


Outline

▶ Classical invariant theory

▶ Sources of VOAs

▶ Z2
∼= S2 orbifolds of V (c , 0)⊗2 and connections to

W − algebras.

▶ Z3 ⊂ S3 orbifolds of V (c , 0)⊗3

▶ S3 orbifolds of V (c , 0)⊗3 and a connection to Wk(g2).



Symmetric Polynomials

Sn has an “obvious” action on the algebra of polynomials
k[x1, . . . , xn] by

σ · p(x1, . . . , xn) = p(xσ(1), . . . , xσ(n)) for σ ∈ Sn.

The subalgebra of symmetric polynomials is given by

k[x1, . . . , xn]
Sn = {p|σ · p = p}.

Theorem

(Newton? Waring?) If char(k) = 0, we have

k[x1, . . . , xn]
Sn ∼= k[p1, . . . , pn],

where
pm = xm1 + · · · xmn .
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Symmetric Polynomials

Importantly the power sum polynomials are algebraically
independent – they freely generate the algebra of symmetric
polynomials.

This “freeness” does not remain if we look at more than one copy
of k[x1, · · · , kn].

Example

In the case of k[x1,1, x1,2, x2,1, x2,2] we can note that

k[x1,1, x1,2, x2,1, x2,2] = k[s1, s2, t1, t2],

where si = x1,i + x2,i and ti = x1,i − x2,i
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Symmetric Polynomials

For our purposes (to study VOAs), we will be interested in the
polynomial algebra

C[xi ,j |1 ≤ i ≤ n, j ≥ 0]

where
σ · xi ,j = xσ(i),j .

This algebra is of particular interest as

C[xi ,j |1 ≤ i ≤ n, j ≥ 0] ∼= gr(V⊗n),

where V is H, F , VVir(c , 0), etc...
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Symmetric Polynomials

For some groups, like O(n), SO(n), Sp(2n), GL(n), SL(n),
complete set of relations can be described by certain determinate
relations or similar – as in Weyl’s book.

For Sn, writing down a complete set of relations seems hard – is
this known? Luckily as we will see for small values of n we can
hack together enough by taking advantage of the internal structure
of VOAs.
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Sources of VOAs

▶ Free field VOAs

▶ Heisenberg VOA
▶ β − γ system

▶ Free fermion algebra
▶ symplectic fermions

▶ Associated to a Lie super-algebra

g⇝ V k(g)⇝ Lk(g)

▶ From the Virasoro algebra

Vir⇝ VVir(c , 0)⇝ LVir(c , 0).

▶ Orbifolds: V is a VOA and G ⊂ Aut(V )

V G = {v ∈ V |g · v = v for all g ∈ G}
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Sources of VOAs

▶ Cosets: V is a VOA and W ⊂ V

Comm(W ,V ) = {v ∈ V |vnw = 0 for all w ∈ W , n ≥ 0}

A special case that is of interest for us is the parafermion
algebra

Nk(sl2) = Comm(H,V k(sl2)).

▶ W algebras:
▶ Start with a Lie superalgebra g and a nilpotent f ∈ g.
▶ Find an sl(2) triple in g associated to f : (h, e, f ).
▶ Decompose g by eigenvalues of ad h.
▶ Form a free field VOA, F(Ach)⊗F(Ane), related to this

decomposition.
▶ Consider C(g, f ) = V k(g)⊗F(Ach)⊗F(Ane) and a certain

vertex algebra homomorphism D.
▶ Wk(g, f ) is the homology of the related complex.
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VVir(c , 0)

Consider the universal Virasoro vertex algebra of central charge
c ∈ C

VVir(c, 0) = ⟨ω⟩ with Y (ω, z) = L(z) =
∑
n∈Z

L(n)z−n−2

where

[L(m), L(n)] = (m − n)L(m + n) +
c

12
(m3 −m)δm+n,0

equivalently

L(z)L(w) ∼ c/2

(z − w)4
+

L(w)

(z − w)2
+

∂wL(w)

z − w
.

We consider
(VVir(c , 0))

⊗n = ⟨ω1, . . . , ωn⟩
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The general case and a conjecture

We have

ch
(
V⊗n
c

)Sn ∼ ∏
i≥0

1

(1− qi+2)(1− qi+3)n3 · · · (1− qi+k)nk
+ O(qm)

and (V⊗n
c )

Sn is of type (2, 3n3 , · · · , knk ).



(LVir(c , 0)
⊗2)S2

Set

ω = ω1 + ω2

wm+4 = L1(−2−m)L1(−2)1+ L2(−2−m)L2(−2)1

for m ≥ 0, and
L(z) = Y (ω, z)

W k(z) = Y (wk , z)

for k ≥ 0.

To get to this point, we use

L = L1 + L2 and U = L1 − L2

forming
W a,b = ◦

◦∂
aU∂bU◦

◦.
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(LVir(c , 0)
⊗2)S2

We make use of the following expressions of weight m + 9

C1(m) = ◦
◦W

m,0W 1,0◦
◦ − ◦

◦W
m,1W 0,0◦

◦

C2(m) = ◦
◦W

m−1,1W 1,0◦
◦ − ◦

◦W
m−1,0W 1,1◦

◦

Observe the following

▶ These overlap at m = 1, but give use two independent
expressions for m ≥ 2.

▶ The expressions are set up so the arbitrary derivative stays “to
the left”, keeping the OPE calculations more manageable.
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(LVir(c , 0)
⊗2)S2

Setting m = 1 in the above expressions allows to to write

(47c − 256)W 6,0

as a combination of lower weight fields, thus eliminating the need
for W 6,0 as a generator unless c = 256

47 .

For m ≥ 2 we have
independent expression for

p1(m, c)Wm+5,0 p2(m, c)Wm+5,0

in terms of lower weight fields, where p1(m, c) and p2(m, c) are
polynomials that are never simultaneously zero. This eliminates the
need for

W 8,0,W 10,0,W 12,0, . . .
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(LVir(c , 0)
⊗2)S2

Theorem (Milas-P.-Sadowski)

For all c ̸= 128
47 the orbifold

(
V⊗2
c

)S2 is strongly generated by ω,

w4, w6, and w8, and is of type (2, 4, 6, 8). Further (V⊗2
128
47

)S2 is

generated these five vectors with the addition of w6 and is of type
(2, 4, 6, 8, 10).

Remark Here we use the shortened notation

Vc = VVir(c , 0) and, upcoming Lc = LVir(c, 0).
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(LVir(c , 0)
⊗2)S2

Linshaw and Kanade rigorously constructed the universal two
parameter algebra, Wev(c , λ), of type W(2, 4, 6, . . . ). This algebra
is (weakly) generated by the weight 4 field, W 4

∞ and the
parameters are determined by

(
W 4

∞
)
(3)

W 4
∞ =32λW 4

∞ − 128(49λ2(2c − 1)(2c − 25)− 1)

63(2c − 1)(2c + 24)(4c − 1)
◦
◦LL

◦
◦

− 32(2c − 4)(49λ2(2c − 1)(2c − 25))

441(2c − 1)(2c + 24)(4c − 1)
∂2L.

In the orbifold we have

(
W̃ 4

)
(3)

W̃ 4 =
2(5c2 + 33c − 44)

5c + 11
µW̃ 4 +

21c(5c + 22)

(5c + 11)2
µ2◦

◦LL
◦
◦

+
3c(c − 2)(5c + 22)

2(5c + 11)2
µ2∂2L.



(LVir(c , 0)
⊗2)S2

Equating these give the following coincidental isomorphisms

(Lc ′ ⊗ Lc ′)
S2 ∼= Wk ′(so2n, fprinc)

Z2 .

where

c ′ = −n(4n − 5)

n + 1
and k ′ = −4n2 − 2n − 3

2n + 2
,

or

c ′ = −n(4n − 5)

n + 1
and k ′ = −4n(n − 2)

2n − 1
.

As well as,

(L−2 ⊗ L−2)
S2 ∼= N−1(sl2)

Z2 and (L7/10 ⊗ L7/10)
S2 ∼= N8(sl2)

Z2 .



(LVir(c , 0)
⊗2)S2

We have (Lc ⊗ Lc)
S2 ∼= Wk(sp(2m)) for the following values of c

and k

c = −12m2 + 10m

2m + 3
= c2,2m+3 and k = −4m2 + 8m + 5

4m + 6
,

c = −3m2 −m − 2

m + 2
= c2,m+2 and k = −2m2 +m − 2

2m

c =
2m2 − 5m

2m2 − 5m + 3
= c2m−3,2m−2 and k = −2m2 − 2m − 2

2m − 3
,

where by cp,q we denote the appropriate minimal model. As such,
we have established the rationality of these W-algebras.



(LVir(c , 0)
⊗2)S2

Some other cases

▶
(
L− 22

5
⊗ L− 22

5

)S2 ∼= L− 44
5
.

▶
(
L− 68

7
⊗ L− 68

7

)S2
is of type (2, 4).

▶
(
L 1

2
⊗ L 1

2

)S2
is of type (2, 4, 8) and is of extension of M(1)+.

▶ (L−12 ⊗ L−12)
S2 is of type (2, 4, 8).

▶
(
L− 3

5
⊗ L− 3

5

)S2
and

(
L− 46

3
⊗ L− 46

3

)S2
are of type (2, 4, 6).



(VVir(c , 0)
⊗3)Z3 and (LVir(c , 0)

⊗3)Z3

Using similar techniques to the above cases, we have

Theorem

For generic c , the orbifold (V⊗3
c )Z3 is of type

(2, 4, 5, 63, 7, 83, 93, 102).

Theorem

The orbifold
(
L− 22

5
⊗ L− 22

5
⊗ L− 22

5

)Z3

is of type (2, 5, 6, 9) and

the orbifold
(
L 1

2
⊗ L 1

2
⊗ L 1

2

)Z3

is of type (2, 4, 5, 6, 6, 7, 8, 9).

Moving on to S3.
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S3 – the large c limit

Define αi (z) =
√

2
c Li (z), giving us

αi (z)αi (w) ∼ 1

(z − w)4
+

2
√

2
cαi (w)

(z − w)2
+

√
2
c ∂αi (w)

z − w
.

For c → +∞, we obtain a well defined algebra, we denote by
V∞ := ⟨α1, α2, α3⟩ where

αi (z)αj(w) ∼
δi ,j

(z − w)4
.

This is sometimes known as a generalized free field algebra, but
also it is a subalgebra of the Heisenberg algebra generated by
derivatives of the basic fields.
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S3 – the large c limit

Proposition

(adapted from Linshaw 2013) Let ui i ∈ I be a strong set of
generators of (V⊗3

∞ )S3 then for at most countably many values c of
the central charge, there is a strong generating set ti , i ∈ I of
(V⊗3

c )S3 with deg(ti ) = deg(ui ).



S3 – computations

Define elements in V⊗3
∞ = ⟨α1, α2, α3⟩:

T0 =
1√
3
(α1 + α2 + α3)

T1 =
1√
3
(α1 + ηα2 + η2α3)

T2 =
1√
3
(α1 + η2α2 + ηα3),

(1)

where η is a primitive third root of unity. Under this operation the
algebra generated from T0, T1 and T2 has the following nontrivial
OPE

T0(z)T0(w) ∼ 1

(z − w)4

T1(z)T2(w) ∼ 1

(z − w)4
.

(2)



S3 – computations

Consider the following quadratic and cubic fields

Wm,n = ◦
◦(∂

mT1)(∂
nT2)

◦
◦ +

◦
◦(∂

nT1)(∂
mT2)

◦
◦

Cℓ,m,n = ◦
◦(∂

ℓT1)(∂
mT1)(∂

nT1)
◦
◦ +

◦
◦(∂

ℓT2)(∂
mT2)(∂

nT2)
◦
◦

First notice that

Wm,n =
n∑

i=0

(−1)n−k

(
n

k

)
∂iWm+n−k,0

Cℓ,m,n = (−1)n
n∑

k=0

(
n

k

)
Cm+k,n+ℓ−k,0.

So we only need Wm,0 and Cm,n,0 for m, n ≥ 0.
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S3 – computations

Next consider the following expressions
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The fact that R(a,m) = 0 in the associated graded algebras allows
us to create certain quantum corrections in order to write the
Cm1,m2,m3 generators in terms of lower weight generators.
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S3 – computations

If we set R2(m) = R1(1, 0, 0, 0, 0,m), we can find b1,..., b8 such
that

C16,0,0 =b1R2(10, 2, 0, 0, 0) + b2R2(9, 2, 1, 0, 0) + b3R2(8, 3, 1, 0, 0)

+b4R2(7, 3, 2, 0, 0) + b5R2(6, 5, 1, 0, 0) + b6R2(5, 4, 2, 1, 0)

+b7R2(4, 3, 2, 2, 1) + b8R2(4, 4, 4, 0, 0).

with

b1 =
1790484010217545392288

168520823757097513517
, b2 =

1795809487559936088240

168520823757097513517
, . . .

b8 = −1464894501954686124462

168520823757097513517
.
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S3 – computations

To finish reducing the cubic generating set, we construct an
explicit family of quantum corrections at arbitrary weights higher
than 23 in order to write these generators in terms of the cubic
generators from weight 6 to 22.

From weight 12 to 22 the process isn’t quite as systematic as
evidenced by the equation of on the previous slide.

In the end, we only require

C0,0,0,C2,0,0,C3,0,0,C4,0,0,C5,0,0,C6,0,0, and C3,3,0,

at weight 6, 8, 9, 10, 11, 12, 12.
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S3 – computations

A different strategy is used for the quadratic generators

▶ W10,0 and W12,0 can be removed with relations involving
W2k,0 and Cm,n,0.

▶ There is a relation to remove W14,0 that involves only the
W2k,0.

▶ A “bootstraping” operator can be iteratively applied to
relations only involving the Wm,n to remove W2m,0 for m ≥ 8.

In the end we only require

W0,0,W2,0,W4,0,W6,0,W8,0,

at weight 4, 6, 8, 10, 12.
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S3 – generic theorem

Theorem

For any generic c , including a suitably defined c → ∞ limit, the
S3-orbifold subalgebra (V⊗n

c )S3 is strongly generated by vectors of
of weight 2, 4, 6, 6, 8, 8, 9, 10, 10, 11, 12, 12, 12. Moreover, this is
also a minimal generating set.

Proof.

Generation is given by our previous calculations and minimality is
given by a comparison with a suitable “free” character.
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S3 – simple c = 1
2

Here we can work directly inside the algebra rather than passing to
the limit.

We define an alternative to the standard generating set
of V⊗3

1
2

which diagonalizes the action of (123) ∈ S3

L =
1√
3
(L1 + L2 + L3)

U1 =
1√
3
(L1 + ηL2 + η2L3)

U2 =
1√
3
(L1 + η2L2 + ηL3),

(3)

We also diagonalize the three weight 6 singular vectors as well, for
example

S = 128◦
◦LLL

◦
◦ + 768◦

◦LU1U2
◦
◦ + · · ·
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S3 – simple c = 1
2

Next, we set

Wm+4 =
◦
◦(∂

mU1)U2
◦
◦ + (−1)m◦

◦(∂
mU2)U1

◦
◦

and
C±
m+6 =

◦
◦(∂

mU1)U1U1
◦
◦ ± ◦

◦(∂
mU2)U2U2

◦
◦

Using similar strategies as to those described before, we have

Theorem

The simple orbifold (L⊗3
1
2

)Z3 is of type 2,4,5,6,6,7,8,9 and is

strongly generated by L, together with W4,W5,W6,W7,W8,W9,
and C−

6 .
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S3 – simple c = 1
2

▶ The generators described above we have
L,W4,W6,W8 ∈ (L⊗3

1
2

)S3 while C−
6 7→ −C−

6 , W5 7→ −W5,

W7 7→ −W7, and W9 7→ −W9 under the additional (12) ∼= Z2

action.

▶ Between quantum corrections and decedents of the singular
vectors we are able to removed the need for any quadratic (in
the non-fixed fields) generators from the generating set of the
S3 orbifold.

Theorem

The orbifold algebra

(
L⊗3

1
2

)S3

is strongly generated by the fields

L,W4,W6,W8 and is thus of type 2, 4, 6, 8.
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S3 – simple c = 1
2

▶ As the orbifold algebra

(
L⊗3

1
2

)S3

is of type (2,4,6,8) it is

reasonable to guess that it may be isomorphic to other known
algebras of this type – the most likely being (N10(sl2))

Z2

which also has central charge c = 3/2.

▶ Using the early described strategy one can check that this is
not the case and thus this orbifold is a new example of a
unitary W-algebra of this type.
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S3 – simple c = −22
5

Using strategies similar to those above we have

Theorem

The orbifold algebra
(
L⊗3
−22/5

)S3
is strongly generated by the fields

L,W6 and is thus of type 2, 6.

▶ Another algebra of type 2,6 is W k(g2, fprinc).

▶ In fact, for a given central charge c , we can check that there
is a unique universal W-algebra of type 2,6.

Theorem

We have (
L⊗3
−22/5

)S3 ∼= W−16/5(g2, fprinc)

In fact, the story is a bit more interesting than “just” this.
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W k(g2, f )

▶ Consider the exceptional Lie algebra g = g2 and a subregular
nilpotent fsub and complete the sl2 triple. The corresponding
W algebra and its OPE as constructed by J. Fasquel

▶ If we set k = −16
5 the weight two generators can be taken to

be commuting Virasoro fields of central charge c = −22
5 .

▶ We can show that the maximal ideal of the universal algebra
contains each of the weight 4 Virasoro vectors as well as the
weight 3 generator. Leading to

Proposition

We have an isomorphism of simple vertex operator algebras

W− 16
5
(g2, fsub) ∼= L⊗3

−22/5.
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W k(g2, f )

Putting this all together:

Theorem

We have an isomorphism of rational vertex algebras:

W− 16
5
(g2, fsub)

S3 ∼= W− 19
6
(g2, fprin).
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Theorem

We have an isomorphism of rational vertex algebras:

W− 16
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S3 ∼= W− 19
6
(g2, fprin).



W k(g2, f )

A bit more about Wk(g2, fprin)

Proposition

The simple affine W -algebras Wk(g2, fprin) collapses to a (simple)
Virasoro vertex algebra if and only if k ∈
{−34

9 ,−
7
2 ,−

10
3 ,−

5
2 ,−

22
7 ,−

65
18 ,−

40
11 ,−

37
12 ,−

27
8 ,−

52
15 ,−

53
15 ,−

23
7 }.

Proof.

▶ This holds for generic central charges for
k ∈ {−34

9 ,−
7
2 ,−

10
3 ,−

5
2} by only looking at the OPE.

▶ The remaining cases correspond to central charges from the
list

{−22

5
,−3

5
,−46

3
,−232

11
}

which gives us Virasoro singular vectors to complete the result.



W k(g2, f )

A bit more about Wk(g2, fprin)

Proposition

The simple affine W -algebras Wk(g2, fprin) collapses to a (simple)
Virasoro vertex algebra if and only if k ∈
{−34

9 ,−
7
2 ,−

10
3 ,−

5
2 ,−

22
7 ,−

65
18 ,−

40
11 ,−

37
12 ,−

27
8 ,−

52
15 ,−

53
15 ,−

23
7 }.

Proof.

▶ This holds for generic central charges for
k ∈ {−34

9 ,−
7
2 ,−

10
3 ,−

5
2} by only looking at the OPE.

▶ The remaining cases correspond to central charges from the
list

{−22

5
,−3

5
,−46

3
,−232

11
}

which gives us Virasoro singular vectors to complete the result.



W k(g2, f )

A bit more about Wk(g2, fprin)

Proposition

The simple affine W -algebras Wk(g2, fprin) collapses to a (simple)
Virasoro vertex algebra if and only if k ∈
{−34

9 ,−
7
2 ,−

10
3 ,−

5
2 ,−

22
7 ,−

65
18 ,−

40
11 ,−

37
12 ,−

27
8 ,−

52
15 ,−

53
15 ,−

23
7 }.

Proof.

▶ This holds for generic central charges for
k ∈ {−34

9 ,−
7
2 ,−

10
3 ,−

5
2} by only looking at the OPE.

▶ The remaining cases correspond to central charges from the
list

{−22

5
,−3

5
,−46

3
,−232

11
}

which gives us Virasoro singular vectors to complete the result.



W k(g2, f )

A bit more about Wk(g2, fprin)
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▶ This resolves an old conjecture in the physics literature by
Blumenhagen et al.



Conjecture

We have an isomorphism

Wk(f4, fs4)
∼= L⊗4

−22/5,

for some nilpotent, and moreover

Wk(f4, fs4)
S4 ∼= Wk ′(f4, fprin)

where k is a certain level such that c(k) = −4·22
5 .

Conjecture

We have an isomorphism

Wk(e8, fs5)
∼= L⊗5

−22/5,

for some nilpotent, and moreover

Wk(e8, fs5)
S5 ∼= W− 144

5
(e8, fsub)

where k is a certain level such that c(k) = −22.



Thank You!


