Unitary forms for holomorphic vertex operator algebras of central charge 24

Ching Hung Lam

Academia Sinica

October 7 , 2022

Ching Hung Lam (A.S.)

Unitary forms and holomorphic VOA

October 7 , 2022

Image: A matrix

æ

< 3 >

Main tools:

표 제 표

Image: A matrix

Main tools:

Lattice VOAs are unitary.

∃ >

< A

- Lattice VOAs are unitary.
- ② All c = 24 holomorphic VOAs with $V_1 \neq 0$ can be constructed from Niemeier lattice VOAs by a single orbifold construction [Höhn-Möller].

- Lattice VOAs are unitary.
- All c = 24 holomorphic VOAs with V₁ ≠ 0 can be constructed from Niemeier lattice VOAs by a single orbifold construction [Höhn-Möller].
 ↔ (N,g) and V > V^g_N is unitary.

- Lattice VOAs are unitary.
- All c = 24 holomorphic VOAs with V₁ ≠ 0 can be constructed from Niemeier lattice VOAs by a single orbifold construction [Höhn-Möller].
 ↔ (N,g) and V > V^g_N is unitary.
- g^i -Twisted modules are unitary twisted modules for V_N .

- Lattice VOAs are unitary.
- Q All c = 24 holomorphic VOAs with V₁ ≠ 0 can be constructed from Niemeier lattice VOAs by a single orbifold construction [Höhn-Möller].
 ↔ (N,g) and V > V^g_N is unitary.
- g^i -Twisted modules are unitary twisted modules for V_N .
- Automorphism groups of V.

Main tools:

- Lattice VOAs are unitary.
- All c = 24 holomorphic VOAs with V₁ ≠ 0 can be constructed from Niemeier lattice VOAs by a single orbifold construction [Höhn-Möller].
 ↔ (N,g) and V > V^g_N is unitary.
- g^i -Twisted modules are unitary twisted modules for V_N .
- Automorphism groups of V.

There is $f \in Aut(V)$ such that $V^f = V_N^g$.

Main tools:

- Lattice VOAs are unitary.
- All c = 24 holomorphic VOAs with V₁ ≠ 0 can be constructed from Niemeier lattice VOAs by a single orbifold construction [Höhn-Möller].
 ↔ (N,g) and V > V^g_N is unitary.
- g^i -Twisted modules are unitary twisted modules for V_N .
- Automorphism groups of V.

There is $f \in Aut(V)$ such that $V^f = V_N^g$.

Try to find another automorphism h such that h is conjugate to f and [f,g] = 1.

$$V = \bigoplus_{i,j} V^{i,j}$$
 $V_N^g = V^f \oplus V^{i,0}$ $V^h = \oplus V^{0,i}.$

Definition

Let $(V, Y, \mathbb{1}, \omega)$ be a vertex operator algebra. An isomorphism $\phi : V \to V$ is called an *anti-linear automorphism* of V if $\phi(\lambda x) = \overline{\lambda}\phi(x)$, $\phi(\mathbb{1}) = \mathbb{1}, \phi(\omega) = \omega$ and $\phi(u_n v) = \phi(u)_n \phi(v)$ for any $u, v \in V$ and $n \in \mathbb{Z}$.

Definition

Let $(V, Y, \mathbb{1}, \omega)$ be a vertex operator algebra. An isomorphism $\phi : V \to V$ is called an *anti-linear automorphism* of V if $\phi(\lambda x) = \overline{\lambda}\phi(x)$, $\phi(\mathbb{1}) = \mathbb{1}, \phi(\omega) = \omega$ and $\phi(u_n v) = \phi(u)_n \phi(v)$ for any $u, v \in V$ and $n \in \mathbb{Z}$.

Definition ([DLin14])

Let $(V, Y, \mathbb{1}, \omega)$ be a vertex operator algebra and let $\phi : V \to V$ be an anti-linear involution of V. Then (V, ϕ) is said to be unitary if there exists a positive-definite Hermitian form $(,)_V : V \times V \to \mathbb{C}$, which is \mathbb{C} -linear on the first vector and anti- \mathbb{C} -linear on the second vector,

Definition

Let $(V, Y, \mathbb{1}, \omega)$ be a vertex operator algebra. An isomorphism $\phi : V \to V$ is called an *anti-linear automorphism* of V if $\phi(\lambda x) = \overline{\lambda}\phi(x)$, $\phi(\mathbb{1}) = \mathbb{1}, \phi(\omega) = \omega$ and $\phi(u_n v) = \phi(u)_n \phi(v)$ for any $u, v \in V$ and $n \in \mathbb{Z}$.

Definition ([DLin14])

Let $(V, Y, \mathbb{1}, \omega)$ be a vertex operator algebra and let $\phi : V \to V$ be an anti-linear involution of V. Then (V, ϕ) is said to be unitary if there exists a positive-definite Hermitian form $(,)_V : V \times V \to \mathbb{C}$, which is \mathbb{C} -linear on the first vector and anti- \mathbb{C} -linear on the second vector, such that the following invariant property holds for any $a, u, v \in V$:

$$(Y(e^{zL(1)}(-z^{-2})^{L(0)}a,z^{-1})u,v)_V = (u,Y(\phi(a),z)v)_V,$$

where L(n) is defined by $Y(\omega, z) = \sum_{n \in \mathbb{Z}} L(n) z^{-n-2}$.

Remark

Let (V, ϕ) be a simple unitary VOA with an inv. Hermitian form $(\cdot, \cdot)_V$. Then V is self-dual and of CFT-type ([CKLW, Proposition 5.3]) and V has a unique invariant symmetric bilinear form $\langle \cdot, \cdot \rangle$, up to scalar ([Li94]).

Remark

Let (V, ϕ) be a simple unitary VOA with an inv. Hermitian form $(\cdot, \cdot)_V$. Then V is self-dual and of CFT-type ([CKLW, Proposition 5.3]) and V has a unique invariant symmetric bilinear form $\langle \cdot, \cdot \rangle$, up to scalar ([Li94]). Normalizing $(\mathbb{1}, \mathbb{1})_V = \langle \mathbb{1}, \mathbb{1} \rangle = 1$, we obtain $(u, v)_V = \langle u, \phi(v) \rangle$ for all $u, v \in V$.

Remark

Let (V, ϕ) be a simple unitary VOA with an inv. Hermitian form $(\cdot, \cdot)_V$. Then V is self-dual and of CFT-type ([CKLW, Proposition 5.3]) and V has a unique invariant symmetric bilinear form $\langle \cdot, \cdot \rangle$, up to scalar ([Li94]). Normalizing $(\mathbb{1}, \mathbb{1})_V = \langle \mathbb{1}, \mathbb{1} \rangle = 1$, we obtain $(u, v)_V = \langle u, \phi(v) \rangle$ for all $u, v \in V$.

Definition ([DLin14])

Let (V, ϕ) be a unitary VOA and g a finite order automorphism of V. An (ordinary) g-twisted V-module (M, Y_M) is called a unitary g-twisted V-module if there exists a positive-definite Hermitian form $(,)_M : M \times M \to \mathbb{C}$ such that the following invariant property holds for $a \in V$ and $w_1, w_2 \in M$:

$$(Y_M(e^{zL(1)}(-z^{-2})^{L(0)}a,z^{-1})w_1,w_2)_M = (w_1,Y_M(\phi(a),z)w_2)_M.$$

イロト イヨト イヨト イ

Lemma (cf. [FHL93, Remark 5.3.3])

Let (V, ϕ) be a unitary VOA. Let M be a V-module and M' the contregredient module of M with a natural pairing $\langle \cdot, \cdot \rangle$ between M and M'.

- If M has a non-degenerate invariant sesquilinear form (·, ·), which is linear on the first vector and anti-C-linear on the second vector and satisfies the invariant property, then the map Φ : M → M' defined by (u, v) = (u, Φ(v)), u, v ∈ M, is an anti-linear bijective map and Φ(a_nu) = φ(a)_nΦ(u) for a ∈ V and u ∈ M.
- **2** If there exists an anti-linear bijective map $\Phi : M \to M'$ such that $\Phi(a_n u) = \phi(a)_n \Phi(u)$ for $a \in V$ and $u \in M$, then $(u, v) = \langle u, \Phi(v) \rangle$, $u, v \in M$, is a non-degenerate invariant sesquilinear form on M.

Let (V,ϕ) be a unitary VOA and (,) the corresponding positive definite invariant Hermitian form. Define

 $\mathsf{Aut}_{(\ ,\)}(V)=\{g\in\mathsf{Aut}(V)\mid (gx,gy)=(x,y)\text{ for all }x,y\in V\}.$

Let (V,ϕ) be a unitary VOA and (,) the corresponding positive definite invariant Hermitian form. Define

 $\operatorname{Aut}_{(\ ,\)}(V)=\{g\in\operatorname{Aut}(V)\mid (gx,gy)=(x,y)\text{ for all }x,y\in V\}.$

Lemma

Let (V, ϕ) be a unitary VOA. Then (1) $g \in Aut_{(,)}(V)$ if and only if $g^{-1}\phi g = \phi$. Let (V,ϕ) be a unitary VOA and (,) the corresponding positive definite invariant Hermitian form. Define

 $\operatorname{Aut}_{(\ ,\)}(V)=\{g\in\operatorname{Aut}(V)\mid (gx,gy)=(x,y)\text{ for all }x,y\in V\}.$

Lemma

Let (V, ϕ) be a unitary VOA. Then (1) $g \in Aut_{(,)}(V)$ if and only if $g^{-1}\phi g = \phi$. (2) For any $H < Aut_{(,)}(V)$, (V^H, ϕ) is also a unitary VOA.

Image: A matrix and a matrix

3

→

There is a positive-definite Hermitian form on $M(1) = \operatorname{Span}_{\mathbb{C}} \{ \alpha_1(-n_1) \dots \alpha_k(-n_k) \mathbb{1} \mid \alpha_i \in L, n_i \in \mathbb{Z}_{>0} \} \text{ such that}$ $(\mathbb{1}, \mathbb{1}) = 1, \quad (\alpha(n)u, v) = (u, \alpha(-n)v)$ for $\alpha \in L$ and for any $u, v \in M(1)$.

There is a positive-definite Hermitian form on $M(1) = \operatorname{Span}_{\mathbb{C}} \{ \alpha_1(-n_1) \dots \alpha_k(-n_k) \mathbb{1} \mid \alpha_i \in L, n_i \in \mathbb{Z}_{>0} \} \text{ such that}$ $(\mathbb{1}, \mathbb{1}) = 1, \quad (\alpha(n)u, v) = (u, \alpha(-n)v)$ for $\alpha \in L$ and for any $u, v \in M(1)$.

There also exists a positive-definite Hermitian form on $\mathbb{C}\{L\} = \operatorname{Span}_{\mathbb{C}}\{e^{\alpha} \mid \alpha \in L\}$ determined by $(e^{\alpha}, e^{\beta}) = \delta_{\alpha,\beta}$.

There is a positive-definite Hermitian form on $M(1) = \operatorname{Span}_{\mathbb{C}} \{ \alpha_1(-n_1) \dots \alpha_k(-n_k) \mathbb{1} \mid \alpha_i \in L, n_i \in \mathbb{Z}_{>0} \} \text{ such that}$ $(\mathbb{1}, \mathbb{1}) = 1, \quad (\alpha(n)u, v) = (u, \alpha(-n)v)$ for $\alpha \in L$ and for any $u, v \in M(1)$.

There also exists a positive-definite Hermitian form on $\mathbb{C}\{L\} = \operatorname{Span}_{\mathbb{C}}\{e^{\alpha} \mid \alpha \in L\}$ determined by $(e^{\alpha}, e^{\beta}) = \delta_{\alpha,\beta}$.

Then a positive-definite Hermitian form on V_{L^*} can be defined by

$$(u \otimes e^{\alpha}, v \otimes e^{\beta}) = (u, v) \cdot (e^{\alpha}, e^{\beta}),$$

where $u, v \in M(1)$ and $\alpha, \beta \in L$.

Let $\phi: V_L \rightarrow V_L$ be an anti-linear map determined by:

 $\alpha_1(-n_1)\cdots\alpha_k(-n_k)\otimes e^{\alpha}\mapsto (-1)^k\alpha_1(-n_1)\cdots\alpha_k(-n_k)\otimes e^{-\alpha},$

where $\alpha_1, \ldots, \alpha_k \in L, \alpha \in L$.

Theorem

Let L be a positive-definite even lattice and let ϕ be the anti-linear map of V_L defined as above. Then the lattice vertex operator algebra (V_L , ϕ) is a unitary VOA.

$\operatorname{Aut}_{(,)}(V_L)$

Theorem ([DN99])

Let L be a positive definite even lattice. Then

 $\operatorname{Aut}(V_L) = N(V_L) O(\hat{L})$

and the quotient $\operatorname{Aut}(V_L)/N(V_L)$ is isomorphic to a quotient group of O(L).

Lemma

Let
$$g \in O(\hat{L})$$
. Then $g \in Aut_{(,)}(V_L)$.

Lemma

Let
$$\beta \in L^*$$
 and *n* a positive integer. Then
 $h = \exp(2\pi i \frac{\beta(0)}{n}) \in \operatorname{Aut}_{(,)}(V_L).$

Ching Hung Lam (A.S.)

October 7 , 2022

Let τ be an isometry of L. Let p be a positive integer such that $\tau^p = 1$. Define $\mathfrak{h} = \mathbb{C} \otimes_{\mathbb{Z}} L$ and extend the \mathbb{Z} -form $\langle \cdot | \cdot \rangle$ \mathbb{C} -linearly to \mathfrak{h} . Denote

$$\mathfrak{h}_{(n)} = \{ \alpha \in \mathfrak{h} \, | \, \tau \alpha = \xi^n \alpha \} \quad \text{for } n \in \mathbb{Z},$$

where $\xi = \exp(2\pi\sqrt{-1}/p)$.

Let $\hat{\mathfrak{h}}[\tau] = \coprod_{n \in \mathbb{Z}} \mathfrak{h}_{(n)} \otimes t^{n/p} \oplus \mathbb{C}c$ be the τ -twisted affine Lie algebra of \mathfrak{h} . Denote

$$\hat{\mathfrak{h}}[\tau]^+ = \prod_{n>0} \mathfrak{h}_{(n)} \otimes t^{n/p}, \quad \hat{\mathfrak{h}}[\tau]^- = \prod_{n<0} \mathfrak{h}_{(n)} \otimes t^{n/p}, \quad \text{and} \quad \hat{\mathfrak{h}}[\tau]^0 = \mathfrak{h}_{(0)} \oplus \mathbb{C}c,$$

and

$$S[\tau] = S(\hat{\mathfrak{h}}[\tau]^{-}).$$

Set s = p if p is even and s = 2p if p is odd.

Define a au-invariant alternating \mathbb{Z} -bilinear map $c^{ au}$ from $L \times L$ to \mathbb{Z}_s by

$$c^{\tau}(\alpha,\beta) = \sum_{i=0}^{p-1} (s/2 + si/p) \langle \tau^i(\alpha) | \beta \rangle + s\mathbb{Z}.$$

Consider the central extension

$$1 \longrightarrow \langle \kappa_s \rangle \longrightarrow \hat{L}_{\tau} \xrightarrow{-} L \longrightarrow 1$$

such that $aba^{-1}b^{-1} = \kappa_s^{c^{\tau}(\bar{a},\bar{b})}$ for $a, b \in \hat{L}_{\tau}$.

Let $\beta \in \mathbb{Q} \otimes L^{\tau}$ such that $p\langle \beta | L \rangle \in \mathbb{Z}$. Then $g = \hat{\tau} \exp(2\pi i\beta(0))$ also defines an automorphism of V_L and $g^p = 1$. An irreducible g-twisted module is then given by

$$V_L^{\chi}(g) = S[\tau] \otimes e^{-\beta} \otimes U_{\chi},$$

as a vector space.

We define a Hermitian form on $V_L^{\chi}(g)$ as follows. For any $a, b \in e^{-\beta} \hat{L}_{\tau}$, define

$$(t(a), t(b)) = \begin{cases} 0 & \text{if } b^{-1}a \notin \mathcal{A}, \\ \chi(b^{-1}a) & \text{if } b^{-1}a \in \mathcal{A}, \end{cases}$$
(0-1)

where $t(a) = a \otimes 1 \in e^{-\beta} \otimes U_{\chi}$; there is positive-definite Hermitian form (,) on $S[\tau]$ such that

$$(1,1) = 1,$$

$$(\alpha(n) \cdot u, v) = (u, \alpha(-n) \cdot v),$$

for any $u, v \in S[\tau]$ and $\alpha \in L$.

Then one can define a positive-definite Hermitian form on $V_I^{\chi}(g)$ by

$$(u \otimes r, v \otimes s) = (u, v) \cdot (r, s), \quad \text{ where } u, v \in S[\tau], r, s \in e^{-\beta} \otimes U_{\chi}.$$

Lemma

For any χ , $V_L^{\chi}(g)$ is a unitary g-twisted module of (V_L, ϕ) .

Ching Hung Lam (A.S.)

Theorem (cf. Proposition 5.7 and Remark 5.8 of Höhn-Möller)

Let V be a holomorphic VOA of central charge 24 with $V_1 \neq 0$. Then there exist a Niemeier N and an automorphism \sim

- $g = \hat{\tau} \exp(2\pi i\beta(0)) \in Aut(V_N)$ such that $V \cong V_N(g)$. Moreover,
 - τ has the same frame shape as one of the 11 conjugacy classes of Co₀ as discussed in [Hö2].
 - $\ \, {\bf O} \ \, L\cong {\sf N}^{\tau}_{\beta} \ \, {\rm and} \ \, {\sf V}^{\hat{\tau}}_{{\sf N}_{\tau}}\cong {\sf V}^{\hat{\tau}}_{{\sf \Lambda}_{\tau}}; \ \, {\rm in \ \, particular}, \ \, {\sf V}^{\sf g}_{{\sf N}}>{\sf V}_{{\sf L}}\otimes {\sf V}^{\hat{\tau}}_{{\sf \Lambda}_{\tau}}.$
 - **3** $(V_N^g)_1$ is non-abelian and has the same Lie rank as V_1 .

Theorem (cf. Proposition 5.7 and Remark 5.8 of Höhn-Möller)

Let V be a holomorphic VOA of central charge 24 with $V_1 \neq 0$. Then there exist a Niemeier N and an automorphism \sim

- $g = \hat{\tau} \exp(2\pi i\beta(0)) \in Aut(V_N)$ such that $V \cong V_N(g)$. Moreover,
 - τ has the same frame shape as one of the 11 conjugacy classes of Co₀ as discussed in [Hö2].
 - $\ \, {\bf O} \ \, L\cong N^{\tau}_{\beta} \ \, \text{and} \ \, V^{\hat{\tau}}_{N_{\tau}}\cong V^{\hat{\tau}}_{\Lambda_{\tau}}; \ \, \text{in particular,} \ \, V^{g}_{N}>V_{L}\otimes V^{\hat{\tau}}_{\Lambda_{\tau}}.$
 - **(** V_N^g)₁ is non-abelian and has the same Lie rank as V_1 .

Remark: 1. The choices for N and g are not unique. 2. We may choose (N, g) so that $(V_N^g)_1$ contains a simple Lie component which is a proper Lie subalgebra of a simple ideal of V_1 .

イロト イヨト イヨト ・

Theorem (cf. Proposition 5.7 and Remark 5.8 of Höhn-Möller)

Let V be a holomorphic VOA of central charge 24 with $V_1 \neq 0$. Then there exist a Niemeier N and an automorphism \sim

- $g = \hat{\tau} \exp(2\pi i\beta(0)) \in Aut(V_N)$ such that $V \cong V_N(g)$. Moreover,
 - τ has the same frame shape as one of the 11 conjugacy classes of Co₀ as discussed in [Hö2].
 - $\ \, {\bf O} \ \, L\cong N^{\tau}_{\beta} \ \, \text{and} \ \, V^{\hat{\tau}}_{N_{\tau}}\cong V^{\hat{\tau}}_{\Lambda_{\tau}}; \ \, \text{in particular,} \ \, V^{g}_{N}>V_{L}\otimes V^{\hat{\tau}}_{\Lambda_{\tau}}.$
 - **(** V_N^g)₁ is non-abelian and has the same Lie rank as V_1 .

Remark: 1. The choices for N and g are not unique. 2. We may choose (N,g) so that $(V_N^g)_1$ contains a simple Lie component which is a proper Lie subalgebra of a simple ideal of V_1 .

There is a refection r in $W(V_1) < \operatorname{Aut}(V)$ such that $r((V_N^g)_1) \neq (V_N^g)_1$

Example: $V_1 \cong A_{2,3}^6$.

 $N = N(A_1^{24});$

 τ acts a permutation of the 24 copies of $A_1{\rm 's}$ with the cycle shape $1^63^6;$ and

$$eta=rac{1}{6}(0^{12},lpha^{12})$$
, where $\mathbb{Z}lpha\cong A_1$, i.e, $\langlelpha,lpha
angle=2$.

In this case, $V = \widetilde{V_N}(g)$ and $(V_N(A_1^{24})^g)_1 \cong A_{1,3}^6 U(1)^6$.

- (日)

Theorem ([DLin14, Theorem 3.3])

Let (V, φ) be a rational and C_2 -cofinite unitary self-dual vertex operator algebra and M a simple current irreducible V-module having integral weights.

Theorem ([DLin14, Theorem 3.3])

Let (V, φ) be a rational and C_2 -cofinite unitary self-dual vertex operator algebra and M a simple current irreducible V-module having integral weights.

Assume that *M* has an anti-linear map ψ such that $\psi(v_nw) = \varphi(v)_n\psi(w)$ and $\psi^2 = id$, $(\psi(w_1), \psi(w_2))_M = (w_1, w_2)_M$ and the Hermitian form $(,)_V$ on *V* has the property that $(\varphi(v_1), \varphi(v_2))_V = (v_1, v_2)_V$.

Theorem ([DLin14, Theorem 3.3])

Let (V, φ) be a rational and C_2 -cofinite unitary self-dual vertex operator algebra and M a simple current irreducible V-module having integral weights.

Assume that M has an anti-linear map ψ such that $\psi(v_nw) = \varphi(v)_n\psi(w)$ and $\psi^2 = id$, $(\psi(w_1), \psi(w_2))_M = (w_1, w_2)_M$ and the Hermitian form $(,)_V$ on V has the property that $(\varphi(v_1), \varphi(v_2))_V = (v_1, v_2)_V$.

Let $U = V \oplus M$. Then (U, φ_U) has a unique unitary vertex operator algebra structure, where $\varphi_U : U \to U$ is the anti-linear involution defined by $\varphi_U(v, w) = (\varphi(v), \psi(w))$, for $v \in V, w \in M$. Furthermore, U is rational and C_2 -cofinite.

イロト イヨト イヨト ・

As a consequences, we have the following result.

Theorem

Let V be a holomorphic VOA of central charge 24 with the weight one Lie algebra isomorphic to one of the Lie algebras in the following Table. Then V is unitary.

Class	# of V	Weight one Lie algebra structures
2 <i>A</i>	17	$A_{1,2}^{16}, A_{3,2}^4 A_{1,1}^4, D_{4,2}^2 B_{2,1}^4, A_{5,2}^2 C_{2,1} A_{2,1}^2, D_{5,2}^2 C_{2,1} A_{2,1}^2,$
		$A_{7,2}C_{3,1}^2A_{3,1}, C_{4,1}^4, D_{6,2}C_{4,1}B_{3,1}^2, A_{9,2}A_{4,1}B_{3,1},$
		$E_{6,2}C_{5,1}A_{5,1}, D_{8,2}B_{4,1}^2, C_{6,1}^2B_{4,1}, D_{9,2}A_{7,1}, C_{8,1}F_{4,1}^2,$
		$E_{7,2}B_{5,1}F_{4,1}C_{10,1}B_{6,1}, B_{8,1}E_{8,2}$
2 <i>C</i>	9	$A_{1,4}^{12}, B_{2,2}^{6}, B_{3,2}^{4}, B_{4,2}^{3}, B_{6,2}^{2}, B_{12,2}, D_{4,4}A_{2,2}^{4}, C_{4,2}A_{4,2}^{2}, A_{8,2}F_{4,2}$

Theorem

Let V be a self-dual, simple VOA of CFT-type. Assume that V has two commuting automorphisms f and h of order p. For $i, j \in \mathbb{Z}$, set $V^{i,j} = \{v \in V \mid f(v) = \xi^i v, h(v) = \xi^j v\}$, where $\xi = \exp(2\pi\sqrt{-1}/p)$. Set $V^i = \bigoplus_{j=0}^{p-1} V^{i,j}$. Assume the following:

There exists an anti-linear involution φ of V⁰ such that (V⁰, φ) is a unitary VOA;

- **b** For $i \in \{1, \dots, p-1\}$, V^i is a unitary (V^0, ϕ) -module;
- There exists an automorphism ψ ∈ Aut(V) such that ψ⁻¹fψ = h;
 ψ(V^{0,0}) = V^{0,0} and ψφψ⁻¹ = φ on V^{0,0};

Then there exist an anti-linear involution Φ of V such that (V, Φ) is a unitary VOA.

Note:
$$V = \bigoplus_{0 \le i, j \le p-1} V^{i,j}$$
 is \mathbb{Z}_p^2 -graded.

By the assumption (C), $\psi(V^0) = V^{0,0} \oplus V^{1,0} \oplus \cdots \oplus V^{p-1,0}$ is also a unitary VOA with the anti-linear automorphism $\psi \phi \psi^{-1}$ and a positive-definite invariant Hermitian form defined by

$$(a,b)_{\psi(V^0)} = (\psi^{-1}(a),\psi^{-1}(b))_{V^0}$$
 for $a,b\in\psi(V^0).$

Note that $\psi \phi \psi^{-1} = \phi$ on $V^{0,0}$ by Assumption (D).

The invariant Hermitian form on the unitary $(V^{0,0}, \phi)$ -module $V^{i,0}$ is unique up to scalar for each i = 1, ..., p - 1.

We may choose a positive-definite invariant Hermitian form $(\cdot, \cdot)_{V^i}$ on V^i so that

$$(u,v)_{V^i}=(u,v)_{\psi(V^0)}$$
 for $u,v\in V^{i,0}$.

By Lemma 5, there exists an anti-linear bijective map $\Phi^i: V^i \to V^{p-i}$ such that

$$\Phi^i(a_nv)=\phi(a)_n\Phi^i(v) \quad ext{ for } a\in V^0, v\in V^i$$

and

$$(u,v)_{V^i} = \langle u, \Phi^i(v) \rangle$$
 for $u, v \in V^i$.

For any $u, v \in V^{i,0}$, we have

Hence

$$\psi\phi\psi^{-1}=\Phi^i$$
 on $V^{i,0}$.

э

Define the anti-linear map $\Phi: V \rightarrow V$ so that

$$\Phi(u) = egin{cases} \phi(u) & ext{ for } u \in V^0, \ \Phi^i(u) & ext{ for } u \in V^i, \ i=1,\ldots,p-1, \end{cases}$$

and the positive-definite Hermitian form (\cdot, \cdot) on V by

$$(u, v) = \begin{cases} (u, v)_{V^{i}} & \text{if } u, v \in V^{i}, \ i = 0, 1, \dots, p - 1, \\ 0 & \text{if } u \in V^{i}, \ v \in V^{j}, \ i \neq j. \end{cases}$$

Clearly, Φ is bijective.

Remark: Since the order of ϕ is 2, both the composition maps $\Phi^{p-i} \circ \Phi^i$ and $\Phi^i \circ \Phi^{p-i}$ are the identity map on $V^{i,0}$. Viewing V^{p-i} as an irreducible unitary (V^0, ϕ) -module, we have $\Phi^{p-i} = (\Phi^i)^{-1}$ on V^{p-i} , also.

Therefore, $\Phi \circ \Phi$ is the identity of *V*.

Lemma

9 For
$$i, j \in \{0, 1, ..., p-1\}$$
, $\Phi(V^{i,j}) = V^{p-i,p-j}$.

Proposition

The anti-linear map Φ is an anti-linear involution of V.

< 行

문 🛌 🖻

Proof: Since ϕ is an anti-linear automorphism of V^0 , Φ fixes the vacuum vector and the conformal vector of V. Since (V^0, ϕ) is unitary, the equation

$$\Phi(u_n v) = \Phi(u)_n \Phi(v) \tag{0-2}$$

holds for $u, v \in V^0$ and $n \in \mathbb{Z}$.

By the definition of Φ^i for i = 1, 2, (0-2) holds for $u \in V^0$ and $v \in V^i$. By the skew symmetry, we have

$$u_n v = (-1)^{n+1} v_n u + \sum_{i \ge 1} \frac{(-1)^{n+i+1}}{i!} L(-1)^i (v_{n+1} u)$$

for $u, v \in V$ and $n \in \mathbb{Z}$. Hence the equation (0-2) also holds for $u \in V^i$ and $v \in V^0$. Let $x \in V^{0,j}$, $y \in V^{i,0}$ and $u \in V^{k,\ell}$. By Borcherds' identity, for $r, q \in \mathbb{Z}$,

$$(x_r y)_q u = \sum_{i=0}^{\infty} (-1)^i \binom{r}{i} (x_{r-i}(y_{q+i}u) - (-1)^r y_{q+r-i}(x_iu)).$$

By the assumptions on x and y and the identity above, we have

$$\Phi((x_r y)_q u) = (\Phi(x)_r \Phi(y))_q \Phi(u) = \Phi(x_r y)_q \Phi(u).$$

Thus, we obtain $\Phi(u_n v) = \Phi(u)_n \Phi(v)$ for all $x, y \in V$ and $n \in \mathbb{Z}$.

Proposition

The positive-definite Hermitian form (,) on V satisfies the invariant property for (V, Φ).

Every holomorphic VOA of central charge 24 with $V_1 \neq 0$ can be constructed by a single orbifold construction from a Niemeier lattice VOA. Let (N, g) be a pair of a Niemeier lattice and an automorphism of V_N such that $V \cong \widetilde{V_N}(g)$. Then

$$V = V_N^g \oplus V_N[g]_0 \oplus \cdots \oplus V_N[g^{p-1}]_0,$$

where $V_N[g^i]$ denotes the irreducible g^i -twisted module of V_N .

Let *L* be the even lattice such that $V_L \cong \operatorname{Com}_V(\operatorname{Com}_V(M(\mathfrak{h})))$, where \mathfrak{h} is a Cartan subalgebra of V_1 and suppose $g = \hat{\tau} \exp(2\pi i\beta(0) \in \operatorname{Aut}(V_N))$. Then

$$L \cong N^{ au}_{eta}$$
 and $V^{g}_{N} > V_{L} \otimes V^{\hat{ au}}_{\Lambda_{ au}}.$

Set

$$V_{N} = \bigoplus_{\lambda+N^{\tau} \in (N^{\tau})^{*}/N^{\tau}} V_{\lambda+N^{\tau}} \otimes V_{\lambda'+N_{\tau}}.$$

Then

$$V_N^g = \bigoplus_{\lambda+N^\tau \in (N^\tau)^*/N^\tau} (V_{\lambda+N^\tau} \otimes V_{\lambda'+N_\tau})^g = \bigoplus_{\lambda+L \in (N^\tau)^*/L} V_{\lambda+L} \otimes W_\lambda < V.$$

Define $f \in \operatorname{Aut}(V)$ so that f acts on $V_N[g^i]_0$ as a multiplication of the scalar ξ^i . Then $V^f = V^g_N$ and there is a $\gamma \in \mathbb{Q} \otimes_{\mathbb{Z}} N^{\tau}$ such that $\langle \gamma | \beta \rangle \notin \mathbb{Z}$ and $f = \exp(2\pi i \gamma(0))$.

By our choices of (N, g), there is always a root of V_1 and a lift $\psi_{\alpha} \in \text{Stab}_{\text{Aut}(V)}(V_L \otimes W)$ of a reflection $s_{\alpha} \in W(V_1)$ such that $\psi_{\alpha}((V_N^g)_1) \neq (V_N^g)_1$ and $\psi_{\alpha}^2 = 1$.

For simplicity, we use w and ψ to denote s_{α} and ψ_{α} , respectively.

By our choices of (N, g), there is always a root of V_1 and a lift $\psi_{\alpha} \in \operatorname{Stab}_{\operatorname{Aut}(V)}(V_L \otimes W)$ of a reflection $s_{\alpha} \in W(V_1)$ such that $\psi_{\alpha}((V_N^g)_1) \neq (V_N^g)_1$ and $\psi_{\alpha}^2 = 1$. For simplicity, we use w and ψ to denote s_{α} and ψ_{α} , respectively.

Define $h = \psi f \psi^{-1}$. Then $h = \exp(2\pi i w(\gamma)(0))$ and it is clear that both f and h fix $V_L \otimes V_{\Lambda_T}^{\hat{\tau}}$ point-wisely.

By our choices of (N, g), there is always a root of V_1 and a lift $\psi_{\alpha} \in \operatorname{Stab}_{\operatorname{Aut}(V)}(V_L \otimes W)$ of a reflection $s_{\alpha} \in W(V_1)$ such that $\psi_{\alpha}((V_N^g)_1) \neq (V_N^g)_1$ and $\psi_{\alpha}^2 = 1$. For simplicity, we use w and ψ to denote s_{α} and ψ_{α} , respectively.

Define $h = \psi f \psi^{-1}$. Then $h = \exp(2\pi i w(\gamma)(0))$ and it is clear that both f and h fix $V_L \otimes V_{\Lambda_T}^{\hat{\tau}}$ point-wisely.

Since all irreducible modules for $V_L \otimes V_{\Lambda_{\tau}}^{\hat{\tau}}$ are simple current modules, the subgroup of Aut(V) that fixes $V_L \otimes V_{\Lambda_{\tau}}^{\hat{\tau}}$ point-wisely is a finite abelian group.

By our choices of (N, g), there is always a root of V_1 and a lift $\psi_{\alpha} \in \operatorname{Stab}_{\operatorname{Aut}(V)}(V_L \otimes W)$ of a reflection $s_{\alpha} \in W(V_1)$ such that $\psi_{\alpha}((V_N^g)_1) \neq (V_N^g)_1$ and $\psi_{\alpha}^2 = 1$. For simplicity, we use w and ψ to denote s_{α} and ψ_{α} , respectively.

Define $h = \psi f \psi^{-1}$. Then $h = \exp(2\pi i w(\gamma)(0))$ and it is clear that both f and h fix $V_L \otimes V_{\Lambda_T}^{\hat{\tau}}$ point-wisely.

Since all irreducible modules for $V_L \otimes V_{\Lambda_{\tau}}^{\hat{\tau}}$ are simple current modules, the subgroup of Aut(V) that fixes $V_L \otimes V_{\Lambda_{\tau}}^{\hat{\tau}}$ point-wisely is a finite abelian group.

In particular, [f, h] = 1.

Moreover, we have

$$V^{0,0} = V^{\langle f,h
angle} = \bigoplus_{\lambda+L \in J/L} V_{\lambda+L} \otimes W_{\lambda},$$

where $J = \{\lambda \in L^* \mid \langle \lambda, \gamma \rangle \in \mathbb{Z}, \langle \lambda, w(\gamma) \rangle \in \mathbb{Z} \}.$

< 行

문 문 문

Moreover, we have

$$V^{0,0} = V^{\langle f,h \rangle} = \bigoplus_{\lambda+L \in J/L} V_{\lambda+L} \otimes W_{\lambda},$$

where $J = \{\lambda \in L^* \mid \langle \lambda, \gamma \rangle \in \mathbb{Z}, \langle \lambda, w(\gamma) \rangle \in \mathbb{Z} \}.$

Lemma

We have
$$w(J) = J$$
 and $\psi(V^{0,0}) = V^{0,0}$.

Note that $w^2 = 1$

- ∢ ⊢⊐ ►

→

э

Lemma

Let X be a sublattice of N such that $P_0(X) = J$. Then $V^{0,0} < V_X$ and ψ can be considered as a lift of an isometry of X in $Aut(V_X)$. In particular, we have $\psi \phi \psi^{-1} = \phi$ on $V^{0,0} < V_X$.

э

Lemma

Let X be a sublattice of N such that $P_0(X) = J$. Then $V^{0,0} < V_X$ and ψ can be considered as a lift of an isometry of X in $Aut(V_X)$. In particular, we have $\psi \phi \psi^{-1} = \phi$ on $V^{0,0} < V_X$.

Therefore, V, f and h satisfy the conditions in Theorem 15 and the main theorem follows.

Thank You

< ∃ →

æ