VOAs arising from four dimensional superconformal filed theories

Representation Theory XVII Dubrovnik, Croatia

Tomoyuki Arakawa

October 7, 2022

RIMS, Kyoto University

Vertex algebras/Vertex operator algebra (VOA)

 \longleftrightarrow 2 dimensional chiral conformal field theories

Recent discovery (goes back to [Nakajima '94]):

VOAs appear in higher dimensional quantum field theories as well (in several ways)

 \rightsquigarrow new insights for representation theory of VOAs.

[Beem-Lemos-Liendo-Peelaers-Rastelli-van Rees'15]

$$\mathbb{V}: \{ \mathsf{4D}\ \mathcal{N} = 2\ \mathsf{SCFTs} \} \longrightarrow \{ \mathsf{VOAs} \} = \{ \mathsf{2D}\ \mathsf{CFTs} \}$$

such that

$$\operatorname{Schur}(\mathcal{T}) = \chi_{\mathbb{V}(\mathcal{T})}(q) = \operatorname{Tr}_{\mathbb{V}(\mathcal{T})}(q^{-c/24+L_0})$$

for any 4D $\mathcal{N}=2$ SCFT $\mathcal{T}.$

- i) $c_{2D} = -12c_{4D}$ $\Rightarrow \mathbb{V}(T)$ is *never* unitary. $\Rightarrow \mathbb{V}$ is not surjective.
- ii) V is expected to be injective, i.e., V(T) is a complete invariant of 4D SCFT T!

A 4D SCFT \mathcal{T} has several interesting mathematical invariants (observables). One of them is the *Higgs branch* Higgs(\mathcal{T}), which is a hyperKähler cone.

Conjecture (Beem-Rastelli '18)

 $\mathsf{Higgs}(\mathcal{T}) \cong X_{\mathbb{V}(\mathcal{T})}$

for any 4D $\mathcal{N} = 2$ SCFT \mathcal{T} .

Here X_V is the associated variety of a VOA V ([A.'12]).

 The associated variety X_V of a VOA V is an affine Poisson variety that is introduced as an analogue of the associated variety of primitive ideals of U(g).

Remark

- i) $\text{Higgs}(\mathcal{T}) = \text{Higgs}(\mathcal{T}_{3D}) \cong \text{Coulomb}(\check{T}_{3D})$ by the 3D mirror symmetry, where \mathcal{T}_{3D} is the 3D theory obtained from \mathcal{T} by the S^1 -compactification.
- ii) $X_V = \text{Specm } R_V$, where R_V is Zhu's C_2 -algebra of V. R_V is *not* reduced in general, while Higgs(\mathcal{T}) is reduced.

 $\tilde{X}_V = \operatorname{Spec} R_V$, the associated scheme of V.

Conjecture (Rastelli '22)

 $\tilde{X}_{\mathbb{V}(\mathcal{T})}$ is a complete invariant of a 4D $\mathcal{N} = 2$ SCFT \mathcal{T} .

• Higgs $(\mathcal{T}) = X_{\mathbb{V}(\mathcal{T})}$ is *not* a complete invariant.

What are the properties of VOAs coming from 4D theory?

Definition (A.-Kawasetsu'18)

A VOA V is called *quasi-lisse* if X_V has finitely many symplectic leaves.

• $\mathbb{V}(\mathcal{T})$ is expected to be quasi-lisse.

Theorem (A.-Kawasetsu'18)

Let V be a quasi-lisse VOA.

- i) There exists only finitely many simple ordinary representations of V;
- ii) For an ordinary representation M, $tr_M(q^{L_0-c_{\chi(V)}/24})$ converges to a holomorphic function on the upper half place. Moreover, $\{tr_M(q^{L_0-c_{\chi(V)}/24}) \mid M \text{ ordinary }\}$ is a subspace of the space of the solutions of a modular linear differential equation (MLDE).

- The space of the solutions of a MLDE is invariant under the action of SL₂(ℤ).
- Together with Beem-Rastelli conjecture, the above theorem implies a certain modularity of the Schur index of a 4D $\mathcal{N}=2$ SCFT.
- In particular, the notion of the *effective central charge* of V(T) is well-define, which gives another central charge of the 4D theory.
- It seems that the Schur index of a 4D N = 2 SCFT
 (=χ_{V(T)}(q)) is a quasi-modular form.

Examples of quasi-lisse VOAs

 $X = \mathbb{C}^2$, with coordinate (p, q).

X is symplectic with $\omega = dp \wedge dq$, $\{p,q\} = 1$.

 $\underset{quantization}{\rightsquigarrow} \text{ the Weyl algebra } \mathcal{D}(\mathbb{C}^2) = \langle \frac{d}{dx}, x \mid [\frac{d}{dx}, x] = 1 \rangle.$

 $\underset{(affinization)}{\leftrightarrow}$ the $\beta\gamma$ system $\mathcal{D}^{ch}(\mathbb{C}^2)$, generated by

$$\beta(z) = \sum_{n \in \mathbb{Z}} \beta_n z^{-n}, \quad \gamma(z) = \sum_{n \in \mathbb{Z}} \gamma_n z^{-n-1},$$

with the OPE (operator product expantion)

$$\gamma(z)\beta(w) \sim \frac{1}{z-w} (\iff [\gamma_m, \beta_n] = \delta_{m,n}).$$

We have

$$X_{\mathcal{D}^{ch}(\mathbb{C}^2)} \cong \mathbb{C}^2$$
 as Poisson varieties.

 $G = SL_2(\mathbb{C}) \curvearrowright \mathbb{C}^2$, Hamiltonian,

whose moment map is given by

$$\begin{array}{cccc} \mu : & \mathbb{C}^2 & \longrightarrow & \mathfrak{g}^*, & \mathfrak{g} = \operatorname{Lie}(G) = \mathfrak{sl}_2(\mathbb{C}) \\ & (p,q) & \mapsto & \frac{1}{2} \begin{pmatrix} pq & q^2 \\ -p^2 & -pq \end{pmatrix}. \end{array}$$

The comoment is a Lie algebra homomorphism given by

$$\begin{array}{rccc} \mu^*: & \mathfrak{g} & \rightarrow & \mathbb{C}[p,q] \\ & e & \mapsto & q^2/2, \\ & h & \mapsto & pq \\ & f & \mapsto & -p^2/2, \end{array}$$

where

$$e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

 $\stackrel{\sim}{\sim}$ chiralization

An action of affine Kac-Moody algebra $\widehat{\mathfrak{g}} = \mathfrak{g}[t, t^{-1}] \oplus \mathbb{C}K$ on $\mathcal{D}^{ch}(\mathbb{C}^2)$ given by

$$e(z) = \sum_{n \in \mathbb{Z}} (et^n) z^{-n-1} \mapsto \frac{1}{2} : \beta(z)^2 :,$$

$$h(z) = \sum_{n \in \mathbb{Z}} (ht^n) z^{-n-1} \mapsto \gamma(z) \beta(z) :,$$

$$f(z) = \sum_{n \in \mathbb{Z}} (ft^n) z^{-n-1} \mapsto -\frac{1}{2} : \gamma(z)^2 :,$$

$$K \mapsto -1/2.$$

The fields e(z), h(z), f(z) generate a vertex subalgebra of $\mathcal{D}^{ch}(\mathbb{C}^2)$ isomorphic to the simple affine vertex algebra $L_{-1/2}(\mathfrak{sl}_2)$ associated with \mathfrak{sl}_2 at level -1/2. We have

$$X_{L_{-1/2}(\mathfrak{sl}_2)} \cong \mu(\mathbb{C}^2) = \mathcal{N} \subset \mathfrak{g}^*,$$

where ${\mathcal N}$ is the nilpotent cone of ${\mathfrak g}.$

More generally, we have for \mathfrak{g} simple, $k \in \mathbb{C}$,

$$V^k(\mathfrak{g}) = U(\widehat{\mathfrak{g}}) \otimes_{U(\mathfrak{g}[t,t^{-1}] \oplus \mathbb{C}K)} \mathbb{C}$$

the universal affine vertex algebra associated with g at level k generarted by $x(z), x \in \mathfrak{g}$. The unique simple quotient $L_k(\mathfrak{g})$ of $V^k(\mathfrak{g})$ is called the simple affine vertex algebra associated with \mathfrak{g} at level k. We have

$$X_{V^k(\mathfrak{g})} = \mathfrak{g}^* \supset X_{L_k(\mathfrak{g})}, \quad G$$
-invariant, conic.

•
$$k \notin \mathbb{Q} \Rightarrow L_k(\mathfrak{g}) = V^k(\mathfrak{g}) \Rightarrow X_{L_k(\mathfrak{g})} = \mathfrak{g}^*$$
. (In fact,
 $L_k(\mathfrak{g}) = V^k(\mathfrak{g}) \iff X_{L_k(\mathfrak{g})} = \mathfrak{g}^*$ [A.-Jiang-Moreau'21)

•
$$X_{L_k(\mathfrak{g})} = \{pt\} \iff L_k(\mathfrak{g}) \text{ is integrable } \iff k \in \mathbb{Z}_{\geq 0}.$$

• $L_k(\mathfrak{g})$ is quasi-lisse $\iff X_{L_k(\mathfrak{g})} \subset \mathcal{N}.$

(Kac-Wakimoto) admissible representations

$L_k(\mathfrak{g})$ is admissible

$$\iff k+h^{ee}=rac{p}{q}\in\mathbb{Q}_{>0} ext{ with } p,q\in\mathbb{N}$$
, $(p,q)=1$,

 $p \geq egin{cases} h^ee & ext{if } (r^ee, q) = 1 \ h & ext{if } (r^ee, q)
eq 1, \end{cases}$ where h^ee is the dual Coxeter #, h is the

Coxeter # of \mathfrak{g} , and r^{\vee} is the lacing number of \mathfrak{g} .

Theorem (A.'15)

For an admissible $L_k(\mathfrak{g})$,

$$X_{L_k(g)} = \overline{\mathbb{O}}_q, \quad \exists \mathbb{O}_q \subset \mathcal{N}.$$

More precisely,

$$X_{L_k(\mathfrak{g})} = \begin{cases} \{x \in \mathfrak{g} \mid (\operatorname{ad} x)^{2q} = 0\} & \text{ if } (r^{\vee}, q) = 1, \\ \{x \in \mathfrak{g} \mid \pi_{\theta_s}(x)^{2q/r^{\vee}} = 0\} & \text{ if } (r^{\vee}, q) \neq 1. \end{cases}$$

• Using [Ginzburg-Kumar'93,

Bendel-Nakano-Parshall-Pillen'14], one can show that

$$X_{L_k(\mathfrak{g})} \cong \operatorname{Spec} H^{ullet}(u_{\zeta}(\mathfrak{g}), \mathbb{C})$$

where $u_{\zeta}(\mathfrak{g})$ is the small quantum group at

$$\zeta = e^{2\pi i (k+h^{\vee})}$$

if q is odd and not a bad prime for \mathfrak{g} ([A.-van Ekeren-Moreau'22]).

 An admissible L_k(g) does appear from 4D theory if it is boundary admissible (i.e., p is as small as possible.) [Xie-Yan-Yau'16, Song-Xie-Yan'17, Wang-Xie'18]. {isotrivial elliptic fibrations} $\stackrel{\text{F-theory}}{\longrightarrow}$ {4D $\mathcal{N}=2 \text{ SCFTs}}$

By Kodaira, the singularities of isotrivial elliptic fibrations are labelled by simply-laced members of the *Deligne exceptional series* (DES)

$$A_1 \subset A_2 \subset G_2 \subset D_4 \subset F_4 \subset E_6 \subset E_7 \subset E_8.$$

Theorem (A.-Moreau'18) For $\mathfrak{g} \in DES$, $X_{L_{-h^{\vee}/6-1}}(\mathfrak{g}) \cong \overline{\mathbb{O}}_{min}$.

• The above VOAs are the first examples of VOAs coming from 4D theory.

NIpotent Slodowy slices and W-algebras

For $f \in \mathcal{N}$, one can find an \mathfrak{sl}_2 -triple $\{e, h, f\} \subset \mathfrak{g}$ by Jacobson-Morozov theorem. The affine space

$$\mathcal{S}_f = f + \mathfrak{g}^e \subset \mathfrak{g}, \quad \mathfrak{g}^e = \{x \in \mathfrak{g} \mid [e, x] = 0\},\$$

is transversal to *G*-orbits and is a Poisson variety called the *Slodowy slice* at *f*. For a nilpotent orbit \mathbb{O} ,

$$S_{\mathbb{O},f} = \overline{\mathbb{O}} \cap S_f$$

is a hyperKähler cone ([Kronheimer]) and called a *nilpotent Slodowy slice*.

• For a simply-laced g and a subregular nilpotent element f_{subreg} , $S_{\mathbb{O}_{prin},f} = \mathcal{N} \cap S_{f_{subreg}}$ has the simple singularity as the same type as g at f_{subreg} ([Brieskorn-Slodowy]).

 $\mathbb{C}[\mathcal{S}_f]$

 $\underset{quantization}{\leadsto}$ the finite W-algebra $U(\mathfrak{g},f)$ ([Premet'02])

 $\xrightarrow{}$ the W-algebra $\mathcal{W}^k(\mathfrak{g}, f)$ ([Feigin-Frenkel'92, *chiralization* Kac-Roan-Wakimoto'03]):

$$\mathcal{W}^{k}(\mathfrak{g},f)=H^{0}_{DS,f}(V^{k}(\mathfrak{g})),$$

where $H^{\bullet}_{DS,f}$ is the BRST cohomology associated with quantized Drinfeld-Sokolov reduction associated with (\mathfrak{g}, f) .

$$X_{\mathcal{W}^k(\mathfrak{g},f)} \cong \mathcal{S}_f$$
 ([De-Sole-Kac'05]).

Theorem (A.'15)

$$\widetilde{X}_{H^0_{DS,f}(L_k(\mathfrak{g}))} \cong \widetilde{X}_{L_k(\mathfrak{g})} \times_{\mathfrak{g}^*} S_f$$
 for any \mathfrak{g} , f and k
In particuzlar, $X_{H^0_{DS,f}(L_k(\mathfrak{g}))} \cong X_{L_k(\mathfrak{g})} \cap S_f$.

- Conjecturally, H⁰_{DS,f}(L_k(g)) ≅ W_k(g, f), the simple quotient of W^k(g, f) ([Kac-Wakimoto]).
- For an admissible L_k(𝔅), X_{H⁰_{DS,f}(L_k(𝔅))} ≃ S_{O_q,f}. The W-algebra H⁰_{DS,f}(L_k(𝔅)) appear from 4D SCFT if L_k(𝔅) is boundary admissible [Xie-Yan- Yau'16, Song-Xie-Yan'17, Wang-Xie'18].
- W^k(g, f) has an interesting representation theory (cf. talks by Justine Fasquel, Naoki Genra, Anne Moreau, Sigenori Nakatsuka, Michael Penn at this conference).

Symmetric powers of \mathbb{C}^2

 $\mathfrak{S}_n \curvearrowright \mathbb{C}^n$

 \rightsquigarrow symplectic action $\mathfrak{S}_n \curvearrowright T^* \mathbb{C}^n$

$$\rightsquigarrow \mathfrak{S}^{n}\mathbb{C}^{2} = \mathbb{C}^{2n} / / \mathfrak{S}_{n} = \mathsf{Spec}(\mathbb{C}[\mathbb{C}^{2}]^{\otimes n})^{\mathfrak{S}_{n}}$$

A well-known resolution of singularity of $\mathfrak{S}^n \mathbb{C}^2$ is the Hilbert-Chow morphism

$$\mathsf{Hilb}^n \, \mathbb{C}^2 \to \mathfrak{S}^n \mathbb{C}^2,$$

where Hilbⁿ \mathbb{C}^2 is the Hilbert scheme of *n* points in the place \mathbb{C}^2 .

- [Kashiwara-Rouquier'08] constructed a sheaf of algebras on Hilbⁿ C² whose global section is the natural quantizion of 𝔅ⁿC² (the spherical rational Cherednik algebra).
- A naive chiralization of [Kashiwara-Rouquier'08] does not seem to work.

On the other hand, it seems that the 4D/2D duality expects the existence of a sheaf of $\mathcal{N} = 4$ vertex *super*algebras on Hilbⁿ \mathbb{C}^2 :

"Theorem" (Ongoing work with Toshiro Kuwabara and Sven Möller])

There exists a natural sheaf ${\mathcal V}$ of ${\mathcal N}=4$ vertex ${\it super}$ algebras on ${\rm Hilb}^n\,{\mathbb C}^2$ such that

 $X_{\Gamma(\operatorname{Hilb}^n \mathbb{C}^2, \mathcal{V})} \cong \mathfrak{S}^n \mathbb{C}^2.$

For n = 2, Γ(Hilbⁿ C², V) ≅
 (the simple small N = 4 superconformal algebra at c = -9)⊗

 D^{ch}(C²) ⊗ (symplecticfermions). We recover Drazen's
 realization of the simple small N = 4 superconformal algebra
 at c = -9 ([Adamovic'15]).

Class ${\mathcal S}$ theory and Moore-Tachikawa varieties

The theory of class S(=six) ([Gaiotto'12])

 $\left\{ S_G(\Sigma) \mid \begin{array}{c} \Sigma: \text{ a punctured Riemann surface,} \\ G: \text{ complex semisimple group} \end{array} \right\}$

- VOAs V(S_G(Σ)) are called *chiral algebras of class* S
 [Beem-Peelaers-Rastellib-van Rees'15].
- Moore-Tachikawa'12 gave a mathematical description of the Higgs branch of S_G(Σ) in terms of 2D TQFT, up to a conjecture.
- The Moore-Tachikawa conjecture was proved by Ginzburg-Kazhdan and Braverman-Finkelberg-Nakajima'19.
 ~> a new family of symplectic varieties.

For both chiral algebras of class S and Moore-Tachikawa vareities it is "enough" to describe them for genus zero Σ .

Theorem (A.'18)

For each semisimple group G, there exists a unique family of vertex algebras $\{\mathbf{V}_r \mid r \geq 1\}$ satisfying the desired properties of genus zero chiral algebras of class S. Moreover, the associated variety of \mathbf{V}_r is isomorphic to the Moore-Tachikawa variety.

- **V**_r admits a commuting action of *r*-copies of $\widehat{\mathfrak{g}}$ at the critical level.
- **V**_r satisfies the associativity that is compatible with the gluing of Riemann surfaces.
- The character of V_r(= Schur index of class S theory) is closely related with multiple q-zeta values ([Milas'22]).

Exmaples

 $G = SL_2$

 $\mathsf{MT}_3 \, = \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2, \quad \mathbb{C}^2 \curvearrowleft \mathit{SL}_2$

 $\mathbf{V}_3 = \mathcal{D}^{ch}((\mathbb{C}^2)^{\otimes 3}), \ \beta \gamma$ system associated to the symplectic vector space $(\mathbb{C}^2)^{\otimes 3}$.

 $MT_4 = \overline{\mathbb{O}_{min}}$ in D_4

 $V_4 = L_{-2}(D_4)$, the simple affine vertex algebra associated with D_4 at level -2 (conjectured by [BL²PRvR]).

The isomorphism $X_{L_{-2}(D_4)} \cong \overline{\mathbb{O}_{min}}$ reproves a previously stated result in [A.-Moreau'18].

The associativity gives:

- $((\mathbb{C}^2)^{\otimes 3} \times (\mathbb{C}^2)^{\otimes 3}) / \Delta(SL_2) \cong \overline{\mathbb{O}_{min}},$ (ADHM construction of $\overline{\mathbb{O}_{min}}$)
- $H^{\infty/2+i}(\widehat{\mathfrak{sl}}_2,\mathfrak{sl}_2,\mathcal{D}^{ch}((\mathbb{C}^2)^{\otimes 3})\otimes \mathcal{D}^{ch}((\mathbb{C}^2)^{\otimes 3}))\cong \delta_{i,0}L_{-2}(D_4).$

Examples (continued)

$$G = SL_3$$

 $MT_3 = \overline{\mathbb{O}_{min}}$ in E_6 .

 $V_3 = L_{-3}(E_6).$

In general, neither MT_r nor V_r has a simple description.

• We have in general

 $\mathbb{V}_2\cong\mathcal{D}^{ch}_{G,-h^ee}$ (the cdo on G at the critical level).

By [Arlhipov-Gatsigory'02],

$$\mathcal{D}_{G,-h^{\vee}}^{ch}\operatorname{-mod}^{G[[t]} \cong \mathcal{D}_{\operatorname{Gr}_{G}}\operatorname{-mod}_{-h^{\vee}},$$

where $Gr_G = G((t))/G[[t]]$, the affine Grassmanian.

Thank you!