a finite direct sum of irreducible ordinary V-modules,

Finite extensions of affine vertex algebras

Let V be a quotient of the universal affine vertex algebra $V^{\kappa}(\mathfrak{g})$ associated with a bilinear form κ and a finite-dimensional Lie algebra \mathfrak{g}.
So V is strongly generated by the Lie algebra V_{1}.

Proposition [Van Ekeren-M. '22].

If V is a simple affine vertex algebra and W decomposes as a finite direct sum of irreducible ordinary V-modules, then the extension $\varphi\left(R_{V}\right) \longleftrightarrow R_{W}$ is finite.

Finite extensions of affine vertex algebras

Let V be a quotient of the universal affine vertex algebra $V^{\kappa}(\mathfrak{g})$ associated with a bilinear form κ and a finite-dimensional Lie algebra \mathfrak{g}.
So V is strongly generated by the Lie algebra V_{1}.
Proposition [Van Ekeren-M. '22].
If V is a simple affine vertex algebra and W decomposes as a finite direct sum of irreducible ordinary V-modules, then the extension $\varphi\left(R_{V}\right) \longleftrightarrow R_{W}$ is finite.

By ordinary V-module we mean a module with finite-dimensional graded pieces such that the conformal weights are bounded from below.

Finite extensions of affine vertex algebras

Let V be a quotient of the universal affine vertex algebra $V^{\kappa}(\mathfrak{g})$ associated with a bilinear form κ and a finite-dimensional Lie algebra \mathfrak{g}.
So V is strongly generated by the Lie algebra V_{1}.
Proposition [Van Ekeren-M. '22].
If V is a simple affine vertex algebra and W decomposes as a finite direct sum of irreducible ordinary V-modules, then the extension $\varphi\left(R_{V}\right) \longleftrightarrow R_{W}$ is finite.

By ordinary V-module we mean a module with finite-dimensional graded pieces such that the conformal weights are bounded from below.

Idea of the proof.

Finite extensions of affine vertex algebras

Let V be a quotient of the universal affine vertex algebra $V^{\kappa}(\mathfrak{g})$ associated with a bilinear form κ and a finite-dimensional Lie algebra \mathfrak{g}.
So V is strongly generated by the Lie algebra V_{1}.

Proposition [Van Ekeren-M. '22].

If V is a simple affine vertex algebra and W decomposes as a finite direct sum of irreducible ordinary V-modules, then the extension $\varphi\left(R_{V}\right) \longleftrightarrow R_{W}$ is finite.

By ordinary V-module we mean a module with finite-dimensional graded pieces such that the conformal weights are bounded from below.

Idea of the proof. Write

$$
W=V \oplus \bigoplus_{i=2}^{s} M^{(i)}
$$

Finite extensions of affine vertex algebras

Let V be a quotient of the universal affine vertex algebra $V^{\kappa}(\mathfrak{g})$ associated with a bilinear form κ and a finite-dimensional Lie algebra \mathfrak{g}.
So V is strongly generated by the Lie algebra V_{1}.
Proposition [Van Ekeren-M. '22].
If V is a simple affine vertex algebra and W decomposes as a finite direct sum of irreducible ordinary V-modules, then the extension $\varphi\left(R_{V}\right) \longleftrightarrow R_{W}$ is finite.

By ordinary V-module we mean a module with finite-dimensional graded pieces such that the conformal weights are bounded from below.

Idea of the proof. Write

$$
W=V \oplus \bigoplus_{i=2}^{s} M^{(i)}, \quad M^{(i)} \text { irreducible ordinary } V \text {-modules. }
$$

Finite extensions of affine vertex algebras

Let V be a quotient of the universal affine vertex algebra $V^{\kappa}(\mathfrak{g})$ associated with a bilinear form κ and a finite-dimensional Lie algebra \mathfrak{g}.
So V is strongly generated by the Lie algebra V_{1}.
Proposition [Van Ekeren-M. '22].
If V is a simple affine vertex algebra and W decomposes as a finite direct sum of irreducible ordinary V-modules, then the extension $\varphi\left(R_{V}\right) \longleftrightarrow R_{W}$ is finite.

By ordinary V-module we mean a module with finite-dimensional graded pieces such that the conformal weights are bounded from below.

Idea of the proof. Write

$$
W=V \oplus \bigoplus_{i=2}^{s} M^{(i)}, \quad M^{(i)} \text { irreducible ordinary } V \text {-modules. }
$$

The union of a basis $\left\{a^{1}, \ldots, a^{r}\right\}$ of V_{1} with a basis $\left\{x^{1}, \ldots, x^{r}\right\}$ of $\bigoplus_{i} M_{\text {low }}^{(i)}$, forms a set of strong generators of W.

Finite extensions of affine vertex algebras

Let V be a quotient of the universal affine vertex algebra $V^{\kappa}(\mathfrak{g})$ associated with a bilinear form κ and a finite-dimensional Lie algebra \mathfrak{g}.
So V is strongly generated by the Lie algebra V_{1}.
Proposition [Van Ekeren-M. '22].
If V is a simple affine vertex algebra and W decomposes as a finite direct sum of irreducible ordinary V-modules, then the extension $\varphi\left(R_{V}\right) \longleftrightarrow R_{W}$ is finite.

By ordinary V-module we mean a module with finite-dimensional graded pieces such that the conformal weights are bounded from below.

Idea of the proof. Write

$$
W=V \oplus \bigoplus_{i=2}^{s} M^{(i)}, \quad M^{(i)} \text { irreducible ordinary } V \text {-modules. }
$$

The union of a basis $\left\{a^{1}, \ldots, a^{r}\right\}$ of V_{1} with a basis $\left\{x^{1}, \ldots, x^{r}\right\}$ of $\bigoplus_{i} M_{\text {low }}^{(i)}$, forms a set of strong generators of W.
In fact, W is spanned by monomials in $a_{\left(n_{i}\right)}^{i}, n_{i} \leqslant-1$, and x^{j} containing at most one " x ".

Finite extensions of affine vertex algebras

Let V be a quotient of the universal affine vertex algebra $V^{\kappa}(\mathfrak{g})$ associated with a bilinear form κ and a finite-dimensional Lie algebra \mathfrak{g}.
So V is strongly generated by the Lie algebra V_{1}.
Proposition [Van Ekeren-M. '22].
If V is a simple affine vertex algebra and W decomposes as a finite direct sum of irreducible ordinary V-modules, then the extension $\varphi\left(R_{V}\right) \longleftrightarrow R_{W}$ is finite.

By ordinary V-module we mean a module with finite-dimensional graded pieces such that the conformal weights are bounded from below.

Idea of the proof. Write

$$
W=V \oplus \bigoplus_{i=2}^{s} M^{(i)}, \quad M^{(i)} \text { irreducible ordinary } V \text {-modules. }
$$

The union of a basis $\left\{a^{1}, \ldots, a^{r}\right\}$ of V_{1} with a basis $\left\{x^{1}, \ldots, x^{r}\right\}$ of $\bigoplus_{i} M_{\text {low }}^{(i)}$, forms a set of strong generators of W.
In fact, W is spanned by monomials in $a_{\left(n_{i}\right)}^{i}, n_{i} \leqslant-1$, and x^{j} containing at most one " x ". So R_{W} is spanned by the $a^{i_{1}} a^{i_{2}} \cdots a^{i_{s}} x^{j}$, thus is finitely generated as a $\varphi\left(R_{V}\right)$-module.

Finite extensions of affine vertex algebras

Let V be a quotient of the universal affine vertex algebra $V^{\kappa}(\mathfrak{g})$ associated with a bilinear form κ and a finite-dimensional Lie algebra \mathfrak{g}.
So V is strongly generated by the Lie algebra V_{1}.
Proposition [Van Ekeren-M. '22].
If V is a simple affine vertex algebra and W decomposes as a finite direct sum of irreducible ordinary V-modules, then the extension $\varphi\left(R_{V}\right) \longleftrightarrow R_{W}$ is finite.

By ordinary V-module we mean a module with finite-dimensional graded pieces such that the conformal weights are bounded from below.

Idea of the proof. Write

$$
W=V \oplus \bigoplus_{i=2}^{s} M^{(i)}, \quad M^{(i)} \text { irreducible ordinary } V \text {-modules. }
$$

The union of a basis $\left\{a^{1}, \ldots, a^{r}\right\}$ of V_{1} with a basis $\left\{x^{1}, \ldots, x^{r}\right\}$ of $\bigoplus_{i} M_{\text {low }}^{(i)}$, forms a set of strong generators of W.
In fact, W is spanned by monomials in $a_{\left(n_{i}\right)}^{i}, n_{i} \leqslant-1$, and x^{j} containing at most one " x ". So R_{W} is spanned by the $a^{i_{1}} a^{i_{2}} \cdots a^{i_{s}} x^{j}$, thus is finitely generated as a $\varphi\left(R_{V}\right)$-module.

- As Poisson algebras, the extension $\varphi\left(R_{V}\right) \longleftrightarrow R_{W}$ is finite of degree at most s.

Finite extensions of affine vertex algebras

Let V be a quotient of the universal affine vertex algebra $V^{\kappa}(\mathfrak{g})$ associated with a bilinear form κ and a finite-dimensional Lie algebra \mathfrak{g}.
So V is strongly generated by the Lie algebra V_{1}.
Proposition [Van Ekeren-M. '22].
If V is a simple affine vertex algebra and W decomposes as a finite direct sum of irreducible ordinary V-modules, then the extension $\varphi\left(R_{V}\right) \longleftrightarrow R_{W}$ is finite.

By ordinary V-module we mean a module with finite-dimensional graded pieces such that the conformal weights are bounded from below.

Idea of the proof. Write

$$
W=V \oplus \bigoplus_{i=2}^{s} M^{(i)}, \quad M^{(i)} \text { irreducible ordinary } V \text {-modules. }
$$

The union of a basis $\left\{a^{1}, \ldots, a^{r}\right\}$ of V_{1} with a basis $\left\{x^{1}, \ldots, x^{r}\right\}$ of $\bigoplus_{i} M_{\text {low }}^{(i)}$, forms a set of strong generators of W.
In fact, W is spanned by monomials in $a_{\left(n_{i}\right)}^{i}, n_{i} \leqslant-1$, and x^{j} containing at most one " x ". So R_{W} is spanned by the $a^{i_{1}} a^{i_{2}} \cdots a^{i_{s}} x^{j}$, thus is finitely generated as a $\varphi\left(R_{V}\right)$-module.

- As Poisson algebras, the extension $\varphi\left(R_{V}\right) \longleftrightarrow R_{W}$ is finite of degree at most s.
- The structure of the extension $\varphi\left(R_{V}\right) \longleftrightarrow R_{W}$ might be related to the structure of the fusion ring of V.

Consider the associated varieties

$$
X_{V}=\left(\operatorname{Spec} R_{V}\right)_{\text {red }}, \quad X_{W}=\left(\operatorname{Spec} R_{W}\right)_{\text {red }} \quad \text { and } \quad Y=\left(\operatorname{Spec} \varphi\left(R_{V}\right)\right)_{\text {red }}
$$

Consider the associated varieties

$$
X_{V}=\left(\operatorname{Spec} R_{V}\right)_{\text {red }}, \quad X_{W}=\left(\operatorname{Spec} R_{W}\right)_{\text {red }} \quad \text { and } \quad Y=\left(\operatorname{Spec} \varphi\left(R_{V}\right)\right)_{\text {red }}
$$

We have the diagram

Consider the associated varieties

$$
X_{V}=\left(\operatorname{Spec} R_{V}\right)_{\text {red }}, \quad X_{W}=\left(\operatorname{Spec} R_{W}\right)_{\text {red }} \quad \text { and } \quad Y=\left(\operatorname{Spec} \varphi\left(R_{V}\right)\right)_{\text {red }}
$$

We have the diagram

Consider the associated varieties

$$
X_{V}=\left(\operatorname{Spec} R_{V}\right)_{\text {red }}, \quad X_{W}=\left(\operatorname{Spec} R_{W}\right)_{\text {red }} \quad \text { and } \quad Y=\left(\operatorname{Spec} \varphi\left(R_{V}\right)\right)_{\text {red }}
$$

We have the diagram

Corollary.

Assume that X_{w} and X_{V} are irreducible.

Consider the associated varieties

$$
X_{V}=\left(\operatorname{Spec} R_{V}\right)_{\text {red }}, \quad X_{W}=\left(\operatorname{Spec} R_{W}\right)_{\text {red }} \quad \text { and } \quad Y=\left(\operatorname{Spec} \varphi\left(R_{V}\right)\right)_{\text {red }}
$$

We have the diagram

Corollary.

Assume that X_{w} and X_{v} are irreducible. In the context of the proposition, we have $\operatorname{dim} X_{w}=\operatorname{dim} Y \leqslant \operatorname{dim} X_{v}$.

Consider the associated varieties

$$
X_{V}=\left(\operatorname{Spec} R_{V}\right)_{\text {red }}, \quad X_{W}=\left(\operatorname{Spec} R_{W}\right)_{\text {red }} \quad \text { and } \quad Y=\left(\operatorname{Spec} \varphi\left(R_{V}\right)\right)_{\text {red }}
$$

We have the diagram

Corollary.

Assume that X_{w} and X_{V} are irreducible. In the context of the proposition, we have $\operatorname{dim} X_{w}=\operatorname{dim} Y \leqslant \operatorname{dim} X_{v}$.

Therefore, if $\operatorname{dim} X_{W} \geqslant \operatorname{dim} X_{V}$, the conjecture holds.

Consider the associated varieties

$$
X_{V}=\left(\operatorname{Spec} R_{V}\right)_{\text {red }}, \quad X_{W}=\left(\operatorname{Spec} R_{W}\right)_{\text {red }} \quad \text { and } \quad Y=\left(\operatorname{Spec} \varphi\left(R_{V}\right)\right)_{\text {red }}
$$

We have the diagram

Corollary.

Assume that X_{w} and X_{v} are irreducible. In the context of the proposition, we have

$$
\operatorname{dim} X_{w}=\operatorname{dim} Y \leqslant \operatorname{dim} X_{v}
$$

Therefore, if $\operatorname{dim} X_{W} \geqslant \operatorname{dim} X_{V}$, the conjecture holds.
\leadsto From now on we will focus on finite extensions of admissible simple affine vertex algebras which are simple W-algebras.

Simple affine vertex algebras at admissible levels

Simple affine vertex algebras at admissible levels

Consider the universal affine vertex algebra $V^{k}(\mathfrak{g})$ associated with a simple Lie algebra \mathfrak{g} at level $k \in \mathbb{C}$.

Simple affine vertex algebras at admissible levels

Consider the universal affine vertex algebra $V^{k}(\mathfrak{g})$ associated with a simple Lie algebra \mathfrak{g} at level $k \in \mathbb{C}$.

We have

$$
X_{V^{k}(\mathfrak{g})}=\mathfrak{g}^{*} \cong \mathfrak{g}
$$

Simple affine vertex algebras at admissible levels

Consider the universal affine vertex algebra $V^{k}(\mathfrak{g})$ associated with a simple Lie algebra \mathfrak{g} at level $k \in \mathbb{C}$.

We have

$$
X_{V^{k}(\mathfrak{g})}=\mathfrak{g}^{*} \cong \mathfrak{g}
$$

The associated variety $X_{L_{k}(\mathfrak{g})} \subset \mathfrak{g}$ of the simple quotient $L_{k}(\mathfrak{g})$ of $V^{k}(\mathfrak{g})$ is G-invariant and conic.

Simple affine vertex algebras at admissible levels

Consider the universal affine vertex algebra $V^{k}(\mathfrak{g})$ associated with a simple Lie algebra \mathfrak{g} at level $k \in \mathbb{C}$.

We have

$$
X_{V^{k}(\mathfrak{g})}=\mathfrak{g}^{*} \cong \mathfrak{g}
$$

The associated variety $X_{L_{k}(\mathfrak{g})} \subset \mathfrak{g}$ of the simple quotient $L_{k}(\mathfrak{g})$ of $V^{k}(\mathfrak{g})$ is G-invariant and conic.

Theorem [ARakawa '15].

Simple affine vertex algebras at admissible levels

Consider the universal affine vertex algebra $V^{k}(\mathfrak{g})$ associated with a simple Lie algebra \mathfrak{g} at level $k \in \mathbb{C}$.

We have

$$
X_{V^{k}(\mathfrak{g})}=\mathfrak{g}^{*} \cong \mathfrak{g}
$$

The associated variety $X_{L_{k}(\mathfrak{g})} \subset \mathfrak{g}$ of the simple quotient $L_{k}(\mathfrak{g})$ of $V^{k}(\mathfrak{g})$ is G-invariant and conic.

THEOREM [ARAKAWA '15].
If $L_{k}(\mathfrak{g})$ is admissible,

Simple affine vertex algebras at admissible levels

Consider the universal affine vertex algebra $V^{k}(\mathfrak{g})$ associated with a simple Lie algebra \mathfrak{g} at level $k \in \mathbb{C}$.

We have

$$
X_{V^{k}(\mathfrak{g})}=\mathfrak{g}^{*} \cong \mathfrak{g}
$$

The associated variety $X_{L_{k}(\mathfrak{g})} \subset \mathfrak{g}$ of the simple quotient $L_{k}(\mathfrak{g})$ of $V^{k}(\mathfrak{g})$ is G-invariant and conic.

Theorem [Arakawa '15].
If $L_{k}(\mathfrak{g})$ is admissible, i.e.,

$$
k=-h_{\mathfrak{g}}^{\vee}+p / q, \text { with }(p, q)=1 \text { and } \begin{cases}p \geqslant h_{\mathfrak{g}}^{\vee} & \text { if }\left(q, r^{\vee}\right)=1 \\ p \geqslant h_{\mathfrak{g}} & \text { if }\left(q, r^{\vee}\right) \neq 1,\end{cases}
$$

Simple affine vertex algebras at admissible levels

Consider the universal affine vertex algebra $V^{k}(\mathfrak{g})$ associated with a simple Lie algebra \mathfrak{g} at level $k \in \mathbb{C}$.

We have

$$
X_{V^{k}(\mathfrak{g})}=\mathfrak{g}^{*} \cong \mathfrak{g}
$$

The associated variety $X_{L_{k}(\mathfrak{g})} \subset \mathfrak{g}$ of the simple quotient $L_{k}(\mathfrak{g})$ of $V^{k}(\mathfrak{g})$ is G-invariant and conic.

Theorem [Arakawa '15].

If $L_{k}(\mathfrak{g})$ is admissible, i.e.,

$$
k=-h_{\mathfrak{g}}^{\vee}+p / q, \text { with }(p, q)=1 \text { and } \begin{cases}p \geqslant h_{\mathfrak{g}}^{\vee} & \text { if }\left(q, r^{\vee}\right)=1 \\ p \geqslant h_{\mathfrak{g}} & \text { if }\left(q, r^{\vee}\right) \neq 1\end{cases}
$$

then $X_{L_{k}(\mathfrak{g})}=\overline{\mathbb{O}_{k}}$, for some nilpotent orbit \mathbb{O}_{k} of \mathfrak{g} which depends only on q.

Simple affine vertex algebras at admissible levels

Consider the universal affine vertex algebra $V^{k}(\mathfrak{g})$ associated with a simple Lie algebra \mathfrak{g} at level $k \in \mathbb{C}$.

We have

$$
X_{V^{k}(\mathfrak{g})}=\mathfrak{g}^{*} \cong \mathfrak{g}
$$

The associated variety $X_{L_{k}(\mathfrak{g})} \subset \mathfrak{g}$ of the simple quotient $L_{k}(\mathfrak{g})$ of $V^{k}(\mathfrak{g})$ is G-invariant and conic.

Theorem [Arakawa '15].

If $L_{k}(\mathfrak{g})$ is admissible, i.e.,

$$
k=-h_{\mathfrak{g}}^{\vee}+p / q, \text { with }(p, q)=1 \text { and } \begin{cases}p \geqslant h_{\mathfrak{g}}^{\vee} & \text { if }\left(q, r^{\vee}\right)=1 \\ p \geqslant h_{\mathfrak{g}} & \text { if }\left(q, r^{\vee}\right) \neq 1,\end{cases}
$$

then $X_{L_{k}(\mathfrak{g})}=\overline{\mathbb{O}_{k}}$, for some nilpotent orbit \mathbb{O}_{k} of \mathfrak{g} which depends only on q.

In particular, $X_{L_{k}(\mathfrak{g})}$ is irreducible and its dimension only depends on q.

Compatibility with Drinfeld-Sokolov reduction

Compatibility with Drinfeld-Sokolov reduction

Let f be a nilpotent element of \mathfrak{g},

Compatibility with Drinfeld-Sokolov reduction

Let f be a nilpotent element of \mathfrak{g}, the W-algebra associated with \mathfrak{g}, f at the level k

Compatibility with Drinfeld-Sokolov reduction

Let f be a nilpotent element of \mathfrak{g}, the W-algebra associated with \mathfrak{g}, f at the level k obtained by the quantized Drinfeld-Sokolov reduction [Feigin-Frenkel, Kac-Roan-Wakimoto]:

Compatibility with Drinfeld-Sokolov reduction

Let f be a nilpotent element of \mathfrak{g}, the W-algebra associated with \mathfrak{g}, f at the level k obtained by the quantized Drinfeld-Sokolov reduction [Feigin-Frenkel, Kac-Roan-Wakimoto]:

$$
\mathcal{W}^{k}(\mathfrak{g}, f)=H_{D S, f}^{0}\left(V^{k}(\mathfrak{g})\right)
$$

Compatibility with Drinfeld-Sokolov reduction

Let f be a nilpotent element of \mathfrak{g}, the W-algebra associated with \mathfrak{g}, f at the level k obtained by the quantized Drinfeld-Sokolov reduction [Feigin-Frenkel, Kac-Roan-Wakimoto]:

$$
\mathcal{W}^{k}(\mathfrak{g}, f)=H_{D S, f}^{0}\left(V^{k}(\mathfrak{g})\right)
$$

Then [De Sole-Kac]

$$
X_{\mathcal{W}^{k}(\mathfrak{g}, f)} \cong \mathscr{S}_{f}:=f+\mathfrak{g}^{e}
$$

where \mathscr{S}_{f} is the Slodowy slice attached with an $\mathfrak{s l}_{2}$-triple (e, h, f).

Compatibility with Drinfeld-Sokolov reduction

Let f be a nilpotent element of \mathfrak{g}, the W-algebra associated with \mathfrak{g}, f at the level k obtained by the quantized Drinfeld-Sokolov reduction [Feigin-Frenkel, Kac-Roan-Wakimoto]:

$$
\mathcal{W}^{k}(\mathfrak{g}, f)=H_{D S, f}^{0}\left(V^{k}(\mathfrak{g})\right)
$$

Then [De Sole-Kac]

$$
X_{\mathcal{W}^{k}(\mathfrak{g}, f)} \cong \mathscr{S}_{f}:=f+\mathfrak{g}^{e}
$$

where \mathscr{S}_{f} is the Slodowy slice attached with an $\mathfrak{s l}_{2}$-triple (e, h, f).
Theorem [Arakawa '15].

Compatibility with Drinfeld-Sokolov reduction

Let f be a nilpotent element of \mathfrak{g}, the W-algebra associated with \mathfrak{g}, f at the level k obtained by the quantized Drinfeld-Sokolov reduction [Feigin-Frenkel, Kac-Roan-Wakimoto]:

$$
\mathcal{W}^{k}(\mathfrak{g}, f)=H_{D S, f}^{0}\left(V^{k}(\mathfrak{g})\right)
$$

Then [De Sole-Kac]

$$
X_{\mathcal{W}^{k}(\mathfrak{g}, f)} \cong \mathscr{S}_{f}:=f+\mathfrak{g}^{e}
$$

where \mathscr{S}_{f} is the Slodowy slice attached with an $\mathfrak{s l}_{2}$-triple (e, h, f).
Theorem [Arakawa '15].
We have

$$
X_{H_{D S, f}^{0}\left(L_{K}(\mathfrak{g})\right)} \cong X_{L_{k}(\mathfrak{g})} \cap \mathscr{S}_{f} .
$$

Compatibility with Drinfeld-Sokolov reduction

Let f be a nilpotent element of \mathfrak{g}, the W-algebra associated with \mathfrak{g}, f at the level k obtained by the quantized Drinfeld-Sokolov reduction [Feigin-Frenkel, Kac-Roan-Wakimoto]:

$$
\mathcal{W}^{k}(\mathfrak{g}, f)=H_{D S, f}^{0}\left(V^{k}(\mathfrak{g})\right)
$$

Then [De Sole-Kac]

$$
X_{\mathcal{W}^{k}(\mathfrak{g}, f)} \cong \mathscr{S}_{f}:=f+\mathfrak{g}^{e},
$$

where \mathscr{S}_{f} is the Slodowy slice attached with an $\mathfrak{s l}_{2}$-triple (e, h, f).
Theorem [Arakawa '15].
We have

$$
X_{H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)} \cong X_{L_{k}(\mathfrak{g})} \cap \mathscr{S}_{f} .
$$

In particular, $X_{H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)}$ is isomorphic to $\overline{\mathbb{O}_{k}} \cap \mathscr{S}_{f}$ if $k=-h^{\vee}+p / q$ is admissible.

Compatibility with Drinfeld-Sokolov reduction

Let f be a nilpotent element of \mathfrak{g}, the W-algebra associated with \mathfrak{g}, f at the level k obtained by the quantized Drinfeld-Sokolov reduction [Feigin-Frenkel, Kac-Roan-Wakimoto]:

$$
\mathcal{W}^{k}(\mathfrak{g}, f)=H_{D S, f}^{0}\left(V^{k}(\mathfrak{g})\right)
$$

Then [De Sole-Kac]

$$
X_{\mathcal{W}^{k}(\mathfrak{g}, f)} \cong \mathscr{S}_{f}:=f+\mathfrak{g}^{e}
$$

where \mathscr{S}_{f} is the Slodowy slice attached with an $\mathfrak{s l}_{2}$-triple (e, h, f).
Theorem [Arakawa '15].
We have

$$
X_{H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)} \cong X_{L_{k}(\mathfrak{g})} \cap \mathscr{S}_{f} .
$$

In particular, $X_{H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)}$ is isomorphic to $\overline{\mathbb{O}_{k}} \cap \mathscr{S}_{f}$ if $k=-h^{\vee}+p / q$ is admissible.

- If k is admissible, then $X_{H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)}=\overline{\mathbb{O}_{k}} \cap \mathscr{S}_{f}$ is irreducible [ARAKAWA-M. '18],

Compatibility with Drinfeld-Sokolov reduction

Let f be a nilpotent element of \mathfrak{g}, the W-algebra associated with \mathfrak{g}, f at the level k obtained by the quantized Drinfeld-Sokolov reduction [Feigin-Frenkel, Kac-Roan-Wakimoto]:

$$
\mathcal{W}^{k}(\mathfrak{g}, f)=H_{D S, f}^{0}\left(V^{k}(\mathfrak{g})\right)
$$

Then [De Sole-Kac]

$$
X_{\mathcal{W}^{k}(\mathfrak{g}, f)} \cong \mathscr{S}_{f}:=f+\mathfrak{g}^{e}
$$

where \mathscr{S}_{f} is the Slodowy slice attached with an $\mathfrak{s l}_{2}$-triple (e, h, f).
Theorem [Arakawa '15].
We have

$$
X_{H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)} \cong X_{L_{k}(\mathfrak{g})} \cap \mathscr{S}_{f} .
$$

In particular, $X_{H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)}$ is isomorphic to $\overline{\mathbb{O}_{k}} \cap \mathscr{S}_{f}$ if $k=-h^{\vee}+p / q$ is admissible.

- If k is admissible, then $X_{H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)}=\overline{\mathbb{O}_{k}} \cap \mathscr{S}_{f}$ is irreducible [ARAKAWA-M. '18], and

$$
\operatorname{dim} X_{H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)}=\operatorname{dim} \mathbb{O}_{k}-\operatorname{dim} \text { G.f. }
$$

- Conjecturally [КАС-WАкімото],

$$
\mathcal{W}_{k}(\mathfrak{g}, f)=H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right),
$$

provided that $H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right) \neq 0$,

Compatibility with Drinfeld-Sokolov reduction

Let f be a nilpotent element of \mathfrak{g}, the W-algebra associated with \mathfrak{g}, f at the level k obtained by the quantized Drinfeld-Sokolov reduction [Feigin-Frenkel, Kac-Roan-Wakimoto]:

$$
\mathcal{W}^{k}(\mathfrak{g}, f)=H_{D S, f}^{0}\left(V^{k}(\mathfrak{g})\right)
$$

Then [De Sole-Kac]

$$
X_{\mathcal{W}^{k}(\mathfrak{g}, f)} \cong \mathscr{S}_{f}:=f+\mathfrak{g}^{e}
$$

where \mathscr{S}_{f} is the Slodowy slice attached with an $\mathfrak{s l}_{2}$-triple (e, h, f).
Theorem [Arakawa '15].
We have

$$
X_{H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)} \cong X_{L_{k}(\mathfrak{g})} \cap \mathscr{S}_{f} .
$$

In particular, $X_{H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)}$ is isomorphic to $\overline{\mathbb{O}_{k}} \cap \mathscr{S}_{f}$ if $k=-h^{\vee}+p / q$ is admissible.

- If k is admissible, then $X_{H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)}=\overline{\mathbb{O}_{k}} \cap \mathscr{S}_{f}$ is irreducible [ARAKAWA-M. '18], and

$$
\operatorname{dim} X_{H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)}=\operatorname{dim} \mathbb{O}_{k}-\operatorname{dim} \text { G.f. }
$$

- Conjecturally [КАС-WАкімото],

$$
\mathcal{W}_{k}(\mathfrak{g}, f)=H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right),
$$

provided that $H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right) \neq 0$, where $\mathcal{W}_{k}(\mathfrak{g}, f)$ is the simple quotient of $\mathcal{W}^{k}(\mathfrak{g}, f)$.

Collapsing levels for W-algebras

Collapsing levels for W-algebras

Let \mathfrak{g}^{\natural} be the centralizer of the $\mathfrak{s l}_{2}$-triple (e, h, f).

Collapsing levels for W-algebras

Let \mathfrak{g}^{\natural} be the centralizer of the $\mathfrak{s l}_{2}$-riple (e, h, f). It is a reductive algebra.

Collapsing levels for W-algebras

Let \mathfrak{g}^{\natural} be the centralizer of the $\mathfrak{s l}_{2}$-triple (e, h, f). It is a reductive algebra.

There is a vertex algebra morphism [КАС-WАКімото '04]:

Collapsing levels for W-algebras

Let \mathfrak{g}^{\natural} be the centralizer of the $\mathfrak{s l}_{2}$-triple (e, h, f).
It is a reductive algebra.

There is a vertex algebra morphism [KAC-WAKIMOTO '04]:

$$
V^{k^{\natural}}\left(\mathfrak{g}^{\natural}\right) \longleftrightarrow \mathcal{W}^{k}(\mathfrak{g}, f),
$$

Collapsing levels for W-algebras

Let \mathfrak{g}^{\natural} be the centralizer of the $\mathfrak{s l}_{2}$-triple (e, h, f).
It is a reductive algebra.

There is a vertex algebra morphism [КАС-WАКімото '04]:

$$
V^{k^{\natural}}\left(\mathfrak{g}^{\natural}\right) \longleftrightarrow \mathcal{W}^{k}(\mathfrak{g}, f),
$$

where the level k^{\natural} is determined by f and k.

Collapsing levels for W-algebras

Let \mathfrak{g}^{\natural} be the centralizer of the $\mathfrak{s l}_{2}$-triple (e, h, f).
It is a reductive algebra.

There is a vertex algebra morphism [КАС-WАКімото '04]:

$$
V^{k^{\natural}}\left(\mathfrak{g}^{\natural}\right) \longleftrightarrow \mathcal{W}^{k}(\mathfrak{g}, f),
$$

where the level k^{\natural} is determined by f and k.

Definition [Adamović-Kac-Möseneder-Papi-Perše '18].

Collapsing levels for W-algebras

Let \mathfrak{g}^{\natural} be the centralizer of the $\mathfrak{s l}_{2}$-triple (e, h, f).
It is a reductive algebra.

There is a vertex algebra morphism [КАС-WАКімото '04]:

$$
V^{k^{\natural}}\left(\mathfrak{g}^{\natural}\right) \longleftrightarrow \mathcal{W}^{k}(\mathfrak{g}, f),
$$

where the level k^{\natural} is determined by f and k.

Definition [Adamović-Kac-Möseneder-Papi-Perše '18].
We say that k is collapsing for $\mathcal{W}_{k}(\mathfrak{g}, f)$

Collapsing levels for W-algebras

Let \mathfrak{g}^{\natural} be the centralizer of the $\mathfrak{s l}_{2}$-triple (e, h, f).
It is a reductive algebra.

There is a vertex algebra morphism [КАС-WАКімото '04]:

$$
V^{k^{\natural}}\left(\mathfrak{g}^{\natural}\right) \longleftrightarrow \mathcal{W}^{k}(\mathfrak{g}, f),
$$

where the level k^{\natural} is determined by f and k.

Definition [Adamović-Kac-Möseneder-Papl-Perše '18].
We say that k is collapsing for $\mathcal{W}_{k}(\mathfrak{g}, f)$ if the image of the composition map

$$
V^{k^{\natural}}\left(\mathfrak{g}^{\mathfrak{\natural}}\right) \longleftrightarrow \mathcal{W}^{k}(\mathfrak{g}, f) \longrightarrow \mathcal{W}_{k}(\mathfrak{g}, f)
$$

is surjective,

Collapsing levels for W-algebras

Let \mathfrak{g}^{\natural} be the centralizer of the $\mathfrak{s l}_{2}$-triple (e, h, f).
It is a reductive algebra.

There is a vertex algebra morphism [КАС-WАКімото '04]:

$$
V^{k^{\natural}}\left(\mathfrak{g}^{\natural}\right) \longleftrightarrow \mathcal{W}^{k}(\mathfrak{g}, f),
$$

where the level k^{\natural} is determined by f and k.

Definition [Adamović-Kac-Möseneder-Papl-Perše '18].
We say that k is collapsing for $\mathcal{W}_{k}(\mathfrak{g}, f)$ if the image of the composition map

$$
V^{k^{\natural}}\left(\mathfrak{g}^{\natural}\right) \longleftrightarrow \mathcal{W}^{k}(\mathfrak{g}, f) \longrightarrow \mathcal{W}_{k}(\mathfrak{g}, f)
$$

is surjective, that is,

$$
\mathcal{W}_{k}(\mathfrak{g}, f) \cong L_{k^{\mathfrak{q}}}\left(\mathfrak{g}^{\mathfrak{\natural}}\right) .
$$

Collapsing levels for W-algebras

Let \mathfrak{g}^{\natural} be the centralizer of the $\mathfrak{s l}_{2}$-triple (e, h, f).
It is a reductive algebra.

There is a vertex algebra morphism [KAC-WAKıмото '04]:

$$
V^{k^{\natural}}\left(\mathfrak{g}^{\natural}\right) \longleftrightarrow \mathcal{W}^{k}(\mathfrak{g}, f),
$$

where the level k^{\natural} is determined by f and k.

Definition [Adamović-Kac-Möseneder-Papi-Perše '18].
We say that k is collapsing for $\mathcal{W}_{k}(\mathfrak{g}, f)$ if the image of the composition map

$$
V^{k^{\natural}}\left(\mathfrak{g}^{\natural}\right) \longleftrightarrow \mathcal{W}^{k}(\mathfrak{g}, f) \longrightarrow \mathcal{W}_{k}(\mathfrak{g}, f)
$$

is surjective, that is,

$$
\mathcal{W}_{k}(\mathfrak{g}, f) \cong L_{k^{\mathfrak{q}}}\left(\mathfrak{g}^{\mathfrak{\natural}}\right) .
$$

For example, if $\mathcal{W}_{k}(\mathfrak{g}, f) \cong \mathbb{C}$, then k is collapsing.

What is known about collapsing levels?

What is known about collapsing levels?

- [AKMPP '18] There is a full classification of collapsing levels for $\mathcal{W}_{k}\left(\mathfrak{g}, f_{\text {min }}\right)$, including simple affine Lie superalgebras.

What is known about collapsing levels?

- [AKMPP '18] There is a full classification of collapsing levels for $\mathcal{W}_{k}\left(\mathfrak{g}, f_{\text {min }}\right)$, including simple affine Lie superalgebras.
- [AvEM '21] We studied admissible collapsing levels:

What is known about collapsing levels?

- [AKMPP '18] There is a full classification of collapsing levels for $\mathcal{W}_{k}\left(\mathfrak{g}, f_{\text {min }}\right)$, including simple affine Lie superalgebras.
- [AvEM '21] We studied admissible collapsing levels: we provided a conjectural exhaustive list of such levels.

What is known about collapsing levels?

- [AKMPP '18] There is a full classification of collapsing levels for $\mathcal{W}_{k}\left(\mathfrak{g}, f_{\text {min }}\right)$, including simple affine Lie superalgebras.
- [AvEM '21] We studied admissible collapsing levels: we provided a conjectural exhaustive list of such levels.

Theorem $\left(\mathfrak{s l}_{n}\right)$ [Arakawa-van Ekeren-M. '21].

What is known about collapsing levels?

- [AKMPP '18] There is a full classification of collapsing levels for $\mathcal{W}_{k}\left(\mathfrak{g}, f_{\text {min }}\right)$, including simple affine Lie superalgebras.
- [AvEM '21] We studied admissible collapsing levels: we provided a conjectural exhaustive list of such levels.

Theorem ($\mathfrak{s l}_{n}$) [Arakawa-van Ekeren-M. '21].
Let $\mathfrak{g}=\mathfrak{s l}_{n}$ and $k=-n+p / q$ admissible. Write $n=q m_{0}+s_{0}, 0 \leqslant s_{0}<q$.

What is known about collapsing levels?

- [AKMPP '18] There is a full classification of collapsing levels for $\mathcal{W}_{k}\left(\mathfrak{g}, f_{\text {min }}\right)$, including simple affine Lie superalgebras.
- [AvEM '21] We studied admissible collapsing levels: we provided a conjectural exhaustive list of such levels.

Theorem ($\mathfrak{s l}_{n}$) [Arakawa-van Ekeren-M. '21].
Let $\mathfrak{g}=\mathfrak{s l}_{n}$ and $k=-n+p / q$ admissible. Write $n=q m_{0}+s_{0}, 0 \leqslant s_{0}<q$.
(1) Pick $f \in \mathbb{O}_{k}$ so that $\mathcal{W}_{k}\left(\mathfrak{s l}_{n}, f\right)$ is lisse (and even rational).

What is known about collapsing levels?

- [AKMPP '18] There is a full classification of collapsing levels for $\mathcal{W}_{k}\left(\mathfrak{g}, f_{\text {min }}\right)$, including simple affine Lie superalgebras.
- [AvEM '21] We studied admissible collapsing levels: we provided a conjectural exhaustive list of such levels.

Theorem ($\mathfrak{s l}_{n}$) [Arakawa-van Ekeren-M. '21].

Let $\mathfrak{g}=\mathfrak{s l}_{n}$ and $k=-n+p / q$ admissible. Write $n=q m_{0}+s_{0}, 0 \leqslant s_{0}<q$.
(1) Pick $f \in \mathbb{O}_{k}$ so that $\mathcal{W}_{k}\left(\mathfrak{s l}_{n}, f\right)$ is lisse (and even rational).

- if $n \equiv \pm 1 \bmod q$, then $\mathcal{W}_{k}\left(\mathfrak{s l}_{n}, f\right) \cong \mathbb{C}$.

What is known about collapsing levels?

- [AKMPP '18] There is a full classification of collapsing levels for $\mathcal{W}_{k}\left(\mathfrak{g}, f_{\text {min }}\right)$, including simple affine Lie superalgebras.
- [AvEM '21] We studied admissible collapsing levels: we provided a conjectural exhaustive list of such levels.

Theorem ($\mathfrak{s l}_{n}$) [Arakawa-van Ekeren-M. '21].

Let $\mathfrak{g}=\mathfrak{s l}_{n}$ and $k=-n+p / q$ admissible. Write $n=q m_{0}+s_{0}, 0 \leqslant s_{0}<q$.
(1) Pick $f \in \mathbb{O}_{k}$ so that $\mathcal{W}_{k}\left(\mathfrak{s l}_{n}, f\right)$ is lisse (and even rational).

- if $n \equiv \pm 1 \bmod q$, then $\mathcal{W}_{k}\left(\mathfrak{s l}_{n}, f\right) \cong \mathbb{C}$.
- if $n \equiv 0 \bmod q$, then $\mathcal{W}_{-n+(n+1) / q}\left(\mathfrak{s l}_{n}, f\right) \cong L_{1}\left(\mathfrak{s l}_{m_{0}}\right)$.

What is known about collapsing levels?

- [AKMPP '18] There is a full classification of collapsing levels for $\mathcal{W}_{k}\left(\mathfrak{g}, f_{\text {min }}\right)$, including simple affine Lie superalgebras.
- [AvEM '21] We studied admissible collapsing levels: we provided a conjectural exhaustive list of such levels.

Theorem ($\mathfrak{s l}_{n}$) [Arakawa-van Ekeren-M. '21].

Let $\mathfrak{g}=\mathfrak{s l}_{n}$ and $k=-n+p / q$ admissible. Write $n=q m_{0}+s_{0}, 0 \leqslant s_{0}<q$.
(1) Pick $f \in \mathbb{O}_{k}$ so that $\mathcal{W}_{k}\left(\mathfrak{s l}_{n}, f\right)$ is lisse (and even rational).

- if $n \equiv \pm 1 \bmod q$, then $\mathcal{W}_{k}\left(\mathfrak{s l}_{n}, f\right) \cong \mathbb{C}$.
- if $n \equiv 0 \bmod q$, then $\mathcal{W}_{-n+(n+1) / q}\left(\mathfrak{s l}_{n}, f\right) \cong L_{1}\left(\mathfrak{s l}_{m_{0}}\right)$.
(2) Pick $f \in \mathbb{O}_{\left(q^{m}, 1^{s}\right)} \in \overline{\mathbb{O}_{k}}$ with $s \neq 0$.

What is known about collapsing levels?

- [AKMPP '18] There is a full classification of collapsing levels for $\mathcal{W}_{k}\left(\mathfrak{g}, f_{\text {min }}\right)$, including simple affine Lie superalgebras.
- [AvEM '21] We studied admissible collapsing levels: we provided a conjectural exhaustive list of such levels.

Theorem ($\mathfrak{s l}_{n}$) [Arakawa-van Ekeren-M. '21].

Let $\mathfrak{g}=\mathfrak{s l}_{n}$ and $k=-n+p / q$ admissible. Write $n=q m_{0}+s_{0}, 0 \leqslant s_{0}<q$.
(1) Pick $f \in \mathbb{O}_{k}$ so that $\mathcal{W}_{k}\left(\mathfrak{s l}_{n}, f\right)$ is lisse (and even rational).

- if $n \equiv \pm 1 \bmod q$, then $\mathcal{W}_{k}\left(\mathfrak{s l}_{n}, f\right) \cong \mathbb{C}$.
- if $n \equiv 0 \bmod q$, then $\mathcal{W}_{-n+(n+1) / q}\left(\mathfrak{s l}_{n}, f\right) \cong L_{1}\left(\mathfrak{s l}_{m_{0}}\right)$.
(2) Pick $f \in \mathbb{O}_{\left(q^{m}, 1^{s}\right)} \in \overline{\mathbb{O}_{k}}$ with $s \neq 0$. Then

$$
\mathcal{W}_{-n+n / q}\left(\mathfrak{s l}_{n}, f\right) \cong L_{-s+s / q}\left(\mathfrak{s l}_{s}\right)
$$

What is known about collapsing levels?

- [AKMPP '18] There is a full classification of collapsing levels for $\mathcal{W}_{k}\left(\mathfrak{g}, f_{\text {min }}\right)$, including simple affine Lie superalgebras.
- [AvEM '21] We studied admissible collapsing levels: we provided a conjectural exhaustive list of such levels.

Theorem ($\mathfrak{s l}_{n}$) [Arakawa-van Ekeren-M. '21].

Let $\mathfrak{g}=\mathfrak{s l}_{n}$ and $k=-n+p / q$ admissible. Write $n=q m_{0}+s_{0}, 0 \leqslant s_{0}<q$.
(1) Pick $f \in \mathbb{O}_{k}$ so that $\mathcal{W}_{k}\left(\mathfrak{s l}_{n}, f\right)$ is lisse (and even rational).

- if $n \equiv \pm 1 \bmod q$, then $\mathcal{W}_{k}\left(\mathfrak{s l}_{n}, f\right) \cong \mathbb{C}$.
- if $n \equiv 0 \bmod q$, then $\mathcal{W}_{-n+(n+1) / q}\left(\mathfrak{s l}_{n}, f\right) \cong L_{1}\left(\mathfrak{s l}_{m_{0}}\right)$.
(2) Pick $f \in \mathbb{O}_{\left(q^{m}, 1^{s}\right)} \in \overline{\mathbb{O}_{k}}$ with $s \neq 0$. Then

$$
\mathcal{W}_{-n+n / q}\left(\mathfrak{s l}_{n}, f\right) \cong L_{-s+s / q}\left(\mathfrak{s l}_{s}\right)
$$

(3) Assume that $n=q m_{0}+(q-2)$ and pick $f \in \mathbb{O}_{\left(q^{m_{0}-1},(q-1)^{2}\right)} \in \overline{\mathbb{O}_{k}}$.

What is known about collapsing levels?

- [AKMPP '18] There is a full classification of collapsing levels for $\mathcal{W}_{k}\left(\mathfrak{g}, f_{\text {min }}\right)$, including simple affine Lie superalgebras.
- [AvEM '21] We studied admissible collapsing levels: we provided a conjectural exhaustive list of such levels.

Theorem ($\mathfrak{s l}_{n}$) [Arakawa-van Ekeren-M. '21].

Let $\mathfrak{g}=\mathfrak{s l}_{n}$ and $k=-n+p / q$ admissible. Write $n=q m_{0}+s_{0}, 0 \leqslant s_{0}<q$.
(1) Pick $f \in \mathbb{O}_{k}$ so that $\mathcal{W}_{k}\left(\mathfrak{s l}_{n}, f\right)$ is lisse (and even rational).

- if $n \equiv \pm 1 \bmod q$, then $\mathcal{W}_{k}\left(\mathfrak{s l}_{n}, f\right) \cong \mathbb{C}$.
- if $n \equiv 0 \bmod q$, then $\mathcal{W}_{-n+(n+1) / q}\left(\mathfrak{s l}_{n}, f\right) \cong L_{1}\left(\mathfrak{s l}_{m_{0}}\right)$.
(2) Pick $f \in \mathbb{O}_{\left(q^{m}, 1^{s}\right)} \in \overline{\mathbb{O}_{k}}$ with $s \neq 0$. Then

$$
\mathcal{W}_{-n+n / q}\left(\mathfrak{s l}_{n}, f\right) \cong L_{-s+s / q}\left(\mathfrak{s l}_{s}\right)
$$

(3) Assume that $n=q m_{0}+(q-2)$ and pick $f \in \mathbb{O}_{\left(q^{m_{0}-1},(q-1)^{2}\right)} \in \overline{\mathbb{O}_{k}}$. Then

$$
\mathcal{W}_{-n+n / q}\left(\mathfrak{s l}_{n}, f\right) \cong L_{-2+2 / q}\left(\mathfrak{s l}_{2}\right)
$$

What is known about collapsing levels?

- [AKMPP '18] There is a full classification of collapsing levels for $\mathcal{W}_{k}\left(\mathfrak{g}, f_{\text {min }}\right)$, including simple affine Lie superalgebras.
- [AvEM '21] We studied admissible collapsing levels: we provided a conjectural exhaustive list of such levels.

Theorem ($\mathfrak{s l}_{n}$) [Arakawa-van Ekeren-M. '21].

Let $\mathfrak{g}=\mathfrak{s l}_{n}$ and $k=-n+p / q$ admissible. Write $n=q m_{0}+s_{0}, 0 \leqslant s_{0}<q$.
(1) Pick $f \in \mathbb{O}_{k}$ so that $\mathcal{W}_{k}\left(\mathfrak{s l}_{n}, f\right)$ is lisse (and even rational).

- if $n \equiv \pm 1 \bmod q$, then $\mathcal{W}_{k}\left(\mathfrak{s l}_{n}, f\right) \cong \mathbb{C}$.
- if $n \equiv 0 \bmod q$, then $\mathcal{W}_{-n+(n+1) / q}\left(\mathfrak{s l}_{n}, f\right) \cong L_{1}\left(\mathfrak{s l}_{m_{0}}\right)$.
(2) Pick $f \in \mathbb{O}_{\left(q^{m}, 1^{s}\right)} \in \overline{\mathbb{O}_{k}}$ with $s \neq 0$. Then

$$
\mathcal{W}_{-n+n / q}\left(\mathfrak{s l}_{n}, f\right) \cong L_{-s+s / q}\left(\mathfrak{s l}_{s}\right)
$$

(3) Assume that $n=q m_{0}+(q-2)$ and pick $f \in \mathbb{O}_{\left(q^{m_{0}-1},(q-1)^{2}\right)} \in \overline{\mathbb{O}_{k}}$. Then

$$
\mathcal{W}_{-n+n / q}\left(\mathfrak{s l}_{n}, f\right) \cong L_{-2+2 / q}\left(\mathfrak{s l}_{2}\right)
$$

- Subsequently, there were several works on collapsing non-admissible levels

What is known about collapsing levels?

- [AKMPP '18] There is a full classification of collapsing levels for $\mathcal{W}_{k}\left(\mathfrak{g}, f_{\text {min }}\right)$, including simple affine Lie superalgebras.
- [AvEM '21] We studied admissible collapsing levels: we provided a conjectural exhaustive list of such levels.

Theorem ($\mathfrak{s l}_{n}$) [Arakawa-van Ekeren-M. '21].

Let $\mathfrak{g}=\mathfrak{s l}_{n}$ and $k=-n+p / q$ admissible. Write $n=q m_{0}+s_{0}, 0 \leqslant s_{0}<q$.
(1) Pick $f \in \mathbb{O}_{k}$ so that $\mathcal{W}_{k}\left(\mathfrak{s l}_{n}, f\right)$ is lisse (and even rational).

- if $n \equiv \pm 1 \bmod q$, then $\mathcal{W}_{k}\left(\mathfrak{s l}_{n}, f\right) \cong \mathbb{C}$.
- if $n \equiv 0 \bmod q$, then $\mathcal{W}_{-n+(n+1) / q}\left(\mathfrak{s l}_{n}, f\right) \cong L_{1}\left(\mathfrak{s l}_{m_{0}}\right)$.
(2) Pick $f \in \mathbb{O}_{\left(q^{m}, 1^{s}\right)} \in \overline{\mathbb{O}_{k}}$ with $s \neq 0$. Then

$$
\mathcal{W}_{-n+n / q}\left(\mathfrak{s l}_{n}, f\right) \cong L_{-s+s / q}\left(\mathfrak{s l}_{s}\right)
$$

(3) Assume that $n=q m_{0}+(q-2)$ and pick $f \in \mathbb{O}_{\left(q^{m_{0}-1},(q-1)^{2}\right)} \in \overline{\mathbb{O}_{k}}$. Then

$$
\mathcal{W}_{-n+n / q}\left(\mathfrak{s l}_{n}, f\right) \cong L_{-2+2 / q}\left(\mathfrak{s l}_{2}\right)
$$

- Subsequently, there were several works on collapsing non-admissible levels [Adamovic̀-Möseneder-Papl '22, Arakawa-Creutzig-Linshaw-M. '22, Fasquel '22, etc.]

What is known about collapsing levels?

- [AKMPP '18] There is a full classification of collapsing levels for $\mathcal{W}_{k}\left(\mathfrak{g}, f_{\text {min }}\right)$, including simple affine Lie superalgebras.
- [AvEM '21] We studied admissible collapsing levels: we provided a conjectural exhaustive list of such levels.

Theorem $\left(\mathfrak{s l}_{n}\right)$ [Arakawa-van Ekeren-M. '21].

Let $\mathfrak{g}=\mathfrak{s l}_{n}$ and $k=-n+p / q$ admissible. Write $n=q m_{0}+s_{0}, 0 \leqslant s_{0}<q$.
(1) Pick $f \in \mathbb{O}_{k}$ so that $\mathcal{W}_{k}\left(\mathfrak{s l}_{n}, f\right)$ is lisse (and even rational).

- if $n \equiv \pm 1 \bmod q$, then $\mathcal{W}_{k}\left(\mathfrak{s l}_{n}, f\right) \cong \mathbb{C}$.
- if $n \equiv 0 \bmod q$, then $\mathcal{W}_{-n+(n+1) / q}\left(\mathfrak{s l}_{n}, f\right) \cong L_{1}\left(\mathfrak{s l}_{m_{0}}\right)$.
(2) Pick $f \in \mathbb{O}_{\left(q^{m}, 1^{s}\right)} \in \overline{\mathbb{O}_{k}}$ with $s \neq 0$. Then

$$
\mathcal{W}_{-n+n / q}\left(\mathfrak{s l}_{n}, f\right) \cong L_{-s+s / q}\left(\mathfrak{s l}_{s}\right)
$$

(3) Assume that $n=q m_{0}+(q-2)$ and pick $f \in \mathbb{O}_{\left(q^{m_{0}-1},(q-1)^{2}\right)} \in \overline{\mathbb{O}_{k}}$. Then

$$
\mathcal{W}_{-n+n / q}\left(\mathfrak{s l}_{n}, f\right) \cong L_{-2+2 / q}\left(\mathfrak{s l}_{2}\right)
$$

- Subsequently, there were several works on collapsing non-admissible levels [Adamovic̀-Möseneder-Papl '22, Arakawa-Creutzig-Linshaw-M. '22, Fasquel '22, etc.] For example [AMP '22], $\mathcal{W}_{-n+(n-1) / q}\left(\mathfrak{s l}_{q m_{0}}, f_{\left(q^{m_{0}}\right)}\right) \cong L_{-1}\left(\mathfrak{s l}_{m_{0}}\right), m_{0} \geqslant 3$.

Finite extensions of admissible simple vertex algebras

Finite extensions of admissible simple vertex algebras

Sometimes k is not collapsing, but $\mathcal{W}_{k}(\mathfrak{g}, f)$ is nevertheless a finite extension of $L_{k^{\natural}}\left(\mathfrak{g}^{\natural}\right)$.

Finite extensions of admissible simple vertex algebras

Sometimes k is not collapsing, but $\mathcal{W}_{k}(\mathfrak{g}, f)$ is nevertheless a finite extension of $L_{k^{\natural}}\left(\mathfrak{g}^{\natural}\right)$.

- Example in G_{2} :

Finite extensions of admissible simple vertex algebras

Sometimes k is not collapsing, but $\mathcal{W}_{k}(\mathfrak{g}, f)$ is nevertheless a finite extension of $L_{k^{\natural}}\left(\mathfrak{g}^{\natural}\right)$.

- Example in G_{2} :

$$
H_{D S, A_{1}}^{0}\left(L_{-4+5 / 2}\left(G_{2}\right)\right) \cong L_{-2+5 / 2}\left(A_{1}\right) \oplus L_{-2+5 / 2}\left(A_{1} ; \varpi_{1}\right) .
$$

Finite extensions of admissible simple vertex algebras

Sometimes k is not collapsing, but $\mathcal{W}_{k}(\mathfrak{g}, f)$ is nevertheless a finite extension of $L_{k^{\natural}}\left(\mathfrak{g}^{\natural}\right)$.

- Example in G_{2} :

$$
H_{D S, A_{1}}^{0}\left(L_{-4+5 / 2}\left(G_{2}\right)\right) \cong L_{-2+5 / 2}\left(A_{1}\right) \oplus L_{-2+5 / 2}\left(A_{1} ; \varpi_{1}\right) .
$$

- Examples in F_{4} :

Finite extensions of admissible simple vertex algebras

Sometimes k is not collapsing, but $\mathcal{W}_{k}(\mathfrak{g}, f)$ is nevertheless a finite extension of $L_{k^{\natural}}\left(\mathfrak{g}^{\natural}\right)$.

- Example in G_{2} :

$$
H_{0 S, A_{1}}^{0}\left(L_{-4+5 / 2}\left(G_{2}\right)\right) \cong L_{-2+5 / 2}\left(A_{1}\right) \oplus L_{-2+5 / 2}\left(A_{1} ; \varpi_{1}\right) .
$$

- Examples in F_{4} :

$$
\begin{aligned}
& H_{D S, C_{3}}^{0}\left(L_{-9+13 / 10}\left(F_{4}\right)\right) \cong L_{-2+3 / 10}\left(A_{1}\right) \oplus L_{-2+3 / 10}\left(A_{1} ; \varpi_{1}\right), \\
& H_{D S, B_{2}}\left(L_{-9+9 / 5}\left(F_{4}\right)\right) \cong\left(L_{-2+3 / 10}\left(A_{1}\right) \otimes L_{-2+3 / 10}\left(A_{1}\right)\right) \oplus\left(L_{-2+3 / 10}\left(A_{1} ; \varpi_{1}\right) \otimes L_{-2+3 / 10}\left(A_{1} ; \varpi_{1}\right)\right), \\
& H_{D S, A_{2}+\tilde{A}_{1}}\left(L_{-9+10 / 3}\left(F_{4}\right)\right) \cong L_{-2+5 / 2}\left(A_{1}\right) \oplus L_{-2+5 / 2}\left(A_{1} ; \varpi_{1}\right) \\
& H_{D S, A_{2}}\left(L_{-9+10 / 3}\left(F_{4}\right)\right) \cong L_{-3+5 / 3}\left(A_{2}\right) \oplus L_{-3+5 / 3}\left(A_{2} ; \varpi_{1}\right) \oplus L_{-3+5 / 3}\left(A_{2} ; \varpi_{2}\right), \\
& H_{D S, \tilde{A}_{1}}\left(L_{-9+13 / 4}\left(F_{4}\right)\right) \cong L_{-4+5 / 4}\left(A_{3}\right) \oplus \bigoplus_{i=1,2,3} L_{-4+5 / 4}\left(A_{3} ; \varpi_{i}\right)
\end{aligned}
$$

Finite extensions of admissible simple vertex algebras

Sometimes k is not collapsing, but $\mathcal{W}_{k}(\mathfrak{g}, f)$ is nevertheless a finite extension of $L_{k^{\natural}}\left(\mathfrak{g}^{\natural}\right)$.

- Example in G_{2} :

$$
H_{0 S, A_{1}}^{0}\left(L_{-4+5 / 2}\left(G_{2}\right)\right) \cong L_{-2+5 / 2}\left(A_{1}\right) \oplus L_{-2+5 / 2}\left(A_{1} ; \varpi_{1}\right) .
$$

- Examples in F_{4} :

$$
\begin{aligned}
& H_{D S, C_{3}}^{0}\left(L_{-9+13 / 10}\left(F_{4}\right)\right) \cong L_{-2+3 / 10}\left(A_{1}\right) \oplus L_{-2+3 / 10}\left(A_{1} ; \varpi_{1}\right), \\
& H_{D S, B_{2}}\left(L_{-9+9 / 5}\left(F_{4}\right)\right) \cong\left(L_{-2+3 / 10}\left(A_{1}\right) \otimes L_{-2+3 / 10}\left(A_{1}\right)\right) \oplus\left(L_{-2+3 / 10}\left(A_{1} ; \varpi_{1}\right) \otimes L_{-2+3 / 10}\left(A_{1} ; \varpi_{1}\right)\right), \\
& H_{D S, A_{2}+\tilde{A}_{1}}\left(L_{-9+10 / 3}\left(F_{4}\right)\right) \cong L_{-2+5 / 2}\left(A_{1}\right) \oplus L_{-2+5 / 2}\left(A_{1} ; \varpi_{1}\right), \\
& H_{D S, A_{2}}\left(L_{-9+10 / 3}\left(F_{4}\right)\right) \cong L_{-3+5 / 3}\left(A_{2}\right) \oplus L_{-3+5 / 3}\left(A_{2} ; \varpi_{1}\right) \oplus L_{-3+5 / 3}\left(A_{2} ; \varpi_{2}\right), \\
& H_{D S, \tilde{A}_{1}}\left(L_{-9+13 / 4}\left(F_{4}\right)\right) \cong L_{-4+5 / 4}\left(A_{3}\right) \oplus \bigoplus_{i=1,2,3} L_{-4+5 / 4}\left(A_{3} ; \varpi_{i}\right) .
\end{aligned}
$$

- Examples in E_{6} :

Finite extensions of admissible simple vertex algebras

Sometimes k is not collapsing, but $\mathcal{W}_{k}(\mathfrak{g}, f)$ is nevertheless a finite extension of $L_{k^{\natural}}\left(\mathfrak{g}^{\natural}\right)$.

- Example in G_{2} :

$$
H_{0 S, A_{1}}^{0}\left(L_{-4+5 / 2}\left(G_{2}\right)\right) \cong L_{-2+5 / 2}\left(A_{1}\right) \oplus L_{-2+5 / 2}\left(A_{1} ; \varpi_{1}\right) .
$$

- Examples in F_{4} :

$$
\begin{aligned}
& H_{D S, C_{3}}^{0}\left(L_{-9+13 / 10}\left(F_{4}\right)\right) \cong L_{-2+3 / 10}\left(A_{1}\right) \oplus L_{-2+3 / 10}\left(A_{1} ; \varpi_{1}\right), \\
& H_{D S, B_{2}}\left(L_{-9+9 / 5}\left(F_{4}\right)\right) \cong\left(L_{-2+3 / 10}\left(A_{1}\right) \otimes L_{-2+3 / 10}\left(A_{1}\right)\right) \oplus\left(L_{-2+3 / 10}\left(A_{1} ; \varpi_{1}\right) \otimes L_{-2+3 / 10}\left(A_{1} ; \varpi_{1}\right)\right), \\
& H_{D S, A_{2}+\tilde{A}_{1}}\left(L_{-9+10 / 3}\left(F_{4}\right)\right) \cong L_{-2+5 / 2}\left(A_{1}\right) \oplus L_{-2+5 / 2}\left(A_{1} ; \varpi_{1}\right), \\
& H_{D S, A_{2}}\left(L_{-9+10 / 3}\left(F_{4}\right)\right) \cong L_{-3+5 / 3}\left(A_{2}\right) \oplus L_{-3+5 / 3}\left(A_{2} ; \varpi_{1}\right) \oplus L_{-3+5 / 3}\left(A_{2} ; \varpi_{2}\right), \\
& H_{D S, \tilde{A}_{1}}\left(L_{-9+13 / 4}\left(F_{4}\right)\right) \cong L_{-4+5 / 4}\left(A_{3}\right) \oplus \bigoplus_{i=1,2,3} L_{-4+5 / 4}\left(A_{3} ; \varpi_{i}\right) .
\end{aligned}
$$

- Examples in E_{6} :

$$
\begin{aligned}
& H_{D S, A_{5}}\left(L_{-12+12 / 7}\left(E_{6}\right)\right) \cong L_{-2+3 / 14}\left(A_{1}\right) \oplus L_{-2+3 / 14}\left(A_{1} ; \varpi_{1}\right), \\
& H_{D S, A_{2}}\left(L_{-12+13 / 3}\left(E_{6}\right)\right) \cong\left(L_{-3+4 / 3}\left(A_{2}\right) \otimes L_{-3+4 / 3}\left(A_{2}\right)\right) \oplus\left(L_{-3+4 / 3}\left(A_{3} ; \varpi_{1}\right) \otimes L_{-3+4 / 3}\left(A_{3} ; \varpi_{1}\right)\right), \\
& H_{D S, A_{1}}\left(L_{-12+13 / 2}\left(E_{6}\right)\right) \cong L_{-6+7 / 2}\left(A_{5}\right) \oplus L_{-6+7 / 2}\left(A_{5} ; \varpi_{3}\right) .
\end{aligned}
$$

Finite extensions of admissible simple vertex algebras

Sometimes k is not collapsing, but $\mathcal{W}_{k}(\mathfrak{g}, f)$ is nevertheless a finite extension of $L_{k}\left(\mathfrak{g}^{\natural}\right)$.

- Example in G_{2} :

$$
H_{0 S, A_{1}}^{0}\left(L_{-4+5 / 2}\left(G_{2}\right)\right) \cong L_{-2+5 / 2}\left(A_{1}\right) \oplus L_{-2+5 / 2}\left(A_{1} ; \varpi_{1}\right) .
$$

- Examples in F_{4} :

$$
\begin{aligned}
& H_{D S, C_{3}}^{0}\left(L_{-9+13 / 10}\left(F_{4}\right)\right) \cong L_{-2+3 / 10}\left(A_{1}\right) \oplus L_{-2+3 / 10}\left(A_{1} ; \varpi_{1}\right), \\
& H_{D S, B_{2}}\left(L_{-9+9 / 5}\left(F_{4}\right)\right) \cong\left(L_{-2+3 / 10}\left(A_{1}\right) \otimes L_{-2+3 / 10}\left(A_{1}\right)\right) \oplus\left(L_{-2+3 / 10}\left(A_{1} ; \varpi_{1}\right) \otimes L_{-2+3 / 10}\left(A_{1} ; \varpi_{1}\right)\right), \\
& H_{D S, A_{2}+\tilde{A}_{1}}\left(L_{-9+10 / 3}\left(F_{4}\right)\right) \cong L_{-2+5 / 2}\left(A_{1}\right) \oplus L_{-2+5 / 2}\left(A_{1} ; \varpi_{1}\right), \\
& H_{D S, A_{2}}\left(L_{-9+10 / 3}\left(F_{4}\right)\right) \cong L_{-3+5 / 3}\left(A_{2}\right) \oplus L_{-3+5 / 3}\left(A_{2} ; \varpi_{1}\right) \oplus L_{-3+5 / 3}\left(A_{2} ; \varpi_{2}\right), \\
& H_{D S, \tilde{A}_{1}}\left(L_{-9+13 / 4}\left(F_{4}\right)\right) \cong L_{-4+5 / 4}\left(A_{3}\right) \oplus \bigoplus_{i=1,2,3} L_{-4+5 / 4}\left(A_{3} ; \varpi_{i}\right) .
\end{aligned}
$$

- Examples in E_{6} :

$$
\begin{aligned}
& H_{D S, A_{5}}\left(L_{-12+12 / 7}\left(E_{6}\right)\right) \cong L_{-2+3 / 14}\left(A_{1}\right) \oplus L_{-2+3 / 14}\left(A_{1} ; \varpi_{1}\right) \\
& H_{D S, A_{2}}\left(L_{-12+13 / 3}\left(E_{6}\right)\right) \cong\left(L_{-3+4 / 3}\left(A_{2}\right) \otimes L_{-3+4 / 3}\left(A_{2}\right)\right) \oplus\left(L_{-3+4 / 3}\left(A_{3} ; \varpi_{1}\right) \otimes L_{-3+4 / 3}\left(A_{3} ; \varpi_{1}\right)\right), \\
& H_{D S, A_{1}}\left(L_{-12+13 / 2}\left(E_{6}\right)\right) \cong L_{-6+7 / 2}\left(A_{5}\right) \oplus L_{-6+7 / 2}\left(A_{5} ; \varpi_{3}\right)
\end{aligned}
$$

Here, $L_{k}(\mathfrak{g} ; \lambda)$ stands for the highest weight representation of $L_{k}(\mathfrak{g})$ of admissible weight λ.

Finite extensions of admissible simple vertex algebras

Sometimes k is not collapsing, but $\mathcal{W}_{k}(\mathfrak{g}, f)$ is nevertheless a finite extension of $L_{k}\left(\mathfrak{g}^{\natural}\right)$.

- Example in G_{2} :

$$
H_{0 S, A_{1}}^{0}\left(L_{-4+5 / 2}\left(G_{2}\right)\right) \cong L_{-2+5 / 2}\left(A_{1}\right) \oplus L_{-2+5 / 2}\left(A_{1} ; \varpi_{1}\right) .
$$

- Examples in F_{4} :

$$
\begin{aligned}
& H_{D S, C_{3}}^{0}\left(L_{-9+13 / 10}\left(F_{4}\right)\right) \cong L_{-2+3 / 10}\left(A_{1}\right) \oplus L_{-2+3 / 10}\left(A_{1} ; \varpi_{1}\right), \\
& H_{D S, B_{2}}\left(L_{-9+9 / 5}\left(F_{4}\right)\right) \cong\left(L_{-2+3 / 10}\left(A_{1}\right) \otimes L_{-2+3 / 10}\left(A_{1}\right)\right) \oplus\left(L_{-2+3 / 10}\left(A_{1} ; \varpi_{1}\right) \otimes L_{-2+3 / 10}\left(A_{1} ; \varpi_{1}\right)\right), \\
& H_{D S, A_{2}+\tilde{A}_{1}}\left(L_{-9+10 / 3}\left(F_{4}\right)\right) \cong L_{-2+5 / 2}\left(A_{1}\right) \oplus L_{-2+5 / 2}\left(A_{1} ; \varpi_{1}\right), \\
& H_{D S, A_{2}}\left(L_{-9+10 / 3}\left(F_{4}\right)\right) \cong L_{-3+5 / 3}\left(A_{2}\right) \oplus L_{-3+5 / 3}\left(A_{2} ; \varpi_{1}\right) \oplus L_{-3+5 / 3}\left(A_{2} ; \varpi_{2}\right), \\
& H_{D S, \tilde{A}_{1}}\left(L_{-9+13 / 4}\left(F_{4}\right)\right) \cong L_{-4+5 / 4}\left(A_{3}\right) \oplus \bigoplus_{i=1,2,3} L_{-4+5 / 4}\left(A_{3} ; \varpi_{i}\right) .
\end{aligned}
$$

- Examples in E_{6} :

$$
\begin{aligned}
& H_{D S, A_{5}}\left(L_{-12+12 / 7}\left(E_{6}\right)\right) \cong L_{-2+3 / 14}\left(A_{1}\right) \oplus L_{-2+3 / 14}\left(A_{1} ; \varpi_{1}\right) \\
& H_{D S, A_{2}}\left(L_{-12+13 / 3}\left(E_{6}\right)\right) \cong\left(L_{-3+4 / 3}\left(A_{2}\right) \otimes L_{-3+4 / 3}\left(A_{2}\right)\right) \oplus\left(L_{-3+4 / 3}\left(A_{3} ; \varpi_{1}\right) \otimes L_{-3+4 / 3}\left(A_{3} ; \varpi_{1}\right)\right) \\
& H_{D S, A_{1}}\left(L_{-12+13 / 2}\left(E_{6}\right)\right) \cong L_{-6+7 / 2}\left(A_{5}\right) \oplus L_{-6+7 / 2}\left(A_{5} ; \varpi_{3}\right)
\end{aligned}
$$

Here, $L_{k}(\mathfrak{g} ; \lambda)$ stands for the highest weight representation of $L_{k}(\mathfrak{g})$ of admissible weight λ.

- We also have examples in types E_{7}, E_{8} and in the classical types.

What is the morphism π in these cases?

What is the morphism π in these cases?

Recall that

$$
\mathfrak{g}^{e}=\bigoplus_{\geqslant \geqslant 0}\left(\mathfrak{g}^{e} \cap \mathfrak{g}_{i}\right), \quad \text { where } \quad \mathfrak{g}_{i}=\{x \in \mathfrak{g}:[h, x]=2 i x\},
$$

What is the morphism π in these cases?

Recall that

$$
\mathfrak{g}^{e}=\bigoplus_{\geqslant 0}\left(\mathfrak{g}^{e} \cap \mathfrak{g}_{i}\right), \quad \text { where } \quad \mathfrak{g}_{i}=\{x \in \mathfrak{g}:[h, x]=2 i x\},
$$

and $\mathfrak{g}^{\natural}=\mathfrak{g}_{0} \cap \mathfrak{g}^{e}$ so that

$$
\mathfrak{g}^{e}=\mathfrak{g}^{\natural} \oplus\left(\bigoplus_{i>0} \mathfrak{g}_{i} \cap \mathfrak{g}^{e}\right) .
$$

What is the morphism π in these cases?

Recall that

$$
\mathfrak{g}^{e}=\bigoplus_{i \geqslant 0}\left(\mathfrak{g}^{e} \cap \mathfrak{g}_{i}\right), \quad \text { where } \quad \mathfrak{g}_{i}=\{x \in \mathfrak{g}:[h, x]=2 i x\}
$$

and $\mathfrak{g}^{\natural}=\mathfrak{g}_{0} \cap \mathfrak{g}^{e}$ so that

$$
\mathfrak{g}^{e}=\mathfrak{g}^{\mathfrak{\natural}} \oplus\left(\bigoplus_{i>0} \mathfrak{g}_{i} \cap \mathfrak{g}^{e}\right)
$$

The vertex algebra morphism $V^{k^{\natural}}\left(\mathfrak{g}^{\natural}\right) \longleftrightarrow \mathcal{W}^{k}(\mathfrak{g}, f)$

What is the morphism π in these cases?

Recall that

$$
\mathfrak{g}^{e}=\bigoplus_{i \geqslant 0}\left(\mathfrak{g}^{e} \cap \mathfrak{g}_{i}\right), \quad \text { where } \quad \mathfrak{g}_{i}=\{x \in \mathfrak{g}:[h, x]=2 i x\}
$$

and $\mathfrak{g}^{\natural}=\mathfrak{g}_{0} \cap \mathfrak{g}^{e}$ so that

$$
\mathfrak{g}^{e}=\mathfrak{g}^{\mathfrak{\natural}} \oplus\left(\bigoplus_{i>0} \mathfrak{g}_{i} \cap \mathfrak{g}^{e}\right)
$$

The vertex algebra morphism $V^{k^{\natural}}\left(\mathfrak{g}^{\natural}\right) \longleftrightarrow \mathcal{W}^{k}(\mathfrak{g}, f)$ induces the morphism:

$$
\begin{array}{clc}
\mathscr{S}_{f}=X_{\mathcal{W}^{k}(\mathfrak{g}, f)} & \longrightarrow & X_{V^{k} \mathfrak{G}}^{\left(\mathfrak{g}^{\natural}\right)} \\
f+x_{0}+x_{+} & \longmapsto & x_{0}
\end{array}
$$

What is the morphism π in these cases?

Recall that

$$
\mathfrak{g}^{e}=\bigoplus_{i \geqslant 0}\left(\mathfrak{g}^{e} \cap \mathfrak{g}_{i}\right), \quad \text { where } \quad \mathfrak{g}_{i}=\{x \in \mathfrak{g}:[h, x]=2 i x\},
$$

and $\mathfrak{g}^{\natural}=\mathfrak{g}_{0} \cap \mathfrak{g}^{e}$ so that

$$
\mathfrak{g}^{e}=\mathfrak{g}^{\mathfrak{\natural}} \oplus\left(\bigoplus_{i>0} \mathfrak{g}_{i} \cap \mathfrak{g}^{e}\right)
$$

The vertex algebra morphism $V^{k^{\natural}}\left(\mathfrak{g}^{\natural}\right) \longleftrightarrow \mathcal{W}^{k}(\mathfrak{g}, f)$ induces the morphism:

$$
\begin{array}{clc}
\mathscr{S}_{f}=X_{\mathcal{W}^{k}(\mathfrak{g}, f)} & \longrightarrow & X_{V^{k} \mathfrak{G}}^{\left(\mathfrak{g}^{\natural}\right)} \\
f+x_{0}+x_{+} & \longmapsto & x_{0}
\end{array}
$$

where $x_{0}+x_{+} \in \mathfrak{g}^{\natural} \oplus \mathfrak{g}_{+}^{e}=\mathfrak{g}^{e}$.

What is the morphism π in these cases?

Recall that

$$
\mathfrak{g}^{e}=\bigoplus_{i \geqslant 0}\left(\mathfrak{g}^{e} \cap \mathfrak{g}_{i}\right), \quad \text { where } \quad \mathfrak{g}_{i}=\{x \in \mathfrak{g}:[h, x]=2 i x\},
$$

and $\mathfrak{g}^{\natural}=\mathfrak{g}_{0} \cap \mathfrak{g}^{e}$ so that

$$
\mathfrak{g}^{e}=\mathfrak{g}^{\natural} \oplus\left(\bigoplus_{i>0} \mathfrak{g}_{i} \cap \mathfrak{g}^{e}\right)
$$

The vertex algebra morphism $V^{k^{\natural}}\left(\mathfrak{g}^{\natural}\right) \longleftrightarrow \mathcal{W}^{k}(\mathfrak{g}, f)$ induces the morphism:

$$
\begin{array}{ccc}
\mathscr{S}_{f}=X_{\mathcal{W}^{\kappa}(\mathfrak{g}, f)} & \longrightarrow & X_{\left.v^{k} \mathfrak{(} \mathfrak{g}^{\natural}\right)}=\mathfrak{g}^{\natural} \\
f+x_{0}+x_{+} & \longmapsto & x_{0}
\end{array}
$$

where $x_{0}+x_{+} \in \mathfrak{g}^{\natural} \oplus \mathfrak{g}_{+}^{e}=\mathfrak{g}^{e}$.
When $H_{D s, f}\left(L_{k}(\mathfrak{g})\right)$ is a finite extension of $L_{k^{\natural}}\left(\mathfrak{g}^{\natural}\right)$, with k, k^{\natural} admissible,

What is the morphism π in these cases?

Recall that

$$
\mathfrak{g}^{e}=\bigoplus_{i \geqslant 0}\left(\mathfrak{g}^{e} \cap \mathfrak{g}_{i}\right), \quad \text { where } \quad \mathfrak{g}_{i}=\{x \in \mathfrak{g}:[h, x]=2 i x\},
$$

and $\mathfrak{g}^{\natural}=\mathfrak{g}_{0} \cap \mathfrak{g}^{e}$ so that

$$
\mathfrak{g}^{e}=\mathfrak{g}^{\natural} \oplus\left(\bigoplus_{i>0} \mathfrak{g}_{i} \cap \mathfrak{g}^{e}\right)
$$

The vertex algebra morphism $V^{k^{\natural}}\left(\mathfrak{g}^{\natural}\right) \longleftrightarrow \mathcal{W}^{k}(\mathfrak{g}, f)$ induces the morphism:

$$
\begin{array}{ccc}
\mathscr{S}_{f}=X_{\mathcal{W}^{\kappa}(\mathfrak{g}, f)} & \longrightarrow & X_{\left.v^{k} \mathfrak{(} \mathfrak{g}^{\natural}\right)}=\mathfrak{g}^{\natural} \\
f+x_{0}+x_{+} & \longmapsto & x_{0}
\end{array}
$$

where $x_{0}+x_{+} \in \mathfrak{g}^{\natural} \oplus \mathfrak{g}_{+}^{e}=\mathfrak{g}^{e}$.
When $H_{D S, f}\left(L_{k}(\mathfrak{g})\right)$ is a finite extension of $L_{k^{\natural}}\left(\mathfrak{g}^{\natural}\right)$, with k, k^{\natural} admissible, π is the $G^{\natural} \times \mathbb{C}^{*}$-equivariant morphism:

What is the morphism π in these cases?

Recall that

$$
\mathfrak{g}^{e}=\bigoplus_{i \geqslant 0}\left(\mathfrak{g}^{e} \cap \mathfrak{g}_{i}\right), \quad \text { where } \quad \mathfrak{g}_{i}=\{x \in \mathfrak{g}:[h, x]=2 i x\},
$$

and $\mathfrak{g}^{\natural}=\mathfrak{g}_{0} \cap \mathfrak{g}^{e}$ so that

$$
\mathfrak{g}^{e}=\mathfrak{g}^{\natural} \oplus\left(\bigoplus_{i>0} \mathfrak{g}_{i} \cap \mathfrak{g}^{e}\right)
$$

The vertex algebra morphism $V^{k^{\natural}}\left(\mathfrak{g}^{\natural}\right) \longleftrightarrow \mathcal{W}^{k}(\mathfrak{g}, f)$ induces the morphism:

$$
\begin{array}{ccc}
\mathscr{S}_{f}=X_{\mathcal{W}^{\kappa}(\mathfrak{g}, f)} & \longrightarrow & X_{\left.v^{k} \mathfrak{(} \mathfrak{g}^{\natural}\right)}=\mathfrak{g}^{\natural} \\
f+x_{0}+x_{+} & \longmapsto & x_{0}
\end{array}
$$

where $x_{0}+x_{+} \in \mathfrak{g}^{\natural} \oplus \mathfrak{g}_{+}^{e}=\mathfrak{g}^{e}$.
When $H_{D S, f}\left(L_{k}(\mathfrak{g})\right)$ is a finite extension of $L_{k^{\natural}}\left(\mathfrak{g}^{\natural}\right)$, with k, k^{\natural} admissible, π is the $G^{\natural} \times \mathbb{C}^{*}$-equivariant morphism:

$$
\begin{aligned}
\pi: \quad \mathscr{S}_{f} \cap \overline{\mathbb{O}_{k}}=X_{H_{D S, f(}\left(L_{k}(\mathfrak{g})\right)} & \longrightarrow X_{L_{k^{\natural}}\left(\mathfrak{g}^{\natural}\right)}=\overline{\mathbb{O}_{k^{\natural}}} \\
f+x_{0}+x_{+} & \longmapsto x_{0},
\end{aligned}
$$

What is the morphism π in these cases?

Recall that

$$
\mathfrak{g}^{e}=\bigoplus_{i \geqslant 0}\left(\mathfrak{g}^{e} \cap \mathfrak{g}_{i}\right), \quad \text { where } \quad \mathfrak{g}_{i}=\{x \in \mathfrak{g}:[h, x]=2 i x\},
$$

and $\mathfrak{g}^{\natural}=\mathfrak{g}_{0} \cap \mathfrak{g}^{e}$ so that

$$
\mathfrak{g}^{e}=\mathfrak{g}^{\natural} \oplus\left(\bigoplus_{i>0} \mathfrak{g}_{i} \cap \mathfrak{g}^{e}\right) .
$$

The vertex algebra morphism $V^{k^{\natural}}\left(\mathfrak{g}^{\natural}\right) \hookrightarrow \mathcal{W}^{k}(\mathfrak{g}, f)$ induces the morphism:

$$
\begin{array}{ccc}
\mathscr{S}_{f}=X_{\mathcal{W}^{\kappa}(\mathfrak{g}, f)} & \longrightarrow & X_{\left.v^{k} \mathfrak{(} \mathfrak{g}^{\natural}\right)}=\mathfrak{g}^{\natural} \\
f+x_{0}+x_{+} & \longmapsto & x_{0}
\end{array}
$$

where $x_{0}+x_{+} \in \mathfrak{g}^{\natural} \oplus \mathfrak{g}_{+}^{e}=\mathfrak{g}^{e}$.
When $H_{D S, f}\left(L_{k}(\mathfrak{g})\right)$ is a finite extension of $L_{k^{\natural}}\left(\mathfrak{g}^{\natural}\right)$, with k, k^{\natural} admissible, π is the $G^{\natural} \times \mathbb{C}^{*}$-equivariant morphism:

$$
\begin{aligned}
\pi: \quad \mathscr{S}_{f} \cap \overline{\mathbb{O}_{k}}=X_{H_{D S, f}\left(L_{k}(\mathfrak{g})\right)} & \longrightarrow X_{L_{k \natural}\left(\mathfrak{g}^{\natural}\right)}=\overline{\mathbb{O}_{k^{\natural}}} \\
f+x_{0}+x_{+} & \longmapsto x_{0},
\end{aligned}
$$

where G^{\natural} is the stabilizer of $\mathfrak{s}=\operatorname{span}\{e, h, f\} \cong \mathfrak{s l}_{2}$ in \mathfrak{g}.

What is the morphism π in these cases?

Recall that

$$
\mathfrak{g}^{e}=\bigoplus_{i \geqslant 0}\left(\mathfrak{g}^{e} \cap \mathfrak{g}_{i}\right), \quad \text { where } \quad \mathfrak{g}_{i}=\{x \in \mathfrak{g}:[h, x]=2 i x\},
$$

and $\mathfrak{g}^{\natural}=\mathfrak{g}_{0} \cap \mathfrak{g}^{e}$ so that

$$
\mathfrak{g}^{e}=\mathfrak{g}^{\mathfrak{\natural}} \oplus\left(\bigoplus_{i>0} \mathfrak{g}_{i} \cap \mathfrak{g}^{e}\right)
$$

The vertex algebra morphism $V^{k^{\natural}}\left(\mathfrak{g}^{\natural}\right) \longleftrightarrow \mathcal{W}^{k}(\mathfrak{g}, f)$ induces the morphism:

$$
\begin{array}{clc}
\mathscr{S}_{f}=X_{\mathcal{W}^{k}(\mathfrak{g}, f)} & \longrightarrow & X_{V^{k} \mathfrak{G}}^{\left(\mathfrak{g}^{\natural}\right)} \\
f+x_{0}+x_{+} & \longmapsto & x_{0}
\end{array}
$$

where $x_{0}+x_{+} \in \mathfrak{g}^{\natural} \oplus \mathfrak{g}_{+}^{e}=\mathfrak{g}^{e}$.
When $H_{D S, f}\left(L_{k}(\mathfrak{g})\right)$ is a finite extension of $L_{k^{\natural}}\left(\mathfrak{g}^{\natural}\right)$, with k, k^{\natural} admissible, π is the $G^{\natural} \times \mathbb{C}^{*}$-equivariant morphism:

$$
\begin{aligned}
\pi: \quad \mathscr{S}_{f} \cap \overline{\mathbb{O}_{k}}=X_{H_{D S, f}\left(L_{k}(\mathfrak{g})\right)} & \longrightarrow X_{L_{k \natural}\left(\mathfrak{g}^{\natural}\right)}=\overline{\mathbb{O}_{k^{\natural}}} \\
f+x_{0}+x_{+} & \longmapsto x_{0},
\end{aligned}
$$

where G^{\natural} is the stabilizer of $\mathfrak{s}=\operatorname{span}\{e, h, f\} \cong \mathfrak{s l}_{2}$ in \mathfrak{g}. In particular, its image is contained in the nilpotent cone of \mathfrak{g}^{\natural}.

Singularities of nilpotent Slodowy slices

Singularities of nilpotent Slodowy slices

Let \mathbb{O} be a nilpotent orbit of \mathfrak{g}

Singularities of nilpotent Slodowy slices

Let \mathbb{O} be a nilpotent orbit of \mathfrak{g} and $f \in \overline{\mathbb{O}}$.

Singularities of nilpotent Slodowy slices

Let \mathbb{O} be a nilpotent orbit of \mathfrak{g} and $f \in \overline{\mathbb{O}}$. The intersection

$$
\mathscr{S}_{\mathbb{Q}, t}:=\overline{\mathbb{O}} \cap \mathscr{S}_{t}
$$

is a transverse slice to $\overline{\mathbb{O}}$ at the point f, called a nilpotent Slodowy slice.

Singularities of nilpotent Slodowy slices

Let \mathbb{O} be a nilpotent orbit of \mathfrak{g} and $f \in \overline{\mathbb{O}}$. The intersection

$$
\mathscr{S}_{\mathbb{Q}, f}:=\overline{\mathbb{O}} \cap \mathscr{S}_{t}
$$

is a transverse slice to $\overline{\mathbb{O}}$ at the point f, called a nilpotent Slodowy slice.
The geometry of $\mathscr{S}_{\mathbb{O}, f}$ has been mainly studied in the case where $G . f$ is a minimal degeneration of $\overline{\mathbb{O}}$,

Singularities of nilpotent Slodowy slices

Let \mathbb{O} be a nilpotent orbit of \mathfrak{g} and $f \in \overline{\mathbb{O}}$. The intersection

$$
\mathscr{S}_{\mathbb{Q}, t}:=\overline{\mathbb{O}} \cap \mathscr{S}_{t}
$$

is a transverse slice to $\overline{\mathbb{O}}$ at the point f, called a nilpotent Slodowy slice.
The geometry of $\mathscr{S}_{\mathbb{O}, f}$ has been mainly studied in the case where G.f is a minimal degeneration of $\overline{\mathbb{O}}$, that is, G.f is a maximal orbit in the boundary $\overline{\mathbb{O}} \backslash \mathbb{O}=\operatorname{Sing}(\overline{\mathbb{O}})$.

Singularities of nilpotent Slodowy slices

Let \mathbb{O} be a nilpotent orbit of \mathfrak{g} and $f \in \overline{\mathbb{O}}$. The intersection

$$
\mathscr{S}_{\mathbb{Q}, t}:=\overline{\mathbb{O}} \cap \mathscr{S}_{t}
$$

is a transverse slice to $\overline{\mathbb{O}}$ at the point f, called a nilpotent Slodowy slice.
The geometry of $\mathscr{S}_{\mathbb{O}, f}$ has been mainly studied in the case where G.f is a minimal degeneration of $\overline{\mathbb{O}}$, that is, G.f is a maximal orbit in the boundary $\overline{\mathbb{O}} \backslash \mathbb{O}=\operatorname{Sing}(\overline{\mathbb{O}})$.

- When $\mathbb{O}=\mathbb{O}_{\text {reg }}$, then $\overline{\mathbb{O}_{\text {reg }}}=\mathcal{N}$ is the nilpotent cone of \mathfrak{g}, and it is well-known that $\mathscr{S}_{\mathbb{O}, \text { fsubreg }}=\mathcal{N} \cap \mathscr{S}_{\text {tsubreg }}$ has a simple surface singularity at f of the same type as \mathfrak{g}, provided that \mathfrak{g} has type A, D, E [Brieskorn-Slodowy].

Singularities of nilpotent Slodowy slices

Let \mathbb{O} be a nilpotent orbit of \mathfrak{g} and $f \in \overline{\mathbb{O}}$. The intersection

$$
\mathscr{S}_{\mathbb{Q}, t}:=\overline{\mathbb{O}} \cap \mathscr{S}_{t}
$$

is a transverse slice to $\overline{\mathbb{O}}$ at the point f, called a nilpotent Slodowy slice.
The geometry of $\mathscr{S}_{\mathbb{O}, f}$ has been mainly studied in the case where G.f is a minimal degeneration of $\overline{\mathbb{O}}$, that is, G.f is a maximal orbit in the boundary $\overline{\mathbb{O}} \backslash \mathbb{O}=\operatorname{Sing}(\overline{\mathbb{O}})$.

- When $\mathbb{O}=\mathbb{O}_{\text {reg }}$, then $\overline{\mathbb{O}_{\text {reg }}}=\mathcal{N}$ is the nilpotent cone of \mathfrak{g}, and it is well-known that $\mathscr{S}_{\mathbb{O}, \text { fsubreg }}=\mathcal{N} \cap \mathscr{S}_{\text {tsubreg }}$ has a simple surface singularity at f of the same type as \mathfrak{g}, provided that \mathfrak{g} has type A, D, E [Brieskorn-Slodowy].
- When $\mathbb{O}=\mathbb{O}_{\text {min }}$ and $f=0$, then $\mathscr{S}_{\mathbb{O}}, f=\overline{\mathbb{O}_{\text {min }}}$ has a minimal symplectic singularity at 0 .

Singularities of nilpotent Slodowy slices

Let \mathbb{O} be a nilpotent orbit of \mathfrak{g} and $f \in \overline{\mathbb{O}}$. The intersection

$$
\mathscr{S}_{\mathbb{O}, t}:=\overline{\mathbb{O}} \cap \mathscr{S}_{t}
$$

is a transverse slice to $\overline{\mathbb{O}}$ at the point f, called a nilpotent Slodowy slice.
The geometry of $\mathscr{S}_{\mathbb{O}, f}$ has been mainly studied in the case where G.f is a minimal degeneration of $\overline{\mathbb{O}}$, that is, G. f is a maximal orbit in the boundary $\overline{\mathbb{O}} \backslash \mathbb{O}=\operatorname{Sing}(\overline{\mathbb{O}})$.

- When $\mathbb{O}=\mathbb{O}_{\text {reg }}$, then $\overline{\mathbb{O}_{\text {reg }}}=\mathcal{N}$ is the nilpotent cone of \mathfrak{g}, and it is well-known that $\mathscr{S}_{\mathbb{O}, \text { fsubreg }}=\mathcal{N} \cap \mathscr{S}_{\text {tsubreg }}$ has a simple surface singularity at f of the same type as \mathfrak{g}, provided that \mathfrak{g} has type A, D, E [Brieskorn-Slodowy].
- When $\mathbb{O}=\mathbb{O}_{\text {min }}$ and $f=0$, then $\mathscr{S}_{\mathbb{O}}, f=\overline{\mathbb{O}_{\text {min }}}$ has a minimal symplectic singularity at 0 .
- Motivated by the normality problem, the generic singularities has been determined (that is, the isomorphism type of $\mathscr{S}_{\mathbb{O}, f}$ for G. f a minimal degeneration) in the classical types by [Kraft and Procesi '81-82].

Singularities of nilpotent Slodowy slices

Let \mathbb{O} be a nilpotent orbit of \mathfrak{g} and $f \in \overline{\mathbb{O}}$. The intersection

$$
\mathscr{S}_{\mathbb{Q}, t}:=\overline{\mathbb{O}} \cap \mathscr{S}_{t}
$$

is a transverse slice to $\overline{\mathbb{O}}$ at the point f, called a nilpotent Slodowy slice.
The geometry of $\mathscr{S}_{\mathbb{O}, f}$ has been mainly studied in the case where G.f is a minimal degeneration of $\overline{\mathbb{O}}$, that is, G. f is a maximal orbit in the boundary $\overline{\mathbb{O}} \backslash \mathbb{O}=\operatorname{Sing}(\overline{\mathbb{O}})$.

- When $\mathbb{O}=\mathbb{O}_{\text {reg }}$, then $\overline{\mathbb{O}_{\text {reg }}}=\mathcal{N}$ is the nilpotent cone of \mathfrak{g}, and it is well-known that $\mathscr{S}_{\mathbb{O}, \text { fsubreg }}=\mathcal{N} \cap \mathscr{S}_{\text {tsubreg }}$ has a simple surface singularity at f of the same type as \mathfrak{g}, provided that \mathfrak{g} has type A, D, E [Brieskorn-Slodowy].
- When $\mathbb{O}=\mathbb{O}_{\text {min }}$ and $f=0$, then $\mathscr{S}_{\mathbb{O}}, f=\overline{\mathbb{O}_{\text {min }}}$ has a minimal symplectic singularity at 0 .
- Motivated by the normality problem, the generic singularities has been determined (that is, the isomorphism type of $\mathscr{S}_{\mathbb{O}, f}$ for G.f a minimal degeneration) in the classical types by [Kraft and Procesi '81-82].
- More recently, [Fu-Juteau-Levy-Sommers '17] determined the generic singularities in the exceptional types.

Nilpotent Slodowy slices appear in various areas

Nilpotent Slodowy slices appear in various areas

Some properties of nilpotent Slodowy slices

Some properties of nilpotent Slodowy slices

In general, the natural projection

is not dominant onto the closure of some nilpotent orbit in \mathfrak{g}^{\natural} of the same dimension of $\mathscr{S}_{\mathbb{O}, f}$.

Some properties of nilpotent Slodowy slices

In general, the natural projection

is not dominant onto the closure of some nilpotent orbit in \mathfrak{g}^{\natural} of the same dimension of $\mathscr{S}_{\mathbb{O}, f}$.
Example: consider the orbit $\mathbb{O}=\mathbb{O}_{\text {reg }}$ in $\mathfrak{s l}_{3}$, and pick $f \in \mathbb{O}_{(2,1)}$.

Some properties of nilpotent Slodowy slices

In general, the natural projection

is not dominant onto the closure of some nilpotent orbit in \mathfrak{g}^{\natural} of the same dimension of $\mathscr{S}_{\mathbb{O}, f}$.
Example: consider the orbit $\mathbb{O}=\mathbb{O}_{\text {reg }}$ in $\mathfrak{s l}_{3}$, and pick $f \in \mathbb{O}_{(2,1)}$. Then $\mathscr{S}_{\mathbb{O}, f}$ has dimension two, \mathfrak{g}^{\natural} is a torus, and the image of π is just $\{0\}$.

Some properties of nilpotent Slodowy slices

In general, the natural projection

is not dominant onto the closure of some nilpotent orbit in \mathfrak{g}^{\natural} of the same dimension of $\mathscr{S}_{\mathbb{O}, f}$.
Example: consider the orbit $\mathbb{O}=\mathbb{O}_{\text {reg }}$ in $\mathfrak{s l}_{3}$, and pick $f \in \mathbb{O}_{(2,1)}$.
Then $\mathscr{S}_{\mathbb{O}, f}$ has dimension two, \mathfrak{g}^{\natural} is a torus, and the image of π is just $\{0\}$.

However, we have the following result:

Some properties of nilpotent Slodowy slices

In general, the natural projection

is not dominant onto the closure of some nilpotent orbit in \mathfrak{g}^{\natural} of the same dimension of $\mathscr{S}_{\mathbb{O}, f}$.
Example: consider the orbit $\mathbb{O}=\mathbb{O}_{\text {reg }}$ in $\mathfrak{s l}_{3}$, and pick $f \in \mathbb{O}_{(2,1)}$.
Then $\mathscr{S}_{\mathbb{O}, f}$ has dimension two, \mathfrak{g}^{\natural} is a torus, and the image of π is just $\{0\}$.

However, we have the following result:

Lemma [FJLS '17].

Some properties of nilpotent Slodowy slices

In general, the natural projection

is not dominant onto the closure of some nilpotent orbit in \mathfrak{g}^{\natural} of the same dimension of $\mathscr{S}_{\mathbb{O}, f}$.
Example: consider the orbit $\mathbb{O}=\mathbb{O}_{\text {reg }}$ in $\mathfrak{s l}_{3}$, and pick $f \in \mathbb{O}_{(2,1)}$.
Then $\mathscr{S}_{\mathbb{O}, f}$ has dimension two, \mathfrak{g}^{\natural} is a torus, and the image of π is just $\{0\}$.
However, we have the following result:

Lemma [FJLS '17].
Let $x=f+x_{0}+x_{+} \in \mathscr{S}_{\mathbb{O}, f}$ as above.

Some properties of nilpotent Slodowy slices

In general, the natural projection

is not dominant onto the closure of some nilpotent orbit in \mathfrak{g}^{\natural} of the same dimension of $\mathscr{S}_{\mathbb{O}, f}$.
Example: consider the orbit $\mathbb{O}=\mathbb{O}_{\text {reg }}$ in $\mathfrak{s l}_{3}$, and pick $f \in \mathbb{O}_{(2,1)}$.
Then $\mathscr{S}_{\mathbb{O}, f}$ has dimension two, \mathfrak{g}^{\natural} is a torus, and the image of π is just $\{0\}$.

However, we have the following result:

Lemma [FJLS '17].
Let $x=f+x_{0}+x_{+} \in \mathscr{S}_{\mathbb{O}, f}$ as above. Then

$$
\operatorname{dim} G^{\natural} \cdot x=\operatorname{dim} \mathscr{S}_{\mathbb{O}, f}\left(=\operatorname{codim}_{\overline{\mathbb{O}}}(G . f)\right)
$$

Some properties of nilpotent Slodowy slices

In general, the natural projection

is not dominant onto the closure of some nilpotent orbit in \mathfrak{g}^{\natural} of the same dimension of $\mathscr{S}_{\mathbb{O}, f}$.
Example: consider the orbit $\mathbb{O}=\mathbb{O}_{\text {reg }}$ in $\mathfrak{s l}_{3}$, and pick $f \in \mathbb{O}_{(2,1)}$.
Then $\mathscr{S}_{\mathbb{O}, f}$ has dimension two, \mathfrak{g}^{\natural} is a torus, and the image of π is just $\{0\}$.

However, we have the following result:

Lemma [FJLS '17].
Let $x=f+x_{0}+x_{+} \in \mathscr{S}_{\mathbb{O}, f}$ as above. Then

$$
\operatorname{dim} G^{\natural} \cdot x=\operatorname{dim} \mathscr{S}_{\mathbb{O}, f}\left(=\operatorname{codim}_{\overline{\mathbb{O}}}(G . f)\right)
$$

if and only if

$$
x_{0} \text { is nilpotent in } \mathfrak{g}^{\natural} \quad \text { and } \quad \operatorname{dim} G^{\natural} \cdot x_{0}=\operatorname{codim}_{\overline{\mathscr{D}}}(G . f) .
$$

Some properties of nilpotent Slodowy slices

In general, the natural projection

is not dominant onto the closure of some nilpotent orbit in \mathfrak{g}^{\natural} of the same dimension of $\mathscr{S}_{\mathbb{O}, f}$.
Example: consider the orbit $\mathbb{O}=\mathbb{O}_{\text {reg }}$ in $\mathfrak{s l}_{3}$, and pick $f \in \mathbb{O}_{(2,1)}$.
Then $\mathscr{S}_{\mathbb{O}, f}$ has dimension two, \mathfrak{g}^{\natural} is a torus, and the image of π is just $\{0\}$.

However, we have the following result:

Lemma [FJLS '17].
Let $x=f+x_{0}+x_{+} \in \mathscr{S}_{\mathbb{O}, f}$ as above. Then

$$
\operatorname{dim} G^{\natural} \cdot x=\operatorname{dim} \mathscr{S}_{\mathbb{O}, f}\left(=\operatorname{codim}_{\overline{\mathbb{O}}}(G . f)\right)
$$

if and only if

$$
x_{0} \text { is nilpotent in } \mathfrak{g}^{\natural} \quad \text { and } \quad \operatorname{dim} G^{\natural} \cdot x_{0}=\operatorname{codim}_{\overline{\mathscr{D}}}(G . f) .
$$

Back to some examples

Back to some examples

Consider the morphism

$$
\pi: \mathscr{S}_{\tilde{A}_{1}, A_{1}} \longrightarrow \mathcal{N}\left(\mathfrak{s l}_{2}\right)=\overline{\mathbb{O}_{\text {min }}}
$$

Back to some examples

Consider the morphism

$$
\pi: \mathscr{S}_{\tilde{A}_{1}, A_{1}} \longrightarrow \mathcal{N}\left(\mathfrak{s l}_{2}\right)=\overline{\mathbb{O}_{\text {min }}}
$$

corresponding to the extension

$$
H_{D S, A_{1}}\left(L_{-4+5 / 2}\left(G_{2}\right)\right) \cong L_{-2+5 / 2}\left(A_{1}\right) \oplus L_{-2+5 / 2}\left(A_{1} ; \varpi_{1}\right) .
$$

Back to some examples

Consider the morphism

$$
\pi: \mathscr{S}_{\tilde{A}_{1}, A_{1}} \longrightarrow \mathcal{N}\left(\mathfrak{s l}_{2}\right)=\overline{\mathbb{O}_{\text {min }}}
$$

corresponding to the extension

$$
H_{D S, A_{1}}\left(L_{-4+5 / 2}\left(G_{2}\right)\right) \cong L_{-2+5 / 2}\left(A_{1}\right) \oplus L_{-2+5 / 2}\left(A_{1} ; \varpi_{1}\right)
$$

We have

$$
2=\operatorname{dim} \mathcal{N}\left(\mathfrak{s l}_{2}\right)=\operatorname{dim} \mathscr{S}_{\tilde{A}_{1}, A_{1}}=8-6
$$

Back to some examples

Consider the morphism

$$
\pi: \mathscr{S}_{\tilde{A}_{1}, A_{1}} \longrightarrow \mathcal{N}\left(\mathfrak{s l}_{2}\right)=\overline{\mathbb{O}_{\text {min }}}
$$

corresponding to the extension

$$
H_{D S, A_{1}}\left(L_{-4+5 / 2}\left(G_{2}\right)\right) \cong L_{-2+5 / 2}\left(A_{1}\right) \oplus L_{-2+5 / 2}\left(A_{1} ; \varpi_{1}\right)
$$

We have

$$
2=\operatorname{dim} \mathcal{N}\left(\mathfrak{s l}_{2}\right)=\operatorname{dim} \mathscr{S}_{\tilde{A}_{1}, A_{1}}=8-6
$$

Set $f=f_{6} \in \mathbb{O}_{A_{1}}$.

Back to some examples

Consider the morphism

$$
\pi: \mathscr{S}_{\tilde{A}_{1}, A_{1}} \longrightarrow \mathcal{N}\left(\mathfrak{s l}_{2}\right)=\overline{\mathbb{O}_{\text {min }}}
$$

corresponding to the extension

$$
H_{D S, A_{1}}\left(L_{-4+5 / 2}\left(G_{2}\right)\right) \cong L_{-2+5 / 2}\left(A_{1}\right) \oplus L_{-2+5 / 2}\left(A_{1} ; \varpi_{1}\right) .
$$

We have

$$
2=\operatorname{dim} \mathcal{N}\left(\mathfrak{s l}_{2}\right)=\operatorname{dim} \mathscr{S}_{\tilde{A}_{1}, A_{1}}=8-6
$$

Set $f=f_{6} \in \mathbb{O}_{A_{1}}$. The generic fiber of π above $x_{0}:=e_{1} \in \mathbb{O}_{\min } \subset \mathfrak{s l}_{2}$ can be computed using

$$
\overline{\mathbb{O}_{k}}=\overline{\mathbb{O}_{\tilde{A}_{1}}}=\left\{x \in G_{2}:(\operatorname{ad} x)^{2 q}=0\right\}, \quad k=-4+5 / 2, q=2
$$

Back to some examples

Consider the morphism

$$
\pi: \mathscr{S}_{\tilde{A}_{1}, A_{1}} \longrightarrow \mathcal{N}\left(\mathfrak{s l}_{2}\right)=\overline{\mathbb{O}_{\text {min }}}
$$

corresponding to the extension

$$
H_{D S, A_{1}}\left(L_{-4+5 / 2}\left(G_{2}\right)\right) \cong L_{-2+5 / 2}\left(A_{1}\right) \oplus L_{-2+5 / 2}\left(A_{1} ; \varpi_{1}\right)
$$

We have

$$
2=\operatorname{dim} \mathcal{N}\left(\mathfrak{s l}_{2}\right)=\operatorname{dim} \mathscr{S}_{\tilde{A}_{1}, A_{1}}=8-6
$$

Set $f=f_{6} \in \mathbb{O}_{A_{1}}$. The generic fiber of π above $x_{0}:=e_{1} \in \mathbb{O}_{\min } \subset \mathfrak{s l}_{2}$ can be computed using

$$
\overline{\mathbb{O}_{k}}=\overline{\mathbb{O}_{\tilde{A}_{1}}}=\left\{x \in G_{2}:(\operatorname{ad} x)^{2 q}=0\right\}, \quad k=-4+5 / 2, q=2
$$

We obtain:

$$
\pi^{-1}\left(x_{0}\right)=\left\{f+x_{0}+2 e_{5}, f+x_{0}-2 e_{5}\right\} \subset \tilde{A}_{1} .
$$

Back to some examples

Consider the morphism

$$
\pi: \mathscr{S}_{\tilde{A}_{1}, A_{1}} \longrightarrow \mathcal{N}\left(\mathfrak{s l}_{2}\right)=\overline{\mathbb{O}_{\text {min }}}
$$

corresponding to the extension

$$
H_{D S, A_{1}}\left(L_{-4+5 / 2}\left(G_{2}\right)\right) \cong L_{-2+5 / 2}\left(A_{1}\right) \oplus L_{-2+5 / 2}\left(A_{1} ; \varpi_{1}\right)
$$

We have

$$
2=\operatorname{dim} \mathcal{N}\left(\mathfrak{s l}_{2}\right)=\operatorname{dim} \mathscr{S}_{\tilde{A}_{1}, A_{1}}=8-6
$$

Set $f=f_{6} \in \mathbb{O}_{A_{1}}$. The generic fiber of π above $x_{0}:=e_{1} \in \mathbb{O}_{\min } \subset \mathfrak{s l}_{2}$ can be computed using

$$
\overline{\mathbb{O}_{k}}=\overline{\mathbb{O}_{\tilde{A}_{1}}}=\left\{x \in G_{2}:(\operatorname{ad} x)^{2 q}=0\right\}, \quad k=-4+5 / 2, q=2
$$

We obtain:

$$
\pi^{-1}\left(x_{0}\right)=\left\{f+x_{0}+2 e_{5}, f+x_{0}-2 e_{5}\right\} \subset \tilde{A}_{1} .
$$

$\left\lfloor\right.$ Note that $\mathscr{S}_{\tilde{A}_{1}, A_{1}}=\overline{G^{\natural} \cdot x}$, with $x:=f+x_{0}+2 e_{5}$, is not normal while $\mathcal{N}\left(\mathfrak{F l}_{2}\right)$ is [FJLS '17].

An example in F_{4}

An example in F_{4}

Consider the morphism

$$
\pi: \mathscr{S}_{\tilde{A}_{2}+A_{1}, A_{2}} \longrightarrow \mathcal{N}\left(\mathfrak{s l}_{3}\right)
$$

An example in F_{4}

Consider the morphism

$$
\pi: \mathscr{S}_{\tilde{A}_{2}+A_{1}, A_{2}} \longrightarrow \mathcal{N}\left(\mathfrak{s l}_{3}\right)
$$

corresponding to the extension

$$
H_{D S, A_{2}}^{0}\left(L_{-9+10 / 3}\left(F_{4}\right)\right) \cong L_{-3+5 / 3}\left(A_{2}\right) \oplus L_{-3+5 / 3}\left(A_{2} ; \varpi_{1}\right) \oplus L_{-3+5 / 3}\left(A_{2} ; \varpi_{2}\right)
$$

An example in F_{4}

Consider the morphism

$$
\pi: \mathscr{S}_{\tilde{A}_{2}+A_{1}, A_{2}} \longrightarrow \mathcal{N}\left(\mathfrak{s l}_{3}\right)
$$

corresponding to the extension

$$
H_{D S, A_{2}}^{0}\left(L_{-9+10 / 3}\left(F_{4}\right)\right) \cong L_{-3+5 / 3}\left(A_{2}\right) \oplus L_{-3+5 / 3}\left(A_{2} ; \varpi_{1}\right) \oplus L_{-3+5 / 3}\left(A_{2} ; \varpi_{2}\right)
$$

We have

$$
6=\operatorname{dim} \mathcal{N}\left(\mathfrak{s l}_{3}\right)=\operatorname{dim} \mathscr{S}_{\tilde{A}_{2}+A_{1}, A_{2}}=36-30
$$

An example in F_{4}

Consider the morphism

$$
\pi: \mathscr{S}_{\tilde{A}_{2}+A_{1}, A_{2}} \longrightarrow \mathcal{N}\left(\mathfrak{s l}_{3}\right)
$$

corresponding to the extension

$$
H_{D S, A_{2}}^{0}\left(L_{-9+10 / 3}\left(F_{4}\right)\right) \cong L_{-3+5 / 3}\left(A_{2}\right) \oplus L_{-3+5 / 3}\left(A_{2} ; \varpi_{1}\right) \oplus L_{-3+5 / 3}\left(A_{2} ; \varpi_{2}\right)
$$

We have

$$
6=\operatorname{dim} \mathcal{N}\left(\mathfrak{s l}_{3}\right)=\operatorname{dim} \mathscr{S}_{\tilde{A}_{2}+A_{1}, A_{2}}=36-30
$$

As in the previous example, we find that the fiber above

$$
x_{0}:=2 e_{8}+2 f_{12} \in \mathbb{O}_{\text {reg }} \subset \mathfrak{s l}_{3}
$$

has cardinality two:

An example in F_{4}

Consider the morphism

$$
\pi: \mathscr{S}_{\tilde{A}_{2}+A_{1}, A_{2}} \longrightarrow \mathcal{N}\left(\mathfrak{s l}_{3}\right)
$$

corresponding to the extension

$$
H_{D S, A_{2}}^{0}\left(L_{-9+10 / 3}\left(F_{4}\right)\right) \cong L_{-3+5 / 3}\left(A_{2}\right) \oplus L_{-3+5 / 3}\left(A_{2} ; \varpi_{1}\right) \oplus L_{-3+5 / 3}\left(A_{2} ; \varpi_{2}\right)
$$

We have

$$
6=\operatorname{dim} \mathcal{N}\left(\mathfrak{s l}_{3}\right)=\operatorname{dim} \mathscr{S}_{\tilde{A}_{2}+A_{1}, A_{2}}=36-30
$$

As in the previous example, we find that the fiber above

$$
x_{0}:=2 e_{8}+2 f_{12} \in \mathbb{O}_{\text {reg }} \subset \mathfrak{s l}_{3}
$$

has cardinality two:

$$
\pi^{-1}\left(x_{0}\right)=\left\{f+x_{0}+6 \omega e_{2}+6 \omega^{2} e_{10}: \omega^{3}=1\right\} \subset \tilde{A}_{2}+A_{1}
$$

An example in F_{4}

Consider the morphism

$$
\pi: \mathscr{S}_{\tilde{A}_{2}+A_{1}, A_{2}} \longrightarrow \mathcal{N}\left(\mathfrak{s l}_{3}\right)
$$

corresponding to the extension

$$
H_{D S, A_{2}}^{0}\left(L_{-9+10 / 3}\left(F_{4}\right)\right) \cong L_{-3+5 / 3}\left(A_{2}\right) \oplus L_{-3+5 / 3}\left(A_{2} ; \varpi_{1}\right) \oplus L_{-3+5 / 3}\left(A_{2} ; \varpi_{2}\right)
$$

We have

$$
6=\operatorname{dim} \mathcal{N}\left(\mathfrak{s l}_{3}\right)=\operatorname{dim} \mathscr{S}_{\tilde{A}_{2}+A_{1}, A_{2}}=36-30
$$

As in the previous example, we find that the fiber above

$$
x_{0}:=2 e_{8}+2 f_{12} \in \mathbb{O}_{\text {reg }} \subset \mathfrak{s l}_{3}
$$

has cardinality two:

$$
\pi^{-1}\left(x_{0}\right)=\left\{f+x_{0}+6 \omega e_{2}+6 \omega^{2} e_{10}: \omega^{3}=1\right\} \subset \tilde{A}_{2}+A_{1}
$$

where $f=2 e_{16}+2 e_{18} \in A_{2}$.

An example in F_{4}

Consider the morphism

$$
\pi: \mathscr{S}_{\tilde{A}_{2}+A_{1}, A_{2}} \longrightarrow \mathcal{N}\left(\mathfrak{s l}_{3}\right)
$$

corresponding to the extension

$$
H_{D S, A_{2}}^{0}\left(L_{-9+10 / 3}\left(F_{4}\right)\right) \cong L_{-3+5 / 3}\left(A_{2}\right) \oplus L_{-3+5 / 3}\left(A_{2} ; \varpi_{1}\right) \oplus L_{-3+5 / 3}\left(A_{2} ; \varpi_{2}\right)
$$

We have

$$
6=\operatorname{dim} \mathcal{N}\left(\mathfrak{s l}_{3}\right)=\operatorname{dim} \mathscr{S}_{\tilde{A}_{2}+A_{1}, A_{2}}=36-30
$$

As in the previous example, we find that the fiber above

$$
x_{0}:=2 e_{8}+2 f_{12} \in \mathbb{O}_{\text {reg }} \subset \mathfrak{s l}_{3}
$$

has cardinality two:

$$
\pi^{-1}\left(x_{0}\right)=\left\{f+x_{0}+6 \omega e_{2}+6 \omega^{2} e_{10}: \omega^{3}=1\right\} \subset \tilde{A}_{2}+A_{1}
$$

where $f=2 e_{16}+2 e_{18} \in A_{2}$.
The morphism π is finite and

$$
\mathscr{S}_{\tilde{A}_{2}+A_{1}, A_{2}}=\overline{\left(G^{\natural}\right)^{0} \cdot x}
$$

An example in F_{4}

Consider the morphism

$$
\pi: \mathscr{S}_{\tilde{A}_{2}+A_{1}, A_{2}} \longrightarrow \mathcal{N}\left(\mathfrak{s l}_{3}\right)
$$

corresponding to the extension

$$
H_{D S, A_{2}}^{0}\left(L_{-9+10 / 3}\left(F_{4}\right)\right) \cong L_{-3+5 / 3}\left(A_{2}\right) \oplus L_{-3+5 / 3}\left(A_{2} ; \varpi_{1}\right) \oplus L_{-3+5 / 3}\left(A_{2} ; \varpi_{2}\right)
$$

We have

$$
6=\operatorname{dim} \mathcal{N}\left(\mathfrak{s l}_{3}\right)=\operatorname{dim} \mathscr{S}_{\tilde{A}_{2}+A_{1}, A_{2}}=36-30
$$

As in the previous example, we find that the fiber above

$$
x_{0}:=2 e_{8}+2 f_{12} \in \mathbb{O}_{\text {reg }} \subset \mathfrak{s l}_{3}
$$

has cardinality two:

$$
\pi^{-1}\left(x_{0}\right)=\left\{f+x_{0}+6 \omega e_{2}+6 \omega^{2} e_{10}: \omega^{3}=1\right\} \subset \tilde{A}_{2}+A_{1}
$$

where $f=2 e_{16}+2 e_{18} \in A_{2}$.
The morphism π is finite and

$$
\mathscr{S}_{\tilde{A}_{2}+A_{1}, A_{2}}=\overline{\left(G^{\natural}\right)^{0} \cdot x}, \quad x:=f+x_{0}+6 e_{2}+6 e_{10}
$$

An example in F_{4}

Consider the morphism

$$
\pi: \mathscr{S}_{\tilde{A}_{2}+A_{1}, A_{2}} \longrightarrow \mathcal{N}\left(\mathfrak{s l}_{3}\right)
$$

corresponding to the extension

$$
H_{D S, A_{2}}^{0}\left(L_{-9+10 / 3}\left(F_{4}\right)\right) \cong L_{-3+5 / 3}\left(A_{2}\right) \oplus L_{-3+5 / 3}\left(A_{2} ; \varpi_{1}\right) \oplus L_{-3+5 / 3}\left(A_{2} ; \varpi_{2}\right)
$$

We have

$$
6=\operatorname{dim} \mathcal{N}\left(\mathfrak{s l}_{3}\right)=\operatorname{dim} \mathscr{S}_{\tilde{A}_{2}+A_{1}, A_{2}}=36-30
$$

As in the previous example, we find that the fiber above

$$
x_{0}:=2 e_{8}+2 f_{12} \in \mathbb{O}_{\text {reg }} \subset \mathfrak{s l}_{3}
$$

has cardinality two:

$$
\pi^{-1}\left(x_{0}\right)=\left\{f+x_{0}+6 \omega e_{2}+6 \omega^{2} e_{10}: \omega^{3}=1\right\} \subset \tilde{A}_{2}+A_{1}
$$

where $f=2 e_{16}+2 e_{18} \in A_{2}$.
The morphism π is finite and

$$
\mathscr{S}_{\tilde{A}_{2}+A_{1}, A_{2}}=\overline{\left(G^{\natural}\right)^{0} \cdot x}, \quad x:=f+x_{0}+6 e_{2}+6 e_{10}
$$

Work in progress: $\mathscr{S}_{\tilde{A}_{2}+A_{1}, A_{2}}$ is isomorphic to the affinization of the 3:1 $\operatorname{cover}\left(G^{\natural}\right)^{0} /\left(G^{\natural}\right)_{X}^{0}$ of the regular orbit in $\mathfrak{s l}_{3}$.

An example in F_{4}

Consider the morphism

$$
\pi: \mathscr{S}_{\tilde{A}_{2}+A_{1}, A_{2}} \longrightarrow \mathcal{N}\left(\mathfrak{s l}_{3}\right)
$$

corresponding to the extension

$$
H_{D S, A_{2}}^{0}\left(L_{-9+10 / 3}\left(F_{4}\right)\right) \cong L_{-3+5 / 3}\left(A_{2}\right) \oplus L_{-3+5 / 3}\left(A_{2} ; \varpi_{1}\right) \oplus L_{-3+5 / 3}\left(A_{2} ; \varpi_{2}\right)
$$

We have

$$
6=\operatorname{dim} \mathcal{N}\left(\mathfrak{s l}_{3}\right)=\operatorname{dim} \mathscr{S}_{\tilde{A}_{2}+A_{1}, A_{2}}=36-30
$$

As in the previous example, we find that the fiber above

$$
x_{0}:=2 e_{8}+2 f_{12} \in \mathbb{O}_{\text {reg }} \subset \mathfrak{s l}_{3}
$$

has cardinality two:

$$
\pi^{-1}\left(x_{0}\right)=\left\{f+x_{0}+6 \omega e_{2}+6 \omega^{2} e_{10}: \omega^{3}=1\right\} \subset \tilde{A}_{2}+A_{1}
$$

where $f=2 e_{16}+2 e_{18} \in A_{2}$.
The morphism π is finite and

$$
\mathscr{S}_{\tilde{A}_{2}+A_{1}, A_{2}}=\overline{\left(G^{\natural}\right)^{0} \cdot x}, \quad x:=f+x_{0}+6 e_{2}+6 e_{10}
$$

Work in progress: $\mathscr{S}_{\tilde{A}_{2}+A_{1}, A_{2}}$ is isomorphic to the affinization of the 3:1 $\operatorname{cover}\left(G^{\natural}\right)^{0} /\left(G^{\natural}\right)_{X}^{0}$ of the regular orbit in $\mathfrak{s l}_{3}$.
Moreover, π is an isomorphism when restricted to the complement of $\left(G^{\natural}\right)^{0} \cdot x$.

An example in E_{6}

An example in E_{6}

Consider the morphism

$$
\pi: \mathscr{S}_{3 A_{1}, A_{1}} \longrightarrow \overline{\mathbb{O}_{\left(2^{3}\right)}} \subset \mathfrak{s l}_{6}
$$

corresponding to the extension

$$
H_{D S, A_{1}}\left(L_{-12+13 / 2}\left(E_{6}\right)\right) \cong L_{-6+7 / 2}\left(A_{5}\right) \oplus L_{-6+7 / 2}\left(A_{5} ; \varpi_{3}\right)
$$

An example in E_{6}

Consider the morphism

$$
\pi: \mathscr{S}_{3 A_{1}, A_{1}} \longrightarrow \overline{\mathbb{O}_{\left(2^{3}\right)}} \subset \mathfrak{s l}_{6}
$$

corresponding to the extension

$$
H_{D S, A_{1}}\left(L_{-12+13 / 2}\left(E_{6}\right)\right) \cong L_{-6+7 / 2}\left(A_{5}\right) \oplus L_{-6+7 / 2}\left(A_{5} ; \varpi_{3}\right)
$$

We have

$$
18=\operatorname{dim} \overline{\mathbb{O}_{\left(2^{3}\right)}}=\operatorname{dim} \mathscr{S}_{2 A_{1}, A_{1}}=40-22
$$

An example in E_{6}

Consider the morphism

$$
\pi: \mathscr{S}_{3 A_{1}, A_{1}} \longrightarrow \overline{\mathbb{O}_{\left(2^{3}\right)}} \subset \mathfrak{s l}_{6}
$$

corresponding to the extension

$$
H_{D S, A_{1}}\left(L_{-12+13 / 2}\left(E_{6}\right)\right) \cong L_{-6+7 / 2}\left(A_{5}\right) \oplus L_{-6+7 / 2}\left(A_{5} ; \varpi_{3}\right)
$$

We have

$$
18=\operatorname{dim} \overline{\mathbb{O}_{\left(2^{3}\right)}}=\operatorname{dim} \mathscr{S}_{2 A_{1}, A_{1}}=40-22 .
$$

As in the previous example, we find that the fiber above

$$
x_{0}:=e_{10}+e_{11}+f_{1} \in \mathbb{O}_{\left(2^{3}\right)}
$$

has cardinality two:

An example in E_{6}

Consider the morphism

$$
\pi: \mathscr{S}_{3 A_{1}, A_{1}} \longrightarrow \overline{\mathbb{O}_{\left(2^{3}\right)}} \subset \mathfrak{s l}_{6}
$$

corresponding to the extension

$$
H_{D S, A_{1}}\left(L_{-12+13 / 2}\left(E_{6}\right)\right) \cong L_{-6+7 / 2}\left(A_{5}\right) \oplus L_{-6+7 / 2}\left(A_{5} ; \varpi_{3}\right)
$$

We have

$$
18=\operatorname{dim} \overline{\mathbb{O}_{\left(2^{3}\right)}}=\operatorname{dim} \mathscr{S}_{2 A_{1}, A_{1}}=40-22
$$

As in the previous example, we find that the fiber above

$$
x_{0}:=e_{10}+e_{11}+f_{1} \in \mathbb{O}_{\left(2^{3}\right)}
$$

has cardinality two:

$$
\pi^{-1}\left(x_{0}\right)=\left\{f+x_{0}+2 e_{31}, f+x_{0}-2 e_{31}\right\} \subset 3 A_{1}
$$

where $f:=f_{36} \in A_{1}$.

An example in E_{6}

Consider the morphism

$$
\pi: \mathscr{S}_{3 A_{1}, A_{1}} \longrightarrow \overline{\mathbb{O}_{\left(2^{3}\right)}} \subset \mathfrak{s l}_{6}
$$

corresponding to the extension

$$
H_{D S, A_{1}}\left(L_{-12+13 / 2}\left(E_{6}\right)\right) \cong L_{-6+7 / 2}\left(A_{5}\right) \oplus L_{-6+7 / 2}\left(A_{5} ; \varpi_{3}\right)
$$

We have

$$
18=\operatorname{dim} \overline{\mathbb{O}_{\left(2^{3}\right)}}=\operatorname{dim} \mathscr{S}_{2 A_{1}, A_{1}}=40-22 .
$$

As in the previous example, we find that the fiber above

$$
x_{0}:=e_{10}+e_{11}+f_{1} \in \mathbb{O}_{\left(2^{3}\right)}
$$

has cardinality two:

$$
\pi^{-1}\left(x_{0}\right)=\left\{f+x_{0}+2 e_{31}, f+x_{0}-2 e_{31}\right\} \subset 3 A_{1}
$$

where $f:=f_{36} \in A_{1}$.
The morphism π is finite and

$$
\mathscr{S}_{3 A_{1}, A_{1}} \cong \overline{\left(G^{\natural}\right)^{0} \cdot x}, \quad x:=f+x_{0}+2 e_{31} .
$$

An example in E_{6}

Consider the morphism

$$
\pi: \mathscr{S}_{3 A_{1}, A_{1}} \longrightarrow \overline{\mathbb{O}_{\left(2^{3}\right)}} \subset \mathfrak{s l}_{6}
$$

corresponding to the extension

$$
H_{D S, A_{1}}\left(L_{-12+13 / 2}\left(E_{6}\right)\right) \cong L_{-6+7 / 2}\left(A_{5}\right) \oplus L_{-6+7 / 2}\left(A_{5} ; \varpi_{3}\right)
$$

We have

$$
18=\operatorname{dim} \overline{\mathbb{O}_{\left(2^{3}\right)}}=\operatorname{dim} \mathscr{S}_{2 A_{1}, A_{1}}=40-22
$$

As in the previous example, we find that the fiber above

$$
x_{0}:=e_{10}+e_{11}+f_{1} \in \mathbb{O}_{\left(2^{3}\right)}
$$

has cardinality two:

$$
\pi^{-1}\left(x_{0}\right)=\left\{f+x_{0}+2 e_{31}, f+x_{0}-2 e_{31}\right\} \subset 3 A_{1}
$$

where $f:=f_{36} \in A_{1}$.
The morphism π is finite and

$$
\mathscr{S}_{3 A_{1}, A_{1}} \cong \overline{\left(G^{\natural}\right)^{0} \cdot x}, \quad x:=f+x_{0}+2 e_{31}
$$

Work in progress: $\mathscr{S}_{3 A_{1}, A_{1}}$ is isomorphic to the affinization of the 2:1 $\operatorname{cover}\left(G^{\natural}\right)^{0} /\left(G^{\natural}\right)_{x}^{0}$ of the orbit $\left(G^{\natural}\right)^{0} \cdot x_{0}$ in $\mathfrak{s l}_{6}$.

An example in E_{6}

Consider the morphism

$$
\pi: \mathscr{S}_{3 A_{1}, A_{1}} \longrightarrow \overline{\mathbb{O}_{\left(2^{3}\right)}} \subset \mathfrak{s l}_{6}
$$

corresponding to the extension

$$
H_{D S, A_{1}}\left(L_{-12+13 / 2}\left(E_{6}\right)\right) \cong L_{-6+7 / 2}\left(A_{5}\right) \oplus L_{-6+7 / 2}\left(A_{5} ; \varpi_{3}\right)
$$

We have

$$
18=\operatorname{dim} \overline{\mathbb{O}_{\left(2^{3}\right)}}=\operatorname{dim} \mathscr{S}_{2 A_{1}, A_{1}}=40-22 .
$$

As in the previous example, we find that the fiber above

$$
x_{0}:=e_{10}+e_{11}+f_{1} \in \mathbb{O}_{\left(2^{3}\right)}
$$

has cardinality two:

$$
\pi^{-1}\left(x_{0}\right)=\left\{f+x_{0}+2 e_{31}, f+x_{0}-2 e_{31}\right\} \subset 3 A_{1}
$$

where $f:=f_{36} \in A_{1}$.
The morphism π is finite and

$$
\mathscr{S}_{3 A_{1}, A_{1}} \cong \overline{\left(G^{\natural}\right)^{0} \cdot x}, \quad x:=f+x_{0}+2 e_{31}
$$

Work in progress: $\mathscr{S}_{3 A_{1}, A_{1}}$ is isomorphic to the affinization of the 2:1 $\operatorname{cover}\left(G^{\natural}\right)^{0} /\left(G^{\natural}\right)_{x}^{0}$ of the orbit $\left(G^{\natural}\right)^{0} \cdot x_{0}$ in $\mathfrak{s l}_{6}$.
Moreover, π is an isomorphism when restricted to the complement of $\left(G^{\natural}\right)^{0} \cdot x$.

Asymptotic behaviour of characters

Asymptotic behaviour of characters

The normalised character of an ordinary representation M is defined by

Asymptotic behaviour of characters

The normalised character of an ordinary representation M is defined by

$$
\chi_{M}(\tau)=\operatorname{tr}_{M} q^{L_{0}-c_{V} / 24}=q^{-c_{V} / 24} \sum_{d \in \mathbb{C}}\left(\operatorname{dim} M_{d}\right) q^{d}, \quad q=e^{2 \pi \mathbf{i} \tau}
$$

Asymptotic behaviour of characters

The normalised character of an ordinary representation M is defined by

$$
\chi_{M}(\tau)=\operatorname{tr}_{M} q^{L_{0}-c_{V} / 24}=q^{-c_{V} / 24} \sum_{d \in \mathbb{C}}\left(\operatorname{dim} M_{d}\right) q^{d}, \quad q=e^{2 \pi \mathbf{i} \tau}
$$

Say that V is quasi-lisse is X_{V} has finitely many symplectic leaves.

Asymptotic behaviour of characters

The normalised character of an ordinary representation M is defined by

$$
\chi_{M}(\tau)=\operatorname{tr}_{M} q^{L_{0}-c_{V} / 24}=q^{-c_{V} / 24} \sum_{d \in \mathbb{C}}\left(\operatorname{dim} M_{d}\right) q^{d}, \quad q=e^{2 \pi \mathbf{i} \tau} .
$$

Say that V is quasi-lisse is X_{V} has finitely many symplectic leaves.
For example, $L_{k}(\mathfrak{g})$ and any quotient of $H_{D s, f}^{0}\left(L_{k}(\mathfrak{g})\right)$ are quasi-lisse if k is admissible.

Asymptotic behaviour of characters

The normalised character of an ordinary representation M is defined by

$$
\chi_{M}(\tau)=\operatorname{tr}_{M} q^{L_{0}-c_{V} / 24}=q^{-c_{V} / 24} \sum_{d \in \mathbb{C}}\left(\operatorname{dim} M_{d}\right) q^{d}, \quad q=e^{2 \pi \mathbf{i} \tau} .
$$

Say that V is quasi-lisse is X_{V} has finitely many symplectic leaves.
For example, $L_{k}(\mathfrak{g})$ and any quotient of $H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)$ are quasi-lisse if k is admissible.
Proposition [Arakawa-van Ekeren-M. 21'].

Asymptotic behaviour of characters

The normalised character of an ordinary representation M is defined by

$$
\chi_{M}(\tau)=\operatorname{tr}_{M} q^{L_{0}-c_{V} / 24}=q^{-c_{V} / 24} \sum_{d \in \mathbb{C}}\left(\operatorname{dim} M_{d}\right) q^{d}, \quad q=e^{2 \pi \mathbf{i} \tau} .
$$

Say that V is quasi-lisse is X_{V} has finitely many symplectic leaves.
For example, $L_{k}(\mathfrak{g})$ and any quotient of $H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)$ are quasi-lisse if k is admissible.

Proposition [Arakawa-van Ekeren-M. 21'].

Assume that V is a finitely strongly generated, quasi-lisse $\mathbb{Z}_{\geqslant 0}$-graded vertex operator algebras V, with $V_{0}=\mathbb{C}$ (CFT-type).

Asymptotic behaviour of characters

The normalised character of an ordinary representation M is defined by

$$
\chi_{M}(\tau)=\operatorname{tr}_{M} q^{L_{0}-c_{V} / 24}=q^{-c_{V} / 24} \sum_{d \in \mathbb{C}}\left(\operatorname{dim} M_{d}\right) q^{d}, \quad q=e^{2 \pi \mathbf{i} \tau} .
$$

Say that V is quasi-lisse is X_{V} has finitely many symplectic leaves.
For example, $L_{k}(\mathfrak{g})$ and any quotient of $H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)$ are quasi-lisse if k is admissible.

Proposition [Arakawa-van Ekeren-M. 21'].

Assume that V is a finitely strongly generated, quasi-lisse $\mathbb{Z}_{\geqslant 0 \text {-graded vertex operator }}$ algebras V, with $V_{0}=\mathbb{C}$ (CFT-type).
Then any simple ordinary V-module M admits an asymptotic datum,

Asymptotic behaviour of characters

The normalised character of an ordinary representation M is defined by

$$
\chi_{M}(\tau)=\operatorname{tr}_{M} q^{L_{0}-c_{V} / 24}=q^{-c_{V} / 24} \sum_{d \in \mathbb{C}}\left(\operatorname{dim} M_{d}\right) q^{d}, \quad q=e^{2 \pi \mathbf{i} \tau} .
$$

Say that V is quasi-lisse is X_{V} has finitely many symplectic leaves.
For example, $L_{k}(\mathfrak{g})$ and any quotient of $H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)$ are quasi-lisse if k is admissible.

Proposition [Arakawa-van Ekeren-M. 21'].

Assume that V is a finitely strongly generated, quasi-lisse $\mathbb{Z}_{\geqslant 0 \text {-graded vertex operator }}$ algebras V, with $V_{0}=\mathbb{C}$ (CFT-type).
Then any simple ordinary V-module M admits an asymptotic datum, that is

$$
\chi_{M}(\tau) \sim \boldsymbol{A}_{M}(-\mathbf{i} \tau)^{\frac{w_{M}}{2}} e^{\frac{\pi i}{12 \tau} \boldsymbol{g}_{M}} \quad \text { as } \quad \tau \downarrow 0
$$

Asymptotic behaviour of characters

The normalised character of an ordinary representation M is defined by

$$
\chi_{M}(\tau)=\operatorname{tr}_{M} q^{L_{0}-c_{V} / 24}=q^{-c_{V} / 24} \sum_{d \in \mathbb{C}}\left(\operatorname{dim} M_{d}\right) q^{d}, \quad q=e^{2 \pi \mathbf{i} \tau} .
$$

Say that V is quasi-lisse is X_{V} has finitely many symplectic leaves.
For example, $L_{k}(\mathfrak{g})$ and any quotient of $H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)$ are quasi-lisse if k is admissible.

Proposition [Arakawa-van Ekeren-M. 21'].

Assume that V is a finitely strongly generated, quasi-lisse $\mathbb{Z}_{\geqslant 0}$-graded vertex operator algebras V, with $V_{0}=\mathbb{C}$ (CFT-type).
Then any simple ordinary V-module M admits an asymptotic datum, that is

$$
\chi_{M}(\tau) \sim \boldsymbol{A}_{M}(-\mathbf{i} \tau)^{\frac{w_{M}}{2}} e^{\frac{\pi i}{12 \tau} \boldsymbol{g}_{M}} \quad \text { as } \quad \tau \downarrow 0
$$

where $\boldsymbol{A}_{M}, \boldsymbol{w}_{M}, \boldsymbol{g}_{M}$ are some constants.

Asymptotic behaviour of characters

The normalised character of an ordinary representation M is defined by

$$
\chi_{M}(\tau)=\operatorname{tr}_{M} q^{L_{0}-c_{V} / 24}=q^{-c_{V} / 24} \sum_{d \in \mathbb{C}}\left(\operatorname{dim} M_{d}\right) q^{d}, \quad q=e^{2 \pi \mathbf{i} \tau} .
$$

Say that V is quasi-lisse is X_{V} has finitely many symplectic leaves.
For example, $L_{k}(\mathfrak{g})$ and any quotient of $H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)$ are quasi-lisse if k is admissible.

Proposition [Arakawa-van Ekeren-M. 21'].

Assume that V is a finitely strongly generated, quasi-lisse $\mathbb{Z}_{\geqslant 0}$-graded vertex operator algebras V, with $V_{0}=\mathbb{C}$ (CFT-type).
Then any simple ordinary V-module M admits an asymptotic datum, that is

$$
\chi_{M}(\tau) \sim \boldsymbol{A}_{M}(-\mathbf{i} \tau)^{\frac{w_{M}}{2}} e^{\frac{\pi i}{12 \tau} \boldsymbol{g}_{M}} \quad \text { as } \quad \tau \downarrow 0
$$

where $\boldsymbol{A}_{M}, \boldsymbol{w}_{M}, \boldsymbol{g}_{M}$ are some constants.
The proposition was known for several classes of VOAs:

Asymptotic behaviour of characters

The normalised character of an ordinary representation M is defined by

$$
\chi_{M}(\tau)=\operatorname{tr}_{M} q^{L_{0}-c_{V} / 24}=q^{-c_{V} / 24} \sum_{d \in \mathbb{C}}\left(\operatorname{dim} M_{d}\right) q^{d}, \quad q=e^{2 \pi \mathbf{i} \tau} .
$$

Say that V is quasi-lisse is X_{V} has finitely many symplectic leaves.
For example, $L_{k}(\mathfrak{g})$ and any quotient of $H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)$ are quasi-lisse if k is admissible.

Proposition [Arakawa-van Ekeren-M. 21'].

Assume that V is a finitely strongly generated, quasi-lisse $\mathbb{Z}_{\geqslant 0}$-graded vertex operator algebras V, with $V_{0}=\mathbb{C}$ (CFT-type).
Then any simple ordinary V-module M admits an asymptotic datum, that is

$$
\chi_{M}(\tau) \sim \boldsymbol{A}_{M}(-\mathbf{i} \tau)^{\frac{w_{M}}{2}} e^{\frac{\pi i}{12 \tau} \boldsymbol{g}_{M}} \quad \text { as } \quad \tau \downarrow 0
$$

where $\boldsymbol{A}_{M}, \boldsymbol{w}_{M}, \boldsymbol{g}_{M}$ are some constants.
The proposition was known for several classes of VOAs:

- Rational, lisse, self-dual simple VOAs of CFT-type.

Asymptotic behaviour of characters

The normalised character of an ordinary representation M is defined by

$$
\chi_{M}(\tau)=\operatorname{tr}_{M} q^{L_{0}-c_{V} / 24}=q^{-c_{V} / 24} \sum_{d \in \mathbb{C}}\left(\operatorname{dim} M_{d}\right) q^{d}, \quad q=e^{2 \pi \mathbf{i} \tau} .
$$

Say that V is quasi-lisse is X_{V} has finitely many symplectic leaves.
For example, $L_{k}(\mathfrak{g})$ and any quotient of $H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)$ are quasi-lisse if k is admissible.

Proposition [Arakawa-van Ekeren-M. 21'].

Assume that V is a finitely strongly generated, quasi-lisse $\mathbb{Z}_{\geqslant 0}$-graded vertex operator algebras V, with $V_{0}=\mathbb{C}$ (CFT-type).
Then any simple ordinary V-module M admits an asymptotic datum, that is

$$
\chi_{M}(\tau) \sim \boldsymbol{A}_{M}(-\mathbf{i} \tau)^{\frac{w_{M}}{2}} e^{\frac{\pi i}{12 \tau} \boldsymbol{g}_{M}} \quad \text { as } \quad \tau \downarrow 0
$$

where $\boldsymbol{A}_{M}, \boldsymbol{w}_{M}, \boldsymbol{g}_{M}$ are some constants.
The proposition was known for several classes of VOAs:

- Rational, lisse, self-dual simple VOAs of CFT-type.
- Quotients of Virasoro vertex algebras.

Asymptotic behaviour of characters

The normalised character of an ordinary representation M is defined by

$$
\chi_{M}(\tau)=\operatorname{tr}_{M} q^{L_{0}-c_{V} / 24}=q^{-c_{V} / 24} \sum_{d \in \mathbb{C}}\left(\operatorname{dim} M_{d}\right) q^{d}, \quad q=e^{2 \pi \mathbf{i} \tau} .
$$

Say that V is quasi-lisse is X_{V} has finitely many symplectic leaves.
For example, $L_{k}(\mathfrak{g})$ and any quotient of $H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)$ are quasi-lisse if k is admissible.
Proposition [Arakawa-van Ekeren-M. 21'].
Assume that V is a finitely strongly generated, quasi-lisse $\mathbb{Z}_{\geqslant 0}$-graded vertex operator algebras V, with $V_{0}=\mathbb{C}$ (CFT-type).
Then any simple ordinary V-module M admits an asymptotic datum, that is

$$
\chi_{M}(\tau) \sim \boldsymbol{A}_{M}(-\mathbf{i} \tau)^{\frac{w_{M}}{2}} e^{\frac{\pi i}{12 \tau} \boldsymbol{g}_{M}} \quad \text { as } \quad \tau \downarrow 0
$$

where $\boldsymbol{A}_{M}, \boldsymbol{w}_{M}, \boldsymbol{g}_{M}$ are some constants.
The proposition was known for several classes of VOAs:

- Rational, lisse, self-dual simple VOAs of CFT-type.
- Quotients of Virasoro vertex algebras.
- V is $L_{k}(\mathfrak{g})$ or $H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)$ for k principal admissible [KAC-WАКІмото '89].

Asymptotic data for admissible W-algebras

Asymptotic data for admissible W-algebras

Theorem [AvEM '21].

Asymptotic data for admissible W-algebras

Theorem [AvEM '21].
Let k be an admissible level, and $f \in \overline{\mathbb{O}_{k}}$.

Asymptotic data for admissible W-algebras

THEOREM [AVEM '21].

Let k be an admissible level, and $f \in \overline{\mathbb{O}_{k}}$. If

$$
\chi_{H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)}(\tau) \sim \chi_{L_{k^{\natural}}\left(\mathfrak{g}^{\mathfrak{\natural}}\right)}(\tau) \quad \text { as } \quad \tau \downarrow 0,
$$

Asymptotic data for admissible W-algebras

Theorem [AvEM '21].

Let k be an admissible level, and $f \in \overline{\mathbb{O}_{k}}$. If

$$
\chi_{H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)}(\tau) \sim \chi_{L_{k^{\natural}}\left(\mathfrak{g}^{\mathfrak{\natural}}\right)}(\tau) \quad \text { as } \quad \tau \downarrow 0,
$$

that is,

$$
\begin{gathered}
\boldsymbol{w}_{H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)}=\boldsymbol{w}_{L_{k \mathfrak{G}}\left(\mathfrak{g}^{\natural}\right)}=0, \\
\boldsymbol{A}_{H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)}=\boldsymbol{A}_{L_{k \mathfrak{G}}\left(\mathfrak{g}^{\natural}\right)}, \quad \boldsymbol{g}_{H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)}=\boldsymbol{g}_{L_{k \mathfrak{G}}\left(\mathfrak{g}^{\mathfrak{\natural}}\right)},
\end{gathered}
$$

Asymptotic data for admissible W-algebras

Theorem [AvEM '21].

Let k be an admissible level, and $f \in \overline{\mathbb{O}_{k}}$. If

$$
\chi_{H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)}(\tau) \sim \chi_{L_{k^{\natural}}\left(\mathfrak{g}^{\mathfrak{\natural}}\right)}(\tau) \quad \text { as } \quad \tau \downarrow 0,
$$

that is,

$$
\begin{gathered}
\boldsymbol{w}_{H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)}=\boldsymbol{w}_{L_{k \mathfrak{\natural}}\left(\mathfrak{g}^{\natural}\right)}=0, \\
\boldsymbol{A}_{H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)}=\boldsymbol{A}_{L_{k \mathfrak{G}}\left(\mathfrak{g}^{\natural}\right)}, \quad \boldsymbol{g}_{H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)}=\boldsymbol{g}_{L_{k \mathfrak{G}}\left(\mathfrak{g}^{\natural}\right)},
\end{gathered}
$$

then k is collapsing, that is,

$$
\mathcal{W}_{k}(\mathfrak{g}, f) \cong L_{k^{\mathfrak{\natural}}}\left(\mathfrak{g}^{\mathfrak{\natural}}\right) .
$$

Asymptotic data for admissible W-algebras

Theorem [AvEM '21].

Let k be an admissible level, and $f \in \overline{\mathbb{O}_{k}}$. If

$$
\chi_{H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)}(\tau) \sim \chi_{L_{k^{\natural}}\left(\mathfrak{g}^{\mathfrak{\natural}}\right)}(\tau) \quad \text { as } \quad \tau \downarrow 0,
$$

that is,

$$
\begin{gathered}
\boldsymbol{w}_{H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)}=\boldsymbol{w}_{L_{k \mathfrak{\natural}}\left(\mathfrak{g}^{\natural}\right)}=0, \\
\boldsymbol{A}_{H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)}=\boldsymbol{A}_{L_{k \mathfrak{G}}\left(\mathfrak{g}^{\natural}\right)}, \quad \boldsymbol{g}_{H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)}=\boldsymbol{g}_{L_{k^{\natural}}\left(\mathfrak{g}^{\natural}\right)},
\end{gathered}
$$

then k is collapsing, that is,

$$
\mathcal{W}_{k}(\mathfrak{g}, f) \cong L_{k^{\mathfrak{\natural}}}\left(\mathfrak{g}^{\mathfrak{\natural}}\right) .
$$

We have explicit combinatorial formulas for $\boldsymbol{g}_{L_{k \mathfrak{\natural}}\left(\mathfrak{g}^{\natural}\right)}, \boldsymbol{g}_{H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)}, \boldsymbol{A}_{L_{k^{\natural}}\left(\mathfrak{g}^{\natural}\right)}$ and $\boldsymbol{A}_{H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)}$.

Asymptotic data for admissible W-algebras

Theorem [AvEM '21].

Let k be an admissible level, and $f \in \overline{\mathbb{O}_{k}}$. If

$$
\chi_{H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)}(\tau) \sim \chi_{L_{k^{\natural}}\left(\mathfrak{g}^{\mathfrak{\natural}}\right)}(\tau) \quad \text { as } \quad \tau \downarrow 0,
$$

that is,

$$
\begin{gathered}
\boldsymbol{w}_{H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)}=\boldsymbol{w}_{L_{k \mathfrak{\natural}}\left(\mathfrak{g}^{\natural}\right)}=0, \\
\boldsymbol{A}_{H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)}=\boldsymbol{A}_{L_{k \mathfrak{G}}\left(\mathfrak{g}^{\natural}\right)}, \quad \boldsymbol{g}_{H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)}=\boldsymbol{g}_{L_{k^{\natural}}\left(\mathfrak{g}^{\natural}\right)},
\end{gathered}
$$

then k is collapsing, that is,

$$
\mathcal{W}_{k}(\mathfrak{g}, f) \cong L_{k^{\mathfrak{\natural}}}\left(\mathfrak{g}^{\mathfrak{\natural}}\right) .
$$

We have explicit combinatorial formulas for $\boldsymbol{g}_{L_{k \mathfrak{\natural}}\left(\mathfrak{g}^{\natural}\right)}, \boldsymbol{g}_{H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)}, \boldsymbol{A}_{L_{k^{\natural}}\left(\mathfrak{g}^{\natural}\right)}$ and $\boldsymbol{A}_{H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)}$. For example,

$$
\boldsymbol{g}_{H_{D S, f}^{0}\left(L_{K}(\mathfrak{g})\right)}=\boldsymbol{g}_{L_{k}(\mathfrak{g})}-\operatorname{dim} \text { G.f, }
$$

Asymptotic data for admissible W-algebras

Theorem [AvEM '21].

Let k be an admissible level, and $f \in \overline{\mathbb{O}_{k}}$. If

$$
\chi_{H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)}(\tau) \sim \chi_{L_{k^{\natural}}\left(\mathfrak{g}^{\mathfrak{\natural}}\right)}(\tau) \quad \text { as } \quad \tau \downarrow 0,
$$

that is,

$$
\begin{gathered}
\boldsymbol{w}_{H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)}=\boldsymbol{w}_{L_{k \mathfrak{\natural}}\left(\mathfrak{g}^{\natural}\right)}=0, \\
\boldsymbol{A}_{H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)}=\boldsymbol{A}_{L_{k \mathfrak{G}}\left(\mathfrak{g}^{\natural}\right)}, \quad \boldsymbol{g}_{H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)}=\boldsymbol{g}_{L_{k^{\natural}}\left(\mathfrak{g}^{\natural}\right)},
\end{gathered}
$$

then k is collapsing, that is,

$$
\mathcal{W}_{k}(\mathfrak{g}, f) \cong L_{k^{\mathfrak{\natural}}}\left(\mathfrak{g}^{\mathfrak{\natural}}\right) .
$$

We have explicit combinatorial formulas for $\boldsymbol{g}_{L_{k \mathfrak{\natural}}\left(\mathfrak{g}^{\natural}\right)}, \boldsymbol{g}_{H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)}, \boldsymbol{A}_{L_{k^{\natural}}\left(\mathfrak{g}^{\natural}\right)}$ and $\boldsymbol{A}_{H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)}$. For example,

$$
\boldsymbol{g}_{H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)}=\boldsymbol{g}_{L_{k}(\mathfrak{g})}-\operatorname{dim} \text { G.f, }
$$

where

$$
\boldsymbol{g}_{L_{k}(\mathfrak{g})}= \begin{cases}\operatorname{dim} \mathfrak{g}\left(1-\frac{h_{\mathfrak{g}}^{\vee}}{p q}\right) & \text { if }\left(q, r^{\vee}\right)=1 \\ \operatorname{dim} \mathfrak{g}\left(1-\frac{h_{L_{\mathfrak{g}}}^{\vee} r^{\vee}}{p q}\right) & \text { if }\left(q, r^{\vee}\right)=r^{\vee}\end{cases}
$$

Criterion for finite extensions

Criterion for finite extensions

Let k, k^{\natural} admissible.

Criterion for finite extensions

Let k, k^{\natural} admissible. Consider the composition morphism

$$
f: V^{k^{\natural}}\left(\mathfrak{g}^{\natural}\right) \longleftrightarrow \mathcal{W}^{k}(\mathfrak{g}, f) \longrightarrow H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)=W
$$

Criterion for finite extensions

Let k, k^{\natural} admissible. Consider the composition morphism

$$
f: V^{k^{\natural}}\left(\mathfrak{g}^{\natural}\right) \longleftrightarrow \mathcal{W}^{k}(\mathfrak{g}, f) \longrightarrow H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)=W
$$

By [AvEM '21], we assert that if f is conformal then f factors through

$$
L_{k^{\natural}}\left(\mathfrak{g}^{\mathfrak{\natural}}\right) \longleftrightarrow H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right) .
$$

Criterion for finite extensions

Let k, k^{\natural} admissible. Consider the composition morphism

$$
f: V^{k^{\natural}}\left(\mathfrak{g}^{\natural}\right) \longleftrightarrow \mathcal{W}^{k}(\mathfrak{g}, f) \longrightarrow H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)=W
$$

By [AvEM '21], we assert that if f is conformal then f factors through

$$
L_{k \mathfrak{\natural}}\left(\mathfrak{g}^{\mathfrak{\natural}}\right) \longleftrightarrow H_{D s, f}^{0}\left(L_{k}(\mathfrak{g})\right) .
$$

In particular, $H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)$ is a (finite) direct sum of admissible $L_{k^{\natural}}\left(\mathfrak{g}^{\natural}\right)$-modules.

Criterion for finite extensions

Let k, k^{\natural} admissible. Consider the composition morphism

$$
f: V^{k^{\natural}}\left(\mathfrak{g}^{\natural}\right) \longleftrightarrow \mathcal{W}^{k}(\mathfrak{g}, f) \longrightarrow H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)=W
$$

By [AvEM '21], we assert that if f is conformal then f factors through

$$
L_{k^{\mathfrak{\natural}}}\left(\mathfrak{g}^{\mathfrak{\natural}}\right) \longleftrightarrow H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right) .
$$

In particular, $H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)$ is a (finite) direct sum of admissible $L_{k^{\natural}}\left(\mathfrak{g}^{\natural}\right)$-modules.

- We have a criterion to guarantee that f is conformal.

Criterion for finite extensions

Let k, k^{\natural} admissible. Consider the composition morphism

$$
f: V^{k^{\natural}}\left(\mathfrak{g}^{\natural}\right) \longleftrightarrow \mathcal{W}^{k}(\mathfrak{g}, f) \longrightarrow H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)=W
$$

By [AvEM '21], we assert that if f is conformal then f factors through

$$
L_{k^{\mathfrak{\natural}}}\left(\mathfrak{g}^{\mathfrak{\natural}}\right) \longleftrightarrow H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right) .
$$

In particular, $H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)$ is a (finite) direct sum of admissible $L_{k^{\natural}}\left(\mathfrak{g}^{\natural}\right)$-modules.

- We have a criterion to guarantee that f is conformal.

Theorem [AvEM '21].

Criterion for finite extensions

Let k, k^{\natural} admissible. Consider the composition morphism

$$
f: V^{k^{\natural}}\left(\mathfrak{g}^{\natural}\right) \longleftrightarrow \mathcal{W}^{k}(\mathfrak{g}, f) \longrightarrow H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)=W
$$

By [AvEM '21], we assert that if f is conformal then f factors through

$$
L_{k^{\natural}}\left(\mathfrak{g}^{\mathfrak{\natural}}\right) \longleftrightarrow H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right) .
$$

In particular, $H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)$ is a (finite) direct sum of admissible $L_{k^{\natural}}\left(\mathfrak{g}^{\natural}\right)$-modules.

- We have a criterion to guarantee that f is conformal.

Theorem [AvEM '21].

Let $f: V \rightarrow W$ be a homomorphism of conformal vertex algebras.

Criterion for finite extensions

Let k, k^{\natural} admissible. Consider the composition morphism

$$
f: V^{k^{\natural}}\left(\mathfrak{g}^{\natural}\right) \longleftrightarrow \mathcal{W}^{k}(\mathfrak{g}, f) \longrightarrow H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)=W
$$

By [AvEM '21], we assert that if f is conformal then f factors through

$$
L_{k^{\natural}}\left(\mathfrak{g}^{\mathfrak{\natural}}\right) \longleftrightarrow H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right) .
$$

In particular, $H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)$ is a (finite) direct sum of admissible $L_{k^{\natural}}\left(\mathfrak{g}^{\natural}\right)$-modules.

- We have a criterion to guarantee that f is conformal.

Theorem [AvEM '21].

Let $f: V \rightarrow W$ be a homomorphism of conformal vertex algebras. Suppose that

Criterion for finite extensions

Let k, k^{\natural} admissible. Consider the composition morphism

$$
f: V^{k^{\natural}}\left(\mathfrak{g}^{\natural}\right) \longleftrightarrow \mathcal{W}^{k}(\mathfrak{g}, f) \longrightarrow H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)=W
$$

By [AVEM '21], we assert that if f is conformal then f factors through

$$
L_{k^{\natural}}\left(\mathfrak{g}^{\mathfrak{\natural}}\right) \longleftrightarrow H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right) .
$$

In particular, $H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)$ is a (finite) direct sum of admissible $L_{k^{\natural}}\left(\mathfrak{g}^{\natural}\right)$-modules.

- We have a criterion to guarantee that f is conformal.

Theorem [AvEM '21].

Let $f: V \rightarrow W$ be a homomorphism of conformal vertex algebras. Suppose that

- the simple quotient L of V admits an asymptotic datum,

Criterion for finite extensions

Let k, k^{\natural} admissible. Consider the composition morphism

$$
f: V^{k^{\natural}}\left(\mathfrak{g}^{\natural}\right) \longleftrightarrow \mathcal{W}^{k}(\mathfrak{g}, f) \longrightarrow H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)=W
$$

By [AvEM '21], we assert that if f is conformal then f factors through

$$
L_{k^{\natural}}\left(\mathfrak{g}^{\mathfrak{\natural}}\right) \longleftrightarrow H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right) .
$$

In particular, $H_{D s, f}^{0}\left(L_{k}(\mathfrak{g})\right)$ is a (finite) direct sum of admissible $L_{k^{\natural}}\left(\mathfrak{g}^{\mathfrak{\natural}}\right)$-modules.

- We have a criterion to guarantee that f is conformal.

Theorem [AvEM '21].

Let $f: V \rightarrow W$ be a homomorphism of conformal vertex algebras. Suppose that

- the simple quotient L of V admits an asymptotic datum,
- W admits an asymptotic datum,

Criterion for finite extensions

Let k, k^{\natural} admissible. Consider the composition morphism

$$
f: V^{k^{\natural}}\left(\mathfrak{g}^{\natural}\right) \longleftrightarrow \mathcal{W}^{k}(\mathfrak{g}, f) \longrightarrow H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)=W
$$

By [AvEM '21], we assert that if f is conformal then f factors through

$$
L_{k^{\natural}}\left(\mathfrak{g}^{\mathfrak{\natural}}\right) \longleftrightarrow H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right) .
$$

In particular, $H_{D s, f}^{0}\left(L_{k}(\mathfrak{g})\right)$ is a (finite) direct sum of admissible $L_{k \mathfrak{h}}\left(\mathfrak{g}^{\mathfrak{\natural}}\right)$-modules.

- We have a criterion to guarantee that f is conformal.

Theorem [AvEM '21].

Let $f: V \rightarrow W$ be a homomorphism of conformal vertex algebras. Suppose that

- the simple quotient L of V admits an asymptotic datum,
- W admits an asymptotic datum,
- $f\left(\omega_{V}\right) \in W_{2}$ and $\left(\omega_{W}\right)_{(2)} f\left(\omega_{V}\right)=0$,

Criterion for finite extensions

Let k, k^{\natural} admissible. Consider the composition morphism

$$
f: V^{k^{\natural}}\left(\mathfrak{g}^{\natural}\right) \longleftrightarrow \mathcal{W}^{k}(\mathfrak{g}, f) \longrightarrow H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)=W
$$

By [AvEM '21], we assert that if f is conformal then f factors through

$$
L_{k^{\natural}}\left(\mathfrak{g}^{\mathfrak{\natural}}\right) \longleftrightarrow H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right) .
$$

In particular, $H_{D s, f}^{0}\left(L_{k}(\mathfrak{g})\right)$ is a (finite) direct sum of admissible $L_{k^{\natural}}\left(\mathfrak{g}^{\mathfrak{\natural}}\right)$-modules.

- We have a criterion to guarantee that f is conformal.

Theorem [AvEM '21].

Let $f: V \rightarrow W$ be a homomorphism of conformal vertex algebras. Suppose that

- the simple quotient L of V admits an asymptotic datum,
- W admits an asymptotic datum,
- $f\left(\omega_{V}\right) \in W_{2}$ and $\left(\omega_{W}\right)_{(2)} f\left(\omega_{V}\right)=0$,

If $\boldsymbol{g}_{L}=\boldsymbol{g}_{W}$, then f is conformal.

Criterion for finite extensions

Let k, k^{\natural} admissible. Consider the composition morphism

$$
f: V^{k^{\natural}}\left(\mathfrak{g}^{\natural}\right) \longleftrightarrow \mathcal{W}^{k}(\mathfrak{g}, f) \longrightarrow H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)=W
$$

By [AvEM '21], we assert that if f is conformal then f factors through

$$
L_{k^{\natural}}\left(\mathfrak{g}^{\mathfrak{\natural}}\right) \longleftrightarrow H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right) .
$$

In particular, $H_{D s, f}^{0}\left(L_{k}(\mathfrak{g})\right)$ is a (finite) direct sum of admissible $L_{k^{\natural}}\left(\mathfrak{g}^{\mathfrak{\natural}}\right)$-modules.

- We have a criterion to guarantee that f is conformal.

Theorem [AvEM '21].

Let $f: V \rightarrow W$ be a homomorphism of conformal vertex algebras. Suppose that

- the simple quotient L of V admits an asymptotic datum,
- W admits an asymptotic datum,
- $f\left(\omega_{V}\right) \in W_{2}$ and $\left(\omega_{W}\right)_{(2)} f\left(\omega_{V}\right)=0$,

If $\boldsymbol{g}_{L}=\boldsymbol{g}_{W}$, then f is conformal.

- In practice, using $\boldsymbol{A}_{L_{k^{\natural}}\left(\mathfrak{g}^{\natural}\right)}$ and $\boldsymbol{A}_{H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)}$ we determine the explicit decomposition.

Criterion for finite extensions

Let k, k^{\natural} admissible. Consider the composition morphism

$$
f: V^{k^{\natural}}\left(\mathfrak{g}^{\natural}\right) \longleftrightarrow \mathcal{W}^{k}(\mathfrak{g}, f) \longrightarrow H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)=W
$$

By [AvEM '21], we assert that if f is conformal then f factors through

$$
L_{k^{\natural}}\left(\mathfrak{g}^{\mathfrak{\natural}}\right) \longleftrightarrow H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right) .
$$

In particular, $H_{D s, f}^{0}\left(L_{k}(\mathfrak{g})\right)$ is a (finite) direct sum of admissible $L_{k^{\natural}}\left(\mathfrak{g}^{\mathfrak{\natural}}\right)$-modules.

- We have a criterion to guarantee that f is conformal.

Theorem [AvEM '21].

Let $f: V \rightarrow W$ be a homomorphism of conformal vertex algebras. Suppose that

- the simple quotient L of V admits an asymptotic datum,
- W admits an asymptotic datum,
- $f\left(\omega_{V}\right) \in W_{2}$ and $\left(\omega_{W}\right)_{(2)} f\left(\omega_{V}\right)=0$,

If $\boldsymbol{g}_{L}=\boldsymbol{g}_{W}$, then f is conformal.

- In practice, using $\boldsymbol{A}_{L_{k^{\natural}}\left(\mathfrak{g}^{\natural}\right)}$ and $\boldsymbol{A}_{H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)}$ we determine the explicit decomposition.

Final remarks

Final remarks

(1) To prove the conjecture for finite extensions of simple admissible affine vertex algebras,

$$
L_{k \mathfrak{k}}\left(\mathfrak{g}^{\mathfrak{\natural}}\right) \longleftrightarrow H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)
$$

Final remarks

(1) To prove the conjecture for finite extensions of simple admissible affine vertex algebras,

$$
L_{k \mathfrak{}}\left(\mathfrak{g}^{\natural}\right) \longleftrightarrow H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)
$$

it remains to establish that

$$
\operatorname{dim} X_{H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)}=\operatorname{dim} X_{L_{k^{\mathfrak{\natural}}}\left(\mathfrak{g}^{\mathfrak{g}}\right)} .
$$

Final remarks

(1) To prove the conjecture for finite extensions of simple admissible affine vertex algebras,

$$
L_{k^{\natural}}\left(\mathfrak{g}^{\mathfrak{\natural}}\right) \longleftrightarrow H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)
$$

it remains to establish that

$$
\operatorname{dim} X_{H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)}=\operatorname{dim} X_{L_{k^{\mathfrak{\natural}}}\left(\mathfrak{g}^{\mathfrak{\natural}}\right)}
$$

- Dream:

Final remarks

(1) To prove the conjecture for finite extensions of simple admissible affine vertex algebras,

$$
L_{k^{\natural}}\left(\mathfrak{g}^{\mathfrak{\natural}}\right) \longleftrightarrow H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)
$$

it remains to establish that

$$
\operatorname{dim} X_{H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)}=\operatorname{dim} X_{L_{k^{\mathfrak{\natural}}}\left(\mathfrak{g}^{\mathfrak{g}}\right)} .
$$

- Dream: to use the equality

$$
\boldsymbol{g}_{H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)}=\boldsymbol{g}_{L_{k \mathfrak{G}}\left(\mathfrak{g}^{\mathfrak{\natural}}\right)},
$$

Final remarks

(1) To prove the conjecture for finite extensions of simple admissible affine vertex algebras,

$$
L_{k^{\natural}}\left(\mathfrak{g}^{\mathfrak{\natural}}\right) \longleftrightarrow H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)
$$

it remains to establish that

$$
\operatorname{dim} X_{H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)}=\operatorname{dim} X_{L_{k^{\mathfrak{\natural}}}\left(\mathfrak{g}^{\mathfrak{g}}\right)} .
$$

- Dream: to use the equality

$$
\boldsymbol{g}_{H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)}=\boldsymbol{g}_{L_{k \mathfrak{\natural}}\left(\mathfrak{g}^{\mathfrak{\natural}}\right)}, \quad \text { that is, } \quad \boldsymbol{g}_{L_{k}(\mathfrak{g})}-\operatorname{dim} G . f=\boldsymbol{g}_{L_{k^{\mathfrak{\natural}}}\left(\mathfrak{g}^{\mathfrak{\natural}}\right)}
$$

Final remarks

(1) To prove the conjecture for finite extensions of simple admissible affine vertex algebras,

$$
L_{k \mathfrak{}}\left(\mathfrak{g}^{\natural}\right) \longleftrightarrow H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)
$$

it remains to establish that

$$
\operatorname{dim} X_{H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)}=\operatorname{dim} X_{L_{k^{\natural}}\left(\mathfrak{g}^{\mathfrak{g}}\right)} .
$$

- Dream: to use the equality

$$
\boldsymbol{g}_{H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)}=\boldsymbol{g}_{L_{k \mathfrak{\natural}}\left(\mathfrak{g}^{\mathfrak{\natural}}\right)}, \quad \text { that is, } \quad \boldsymbol{g}_{L_{k}(\mathfrak{g})}-\operatorname{dim} G . f=\boldsymbol{g}_{L_{k^{\mathfrak{\natural}}}\left(\mathfrak{g}^{\mathfrak{\natural}}\right)}
$$

to show that

$$
\operatorname{dim} \mathscr{S}_{\mathbb{O}_{k}, f}=\operatorname{dim} \mathbb{O}_{k}-\operatorname{dim} G . f=\operatorname{dim} \mathbb{O}_{k \natural} .
$$

Final remarks

(1) To prove the conjecture for finite extensions of simple admissible affine vertex algebras,

$$
L_{k \mathfrak{}}\left(\mathfrak{g}^{\natural}\right) \longleftrightarrow H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)
$$

it remains to establish that

$$
\operatorname{dim} X_{H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)}=\operatorname{dim} X_{L_{k^{\natural}}\left(\mathfrak{g}^{\mathfrak{g}}\right)} .
$$

- Dream: to use the equality

$$
\boldsymbol{g}_{H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)}=\boldsymbol{g}_{L_{k \mathfrak{G}}\left(\mathfrak{g}^{\mathfrak{\natural}}\right)}, \quad \text { that is, } \quad \boldsymbol{g}_{L_{k}(\mathfrak{g})}-\operatorname{dim} G . f=\boldsymbol{g}_{L_{k \mathfrak{G}}\left(\mathfrak{g}^{\mathfrak{\natural}}\right)}
$$

to show that

$$
\operatorname{dim} \mathscr{S}_{\mathbb{O}_{k}, f}=\operatorname{dim} \mathbb{O}_{k}-\operatorname{dim} G . f=\operatorname{dim} \mathbb{O}_{k \natural} .
$$

Unfortunately, $\operatorname{dim} \mathbb{O}_{k} \neq \operatorname{dim} \boldsymbol{g}_{L_{k}(\mathfrak{g})}$ in general, although the difference is very small.

Final remarks

(1) To prove the conjecture for finite extensions of simple admissible affine vertex algebras,

$$
L_{k \mathfrak{}}\left(\mathfrak{g}^{\mathfrak{\natural}}\right) \longleftrightarrow H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)
$$

it remains to establish that

$$
\operatorname{dim} X_{H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)}=\operatorname{dim} X_{L_{k \mathfrak{\natural}}\left(\mathfrak{g}^{\mathfrak{\natural}}\right)} .
$$

- Dream: to use the equality

$$
\boldsymbol{g}_{H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)}=\boldsymbol{g}_{L_{k \mathfrak{\natural}}\left(\mathfrak{g}^{\mathfrak{\natural}}\right)}, \quad \text { that is, } \quad \boldsymbol{g}_{L_{k}(\mathfrak{g})}-\operatorname{dim} G . f=\boldsymbol{g}_{L_{k^{\mathfrak{\natural}}}\left(\mathfrak{g}^{\mathfrak{\natural}}\right)}
$$

to show that

$$
\operatorname{dim} \mathscr{S}_{\mathbb{O}_{k}, f}=\operatorname{dim} \mathbb{O}_{k}-\operatorname{dim} G . f=\operatorname{dim} \mathbb{O}_{k \natural} .
$$

Unfortunately, $\operatorname{dim} \mathbb{O}_{k} \neq \operatorname{dim} \boldsymbol{g}_{L_{k}(\mathfrak{g})}$ in general, although the difference is very small. So, if true, this is certainly a bit subtle...

Final remarks

(1) To prove the conjecture for finite extensions of simple admissible affine vertex algebras,

$$
L_{k^{\natural}}\left(\mathfrak{g}^{\mathfrak{\natural}}\right) \longleftrightarrow H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)
$$

it remains to establish that

$$
\operatorname{dim} X_{H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)}=\operatorname{dim} X_{L_{k^{\mathfrak{\natural}}}\left(\mathfrak{g}^{\mathfrak{g}}\right)} .
$$

- Dream: to use the equality

$$
\boldsymbol{g}_{H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)}=\boldsymbol{g}_{L_{k \mathfrak{\natural}}\left(\mathfrak{g}^{\mathfrak{\natural}}\right)}, \quad \text { that is, } \quad \boldsymbol{g}_{L_{k}(\mathfrak{g})}-\operatorname{dim} G . f=\boldsymbol{g}_{L_{k^{\mathfrak{\natural}}}\left(\mathfrak{g}^{\mathfrak{\natural}}\right)}
$$

to show that

$$
\operatorname{dim} \mathscr{S}_{\mathbb{O}_{k}, f}=\operatorname{dim} \mathbb{O}_{k}-\operatorname{dim} G . f=\operatorname{dim} \mathbb{O}_{k^{\natural}} .
$$

Unfortunately, $\operatorname{dim} \mathbb{O}_{k} \neq \operatorname{dim} \boldsymbol{g}_{L_{k}(\mathfrak{g})}$ in general, although the difference is very small. So, if true, this is certainly a bit subtle...
(2) We also need a better understanding of the connection between the cardinality of the generic fiber of π and the decomposition of $H_{D s, f}^{0}\left(L_{k}(\mathfrak{g})\right)$ as $L_{k^{\natural}}\left(\mathfrak{g}^{\natural}\right)$-modules.

