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joint work in progress with Jethro Van Ekeren (IMPA)

Representation Theory XVII — Dubrovnik, Croatia, October 3 – 8, 2022

1/21



Associated variety of vertex algebras

There is a contravariant functor

{ vertex algebras } −→ {affine Poisson varieties}
V 7−→ XV ,

where XV is the associated variety of V :

XV := (Spec RV )red .

Here RV = V/C2(V ) is the Zhu’s C2 algebra, with

C2(V ) := spanC{a(−2)b : a, b ∈ V}.

It is a Poisson algebra by
a · b = a(−1)b, {a, b} = a(0)b.

I The associated variety XV captures important properties of V .
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Finite extensions

A vertex algebra W is a finite extension of a vertex algebra V if V is a conformal vertex
subalgebra of W , and W is a finite direct sum of simple V -modules.

The natural embedding V ↪−→ W induces a Poisson algebra morphism

ϕ : RV −→ RW

hence a morphism of Poisson varieties

π := ϕ∗red : XW −→ XV .

CONJECTURE [ARAKAWA–VAN EKEREN–M. ’21].

If W is a finite extension of V , then the morphism π : XW −→ XV is dominant.

I It is known that if V is lisse, that is, XV = {pt}, then W is lisse.

The conjecture suggests that the converse holds as well.

I The conjecture is not true for infinite extensions of vertex algebras.

Let L be an even integral lattice and h = C⊗ L, and consider the Heisenberg vertex
algebra V = V 1(h) inside the lattice vertex algebra W = VL.

Then RV
∼= S(h) while RW is finite dimensional.
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Finite extensions of affine vertex algebras

Let V be a quotient of the universal affine vertex algebra Vκ(g) associated with a bilinear form
κ and a finite-dimensional Lie algebra g.

So V is strongly generated by the Lie algebra V1.

PROPOSITION [VAN EKEREN–M. ’22].

If V is a simple affine vertex algebra and W decomposes as a finite direct sum of
irreducible ordinary V -modules, then the extension ϕ(RV ) ↪−→ RW is finite.

By ordinary V-module we mean a module with finite-dimensional graded pieces such that the
conformal weights are bounded from below.

Idea of the proof. Write

W = V ⊕
s⊕

i=2

M(i), M(i) irreducible ordinary V -modules.

The union of a basis {a1, . . . , ar} of V1 with a basis {x1, . . . , x r} of
⊕

i M(i)
low, forms a set of

strong generators of W .

In fact, W is spanned by monomials in ai
(ni )

, ni 6 −1, and x j containing at most one “x”. So RW

is spanned by the ai1 ai2 · · · ais x j , thus is finitely generated as a ϕ(RV )-module. �

I As Poisson algebras, the extension ϕ(RV ) ↪−→ RW is finite of degree at most s.

I The structure of the extension ϕ(RV ) ↪−→ RW might be related to the structure of
the fusion ring of V .
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Consider the associated varieties

XV = (Spec RV )red , XW = (Spec RW )red and Y = (Specϕ(RV ))red .

We have the diagram

XV

Y
?�

OO

XW
finite morphism

oo

π

gg

COROLLARY.

Assume that XW and XV are irreducible. In the context of the proposition, we have

dimXW = dimY 6 dimXV .

Therefore, if dimXW > dimXV , the conjecture holds.

; From now on we will focus on finite extensions of admissible simple affine vertex algebras
which are simple W-algebras.
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Simple affine vertex algebras at admissible levels

Consider the universal affine vertex algebra V k(g) associated with a simple Lie algebra g at
level k ∈ C.

We have
XV k (g) = g∗ ∼= g.

The associated variety XLk (g) ⊂ g of the simple quotient Lk(g) of V k(g) is G-invariant and
conic.

THEOREM [ARAKAWA ’15].

If Lk(g) is admissible, i.e.,

k = −h∨g + p/q, with (p, q) = 1 and

{
p > h∨g if (q, r∨) = 1,

p > hg if (q, r∨) 6= 1,

then XLk (g) = Ok , for some nilpotent orbit Ok of g which depends only on q.

In particular, XLk (g) is irreducible and its dimension only depends on q.
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Compatibility with Drinfeld-Sokolov reduction

Let f be a nilpotent element of g, the W-algebra associated with g, f at the level k obtained by
the quantized Drinfeld-Sokolov reduction [FEIGIN-FRENKEL, KAC-ROAN-WAKIMOTO]:

Wk(g, f ) = H0
DS,f (V

k(g)).

Then [DE SOLE-KAC]
XWk (g,f )

∼= Sf := f + ge,

where Sf is the Slodowy slice attached with an sl2-triple (e, h, f ).

THEOREM [ARAKAWA ’15].

We have
XH0

DS,f (Lk (g))
∼= XLk (g) ∩Sf .

In particular, XH0
DS,f (Lk (g))

is isomorphic to Ok ∩Sf if k = −h∨ + p/q is admissible.

I If k is admissible, then XH0
DS,f (Lk (g))

= Ok ∩Sf is irreducible [ARAKAWA–M. ’18], and

dimXH0
DS,f (Lk (g))

= dimOk − dimG.f .

I Conjecturally [KAC-WAKIMOTO],

Wk(g, f ) = H0
DS,f (Lk(g)),

provided that H0
DS,f (Lk(g)) 6= 0, whereWk(g, f ) is the simple quotient ofWk(g, f ).
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Collapsing levels for W -algebras

Let g\ be the centralizer of the sl2-triple (e, h, f ).
It is a reductive algebra.

There is a vertex algebra morphism [KAC-WAKIMOTO ’04]:

V k\(g\) ↪−→Wk(g, f ),

where the level k\ is determined by f and k .

DEFINITION [ADAMOVIĆ-KAC-MÖSENEDER-PAPI-PERŠE ’18].

We say that k is collapsing forWk(g, f ) if the image of the composition map

V k\(g\) ↪−→Wk(g, f ) −�Wk(g, f )

is surjective, that is,
Wk(g, f ) ∼= Lk\(g

\).

For example, ifWk(g, f ) ∼= C, then k is collapsing.
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What is known about collapsing levels?

I [AKMPP ’18] There is a full classification of collapsing levels forWk(g, fmin), including simple
affine Lie superalgebras.

I [AVEM ’21] We studied admissible collapsing levels: we provided a conjectural exhaustive list
of such levels.

THEOREM (sln ) [ARAKAWA-VAN EKEREN-M. ’21].

Let g = sln and k = −n + p/q admissible. Write n = qm0 + s0, 0 6 s0 < q.

1 Pick f ∈ Ok so thatWk(sln, f ) is lisse (and even rational).
I if n ≡ ±1 mod q, thenWk (sln, f ) ∼= C.
I if n ≡ 0 mod q, thenW−n+(n+1)/q(sln, f ) ∼= L1(slm0 ).

2 Pick f ∈ O(qm,1s) ∈ Ok with s 6= 0. Then

W−n+n/q(sln, f ) ∼= L−s+s/q(sls).

3 Assume that n = qm0 + (q − 2) and pick f ∈ O(qm0−1,(q−1)2) ∈ Ok . Then

W−n+n/q(sln, f ) ∼= L−2+2/q(sl2).

I Subsequently, there were several works on collapsing non-admissible levels
[ADAMOVIC̀-MÖSENEDER-PAPI ’22, ARAKAWA-CREUTZIG-LINSHAW-M. ’22, FASQUEL ’22, ETC.]
For example [AMP ’22],W−n+(n−1)/q(slqm0 , f(qm0 )) ∼= L−1(slm0), m0 > 3.
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[ADAMOVIC̀-MÖSENEDER-PAPI ’22, ARAKAWA-CREUTZIG-LINSHAW-M. ’22, FASQUEL ’22, ETC.]
For example [AMP ’22],W−n+(n−1)/q(slqm0 , f(qm0 )) ∼= L−1(slm0), m0 > 3.

9/21



What is known about collapsing levels?

I [AKMPP ’18] There is a full classification of collapsing levels forWk(g, fmin), including simple
affine Lie superalgebras.

I [AVEM ’21] We studied admissible collapsing levels: we provided a conjectural exhaustive list
of such levels.

THEOREM (sln ) [ARAKAWA-VAN EKEREN-M. ’21].

Let g = sln and k = −n + p/q admissible. Write n = qm0 + s0, 0 6 s0 < q.

1 Pick f ∈ Ok so thatWk(sln, f ) is lisse (and even rational).
I if n ≡ ±1 mod q, thenWk (sln, f ) ∼= C.
I if n ≡ 0 mod q, thenW−n+(n+1)/q(sln, f ) ∼= L1(slm0 ).

2 Pick f ∈ O(qm,1s) ∈ Ok with s 6= 0. Then

W−n+n/q(sln, f ) ∼= L−s+s/q(sls).

3 Assume that n = qm0 + (q − 2) and pick f ∈ O(qm0−1,(q−1)2) ∈ Ok . Then

W−n+n/q(sln, f ) ∼= L−2+2/q(sl2).

I Subsequently, there were several works on collapsing non-admissible levels
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Finite extensions of admissible simple vertex algebras

Sometimes k is not collapsing, butWk(g, f ) is nevertheless a finite extension of Lk\(g
\).

Example in G2:

H0
DS,A1

(L−4+5/2(G2)) ∼= L−2+5/2(A1) ⊕ L−2+5/2(A1;$1).

Examples in F4:

H0
DS,C3

(L−9+13/10(F4)) ∼= L−2+3/10(A1) ⊕ L−2+3/10(A1;$1),

HDS,B2 (L−9+9/5(F4)) ∼= (L−2+3/10(A1) ⊗ L−2+3/10(A1)) ⊕ (L−2+3/10(A1;$1) ⊗ L−2+3/10(A1;$1)),

HDS,A2+Ã1
(L−9+10/3(F4)) ∼= L−2+5/2(A1) ⊕ L−2+5/2(A1;$1),

HDS,A2 (L−9+10/3(F4)) ∼= L−3+5/3(A2) ⊕ L−3+5/3(A2;$1) ⊕ L−3+5/3(A2;$2),

HDS,Ã1
(L−9+13/4(F4)) ∼= L−4+5/4(A3) ⊕

⊕
i=1,2,3

L−4+5/4(A3;$i ).

Examples in E6:

HDS,A5 (L−12+12/7(E6)) ∼= L−2+3/14(A1) ⊕ L−2+3/14(A1;$1),

HDS,A2 (L−12+13/3(E6)) ∼=
(

L−3+4/3(A2) ⊗ L−3+4/3(A2)
)
⊕
(

L−3+4/3(A3;$1) ⊗ L−3+4/3(A3;$1)
)
,

HDS,A1 (L−12+13/2(E6)) ∼= L−6+7/2(A5) ⊕ L−6+7/2(A5;$3).

Here, Lk(g;λ) stands for the highest weight representation of Lk(g) of admissible weight λ.

I We also have examples in types E7, E8 and in the classical types.
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(L−9+10/3(F4)) ∼= L−2+5/2(A1) ⊕ L−2+5/2(A1;$1),

HDS,A2 (L−9+10/3(F4)) ∼= L−3+5/3(A2) ⊕ L−3+5/3(A2;$1) ⊕ L−3+5/3(A2;$2),

HDS,Ã1
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What is the morphism π in these cases?

Recall that
ge =

⊕
i>0

(ge ∩ gi), where gi = {x ∈ g : [h, x] = 2ix},

and g\ = g0 ∩ ge so that

ge = g\ ⊕

(⊕
i>0

gi ∩ ge

)
.

The vertex algebra morphism V k\(g\) ↪−→Wk(g, f ) induces the morphism:

Sf = XWk (g,f ) −� X
V k\ (g\)

= g\

f + x0 + x+ 7−→ x0

where x0 + x+ ∈ g\ ⊕ ge
+ = ge.

When HDS,f (Lk(g)) is a finite extension of Lk\(g
\), with k , k\ admissible, π is the

G\ × C∗-equivariant morphism:

π : Sf ∩Ok = XHDS,f (Lk (g)) −→ XL
k\

(g\) = Ok\

f + x0 + x+ 7−→ x0,

where G\ is the stabilizer of s = span{e, h, f} ∼= sl2 in g.

In particular, its image is contained in the nilpotent cone of g\.
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Singularities of nilpotent Slodowy slices

Let O be a nilpotent orbit of g and f ∈ O. The intersection

SO,f := O ∩Sf

is a transverse slice to O at the point f , called a nilpotent Slodowy slice.

The geometry of SO,f has been mainly studied in the case where G.f is a minimal degeneration
of O, that is, G.f is a maximal orbit in the boundary O \O = Sing(O).

I When O = Oreg , then Oreg = N is the nilpotent cone of g, and it is well-known that
SO,fsubreg = N ∩Sfsubreg has a simple surface singularity at f of the same type as g,
provided that g has type A,D,E [BRIESKORN-SLODOWY].

I When O = Omin and f = 0, then SO,f = Omin has a minimal symplectic singularity at 0.

I Motivated by the normality problem, the generic singularities has been determined (that is,
the isomorphism type of SO,f for G.f a minimal degeneration) in the classical types by
[KRAFT AND PROCESI ’81-82].

I More recently, [FU-JUTEAU-LEVY-SOMMERS ’17] determined the generic singularities in the
exceptional types.
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Some properties of nilpotent Slodowy slices

In general, the natural projection

π : SO,f −→ g\

f + x0 + x+ 7−→ x0

is not dominant onto the closure of some nilpotent orbit in g\ of the same dimension of SO,f .

Example: consider the orbit O = Oreg in sl3, and pick f ∈ O(2,1).
Then SO,f has dimension two, g\ is a torus, and the image of π is just {0}.

However, we have the following result:

LEMMA [FJLS ’17].

Let x = f + x0 + x+ ∈ SO,f as above. Then

dimG\.x = dimSO,f
(
= codimO(G.f )

)
if and only if

x0 is nilpotent in g\ and dimG\.x0 = codimO(G.f ).
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Back to some examples

Consider the morphism
π : SÃ1,A1

−→ N (sl2) = Omin

corresponding to the extension

HDS,A1(L−4+5/2(G2)) ∼= L−2+5/2(A1)⊕ L−2+5/2(A1;$1).

We have
2 = dimN (sl2) = dimSÃ1,A1

= 8− 6.

Set f = f6 ∈ OA1 . The generic fiber of π above x0 := e1 ∈ Omin ⊂ sl2 can be computed using

Ok = OÃ1
= {x ∈ G2 : (ad x)2q = 0}, k = −4 + 5/2, q = 2.

We obtain:
π−1(x0) = {f + x0 + 2e5, f + x0 − 2e5} ⊂ Ã1.

" Note that SÃ1,A1
= G\.x , with x := f + x0 + 2e5, is not normal whileN (sl2) is [FJLS ’17].
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= {x ∈ G2 : (ad x)2q = 0}, k = −4 + 5/2, q = 2.

We obtain:
π−1(x0) = {f + x0 + 2e5, f + x0 − 2e5} ⊂ Ã1.
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= {x ∈ G2 : (ad x)2q = 0}, k = −4 + 5/2, q = 2.

We obtain:
π−1(x0) = {f + x0 + 2e5, f + x0 − 2e5} ⊂ Ã1.
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An example in F4

Consider the morphism
π : SÃ2+A1,A2

−→ N (sl3)

corresponding to the extension

H0
DS,A2(L−9+10/3(F4)) ∼= L−3+5/3(A2)⊕ L−3+5/3(A2;$1)⊕ L−3+5/3(A2;$2).

We have
6 = dimN (sl3) = dimSÃ2+A1,A2

= 36− 30.

As in the previous example, we find that the fiber above

x0 := 2e8 + 2f12 ∈ Oreg ⊂ sl3

has cardinality two:

π−1(x0) = {f + x0 + 6ωe2 + 6ω2e10 : ω
3 = 1} ⊂ Ã2 + A1,

where f = 2e16 + 2e18 ∈ A2.

The morphism π is finite and

SÃ2+A1,A2
= (G\)0.x, x := f + x0 + 6e2 + 6e10.

Work in progress: SÃ2+A1,A2
is isomorphic to the affinization of the 3 :1 cover (G\)0/(G\)0

x of
the regular orbit in sl3.

Moreover, π is an isomorphism when restricted to the complement of (G\)0.x .
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SÃ2+A1,A2
= (G\)0.x, x := f + x0 + 6e2 + 6e10.

Work in progress: SÃ2+A1,A2
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= 36− 30.

As in the previous example, we find that the fiber above

x0 := 2e8 + 2f12 ∈ Oreg ⊂ sl3

has cardinality two:

π−1(x0) = {f + x0 + 6ωe2 + 6ω2e10 : ω
3 = 1} ⊂ Ã2 + A1,
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= 36− 30.

As in the previous example, we find that the fiber above

x0 := 2e8 + 2f12 ∈ Oreg ⊂ sl3

has cardinality two:

π−1(x0) = {f + x0 + 6ωe2 + 6ω2e10 : ω
3 = 1} ⊂ Ã2 + A1,
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where f = 2e16 + 2e18 ∈ A2.

The morphism π is finite and
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An example in E6

Consider the morphism
π : S3A1,A1 −→ O(23) ⊂ sl6

corresponding to the extension

HDS,A1(L−12+13/2(E6)) ∼= L−6+7/2(A5)⊕ L−6+7/2(A5;$3).

We have
18 = dimO(23) = dimS2A1,A1 = 40− 22.

As in the previous example, we find that the fiber above

x0 := e10 + e11 + f1 ∈ O(23)

has cardinality two:

π−1(x0) = {f + x0 + 2e31, f + x0 − 2e31} ⊂ 3A1,

where f := f36 ∈ A1.

The morphism π is finite and

S3A1,A1
∼= (G\)0.x, x := f + x0 + 2e31.

Work in progress: S3A1,A1 is isomorphic to the affinization of the 2 :1 cover (G\)0/(G\)0
x of the

orbit (G\)0.x0 in sl6.

Moreover, π is an isomorphism when restricted to the complement of (G\)0.x .
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Asymptotic behaviour of characters

The normalised character of an ordinary representation M is defined by

χM(τ) = trMqL0−cV/24 = q−cV/24
∑
d∈C

(dimMd)q
d , q = e2πiτ .

Say that V is quasi-lisse is XV has finitely many symplectic leaves.

For example, Lk(g) and any quotient of H0
DS,f (Lk(g)) are quasi-lisse if k is admissible.

PROPOSITION [ARAKAWA–VAN EKEREN–M. 21’].

Assume that V is a finitely strongly generated, quasi-lisse Z>0-graded vertex operator
algebras V , with V0 = C (CFT-type).
Then any simple ordinary V -module M admits an asymptotic datum, that is

χM(τ) ∼ AM(−iτ)
wM

2 e
πi

12τ gM as τ ↓ 0,

where AM , wM , gM are some constants.

The proposition was known for several classes of VOAs:

Rational, lisse, self-dual simple VOAs of CFT-type.

Quotients of Virasoro vertex algebras.

V is Lk(g) or H0
DS,f (Lk(g)) for k principal admissible [KAC–WAKIMOTO ’89].
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DS,f (Lk(g)) are quasi-lisse if k is admissible.

PROPOSITION [ARAKAWA–VAN EKEREN–M. 21’].

Assume that V is a finitely strongly generated, quasi-lisse Z>0-graded vertex operator
algebras V , with V0 = C (CFT-type).
Then any simple ordinary V -module M admits an asymptotic datum, that is

χM(τ) ∼ AM(−iτ)
wM

2 e
πi

12τ gM as τ ↓ 0,

where AM , wM , gM are some constants.

The proposition was known for several classes of VOAs:

Rational, lisse, self-dual simple VOAs of CFT-type.

Quotients of Virasoro vertex algebras.

V is Lk(g) or H0
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Asymptotic data for admissible W -algebras

THEOREM [AVEM ’21].

Let k be an admissible level, and f ∈ Ok . If

χH0
DS,f (Lk (g))

(τ) ∼ χL
k\

(g\)(τ) as τ ↓ 0,

that is,
wH0

DS,f (Lk (g))
= wL

k\
(g\) = 0,

AH0
DS,f (Lk (g))

= AL
k\

(g\), gH0
DS,f (Lk (g))

= gL
k\

(g\),

then k is collapsing, that is,
Wk(g, f ) ∼= Lk\(g

\).

We have explicit combinatorial formulas for gL
k\

(g\), gH0
DS,f (Lk (g))

, AL
k\

(g\) and AH0
DS,f (Lk (g))

.

For example,
gH0

DS,f (Lk (g))
= gLk (g)

− dimG.f ,

where

gLk (g)
=


dim g

(
1−

h∨g
pq

)
if (q, r∨) = 1

dim g

(
1−

h∨Lgr∨

pq

)
if (q, r∨) = r∨.
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Criterion for finite extensions

Let k , k\ admissible. Consider the composition morphism

f : V k\(g\) ↪−→Wk(g, f ) −� H0
DS,f (Lk(g)) = W .

By [AVEM ’21], we assert that if f is conformal then f factors through

Lk\(g
\) ↪−→ H0

DS,f (Lk(g)).

In particular, H0
DS,f (Lk(g)) is a (finite) direct sum of admissible Lk\(g

\)-modules.

I We have a criterion to guarantee that f is conformal.

THEOREM [AVEM ’21].

Let f : V → W be a homomorphism of conformal vertex algebras. Suppose that

the simple quotient L of V admits an asymptotic datum,

W admits an asymptotic datum,

f (ωV ) ∈ W2 and (ωW )(2)f (ωV ) = 0,

If gL = gW , then f is conformal.

I In practice, using AL
k\

(g\) and AH0
DS,f (Lk (g))

we determine the explicit decomposition.
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Final remarks

1 To prove the conjecture for finite extensions of simple admissible affine vertex algebras,

Lk\(g
\) ↪−→ H0

DS,f (Lk(g))

it remains to establish that

dimXH0
DS,f (Lk (g))

= dimXL
k\

(g\).

I Dream: to use the equality

gH0
DS,f (Lk (g))

= gL
k\

(g\), that is, gLk (g)
− dimG.f = gL

k\
(g\)

to show that
dimSOk ,f = dimOk − dimG.f = dimOk\ .

Unfortunately, dimOk 6= dim gLk (g)
in general, although the difference is very small.

So, if true, this is certainly a bit subtle...

2 We also need a better understanding of the connection between the cardinality of the
generic fiber of π and the decomposition of H0

DS,f (Lk(g)) as Lk\(g
\)-modules.
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