"MODULE TENSCR CATECORIES AND THE LANDAU-GINEGURG/CFT CGREESPCNDENCE"

```
arkiu: 2206.01045
    (submitted!)
```

joint with Thomas Wasserman
(Limcoln College, Oxjord)

Pepresentation Theory XVII Dubrourik, thuot dika

ANA ROS CAMACHO CARDIFF UNIVERSTTY (wales)
(0) Motivation
[Vafa-Larnes, Maitinec,
Witten, Howe - west]: phyvics litcratcue, late 805 -ealy 90 s

Predicting mathematically:

- I-cimear cato. ("boundary conds")
- © - cats. ("dejecto")

Cument otate of affairs

- C-linear equicalerces: several examples available [Guqueville-Runkel-RC, Newton-RC,...]
- ©-equivalences: 1! example avaibable [Dauydou-Runkel-RC]=[TRCR]

TODAY: gemeralige [DRCR]!

Dlan of action: (3) Brief intne to matrix factorizations.
(2) $[D R C R]^{\prime}$ s main theorem.
(3) rodule tensor categories and how to generalize (2).
(4) Outro
(4) Brief intro to matrix facterizations

For ou pupores: $k_{k}=\mathbb{C}, S=\mathbb{C}\left[x_{1}, \ldots, x_{m}\right], W \in S$.
Defm: - Wpotential: $\Leftrightarrow \operatorname{dimek}\left(S\left\langle\left\langle\partial_{x} w, \ldots, \partial_{x m} w\right\rangle\right)<\infty\right.$

- A marix facterization of a potential u consisto of a pair $\left(M, d^{\mu}\right)$:
- Mgree, \mathbb{Z}_{2}-graded $\left(=M o \oplus M_{1}\right.$) finite rank S-module,
- $d^{M}: M \rightarrow M$ degree $1\left(=\left(\begin{array}{ll}d_{i} & d_{1}^{H} \\ 0\end{array}\right)\right) S$ - limear morphirm o.t.
$d^{M} \circ d^{M}=W \cdot i d M \quad$ ("twisted diffiential")
- A morphiarm of matrix facterizations $f:\left(M, d^{M}\right) \rightarrow\left(N, d^{N}\right)$ is an S-linear map from $H \rightarrow N$

With these, consticuct a categry: dewn as compositions of d's and mouph of dence $O\}$

Some facts:

- Use bimodules instead of S-modules ms "matrix bijacterization"

$$
\rightarrow \operatorname{HMF}_{\mathrm{b}}(\omega)
$$

Example: (important for us!)

$$
\begin{aligned}
& \left(S_{1}, \omega_{1}\right)=\left(\mathbb{T}[x], x^{d}\right) \\
& \left(S_{2}, \omega_{2}\right)=(\mathbb{C}[y], y d) \leadsto M=\mathbb{C}[x, y]^{\oplus 2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { for } 2^{d}=1, e \in\{0, \ldots, d-1\}, m \in \mathbb{Z} d .
\end{aligned}
$$

Notation: Pm:l, "permutation-type matrix faderization".

- With bimodules we can $\otimes P_{0}$
$\operatorname{Gicen}\left(S_{1}, W_{1}\right),\left(S_{2}, W_{2}\right),\left(S_{3}, \omega_{3}\right),\left(M, d^{\mu}\right)$ mat. fact. of $W_{1}-W_{2}$ (N, d^{N}) mat. fact. of $\omega_{2}-\omega_{3}$.
the tensor product matrix facterization $\left(M \otimes s_{2} N\right.$, dioN) io the matrix factorization of $\omega_{1}-\omega_{3}$ with:
- $M \otimes s_{2} N S_{1}-S_{3}$-bimodule,
- $d^{M \otimes N}=d^{M} \otimes i d N+i d M \otimes d^{N}$

Some results:
Lemma: for $\omega_{1}=\omega_{2}=\omega, \operatorname{MMFbi}(\omega)$ is moncidol. (posible to upgrade to more general settings)
Also, there are duals that can be descirbed very explicitly:
Example: $\left(P_{m: e}\right)^{\psi} \simeq P_{-m: e}$
Set: Pd full subcategory of HMFbi(w) with doje do isomorphic to finite $\oplus{ }^{\prime} \circ$ of $P_{m}: e^{\prime} o$.

The: [Brummer-Roggenkamp.DRCR] Pd is dosed under *. Explicitly, fa $l, e^{\prime} \in\{0, \ldots, d-2\}$,
$\min \left(C+Q^{\prime} ; 2 d-4-e-e^{\prime}\right)$

And that's it for matrix factorizations!
(2) $[D R C R]^{\prime}$ s main theorem.

Dencte: $\mathcal{L} V A$ couesponding to the $N=2$ unitary minimal model with central chaige $c=3(1-2 / d), d \in \mathbb{Z}_{>_{2}} . \nu=L_{0} \oplus \nu_{1}$ here.
[Adamavić, Ehdese-Gaberdiel Di Vecchia-Petcrsen-Yu-Zheng ...]
Prop: [产öhlich-Fucho-Runkel - Schueiget $]$ Rep (ν_{0}) can be realized as the subcategory (of local modules over a commutative afgeba A) in the product:

$$
\begin{aligned}
& \ell(d):=\operatorname{Rep}(\hat{\operatorname{su}}(2) d-2) \otimes \operatorname{Rep}\left(\hat{u}(1)_{2 d}\right) \otimes \operatorname{Rep}\left(\hat{u}(1)_{4}\right) \text {. } \\
& \text { integabe highest reps of }{ }^{N} \text { vas gor u(1) }{ }^{\alpha} \text { dito } \\
& \text { weight representetions } \\
& \text { of afime sul(2) at d-2. } \\
& \text { extended by two gieles } \\
& \text { of ueight d, opporte } \\
& \text { braiding + tuisting } \\
& \text { they are pointed } \\
& \text { jusion categries! }
\end{aligned}
$$

with simples $[e, m, s], e \in\{0, \ldots, d-2\}, m \in \mathbb{Z}_{2 d}, s \in \mathbb{Z}_{4}$ satiofying $l+m+s$ even.

Two interesting oubcategories:

- $e_{n}(d):=$ \{ vibcategory of $\ell(d)$ with $l+m$ even, seien. \}
$-\varphi_{R}(d):=\{\quad " \quad " \quad$ odd," odd $\}$

The: - runner - Roggenkamp,' $O 7]$: $P d \simeq e_{n s}(d)$ as \mathbb{C} - linear.

- [DRCR,' 14$]: P d=\otimes e_{\operatorname{lns}}(d)$ for d odd.

Rok: - fusion rules work ga any value of d.

- mo physical obstructions te the result being true $\forall d$.
- a "quantum" (blesing/cuise) hint in the prog:

Prep:[DRCR, Step 1 of proof] for d odd, there exist an equivalence of braided fusion Categories

$$
e_{N S}(d) \simeq \frac{\mathcal{L}_{2 c o o}(\pi / d)}{\left\langle p_{d-1}\right\rangle} \text { fec } \mathbb{Z d}
$$

Temperley-Lieb category, generated by a self-dual object of dimension $2 \cos (\pi / d)$ mod the deal of morphisms generated by the n-coled Wens- Jones ide impotent
category of Fd -graded vector spaces (with trivial associators)
quite remarkable, Let's explore + i
(3) Module tensor categories and how to generalize (2).

Turns out that to generaling the main theorem, we needed a gish new perspective...
(1) Introduce a braiding for Vec $\mathbb{Z d}$, given by a quadratic form:

$$
\begin{aligned}
& \text { Id: } \mathbb{Z d} \longrightarrow \mathbb{C}^{x} \\
& r \longmapsto e^{\pi i r^{2} / d}
\end{aligned}
$$

Denote: $\nu_{d}:=\left(V_{\mathbb{Z} d}, g_{d}\right)$
(2) Regard Ens (d) and Pd as Ud-module tensor Categories ([Henriques - Penney - Tenner, '15]: leet M tens ar category) e braided category. M is called a e-module tensa category if it is equipped with a functor $\bar{\Phi}: e \rightarrow$ y that can be factorized cos $e \longrightarrow Z(M) \longrightarrow M)$

Prop: [Warseman-RC] ENS (d) and Pd indeed have this stinctue.
Impanticular, ens (d) is generated by one doje ot with dimension $2 \cos (\pi / d)$.
(3) Use this to peeve: Thm: $[W R C] e_{n s}(d) \simeq P d$ as $2 \sim d$-moduceres tensor Categories.
Δ dine ct corday:
Thu: $[\omega R C] \operatorname{CNs}(d) \simeq \otimes \mathrm{d} \quad \forall d$.

Rok: - Suss is one of the first concrete examples of the se categories.

- [W-RC, cuuent work in progress]: great key te prove more general results (beyond x).
- Never seen bejare in the area of matrix factorizations, mar (I believe?) in VAs.

My question to the audience! "u
(4) Sutra

Plenty of pen questions here...

- Further \otimes-equivalences beyond x ? ($\left(E . g . x^{d} y\right.$)
[RC, work in progeny]
(because ...
(Possibly extracted from the C-linear equivalences we have?)
- Within x^{d} : replicating some classification results by vafaWarner?
- Physical evidence of mare equivalences beyond min. models ($N=2$ Kagama - Suzuki): can we exploit this new stu tue to prove results here?
- Higher categorical statement for LG/CFT : dite?
Here soon!

DIOLCH!
HVALA!

THANK YOU!
IMUCHAS GRACIAS!
Any queations? "

Maybe later? ROSCAMACHA@ CARDIFF.AC.OK

