On the Classification of Holomorphic Vertex Operator Superalgebras

> Sven Möller (j.w. Gerald Höhn)

Representation Theory XVII, Dubrovnik, Croatia

4th October 2022

Introduction

Sven Möller Classification of Holomorphic VOSAs

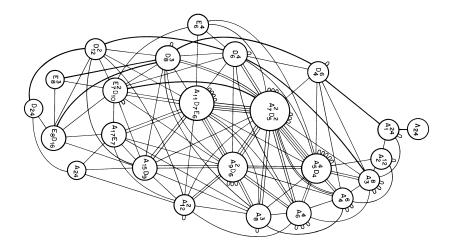
In 1985 Borcherds classified the positive-definite, odd, unimodular lattices of rank 24 [Bor85] using:

Let $8 \mid d$. There is a natural bijection between the positive-definite, odd, unimodular lattices *L* of rank *d* and the pairs of Kneser 2-neighbours of positive-definite, even, unimodular lattices *N*.



All positive-definite, odd, unimodular lattices of rank $\leq d$ may be obtained by splitting off copies of the standard lattice \mathbb{Z} .

The 2-neighbourhood graph in rank 24 (some loops omitted):



Goal: Classify the nice (i.e. strongly rational), holomorphic vertex operator superalgebras of central charge at most 24 by generalising Borcherds' neighbourhood method.

Indeed, Kneser 2-neighbours (of positive-definite, even, unimodular lattices) are generalised by the \mathbb{Z}_2 -orbifold construction (for nice, holomorphic vertex operator algebras).

This approach was probably known to several people in the 90s. However, it has just recently become feasible thanks to

- 1 advancements in orbifold theory,
- 2 the classification of holomorphic vertex operator algebras of central charge 24,
- **3** the determination of their automorphism groups [BLS22].

(Classification up to central 12 obtained in [CDR18].)

Vertex Operator Superalgebras

Vertex Operator Superalgebras

Assume "correct statistics": $V = \bigoplus_{n \in \frac{1}{2}\mathbb{Z}} V_n = V^{\overline{0}} \oplus V^{\overline{1}}$ with $V^{\overline{0}} = \bigoplus_{n \in \mathbb{Z}} V_n$ and $V^{\overline{1}} = \bigoplus_{n \in \frac{1}{2} + \mathbb{Z}} V_n \neq \{0\}.$

Examples:

- The Clifford (or free fermion) vertex operator superalgebra $F = L_{1/2}(0) \oplus L_{1/2}(1/2)$ of central charge 1/2. (Note that $F^{\otimes 2} \cong \langle bc \rangle \cong V_{\mathbb{Z}}$.)
- The lattice vertex operator superalgebra V_L of central charge rk(L) for a positive-definite, odd, unimodular lattice L.
- In particular: $A^{f\natural} \cong V_{D_{12}^+}$ (super-moonshine for Co₀, [Dun07]).
- The shorter moonshine module *VB*^{\\phi} of central charge 23.5 [Höh95].

By results of Dong et al., Carnahan, Miyamoto and Huang we obtain:

Let V be a nice vertex operator superalgebra. Then

• the even part $V^{\bar{0}}$ is a nice vertex operator algebra,

• the central charge
$$c \in \mathbb{Q}_{>0}$$
,

- $\operatorname{Rep}(V^0)$ is a modular tensor category,
- the odd part V¹ is an irreducible V⁰-module and a simple current of order 2,
- $\operatorname{Rep}(V^{\overline{0}})$ is a minimal modular extension of $\operatorname{Rep}^{\overline{0}}(V^{\overline{0}})$.

Now, let V be nice and holomorphic (or self-dual) vertex operator superalgebra. Using the "16-fold way" [DNR21] we show:

Theorem

Let V be a nice, holomorphic vertex operator superalgebra. Then the central charge $c \in (1/2)\mathbb{Z}_{>0}$, and $\operatorname{Rep}(V^{\overline{0}})$ is one of 16 minimal modular extensions of $\mathcal{C}((\mathbb{Z}_2, 0))$, depending only on c (mod 8). In fact, the modular tensor category $\operatorname{Rep}(V^{\overline{0}})$ is isomorphic to

 $\operatorname{Rep}((F^{\otimes d})^{\overline{0}})$ with $d = 2c \pmod{16}$.

In particular, $glob(V_{\bar{0}}) = 4$, but $|\operatorname{Rep}(V_{\bar{0}})| = 3$ or 4.

If $c \in \mathbb{Z}$: four irreducible modules [0], [1/2], c/8, c/8 with fusion algebra $\mathbb{C}[\mathbb{Z}_2 \times \mathbb{Z}_2]$ or $\mathbb{C}[\mathbb{Z}_4]$ (all simple currents).

If $c \in (1/2)\mathbb{Z} \setminus \mathbb{Z}$: three irreducible modules [0], [1/2], (c/8) with fusion rules of the Ising model $L_{1/2}(0)$.

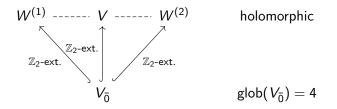
Neighbourhood Graph

Sven Möller Classification of Holomorphic VOSAs

If 8 | c, then Rep($V^{\bar{0}}$) $\cong C(2_{II}^{+2})$, with fusion algebra $\mathbb{C}[\mathbb{Z}_2 \times \mathbb{Z}_2]$ and conformal weights 0, 1/2, 0, 0 (mod 1). Hence:

Theorem

Let 8 | c. Then there is a natural bijection between the nice, holomorphic vertex operator superalgebras V of central charge c and the pairs of 2-neighbours (= \mathbb{Z}_2 -orbifold construction) of nice, holomorphic vertex operator algebras W.



We shall use this to classify all nice, holomorphic vertex operator superalgebras of central charge 24.

For a vertex operator superalgebra V of central charge c, $\langle V_{1/2} \rangle \cong F^{\otimes \ell}$ where $\ell = \dim(V_{1/2})$, and V decomposes as $V \cong \overline{V} \otimes F^{\ell}$, where the *stump* \overline{V} of V is a vertex operator (super)algebra of central charge $c - \ell/2$ with $\dim(\overline{V}_{1/2}) = 0$.

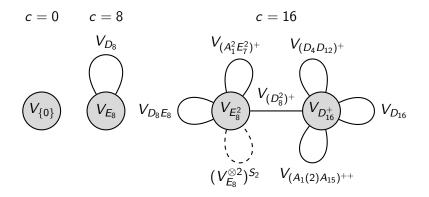
V is holomorphic or nice if and only if the stump \bar{V} is.

Theorem

For every $c \in (1/2)\mathbb{Z}_{\geq 0}$ and $l \in \mathbb{Z}_{\geq 0}$ the map $V \mapsto V \otimes F^{l}$ defines a bijection between the nice, holomorphic vertex operator (super)algebras V of central charge c with dim $(V_{1/2}) = k$ and those of central charge c + l/2 with dim $(V_{1/2}) = k + l$.

This allows us to classify all nice, holomorphic vertex operator superalgebras of central charge between 0 and 24.

Neighbourhood graph up to central charge 16:



For c = 8 there are only lattice nodes and edges. For c = 16 there are only lattice nodes but non-lattice edges. For c = 24 there will be non-lattice nodes and edges. Classification of nice, holomorphic vertex operator superalgebras of central charge at most 16:

V	V_1	$V^{ar{0}}$	$W^{(1)}$	$W^{(2)}$	type	C _{stump}
F ^{⊗32}	D ₁₆	$V_{D_{16}}$	$V_{D_{16}^+}$	$V_{D_{16}^+}$	I	0
$V_{D_{12}^+}\otimes F^{\otimes 8}$	$D_4 D_{12}$	$V_{(D_4D_{12})^+}$	$V_{D_{16}^+}$	$V_{D_{16}^+}$	I	12
$V_{\mathcal{A}^+_{15}}\otimes \mathcal{F}^{\otimes 2}$	$A_{15}\mathbb{C}$	$V_{(A_1(2)A_{15})^{++}}$	$V_{D_{16}^+}$	$V_{D_{16}^+}$	I	15
$V_{(D_8^2)^{++}}$	D_{8}^{2}	$V_{(D_8^2)^+}$	$V_{D_{16}^+}$	$V_{E_{8}^{2}}$	I	16
$V_{E_8}\otimes F^{\otimes 16}$	$D_8 E_8$	$V_{D_8E_8}$	$V_{E_{8}^{2}}$	$V_{E_{8}^{2}}$	Ι	8
$V_{(E_7^2)^+}\otimes F^{\otimes 4}$	$A_1^2 E_7^2$	$V_{(A_1^2 E_7^2)^+}$	$V_{E_{8}^{2}}$	$V_{E_8^2}$	I	14
$ar{V}\otimes F$	E _{8,2}	$(V_{E_8}^{\otimes 2})^{S_2}$	$V_{E_8^2}$	$V_{E_8^2}$	Ш	15.5

We shall extend these results to central charge 24.

Cartan Subalgebras of Vertex Operator Algebras

In a nice vertex operator algebra V, V_1 is a reductive Lie algebra of rank $r \leq c$ [DM04]. Let \mathcal{H} be a choice of Cartan subalgebra. By [Mas14, CKLR19]:

Let V be a nice vertex operator algebra. Then $U := \operatorname{Com}_V(\langle \mathcal{H} \rangle)$ is a nice vertex operator algebra of central charge c - r and $\operatorname{Com}_V(U) = V_L$ for some positive-definite, even lattice L of rank r. We call L the associated lattice of V. It is unique up isomorphism.

Then $U \otimes V_L \subseteq V$ forms a dual pair and by the theory of mirror extensions [Lin17, CKM22] V is a simple-current extension

$$V \cong \bigoplus_{\alpha+L \in A} U^{\tau(\alpha+L)} \otimes V_{\alpha+L}$$

for some $A \leq L'/L$.

(This was used in [Höh17, Lam20] to classify the nice, holomorphic vertex operator algebras of central charge 24.)

We note that in the above situation $U \otimes V_L \subseteq V$, $\operatorname{Rep}(V)$ is pointed if and only if $\operatorname{Rep}(U)$ is [YY21].

We now apply this theory to the even part $V^{\bar{0}}$ of a nice, holomorphic vertex operator superalgebra V with $8 \mid c$ so that $\operatorname{Rep}(V^{\bar{0}}) \cong C(2_{I}^{+2}).$

There are three cases for the dual pair $U \otimes V_K \subseteq V^{\bar{0}}$:

Case	Orb./inv. orb.	Cond. on inner aut.	Dual pair in $V^{ar{0}}$	
Ι	both inner	$L^h \neq L$	K'/K = 4 R(U)	
lla		$\frac{L^{h} = L, \langle h, h \rangle / 2 \notin \mathbb{Z}}{L^{h} = L / h / h \rangle / 2 \notin \mathbb{Z}}$	$ \mathbf{K}'/\mathbf{K} - \mathbf{R}(\mathbf{I}) $	
llb	inner/non-inner	$L^{h} = L, \langle h, h \rangle / 2 \in \mathbb{Z}$	$ \mathcal{K} \mathcal{K} = \mathcal{K}(\mathbf{O}) $	
	both non-inner		4 K'/K = R(U)	

Here, *L* is the associated lattice of the 2-neighbour vertex operator algebras $W^{(1)}$ and $W^{(2)}$, and $g = e^{2\pi i h_0}$ with $h \in L/2$ the corresponding inner automorphism.

Classification Results

We now classify the nice, holomorphic vertex operator superalgebras of central charge 24 by studying

- $\blacksquare \ \mathbb{Z}_2\text{-orbifolds}$ of nice, holomorphic vertex operator algebras,
- simple-current extensions of dual pairs $U \otimes V_K$ to $C(2_{II}^{+2})$.

For this we need to know the involved automorphism groups [BLS22, BLS21].

Recall from [Höh17, Lam20] that for a nice, holomorphic vertex operator algebra of central charge 24, the commutant U is from a list of 12 vertex operator algebras:

- V^{\natural} + possibly fake copies,
- $V^{\hat{\nu}}_{\Lambda_{\nu}}$ for 11 conjugacy classes ν (1²⁴, 1⁸2⁸, ..., 2²10²) in Co₀ = O(\Lambda).

The same is true for the commutant U of the even part $V^{\bar{0}}$ of a nice, holomorphic vertex operator superalgebra V of central charge 24 for cases I, IIa and IIb (inner orbifolds).

For case III (non-inner orbifolds), new commutants appear:

- $(V^{\natural})^{g}$, $g \in M$ of class 2A (Fricke) + possibly fake copies,
- $V^{\hat{\nu}}_{\Lambda_{\nu}}$ for $\nu \in Co_0$ of cycle shape $1^{-24}2^{24}$, $1^{-8}2^{16}$, $1^82^{-8}4^8$, $1^42^13^{-4}6^5$, 2^44^4 , $1^22^15^{-2}10^3$, $2^14^{16}112^1$.

Conjecture: All the commutants come from V^{\natural} or V_{Λ} in this way (like for holomorphic vertex operator algebras).

Classification results (loops + proper edges):

Case	<i>c</i> = 8	c = 16	<i>c</i> = 24
I	1 + 0	5 + 1	299 + 207
lla	0	0	158 + 9
llb	0	0	0 + 171
111	0	1 + 0	pprox 50

It remains to complete case III.

Some examples:

V	V_1	$V^{ar{0}}$	$W^{(1)}$	$W^{(2)}$	type	C _{stump}
$F^{\otimes 48}$	D ₂₄	$V_{D_{24}}$	$V_{N(D_{24})}$	$V_{N(D_{24})}$	I	0
$V_{D_{12}^+}\otimes F^{\otimes 24}$	D_{12}^{2}	$V_{(D_{12}^2)^+}$	$V_{N(D_{12}^2)}$	$V_{N(D_{12}^2)}$	Ι	12
⊗ <i>F</i>	$A_{1,10}C_{3,10}$	•••	$Sch(C_{4,10})$	$Sch(C_{4,10})$	lla	23.5
	$B_{2,10}^2$	•••	$Sch(A_{4,5}^2)$	$Sch(C_{4,10})$	IIb	24
⊗ <i>F</i>	$E_8 E_{8,2}$	$V_{E_8}\otimes (V_{E_8}^{\otimes 2})^{S_2}$	$V_{E_{8}^{3}}$	$V_{E_{8}^{3}}$		23.5
	$A_{4,10}$	•••	$Sch(A_{4,5}^2)$	$Sch(A_{4,5}^2)$	Ш	24
$V\!B^{\natural}\otimes F$	0	$(V^{\natural})^{2A}$	$V^{ atural}$	$V^{ atural}$	III	23.5
VO^{\natural}	0	$(V^{\natural})^{2B}\cong V^+_{\Lambda}$	V^{\natural}	V_{Λ}	Ш	24

Thank you for your attention! Hvala!

Bibliography I

Koichi Betsumiya, Ching Hung Lam and Hiroki Shimakura.

Automorphism groups of cyclic orbifold vertex operator algebras associated with the Leech lattice and some non-prime isometries.

(arXiv:2105.04191v1 [math.QA]), 2021.

Koichi Betsumiya, Ching Hung Lam and Hiroki Shimakura.

Automorphism groups and uniqueness of holomorphic vertex operator algebras of central charge 24. (arXiv:2203.15992v1 [math.QA]), 2022.

Richard E. Borcherds.

The Leech lattice and other lattices.

Ph.D. thesis, University of Cambridge, 1985. (arXiv:math/9911195v1 [math.NT]).

Thomas Creutzig, John F. R. Duncan and Wolfgang Riedler.

Self-dual vertex operator superalgebras and superconformal field theory. J. Phys. A, 51(3):034001, 2018. (arXiv:1704.03678v1 [math-ph]).

Thomas Creutzig, Shashank Kanade, Andrew R. Linshaw and David Ridout.

Schur-Weyl duality for Heisenberg cosets. *Transform. Groups*, 24(2):301–354, 2019. (arXiv:1611.00305v1 [math.QA]).

Thomas Creutzig, Shashank Kanade and Robert McRae.

Gluing vertex algebras. Adv. Math., 396:108174, 2022. (arXiv:1906.00119v2 [math.QA]).

Bibliography II

Chongying Dong and Geoffrey Mason.

Rational vertex operator algebras and the effective central charge. Int. Math. Res. Not., 2004(56):2989–3008, 2004. (arXiv:math/0201318v1 [math.QA]).

Chongying Dong, Siu-Hung Ng and Li Ren.

Vertex operator superalgebras and the 16-fold way. Trans. Amer. Math. Soc., 374(11):7779–7810, 2021. (arXiv:2001.00365v1 [math.QA]).

John F. R. Duncan.

Super-moonshine for Conway's largest sporadic group. Duke Math. J., 139(2):255–315, 2007. (arXiv:math/0502267v3 [math.RT]).

Gerald Höhn.

Selbstduale Vertexoperatorsuperalgebren und das Babymonster. Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, 1995. (arXiv:0706.0236v1 [math.QA]).

Gerald Höhn.

On the genus of the Moonshine module. (arXiv:1708.05990v1 [math.QA]), 2017.

Ching Hung Lam.

Cyclic orbifolds of lattice vertex operator algebras having group-like fusions. Lett. Math. Phys., 110(5):1081–1112, 2020. (arXiv:1805.10778v2 [math.QA]).

Xingjun Lin.

Mirror extensions of rational vertex operator algebras. *Trans. Amer. Math. Soc.*, 369(6):3821–3840, 2017. (arXiv:1411.6742v2 [math.QA]).

Geoffrey Mason.

Lattice subalgebras of strongly regular vertex operator algebras.

In Winfried Kohnen and Rainer Weissauer, editors, Conformal Field Theory, Automorphic Forms and Related Topics, pages 31–53. Springer, 2014. (arXiv:1110.0544v1 [math.QA]).

Hiromichi Yamada and Hiroshi Yamauchi.

Simple current extensions of tensor products of vertex operator algebras.

Int. Math. Res. Not., (16):12778–12807, 2021. (arXiv:1804.08242v3 [math.RT]).