Unitary forms for holomorphic vertex operator algebras of central charge 24

Ching Hung Lam
Academia Sinica

October 7, 2022

Aim: Try to prove all holomorphic VOAs of central charge 24 with $V_{1} \neq 0$

 are unitary.
Aim: Try to prove all holomorphic VOAs of central charge 24 with $V_{1} \neq 0$

 are unitary.
Main tools:

Aim: Try to prove all holomorphic VOAs of central charge 24 with $V_{1} \neq 0$ are unitary.

Main tools:
(1) Lattice VOAs are unitary.

Aim: Try to prove all holomorphic VOAs of central charge 24 with $V_{1} \neq 0$ are unitary.

Main tools:

(1) Lattice VOAs are unitary.
(2) All $c=24$ holomorphic VOAs with $V_{1} \neq 0$ can be constructed from Niemeier lattice VOAs by a single orbifold construction [Höhn-Möller].

Aim: Try to prove all holomorphic VOAs of central charge 24 with $V_{1} \neq 0$ are unitary.

Main tools:

(1) Lattice VOAs are unitary.
(2) All $c=24$ holomorphic VOAs with $V_{1} \neq 0$ can be constructed from Niemeier lattice VOAs by a single orbifold construction [Höhn-Möller].
$\leftrightarrow \quad(N, g)$ and $V>V_{N}^{g}$ is unitary.

Aim: Try to prove all holomorphic VOAs of central charge 24 with $V_{1} \neq 0$ are unitary.

Main tools:

(1) Lattice VOAs are unitary.
(2) All $c=24$ holomorphic VOAs with $V_{1} \neq 0$ can be constructed from Niemeier lattice VOAs by a single orbifold construction [Höhn-Möller]. $\leftrightarrow \quad(N, g)$ and $V>V_{N}^{g}$ is unitary.
(3) g^{i}-Twisted modules are unitary twisted modules for V_{N}.

Aim: Try to prove all holomorphic VOAs of central charge 24 with $V_{1} \neq 0$ are unitary.

Main tools:

(1) Lattice VOAs are unitary.
(2) All $c=24$ holomorphic VOAs with $V_{1} \neq 0$ can be constructed from Niemeier lattice VOAs by a single orbifold construction [Höhn-Möller]. $\leftrightarrow \quad(N, g)$ and $V>V_{N}^{g}$ is unitary.
(3) g^{i}-Twisted modules are unitary twisted modules for V_{N}.
(9) Automorphism groups of V.

Aim: Try to prove all holomorphic VOAs of central charge 24 with $V_{1} \neq 0$ are unitary.

Main tools:

(1) Lattice VOAs are unitary.
(2) All $c=24$ holomorphic VOAs with $V_{1} \neq 0$ can be constructed from Niemeier lattice VOAs by a single orbifold construction [Höhn-Möller]. $\leftrightarrow \quad(N, g)$ and $V>V_{N}^{g}$ is unitary.
(3) g^{i}-Twisted modules are unitary twisted modules for V_{N}.
(9) Automorphism groups of V.

There is $f \in \operatorname{Aut}(V)$ such that $V^{f}=V_{N}^{g}$.

Aim: Try to prove all holomorphic VOAs of central charge 24 with $V_{1} \neq 0$ are unitary.

Main tools:

(1) Lattice VOAs are unitary.
(2) All $c=24$ holomorphic VOAs with $V_{1} \neq 0$ can be constructed from Niemeier lattice VOAs by a single orbifold construction [Höhn-Möller]. $\leftrightarrow \quad(N, g)$ and $V>V_{N}^{g}$ is unitary.
(3) g^{i}-Twisted modules are unitary twisted modules for V_{N}.
(9) Automorphism groups of V.

There is $f \in \operatorname{Aut}(V)$ such that $V^{f}=V_{N}^{g}$.
Try to find another automorphism h such that h is conjugate to f and $[f, g]=1$.

$$
V=\bigoplus_{i, j} V^{i, j} \quad V_{N}^{g}=V^{f} \oplus V^{i, 0} \quad V^{h}=\oplus V^{0, i}
$$

Unitary VOA and unitary modules

Definition

Let $(V, Y, \mathbb{1}, \omega)$ be a vertex operator algebra. An isomorphism $\phi: V \rightarrow V$ is called an anti-linear automorphism of V if $\phi(\lambda x)=\bar{\lambda} \phi(x)$, $\phi(\mathbb{1})=\mathbb{1}, \phi(\omega)=\omega$ and $\phi\left(u_{n} v\right)=\phi(u)_{n} \phi(v)$ for any $u, v \in V$ and $n \in \mathbb{Z}$.

Unitary VOA and unitary modules

Definition

Let $(V, Y, \mathbb{1}, \omega)$ be a vertex operator algebra. An isomorphism $\phi: V \rightarrow V$ is called an anti-linear automorphism of V if $\phi(\lambda x)=\bar{\lambda} \phi(x)$, $\phi(\mathbb{1})=\mathbb{1}, \phi(\omega)=\omega$ and $\phi\left(u_{n} v\right)=\phi(u)_{n} \phi(v)$ for any $u, v \in V$ and $n \in \mathbb{Z}$.

Definition ([DLin14])

Let $(V, Y, \mathbb{1}, \omega)$ be a vertex operator algebra and let $\phi: V \rightarrow V$ be an anti-linear involution of V. Then (V, ϕ) is said to be unitary if there exists a positive-definite Hermitian form $(,)_{V}: V \times V \rightarrow \mathbb{C}$, which is \mathbb{C}-linear on the first vector and anti- \mathbb{C}-linear on the second vector,

Unitary VOA and unitary modules

Definition

Let $(V, Y, \mathbb{1}, \omega)$ be a vertex operator algebra. An isomorphism $\phi: V \rightarrow V$ is called an anti-linear automorphism of V if $\phi(\lambda x)=\bar{\lambda} \phi(x)$, $\phi(\mathbb{1})=\mathbb{1}, \phi(\omega)=\omega$ and $\phi\left(u_{n} v\right)=\phi(u)_{n} \phi(v)$ for any $u, v \in V$ and $n \in \mathbb{Z}$.

Definition ([DLin14])

Let $(V, Y, \mathbb{1}, \omega)$ be a vertex operator algebra and let $\phi: V \rightarrow V$ be an anti-linear involution of V. Then (V, ϕ) is said to be unitary if there exists a positive-definite Hermitian form $(,)_{V}: V \times V \rightarrow \mathbb{C}$, which is \mathbb{C}-linear on the first vector and anti- \mathbb{C}-linear on the second vector, such that the following invariant property holds for any $a, u, v \in V$:

$$
\left(Y\left(e^{z L(1)}\left(-z^{-2}\right)^{L(0)} a, z^{-1}\right) u, v\right)_{v}=(u, Y(\phi(a), z) v)_{v}
$$

where $L(n)$ is defined by $Y(\omega, z)=\sum_{n \in \mathbb{Z}} L(n) z^{-n-2}$.

Remark

Let (V, ϕ) be a simple unitary VOA with an inv. Hermitian form $(\cdot, \cdot)_{V}$. Then V is self-dual and of CFT-type ([CKLW, Proposition 5.3]) and V has a unique invariant symmetric bilinear form $\langle\cdot, \cdot\rangle$, up to scalar ([Li94]).

Remark

Let (V, ϕ) be a simple unitary VOA with an inv. Hermitian form $(\cdot, \cdot) V$. Then V is self-dual and of CFT-type ([CKLW, Proposition 5.3]) and V has a unique invariant symmetric bilinear form $\langle\cdot, \cdot\rangle$, up to scalar ([Li94]). Normalizing $(\mathbb{1}, \mathbb{1})_{v}=\langle\mathbb{1}, \mathbb{1}\rangle=1$, we obtain

$$
(u, v) v=\langle u, \phi(v)\rangle \quad \text { for all } u, v \in V
$$

Remark

Let (V, ϕ) be a simple unitary VOA with an inv. Hermitian form $(\cdot, \cdot) V$. Then V is self-dual and of CFT-type ([CKLW, Proposition 5.3]) and V has a unique invariant symmetric bilinear form $\langle\cdot, \cdot\rangle$, up to scalar ([Li94]). Normalizing $(\mathbb{1}, \mathbb{1})_{V}=\langle\mathbb{1}, \mathbb{1}\rangle=1$, we obtain

$$
(u, v)_{v}=\langle u, \phi(v)\rangle \quad \text { for all } u, v \in V .
$$

Definition ([DLin14])

Let (V, ϕ) be a unitary VOA and g a finite order automorphism of V. An (ordinary) g-twisted V-module $\left(M, Y_{M}\right)$ is called a unitary g-twisted V-module if there exists a positive-definite Hermitian form $(,)_{M}: M \times M \rightarrow \mathbb{C}$ such that the following invariant property holds for $a \in V$ and $w_{1}, w_{2} \in M$:

$$
\left(Y_{M}\left(e^{z L(1)}\left(-z^{-2}\right)^{L(0)} a, z^{-1}\right) w_{1}, w_{2}\right)_{M}=\left(w_{1}, Y_{M}(\phi(a), z) w_{2}\right)_{M} .
$$

Lemma (cf. [FHL93, Remark 5.3.3])

Let (V, ϕ) be a unitary VOA. Let M be a V-module and M^{\prime} the contregredient module of M with a natural pairing $\langle\cdot, \cdot\rangle$ between M and M^{\prime}.
(1) If M has a non-degenerate invariant sesquilinear form (\cdot, \cdot), which is linear on the first vector and anti-C-linear on the second vector and satisfies the invariant property, then the map $\Phi: M \rightarrow M^{\prime}$ defined by $(u, v)=\langle u, \Phi(v)\rangle, u, v \in M$, is an anti-linear bijective map and $\Phi\left(a_{n} u\right)=\phi(a)_{n} \Phi(u)$ for $a \in V$ and $u \in M$.
(2) If there exists an anti-linear bijective map $\Phi: M \rightarrow M^{\prime}$ such that $\Phi\left(a_{n} u\right)=\phi(a)_{n} \Phi(u)$ for $a \in V$ and $u \in M$, then $(u, v)=\langle u, \Phi(v)\rangle$, $u, v \in M$, is a non-degenerate invariant sesquilinear form on M.

Let (V, ϕ) be a unitary VOA and (,) the corresponding positive definite invariant Hermitian form. Define

$$
\operatorname{Aut}_{(,)}(V)=\{g \in \operatorname{Aut}(V) \mid(g x, g y)=(x, y) \text { for all } x, y \in V\}
$$

Let (V, ϕ) be a unitary VOA and (,) the corresponding positive definite invariant Hermitian form. Define

$$
\operatorname{Aut}_{(,)}(V)=\{g \in \operatorname{Aut}(V) \mid(g x, g y)=(x, y) \text { for all } x, y \in V\}
$$

Lemma

Let (V, ϕ) be a unitary VOA. Then
(1) $g \in$ Aut $_{(,)}(V)$ if and only if $g^{-1} \phi g=\phi$.

Let (V, ϕ) be a unitary VOA and (,) the corresponding positive definite invariant Hermitian form. Define

$$
\operatorname{Aut}_{(,)}(V)=\{g \in \operatorname{Aut}(V) \mid(g x, g y)=(x, y) \text { for all } x, y \in V\}
$$

Lemma

Let (V, ϕ) be a unitary VOA. Then
(1) $g \in$ Aut $_{(,)}(V)$ if and only if $g^{-1} \phi g=\phi$.
(2) For any $H<\operatorname{Aut}_{(,)}(V),\left(V^{H}, \phi\right)$ is also a unitary VOA.

Lattice VOA

Let $V_{L}=M(1) \otimes_{\mathbb{C}} \mathbb{C}\{L\}$ be the lattice VOA.

Lattice VOA

Let $V_{L}=M(1) \otimes_{\mathbb{C}} \mathbb{C}\{L\}$ be the lattice VOA.
There is a positive-definite Hermitian form on $M(1)=\operatorname{Span}_{\mathbb{C}}\left\{\alpha_{1}\left(-n_{1}\right) \ldots \alpha_{k}\left(-n_{k}\right) \mathbb{1} \mid \alpha_{i} \in L, n_{i} \in \mathbb{Z}_{>0}\right\}$ such that $(\mathbb{1}, \mathbb{1})=1, \quad(\alpha(n) u, v)=(u, \alpha(-n) v)$
for $\alpha \in L$ and for any $u, v \in M(1)$.

Lattice VOA

Let $V_{L}=M(1) \otimes_{\mathbb{C}} \mathbb{C}\{L\}$ be the lattice VOA.
There is a positive-definite Hermitian form on
$M(1)=\operatorname{Span}_{\mathbb{C}}\left\{\alpha_{1}\left(-n_{1}\right) \ldots \alpha_{k}\left(-n_{k}\right) \mathbb{1} \mid \alpha_{i} \in L, n_{i} \in \mathbb{Z}_{>0}\right\}$ such that

$$
(\mathbb{1}, \mathbb{1})=1, \quad(\alpha(n) u, v)=(u, \alpha(-n) v)
$$

for $\alpha \in L$ and for any $u, v \in M(1)$.
There also exists a positive-definite Hermitian form on
$\mathbb{C}\{L\}=\operatorname{Span}_{\mathbb{C}}\left\{e^{\alpha} \mid \alpha \in L\right\}$ determined by $\left(e^{\alpha}, e^{\beta}\right)=\delta_{\alpha, \beta}$.

Lattice VOA

Let $V_{L}=M(1) \otimes_{\mathbb{C}} \mathbb{C}\{L\}$ be the lattice VOA.
There is a positive-definite Hermitian form on
$M(1)=\operatorname{Span}_{\mathbb{C}}\left\{\alpha_{1}\left(-n_{1}\right) \ldots \alpha_{k}\left(-n_{k}\right) \mathbb{1} \mid \alpha_{i} \in L, n_{i} \in \mathbb{Z}_{>0}\right\}$ such that

$$
(\mathbb{1}, \mathbb{1})=1, \quad(\alpha(n) u, v)=(u, \alpha(-n) v)
$$

for $\alpha \in L$ and for any $u, v \in M(1)$.
There also exists a positive-definite Hermitian form on
$\mathbb{C}\{L\}=\operatorname{Span}_{\mathbb{C}}\left\{e^{\alpha} \mid \alpha \in L\right\}$ determined by $\left(e^{\alpha}, e^{\beta}\right)=\delta_{\alpha, \beta}$.
Then a positive-definite Hermitian form on $V_{L^{*}}$ can be defined by

$$
\left(u \otimes e^{\alpha}, v \otimes e^{\beta}\right)=(u, v) \cdot\left(e^{\alpha}, e^{\beta}\right)
$$

where $u, v \in M(1)$ and $\alpha, \beta \in L$.

Let $\phi: V_{L} \rightarrow V_{L}$ be an anti-linear map determined by:

$$
\alpha_{1}\left(-n_{1}\right) \cdots \alpha_{k}\left(-n_{k}\right) \otimes e^{\alpha} \mapsto(-1)^{k} \alpha_{1}\left(-n_{1}\right) \cdots \alpha_{k}\left(-n_{k}\right) \otimes e^{-\alpha},
$$

where $\alpha_{1}, \ldots, \alpha_{k} \in L, \alpha \in L$.

Theorem

Let L be a positive-definite even lattice and let ϕ be the anti-linear map of V_{L} defined as above.
Then the lattice vertex operator algebra $\left(V_{L}, \phi\right)$ is a unitary VOA.

$\operatorname{Aut}_{(,)}\left(V_{L}\right)$

Theorem ([DN99])

Let L be a positive definite even lattice. Then

$$
\operatorname{Aut}\left(V_{L}\right)=N\left(V_{L}\right) O(\hat{L})
$$

and the quotient $\operatorname{Aut}\left(V_{L}\right) / N\left(V_{L}\right)$ is isomorphic to a quotient group of $O(L)$.

Lemma

Let $g \in O(\hat{L})$. Then $g \in \operatorname{Aut}_{(,)}\left(V_{L}\right)$.

Lemma

Let $\beta \in L^{*}$ and n a positive integer. Then

$$
h=\exp \left(2 \pi i \frac{\beta(0)}{n}\right) \in \operatorname{Aut}_{(,)}\left(V_{L}\right)
$$

Twisted modules

Let τ be an isometry of L. Let p be a positive integer such that $\tau^{p}=1$. Define $\mathfrak{h}=\mathbb{C} \otimes_{\mathbb{Z}} L$ and extend the \mathbb{Z}-form $\langle\cdot \mid \cdot\rangle \mathbb{C}$-linearly to \mathfrak{h}. Denote

$$
\mathfrak{h}_{(n)}=\left\{\alpha \in \mathfrak{h} \mid \tau \alpha=\xi^{n} \alpha\right\} \quad \text { for } n \in \mathbb{Z},
$$

where $\xi=\exp (2 \pi \sqrt{-1} / p)$.
Let $\hat{\mathfrak{h}}[\tau]=\coprod_{n \in \mathbb{Z}} \mathfrak{h}_{(n)} \otimes t^{n / p} \oplus \mathbb{C} c$ be the τ-twisted affine Lie algebra of \mathfrak{h}. Denote
$\hat{\mathfrak{h}}[\tau]^{+}=\coprod_{n>0} \mathfrak{h}_{(n)} \otimes t^{n / p}, \quad \hat{\mathfrak{h}}[\tau]^{-}=\coprod_{n<0} \mathfrak{h}_{(n)} \otimes t^{n / p}, \quad$ and $\quad \hat{\mathfrak{h}}[\tau]^{0}=\mathfrak{h}_{(0)} \oplus \mathbb{C} c$,
and

$$
S[\tau]=S\left(\hat{\mathfrak{h}}[\tau]^{-}\right)
$$

Set $s=p$ if p is even and $s=2 p$ if p is odd.
Define a τ-invariant alternating \mathbb{Z}-bilinear map c^{τ} from $L \times L$ to \mathbb{Z}_{s} by

$$
c^{\tau}(\alpha, \beta)=\sum_{i=0}^{p-1}(s / 2+s i / p)\left\langle\tau^{i}(\alpha) \mid \beta\right\rangle+s \mathbb{Z}
$$

Consider the central extension

$$
1 \longrightarrow\left\langle\kappa_{s}\right\rangle \longrightarrow \hat{L}_{\tau} \xrightarrow{-} L \longrightarrow 1
$$

such that $a b a^{-1} b^{-1}=\kappa_{s}^{c^{\tau}(\bar{a}, \bar{b})}$ for $a, b \in \hat{L}_{\tau}$.
Let $\beta \in \mathbb{Q} \otimes L^{\tau}$ such that $p\langle\beta \mid L\rangle \in \mathbb{Z}$.
Then $g=\hat{\tau} \exp (2 \pi i \beta(0))$ also defines an automorphism of V_{L} and $g^{p}=1$. An irreducible g-twisted module is then given by

$$
V_{L}^{\chi}(g)=S[\tau] \otimes e^{-\beta} \otimes U_{\chi}
$$

as a vector space.

We define a Hermitian form on $V_{L}^{\chi}(g)$ as follows.
For any $a, b \in e^{-\beta} \hat{L}_{\tau}$, define

$$
(t(a), t(b))= \begin{cases}0 & \text { if } b^{-1} a \notin \mathcal{A} \tag{0-1}\\ \chi\left(b^{-1} a\right) & \text { if } b^{-1} a \in \mathcal{A}\end{cases}
$$

where $t(a)=a \otimes 1 \in e^{-\beta} \otimes U_{\chi}$;
there ia positive-definite Hermitian form (,) on $S[\tau]$ such that

$$
\begin{aligned}
(1,1) & =1 \\
(\alpha(n) \cdot u, v) & =(u, \alpha(-n) \cdot v)
\end{aligned}
$$

for any $u, v \in S[\tau]$ and $\alpha \in L$.
Then one can define a positive-definite Hermitian form on $V_{L}^{\chi}(g)$ by

$$
(u \otimes r, v \otimes s)=(u, v) \cdot(r, s), \quad \text { where } u, v \in S[\tau], r, s \in e^{-\beta} \otimes U_{\chi}
$$

Lemma

For any $\chi, V_{L}^{\chi}(g)$ is a unitary g-twisted module of $\left(V_{L}, \phi\right)$.

Orbifold construction from Niemeier lattice VOAs

Theorem (cf. Proposition 5.7 and Remark 5.8 of Höhn-Möller)

Let V be a holomorphic VOA of central charge 24 with $V_{1} \neq 0$. Then there exist a Niemeier N and an automorphism $g=\hat{\tau} \exp (2 \pi i \beta(0)) \in \operatorname{Aut}\left(V_{N}\right)$ such that $V \cong \widetilde{V_{N}}(g)$. Moreover,
(1) τ has the same frame shape as one of the 11 conjugacy classes of Co_{0} as discussed in [Hö2].
(2) $L \cong N_{\beta}^{\tau}$ and $V_{N_{\tau}}^{\hat{\tilde{N}}} \cong V_{\Lambda_{\tau}}^{\hat{\tau}}$; in particular, $V_{N}^{g}>V_{L} \otimes V_{\Lambda_{\tau}}^{\hat{\tau}}$.
(3) $\left(V_{N}^{g}\right)_{1}$ is non-abelian and has the same Lie rank as V_{1}.

Orbifold construction from Niemeier lattice VOAs

Theorem (cf. Proposition 5.7 and Remark 5.8 of Höhn-Möller)

Let V be a holomorphic VOA of central charge 24 with $V_{1} \neq 0$. Then there exist a Niemeier N and an automorphism $g=\hat{\tau} \exp (2 \pi i \beta(0)) \in \operatorname{Aut}\left(V_{N}\right)$ such that $V \cong \widetilde{V_{N}}(g)$. Moreover,
(1) τ has the same frame shape as one of the 11 conjugacy classes of Co_{0} as discussed in [Hö2].
(2) $L \cong N_{\beta}^{\tau}$ and $V_{N_{\tau}}^{\hat{\tilde{}}} \cong V_{\Lambda_{\tau}}^{\hat{\tau}}$; in particular, $V_{N}^{g}>V_{L} \otimes V_{\Lambda_{\tau}}^{\hat{\tilde{}}}$.
(3) $\left(V_{N}^{g}\right)_{1}$ is non-abelian and has the same Lie rank as V_{1}.

Remark: 1. The choices for N and g are not unique. 2. We may choose (N, g) so that $\left(V_{N}^{g}\right)_{1}$ contains a simple Lie component which is a proper Lie subalgebra of a simple ideal of V_{1}.

Orbifold construction from Niemeier lattice VOAs

Theorem (cf. Proposition 5.7 and Remark 5.8 of Höhn-Möller)

Let V be a holomorphic VOA of central charge 24 with $V_{1} \neq 0$. Then there exist a Niemeier N and an automorphism $g=\hat{\tau} \exp (2 \pi i \beta(0)) \in \operatorname{Aut}\left(V_{N}\right)$ such that $V \cong \widetilde{V_{N}}(g)$. Moreover,
(1) τ has the same frame shape as one of the 11 conjugacy classes of Co_{0} as discussed in [Hö2].
(2) $L \cong N_{\beta}^{\tau}$ and $V_{N_{\tau}}^{\hat{\tilde{}}} \cong V_{\Lambda_{\tau}}^{\hat{\tau}}$; in particular, $V_{N}^{g}>V_{L} \otimes V_{\Lambda_{\tau}}^{\hat{\tilde{}}}$.
(3) $\left(V_{N}^{g}\right)_{1}$ is non-abelian and has the same Lie rank as V_{1}.

Remark: 1. The choices for N and g are not unique. 2. We may choose (N, g) so that $\left(V_{N}^{g}\right)_{1}$ contains a simple Lie component which is a proper Lie subalgebra of a simple ideal of V_{1}.
There is a refection r in $W\left(V_{1}\right)<\operatorname{Aut}(V)$ such that $r\left(\left(V_{N}^{g}\right)_{1}\right) \neq\left(V_{N}^{g}\right)_{1}$

Example: $V_{1} \cong A_{2,3}^{6}$.
$N=N\left(A_{1}^{24}\right) ;$
τ acts a permutation of the 24 copies of A_{1} 's with the cycle shape $1^{6} 3^{6}$; and
$\beta=\frac{1}{6}\left(0^{12}, \alpha^{12}\right)$, where $\mathbb{Z} \alpha \cong A_{1}$, i.e, $\langle\alpha, \alpha\rangle=2$.
In this case, $V=\widetilde{V_{N}}(g)$ and $\left(V_{N}\left(A_{1}^{24}\right)^{g}\right)_{1} \cong A_{1,3}^{6} U(1)^{6}$.

Next we recall a theorem from [DLin14], which is about the unitary form for \mathbb{Z}_{2} simple current extensions of unitary VOAs.

Next we recall a theorem from [DLin14], which is about the unitary form for \mathbb{Z}_{2} simple current extensions of unitary VOAs.

Theorem ([DLin14, Theorem 3.3])
Let (V, φ) be a rational and C_{2}-cofinite unitary self-dual vertex operator algebra and M a simple current irreducible V-module having integral weights.

Next we recall a theorem from [DLin14], which is about the unitary form for \mathbb{Z}_{2} simple current extensions of unitary VOAs.

Theorem ([DLin14, Theorem 3.3])

Let (V, φ) be a rational and C_{2}-cofinite unitary self-dual vertex operator algebra and M a simple current irreducible V-module having integral weights.
Assume that M has an anti-linear map ψ such that
$\psi\left(v_{n} w\right)=\varphi(v)_{n} \psi(w)$ and $\psi^{2}=i d,\left(\psi\left(w_{1}\right), \psi\left(w_{2}\right)\right)_{M}=\left(w_{1}, w_{2}\right)_{M}$ and the Hermitian form $(,)_{V}$ on V has the property that $\left(\varphi\left(v_{1}\right), \varphi\left(v_{2}\right)\right)_{v}=\left(v_{1}, v_{2}\right)_{v}$.

Next we recall a theorem from [DLin14], which is about the unitary form for \mathbb{Z}_{2} simple current extensions of unitary VOAs.

Theorem ([DLin14, Theorem 3.3])

Let (V, φ) be a rational and C_{2}-cofinite unitary self-dual vertex operator algebra and M a simple current irreducible V-module having integral weights.
Assume that M has an anti-linear map ψ such that
$\psi\left(v_{n} w\right)=\varphi(v)_{n} \psi(w)$ and $\psi^{2}=i d,\left(\psi\left(w_{1}\right), \psi\left(w_{2}\right)\right)_{M}=\left(w_{1}, w_{2}\right)_{M}$ and the Hermitian form $(,)_{V}$ on V has the property that $\left(\varphi\left(v_{1}\right), \varphi\left(v_{2}\right)\right)_{v}=\left(v_{1}, v_{2}\right)_{v}$.
Let $U=V \oplus M$. Then $(U, \varphi U)$ has a unique unitary vertex operator algebra structure, where $\varphi_{U}: U \rightarrow U$ is the anti-linear involution defined by $\varphi_{U}(v, w)=(\varphi(v), \psi(w))$, for $v \in V, w \in M$. Furthermore, U is rational and C_{2}-cofinite.

As a consequences, we have the following result.

Theorem

Let V be a holomorphic VOA of central charge 24 with the weight one Lie algebra isomorphic to one of the Lie algebras in the following Table. Then V is unitary.

Class	\# of V	Weight one Lie algebra structures
$2 A$	17	$A_{1,2}^{16} A_{3,2}^{4} A_{1,1}^{4}, D_{4,2}^{2} B_{2,1}^{4}, A_{5,2}^{2} C_{2,1} A_{2,1}^{2}, D_{5,2}^{2} C_{2,1} A_{2,1}^{2}$,
$A_{7,2} C_{3,1}^{2} A_{3,1}, C_{4,1}^{4}, D_{6,2} C_{4,1} B_{3,1}^{2}, A_{9,2} A_{4,1} B_{3,1}$,		
$E_{6,2} C_{5,1} A_{5,1}, D_{8,2} B_{4,1}^{2}, C_{6,1}^{2} B_{4,1}, D_{9,2} A_{7,1}, C_{8,1} F_{4,1}^{2}$,		
		$E_{7,2} B_{5,1} F_{4,1} C_{10,1} B_{6,1}, B_{8,1} E_{8,2}$
$2 C$	9	$A_{1,4}^{12}, B_{2,2}^{6}, B_{3,2}^{4}, B_{4,2}^{3}, B_{6,2}^{2}, B_{12,2}, D_{4,4} A_{2,2}^{4}, C_{4,2} A_{4,2}^{2}, A_{8,2} F_{4,2}$

Next we consider other orbifold constructions.

Theorem

Let V be a self-dual, simple VOA of CFT-type. Assume that V has two commuting automorphisms f and h of order p. For $i, j \in \mathbb{Z}$, set
$V^{i, j}=\left\{v \in V \mid f(v)=\xi^{i} v, h(v)=\xi^{j} v\right\}$, where $\xi=\exp (2 \pi \sqrt{-1} / p)$. Set $V^{i}=\bigoplus_{j=0}^{p-1} V^{i, j}$. Assume the following:
(1) There exists an anti-linear involution ϕ of V^{0} such that $\left(V^{0}, \phi\right)$ is a unitary VOA;
(B) For $i \in\{1, \ldots, p-1\}, V^{i}$ is a unitary $\left(V^{0}, \phi\right)$-module;
(- There exists an automorphism $\psi \in \operatorname{Aut}(V)$ such that $\psi^{-1} f \psi=h$;
(-) $\psi\left(V^{0,0}\right)=V^{0,0}$ and $\psi \phi \psi^{-1}=\phi$ on $V^{0,0}$;
Then there exist an anti-linear involution Φ of V such that (V, Φ) is a unitary $V O A$.

Note: $V=\bigoplus_{0 \leq i, j \leq p-1} V^{i, j}$ is \mathbb{Z}_{p}^{2}-graded.

By the assumption (C), $\psi\left(V^{0}\right)=V^{0,0} \oplus V^{1,0} \oplus \cdots \oplus V^{p-1,0}$ is also a unitary VOA with the anti-linear automorphism $\psi \phi \psi^{-1}$ and a positive-definite invariant Hermitian form defined by

$$
(a, b)_{\psi\left(V^{0}\right)}=\left(\psi^{-1}(a), \psi^{-1}(b)\right)_{V^{0}} \quad \text { for } \quad a, b \in \psi\left(V^{0}\right)
$$

Note that $\psi \phi \psi^{-1}=\phi$ on $V^{0,0}$ by Assumption (D).
The invariant Hermitian form on the unitary $\left(V^{0,0}, \phi\right)$-module $V^{i, 0}$ is unique up to scalar for each $i=1, \ldots, p-1$.
We may choose a positive-definite invariant Hermitian form $(\cdot, \cdot)_{V^{i}}$ on V^{i} so that

$$
(u, v)_{V^{i}}=(u, v)_{\psi\left(V^{0}\right)} \quad \text { for } \quad u, v \in V^{i, 0}
$$

By Lemma 5, there exists an anti-linear bijective map $\Phi^{i}: V^{i} \rightarrow V^{p-i}$ such that

$$
\Phi^{i}\left(a_{n} v\right)=\phi(a)_{n} \Phi^{i}(v) \quad \text { for } a \in V^{0}, v \in V^{i}
$$

and

$$
(u, v)_{v^{i}}=\left\langle u, \Phi^{i}(v)\right\rangle \text { for } \quad u, v \in V^{i} .
$$

For any $u, v \in V^{i, 0}$, we have

$$
\begin{aligned}
\left\langle u, \Phi^{i}(v)\right\rangle & =(u, v)_{V^{i}}=\left(\psi^{-1}(u), \psi^{-1}(v)\right)_{V^{0}} \\
& =\left\langle\psi^{-1}(u), \phi \psi^{-1}(v)\right\rangle=\left\langle u, \psi \phi \psi^{-1}(v)\right\rangle .
\end{aligned}
$$

Hence

$$
\psi \phi \psi^{-1}=\Phi^{i} \quad \text { on } \quad V^{i, 0} .
$$

Define the anti-linear map $\Phi: V \rightarrow V$ so that

$$
\Phi(u)= \begin{cases}\phi(u) & \text { for } u \in V^{0} \\ \Phi^{i}(u) & \text { for } u \in V^{i}, i=1, \ldots, p-1\end{cases}
$$

and the positive-definite Hermitian form (\cdot, \cdot) on V by

$$
(u, v)= \begin{cases}(u, v)_{V^{i}} & \text { if } u, v \in V^{i}, i=0,1, \ldots, p-1 \\ 0 & \text { if } u \in V^{i}, v \in V^{j}, i \neq j\end{cases}
$$

Clearly, Φ is bijective.
Remark: Since the order of ϕ is 2, both the composition maps $\Phi^{p-i} \circ \Phi^{i}$ and $\Phi^{i} \circ \Phi^{p-i}$ are the identity map on $V^{i, 0}$. Viewing V^{p-i} as an irreducible unitary $\left(V^{0}, \phi\right)$-module, we have $\Phi^{p-i}=\left(\Phi^{i}\right)^{-1}$ on V^{p-i}, also. Therefore, $\Phi \circ \Phi$ is the identity of V.

Lemma

(1) For $i, j \in\{0,1, \ldots, p-1\}, \Phi\left(V^{i, j}\right)=V^{p-i, p-j}$.
(2) For $u, v \in V,(u, v)=\langle u, \Phi(v)\rangle$.

Proposition

The anti-linear map Φ is an anti-linear involution of V.

Proof: Since ϕ is an anti-linear automorphism of V^{0}, Φ fixes the vacuum vector and the conformal vector of V. Since $\left(V^{0}, \phi\right)$ is unitary, the equation

$$
\begin{equation*}
\Phi\left(u_{n} v\right)=\Phi(u)_{n} \Phi(v) \tag{0-2}
\end{equation*}
$$

holds for $u, v \in V^{0}$ and $n \in \mathbb{Z}$.
By the definition of Φ^{i} for $i=1,2,(0-2)$ holds for $u \in V^{0}$ and $v \in V^{i}$.
By the skew symmetry, we have

$$
u_{n} v=(-1)^{n+1} v_{n} u+\sum_{i \geq 1} \frac{(-1)^{n+i+1}}{i!} L(-1)^{i}\left(v_{n+1} u\right)
$$

for $u, v \in V$ and $n \in \mathbb{Z}$.
Hence the equation (0-2) also holds for $u \in V^{i}$ and $v \in V^{0}$.

Let $x \in V^{0, j}, y \in V^{i, 0}$ and $u \in V^{k, \ell}$. By Borcherds' identity, for $r, q \in \mathbb{Z}$,

$$
\left(x_{r} y\right)_{q} u=\sum_{i=0}^{\infty}(-1)^{i}\binom{r}{i}\left(x_{r-i}\left(y_{q+i} u\right)-(-1)^{r} y_{q+r-i}\left(x_{i} u\right)\right) .
$$

By the assumptions on x and y and the identity above, we have

$$
\Phi\left(\left(x_{r} y\right)_{q} u\right)=\left(\Phi(x)_{r} \Phi(y)\right)_{q} \Phi(u)=\Phi\left(x_{r} y\right)_{q} \Phi(u) .
$$

Thus, we obtain $\Phi\left(u_{n} v\right)=\Phi(u)_{n} \Phi(v)$ for all $x, y \in V$ and $n \in \mathbb{Z}$.

Proposition

The positive-definite Hermitian form (,) on V satisfies the invariant property for (V, Φ).

Unitary forms

Every holomorphic VOA of central charge 24 with $V_{1} \neq 0$ can be constructed by a single orbifold construction from a Niemeier lattice VOA. Let (N, g) be a pair of a Niemeier lattice and an automorphism of V_{N} such that $V \cong \widetilde{V_{N}}(g)$. Then

$$
V=V_{N}^{g} \oplus V_{N}[g]_{0} \oplus \cdots \oplus V_{N}\left[g^{p-1}\right]_{0}
$$

where $V_{N}\left[g^{i}\right]$ denotes the irreducible g^{i}-twisted module of V_{N}.
Let L be the even lattice such that $V_{L} \cong \operatorname{Com}_{V}\left(\operatorname{Com}_{V}(M(\mathfrak{h}))\right)$, where \mathfrak{h} is a Cartan subalgebra of V_{1} and suppose $g=\hat{\tau} \exp \left(2 \pi i \beta(0) \in \operatorname{Aut}\left(V_{N}\right)\right.$. Then

$$
L \cong N_{\beta}^{\tau} \quad \text { and } \quad V_{N}^{g}>V_{L} \otimes V_{\Lambda_{\tau}}^{\hat{\tau}} .
$$

Set

$$
V_{N}=\bigoplus_{\lambda+N^{\tau} \in\left(N^{\tau}\right)^{*} / N^{\tau}} V_{\lambda+N^{\tau}} \otimes V_{\lambda^{\prime}+N_{\tau}} .
$$

Then

$$
V_{N}^{g}=\bigoplus_{\lambda+N^{\tau} \in\left(N^{\tau}\right)^{*} / N^{\tau}}\left(V_{\lambda+N^{\tau}} \otimes V_{\lambda^{\prime}+N_{\tau}}\right)^{g}=\bigoplus_{\lambda+L \in\left(N^{\tau}\right)^{*} / L} V_{\lambda+L} \otimes W_{\lambda}<V .
$$

Define $f \in \operatorname{Aut}(V)$ so that f acts on $V_{N}\left[g^{i}\right]_{0}$ as a multiplication of the scalar ξ^{i}. Then $V^{f}=V_{N}^{g}$ and there is a $\gamma \in \mathbb{Q} \otimes_{\mathbb{Z}} N^{\tau}$ such that $\langle\gamma \mid \beta\rangle \notin \mathbb{Z}$ and $f=\exp (2 \pi i \gamma(0))$.

By our choices of (N, g), there is always a root of V_{1} and a lift $\psi_{\alpha} \in \operatorname{Stab}_{\text {Aut }(V)}\left(V_{L} \otimes W\right)$ of a reflection $s_{\alpha} \in W\left(V_{1}\right)$ such that $\psi_{\alpha}\left(\left(V_{N}^{g}\right)_{1}\right) \neq\left(V_{N}^{g}\right)_{1}$ and $\psi_{\alpha}^{2}=1$.
For simplicity, we use w and ψ to denote s_{α} and ψ_{α}, respectively.

By our choices of (N, g), there is always a root of V_{1} and a lift $\psi_{\alpha} \in \operatorname{Stab}_{\text {Aut }(V)}\left(V_{L} \otimes W\right)$ of a reflection $s_{\alpha} \in W\left(V_{1}\right)$ such that $\psi_{\alpha}\left(\left(V_{N}^{g}\right)_{1}\right) \neq\left(V_{N}^{g}\right)_{1}$ and $\psi_{\alpha}^{2}=1$.
For simplicity, we use w and ψ to denote s_{α} and ψ_{α}, respectively.
Define $h=\psi f \psi^{-1}$. Then $h=\exp (2 \pi i w(\gamma)(0))$ and it is clear that both f and h fix $V_{L} \otimes V_{\Lambda_{\tau}}^{\hat{\tau}}$ point-wisely.

By our choices of (N, g), there is always a root of V_{1} and a lift $\psi_{\alpha} \in \operatorname{Stab}_{\operatorname{Aut}(V)}\left(V_{L} \otimes W\right)$ of a reflection $s_{\alpha} \in W\left(V_{1}\right)$ such that $\psi_{\alpha}\left(\left(V_{N}^{g}\right)_{1}\right) \neq\left(V_{N}^{g}\right)_{1}$ and $\psi_{\alpha}^{2}=1$.
For simplicity, we use w and ψ to denote s_{α} and ψ_{α}, respectively.
Define $h=\psi f \psi^{-1}$. Then $h=\exp (2 \pi i w(\gamma)(0))$ and it is clear that both f and h fix $V_{L} \otimes V_{\Lambda_{\tau}}^{\hat{\tau}}$ point-wisely.
Since all irreducible modules for $V_{L} \otimes V_{\Lambda_{T}}^{\hat{\tau}}$ are simple current modules, the subgroup of $\operatorname{Aut}(V)$ that fixes $V_{L} \otimes V_{\Lambda_{\tau}}^{\hat{\tau_{\tau}}}$ point-wisely is a finite abelian group.

By our choices of (N, g), there is always a root of V_{1} and a lift $\psi_{\alpha} \in \operatorname{Stab}_{\text {Aut }(V)}\left(V_{L} \otimes W\right)$ of a reflection $s_{\alpha} \in W\left(V_{1}\right)$ such that $\psi_{\alpha}\left(\left(V_{N}^{g}\right)_{1}\right) \neq\left(V_{N}^{g}\right)_{1}$ and $\psi_{\alpha}^{2}=1$.
For simplicity, we use w and ψ to denote s_{α} and ψ_{α}, respectively.
Define $h=\psi f \psi^{-1}$. Then $h=\exp (2 \pi i w(\gamma)(0))$ and it is clear that both f and h fix $V_{L} \otimes V_{\Lambda_{\tau}}^{\hat{\tau}}$ point-wisely.
Since all irreducible modules for $V_{L} \otimes V_{\Lambda_{T}}^{\hat{\tau}}$ are simple current modules, the subgroup of $\operatorname{Aut}(V)$ that fixes $V_{L} \otimes V_{\Lambda_{\tau}}^{\hat{\tau_{\tau}}}$ point-wisely is a finite abelian group.

In particular, $[f, h]=1$.

Moreover, we have

$$
V^{0,0}=V^{<f, h>}=\bigoplus_{\lambda+L \in J / L} V_{\lambda+L} \otimes W_{\lambda},
$$

where $J=\left\{\lambda \in L^{*} \mid\langle\lambda, \gamma\rangle \in \mathbb{Z},\langle\lambda, w(\gamma)\rangle \in \mathbb{Z}\right\}$.

Moreover, we have

$$
V^{0,0}=V^{<f, h>}=\bigoplus_{\lambda+L \in J / L} V_{\lambda+L} \otimes W_{\lambda},
$$

where $J=\left\{\lambda \in L^{*} \mid\langle\lambda, \gamma\rangle \in \mathbb{Z},\langle\lambda, w(\gamma)\rangle \in \mathbb{Z}\right\}$.

Lemma

We have $w(J)=J$ and $\psi\left(V^{0,0}\right)=V^{0,0}$.
Note that $w^{2}=1$

Lemma

Let X be a sublattice of N such that $P_{0}(X)=J$. Then $V^{0,0}<V_{X}$ and ψ can be considered as a lift of an isometry of X in $\operatorname{Aut}\left(V_{X}\right)$. In particular, we have $\psi \phi \psi^{-1}=\phi$ on $V^{0,0}<V_{X}$.

Lemma

Let X be a sublattice of N such that $P_{0}(X)=J$. Then $V^{0,0}<V_{X}$ and ψ can be considered as a lift of an isometry of X in $\operatorname{Aut}\left(V_{X}\right)$. In particular, we have $\psi \phi \psi^{-1}=\phi$ on $V^{0,0}<V_{X}$.

Therefore, V, f and h satisfy the conditions in Theorem 15 and the main theorem follows.

Thank You

