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Vertex algebras/Vertex operator algebra (VOA)

+— 2 dimensional chiral conformal field theories

Recent discovery (goes back to [Nakajima '94]):

VOAs appear in higher dimensional quantum field theories as well
(in several ways)

~> new insights for representation theory of VOAs.



4D /2D duality

[Beem-Lemos-Liendo-Peelaers-Rastelli-van Rees'15]

V:{4D N =2 SCFTs} — {VOAs} = {2D CFTs}

such that

Schur(T) = xv()(9) = Tryer(a~/2*+5)

for any 4D N =2 SCFT T.



Some properties of V

i) Cp = —12C4D
= V(T) is never unitary.
= V is not surjective.

ii) Vis expected to be injective, i.e., V(7)) is a complete
invariant of 4D SCFT T



Beem-Rastelli conjecture

A 4D SCFT T has several interesting mathematical invariants
(observables). One of them is the Higgs branch Higgs(7), which is
a hyperKahler cone.

Conjecture (Beem-Rastelli "18)

Higgs(T) = Xy(7)
for any 4D N =2 SCFT T.

Here Xy is the associated variety of a VOA V ([A.'12]).

e The associated variety Xy of a VOA V is an affine Poisson
variety that is introduced as an analogue of the associated
variety of primitive ideals of U(g).



Remark

i) Higgs(T) = Higgs(Tzp) = Coulomb(T3p) by the 3D mirror
symmetry, where 73p is the 3D theory obtained from 7T by
the S!-compactification.

i) Xy = Specm Ry, where Ry is Zhu's Cy-algebra of V. Ry is
not reduced in general, while Higgs(7") is reduced.

Xy = Spec Ry, the associated scheme of V.
Conjecture (Rastelli '22)
)N(V(T) is a complete invariant of a 4D A" =2 SCFT T.

e Higgs(T) = Xy(7) is not a complete invariant.



What are the properties of VOAs coming from 4D theory?

Definition (A.-Kawasetsu’18)
A VOA V is called quasi-lisse if Xy has finitely many symplectic

leaves.

o V(T) is expected to be quasi-lisse.

Theorem (A.-Kawasetsu’18)
Let V be a quasi-lisse VOA.

i) There exists only finitely many simple ordinary representations
of V;

ii) For an ordinary representation M, trM(qLO_Cx(V)/ 24) converges
to a holomorphic function on the upper half place. Moreover,
{trapr (g /%) | M ordinary } is a subspace of the space of
the solutions of a modular linear differential equation (MLDE).



Modularity of Schur index

e The space of the solutions of a MLDE is invariant under the
action of SLy(Z).

e Together with Beem-Rastelli conjecture, the above theorem
implies a certain modularity of the Schur index of a 4D N =2
SCFT.

e In particular, the notion of the effective central charge of

V(T) is well-define, which gives another central charge of the
4D theory.

e It seems that the Schur index of a 4D A/ =2 SCFT
(=xv(1)(q)) is a quasi-modular form.



Examples of quasi-lisse VOAs

X = C?, with coordinate (p, q).
X is symplectic with w = dp A dq, {p,q} = 1.
~  the Weyl algebra D(C?) = <%,x ] [%,x] =1).

quantization

i the B system D(C?), generated by
chiralization
(affinization)

B()=) Bnz™", A2)=D vz™",

neZ nez
with the OPE (operator product expantion)

v(z)B(w) ~
We have

= _1 - ( — [’Vmaﬁn] - 5m,n)-

Xpen(c2) = C? as Poisson varieties.



G = SL»(C) ~ C?, Hamiltonian,

whose moment map is given by

p: C*2  — g, g = Lie(G) = s1»(C)
2
pq q
(pg) = 3| % :
—p° —pq
The comoment is a Lie algebra homomorphism given by
p g — Clp,q]
e = ¢°/2,
h —  pq
f = _p2/23



s
chiralization

An action of affine Kac-Moody algebra g = g[t, t '] ® CK on
D (C?) given by

e(z) = HEZZ(et”)z_”_1 — % : B(2)?

h(z) = Y (he")z " =i 1(2)B(2) -
neZ

flz)=) (AMz """ —% y(2)?
neZ

K— —1/2.

The fields e(z), h(z), f(z) generate a vertex subalgebra of
D"(C?) isomorphic to the simple affine vertex algebra L_1,(sl2)
associated with sl at level —1/2. We have

XL,1/2(5[2) = M((Cz) = N (- g*7

where N is the nilpotent cone of g. 10



More generally, we have for g simple, k € C,

Vk(G) = U(g) QU(g[t,t-1]BCK) C

the universal affine vertex algebra associated with g at level k
generarted by x(z), x € g. The unique simple quotient L(g) of
Vk(g) is called the simple affine vertex algebra associated with g
at level k. We have

Xyk(g) = 8" D Xi,(g)» G-invariant, conic.

o k€ Q= Li(g) = V¥(g) = Xi,(e) = 9" (In fact,

Li(g) = VX(g) <= X, (5 = 0 [A--Jiang-Moreau'21)
e Xi,(s) = {pt} <= Li(g) is integrable <= k € Z>o.
e Li(g) is quasi-lisse <= Xp, () CN.
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(Kac-Wakimoto) admissible representations

Lx(g) is admissible
= k+h'=L2eQsowithp,geN, (p,q) =1,

RV if(r¥,q) =1 _ _
> where h" is the dual Coxeter #, h is the
h o if (r,q) #1,
Coxeter # of g, and r" is the lacing number of g.
Theorem (A.’15)
For an admissible Ly (g),

XLk(g) =0 3@,7 CN.

q»

More precisely,
{xeg|(adx)?=0}  if(r',q)=1,

X —
MO (x e g ma, ()29 =0} if (Y, q) £ L.
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e Using [Ginzburg-Kumar'93,
Bendel-Nakano-Parshall-Pillen'14], one can show that

Xii(g) = Spec H*(uc(g), C)

where u¢(g) is the small quantum group at

¢ = G2mi(k+hY)

if g is odd and not a bad prime for g ([A.-van
Ekeren-Moreau'22]).
e An admissible Lx(g) does appear from 4D theory if it is

boundary admissible (i.e., p is as small as possible.) [Xie-Yan-
Yau'l6, Song-Xie-Yan'17, Wang-Xie'18].
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F-theory and Deligne exceptional series

{isotrivial elliptic fibrations} = ” {4D A/ = 2 SCFTs}

By Kodaira, the singularities of isotrivial elliptic fibrations are
labelled by simply-laced members of the Deligne exceptional series

(DES)

A1CA2CG2CD4CF4CE6CE7CE8.

Theorem (A.-Moreau’18)
For g €DES, XL—hV/G—l(g) = @min-

e The above VOAs are the first examples of VOAs coming from
4D theory.
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Nlpotent Slodowy slices and W-algebras

For f € N/, one can find an sl,-triple {e, h,f} C g by
Jacobson-Morozov theorem. The affine space

Sr=f+g°Cyg, g°={xecglle,x]=0},

is transversal to G-orbits and is a Poisson variety called the
Slodowy slice at f. For a nilpotent orbit O,

5@,,“ :@QSf

is a hyperKahler cone ([Kronheimer]) and called a nilpotent
Slodowy slice.

e For a simply-laced g and a subregular nilpotent element
f:SUbrEg’ S(O)primf = N N stubreg
same type as g at fypreg ([Brieskorn-Slodowy]).

has the simple singularity as the
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ClS7]
~>  the finite W-algebra U(g, ) ([Premet’02])

quantization

~~  the W-algebra W(g, f) ([Feigin-Frenkel'92,

chiralization

Kac-Roan-Wakimoto'03]):

WH(g, f) = Hps ¢(V*(g)),

where HL‘)S’f is the BRST cohomology associated with quantized
Drinfeld-Sokolov reduction associated with (g, f).

Xwk(g,r) = Sr ([De-Sole-Kac'05]).

16



Theorem (A.’15)
;(Hgsyf(Lk(g)) = )N(Lk(g) X g+ Sf for any g, f and k.

In particuzlar, XHgsyf(Lk(Q)) = Xii(g) N St

e Conjecturally, Hgsf(Lk(g)) = Wy (g, ), the simple quotient
of Wk(g, f) ([Kac-Wakimoto]).

e For an admissible Lx(g), XH?,Sf(Lk(g)) = Sp,,f- The W-algebra

H,%S’f(Lk(g)) appear from 4D SCFT if L,(g) is boundary
admissible [Xie-Yan- Yau'l6, Song-Xie-Yan'17, Wang-Xie'18|.
° \/\7"(97 f) has an interesting representation theory

(cf. talks by Justine Fasquel, Naoki Genra, Anne Moreau,
Sigenori Nakatsuka, Michael Penn at this conference).
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Symmetric powers of C2

&, ~C"
~ symplectic action &, ~ T*C"
~ B"C% = C?"//&, = Spec(C[C?]®")®n
A well-known resolution of singularity of G"C? is the Hilbert-Chow
morphism
Hilb” C* — &"C?,
where Hilb" C? is the Hilbert scheme of n points in the place C?.

e [Kashiwara-Rouquier'08] constructed a sheaf of algebras on
Hilb” C? whose global section is the natural qunantizion of
G&"C? (the spherical rational Cherednik algebra).

e A naive chiralization of [Kashiwara-Rouquier'08] does not

seem to work.
18



On the other hand, it seems that the 4D/2D duality expects the
existence of a sheaf of N = 4 vertex superalgebras on Hilb” C? :

“Theorem” (Ongoing work with Toshiro Kuwabara and

Sven Moller])
There exists a natural sheaf V of N' = 4 vertex superalgebras on
Hilb" C? such that

Xr(Hitr c2,) = 6"C2.

e For n =2, [(Hilb"C?V) =
(the simple small A/ = 4 superconformal algebra at ¢ = —9)®
DN (C?) @ (symplecticfermions). We recover Drazen's
realization of the simple small NV = 4 superconformal algebra
at ¢ = —9 ([Adamovic'15]).
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Class S theory and Moore-Tachikawa varieties

The theory of class S(= six) ([Gaiotto'12])

> a punctured Riemann surface,
S¢(%) | _ .
G: complex semisimple group

e VOAs V(S¢(X)) are called chiral algebras of class S
[Beem-Peelaers-Rastellib-van Rees'15].

e Moore-Tachikawa'l2 gave a mathematical description of the
Higgs branch of Sg(X) in terms of 2D TQFT, up to a
conjecture.

e The Moore-Tachikawa conjecture was proved by
Ginzburg-Kazhdan and Braverman-Finkelberg-Nakajima'19.
~> a new family of symplectic varieties.
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For both chiral algebras of class & and Moore-Tachikawa vareities
it is “enough” to describe them for genus zero .

Theorem (A.’18)

For each semisimple group G, there exists a unique family of
vertex algebras {V, | r > 1} satisfying the desired properties of
genus zero chiral algebras of class S. Moreover, the associated
variety of VI, is isomorphic to the Moore-Tachikawa variety.

e V, admits a commuting action of r-copies of g at the critical
level.

e V, satisfies the associativity that is compatible with the gluing
of Riemann surfaces.

e The character of V(= Schur index of class S theory) is
closely related with multiple g-zeta values ([Milas'22]).
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G = Sl

MT; =C2QC2®C2%, C2~ SL,

V3 = DN((C?)®3), By system associated to the symplectic vector
space (C?)®3.

MT4 = @min in D4

(]
o, dq

V4 = L_5(Da), the simple affine vertex algebra associated with Dy
at level —2 (conjectured by [BL?PRVR]).
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Examples (contined)

The isomorphism XL_Q(D4) 2 Opin reproves a previously stated
result in [A.-Moreau'18].

The associativity gives:

o ((C*)®3 x (C?)¥3)/A(SL2) = Opmin,
(ADHM construction of Qp;n)
o Hoo/24i(3ly, 5o, D((C2)%%) 1 DH((C2)5%)) & 6101 o(Ds).
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Examples (continued)

G =SL3
MT3 = ©min in E6.

I
.

Vs = L_3(E).

In general, neither MT, nor V, has a simple description.
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e We have in general
\= Dg’j_,,v (the cdo on G at the critical level).
By [Arlhipov-Gatsigory'02],
D%’j_hv “mod ¢t =~ Dar -mod_pv,

where Grg = G((t))/G[[t]], the affine Grassmanian.
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Thank you!
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