# VOAs arising from four dimensional superconformal filed theories 

Representation Theory XVII
Dubrovnik, Croatia

Tomoyuki Arakawa
October 7, 2022
RIMS, Kyoto University

Vertex algebras/Vertex operator algebra (VOA)
$\longleftrightarrow 2$ dimensional chiral conformal field theories

Recent discovery (goes back to [Nakajima '94]):
VOAs appear in higher dimensional quantum field theories as well (in several ways)
$\rightsquigarrow$ new insights for representation theory of VOAs.

## 4D/2D duality

[Beem-Lemos-Liendo-Peelaers-Rastelli-van Rees'15]

$$
\mathbb{V}:\{4 \mathrm{D} \mathcal{N}=2 \mathrm{SCFT}\} \longrightarrow\{\mathrm{VOAs}\}=\{2 \mathrm{D} \text { CFTs }\}
$$

such that

$$
\operatorname{Schur}(\mathcal{T})=\chi_{\mathbb{V}(\mathcal{T})}(q)=\operatorname{Tr}_{\mathbb{V}(\mathcal{T})}\left(q^{-c / 24+L_{0}}\right)
$$

for any $4 \mathrm{D} \mathcal{N}=2 \mathrm{SCFT} \mathcal{T}$.

## Some properties of $\mathbb{V}$

i) $c_{2 D}=-12 c_{4 D}$
$\Rightarrow \mathbb{V}(T)$ is never unitary.
$\Rightarrow \mathbb{V}$ is not surjective.
ii) $\mathbb{V}$ is expected to be injective, i.e., $\mathbb{V}(\mathcal{T})$ is a complete invariant of 4D SCFT $\mathcal{T}$ !

## Beem-Rastelli conjecture

A 4D SCFT $\mathcal{T}$ has several interesting mathematical invariants (observables). One of them is the $\operatorname{Higgs}$ branch $\operatorname{Higgs}(\mathcal{T})$, which is a hyperKähler cone.

## Conjecture (Beem-Rastelli '18)

$$
\operatorname{Higgs}(\mathcal{T}) \cong X_{\mathbb{V}(\mathcal{T})}
$$

for any 4D $\mathcal{N}=2$ SCFT $\mathcal{T}$.

Here $X_{V}$ is the associated variety of a VOA $V$ ([A.'12]).

- The associated variety $X_{V}$ of a VOA $V$ is an affine Poisson variety that is introduced as an analogue of the associated variety of primitive ideals of $U(\mathfrak{g})$.


## Remark

i) $\operatorname{Higgs}(\mathcal{T})=\operatorname{Higgs}\left(\mathcal{T}_{3 D}\right) \cong \operatorname{Coulomb}\left(\check{T}_{3 D}\right)$ by the 3D mirror symmetry, where $\mathcal{T}_{3 D}$ is the 3D theory obtained from $\mathcal{T}$ by the $S^{1}$-compactification.
ii) $X_{V}=\operatorname{Specm} R_{V}$, where $R_{V}$ is Zhu's $C_{2}$-algebra of $V . R_{V}$ is not reduced in general, while $\operatorname{Higgs}(\mathcal{T})$ is reduced.
$\tilde{X}_{V}=\operatorname{Spec} R_{V}$, the associated scheme of $V$.

## Conjecture (Rastelli '22)

$\tilde{X}_{\mathbb{V}(\mathcal{T})}$ is a complete invariant of a $4 \mathrm{D} \mathcal{N}=2$ SCFT $\mathcal{T}$.

- $\operatorname{Higgs}(\mathcal{T})=X_{\mathbb{V}(\mathcal{T})}$ is not a complete invariant.


## What are the properties of VOAs coming from 4D theory?

## Definition (A.-Kawasetsu'18)

A VOA $V$ is called quasi-lisse if $X_{V}$ has finitely many symplectic leaves.

- $\mathbb{V}(\mathcal{T})$ is expected to be quasi-lisse.


## Theorem (A.-Kawasetsu'18)

Let $V$ be a quasi-lisse VOA.
i) There exists only finitely many simple ordinary representations of $V$;
ii) For an ordinary representation $M, \operatorname{tr}_{M}\left(q^{L_{0}-c_{\chi(v)} / 24}\right)$ converges to a holomorphic function on the upper half place. Moreover, $\left\{\operatorname{tr}_{M}\left(q^{L_{0}-c_{\chi(v)} / 24}\right) \mid M\right.$ ordinary $\}$ is a subspace of the space of the solutions of a modular linear differential equation (MLDE).

## Modularity of Schur index

- The space of the solutions of a MLDE is invariant under the action of $S L_{2}(\mathbb{Z})$.
- Together with Beem-Rastelli conjecture, the above theorem implies a certain modularity of the Schur index of a 4D $\mathcal{N}=2$ SCFT.
- In particular, the notion of the effective central charge of $\mathbb{V}(\mathcal{T})$ is well-define, which gives another central charge of the 4D theory.
- It seems that the Schur index of a $4 \mathrm{D} \mathcal{N}=2$ SCFT $\left(=\chi_{\mathbb{V}(\mathcal{T})}(q)\right)$ is a quasi-modular form.


## Examples of quasi-lisse VOAs

$X=\mathbb{C}^{2}$, with coordinate $(p, q)$.
$X$ is symplectic with $\omega=d p \wedge d q,\{p, q\}=1$.
$\underset{\text { quantization }}{\longrightarrow}$ the Weyl algebra $\mathcal{D}\left(\mathbb{C}^{2}\right)=\left\langle\frac{d}{d x}, x \left\lvert\,\left[\frac{d}{d x}, x\right]=1\right.\right\rangle$.
$\underset{\text { chiralization }}{\rightsquigarrow}$ the $\beta \gamma$ system $\mathcal{D}^{c h}\left(\mathbb{C}^{2}\right)$, generated by
(affinization)

$$
\beta(z)=\sum_{n \in \mathbb{Z}} \beta_{n} z^{-n}, \quad \gamma(z)=\sum_{n \in \mathbb{Z}} \gamma_{n} z^{-n-1}
$$

with the OPE (operator product expantion)

$$
\gamma(z) \beta(w) \sim \frac{1}{z-w}\left(\Longleftrightarrow\left[\gamma_{m}, \beta_{n}\right]=\delta_{m, n}\right)
$$

We have

$$
X_{\mathcal{D}^{c h}\left(\mathbb{C}^{2}\right)} \cong \mathbb{C}^{2} \text { as Poisson varieties. }
$$

$G=S L_{2}(\mathbb{C}) \curvearrowright \mathbb{C}^{2}$, Hamiltonian,
whose moment map is given by

$$
\begin{array}{rllc}
\mu: \mathbb{C}^{2} & \longrightarrow & \mathfrak{g}^{*}, & \mathfrak{g}=\operatorname{Lie}(G)=\mathfrak{s l}_{2}(\mathbb{C}) \\
(p, q) & \mapsto & \frac{1}{2}\left(\begin{array}{cc}
p q & q^{2} \\
-p^{2} & -p q
\end{array}\right) .
\end{array}
$$

The comment is a Lie algebra homomorphism given by

$$
\begin{aligned}
& \mu^{*}: \mathfrak{g} \rightarrow \mathbb{C}[p, q] \\
& e \mapsto q^{2} / 2 \text {, } \\
& h \mapsto \quad p q \\
& f \mapsto-p^{2} / 2 \text {, }
\end{aligned}
$$

where

$$
e=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad h=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad f=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) .
$$

chiralization
An action of affine Kac-Moody algebra $\widehat{\mathfrak{g}}=\mathfrak{g}\left[t, t^{-1}\right] \oplus \mathbb{C} K$ on $\mathcal{D}^{c h}\left(\mathbb{C}^{2}\right)$ given by

$$
\begin{aligned}
& e(z)=\sum_{n \in \mathbb{Z}}\left(e t^{n}\right) z^{-n-1} \mapsto \frac{1}{2}: \beta(z)^{2}: \\
& h(z)=\sum_{n \in \mathbb{Z}}\left(h t^{n}\right) z^{-n-1} \mapsto: \gamma(z) \beta(z): \\
& f(z)=\sum_{n \in \mathbb{Z}}\left(f t^{n}\right) z^{-n-1} \mapsto-\frac{1}{2}: \gamma(z)^{2}:
\end{aligned}
$$

$$
K \mapsto-1 / 2
$$

The fields $e(z), h(z), f(z)$ generate a vertex subalgebra of $\mathcal{D}^{c h}\left(\mathbb{C}^{2}\right)$ isomorphic to the simple affine vertex algebra $L_{-1 / 2}\left(\mathfrak{F l}_{2}\right)$ associated with $\mathfrak{s l}_{2}$ at level $-1 / 2$. We have

$$
X_{L_{-1 / 2}\left(\mathfrak{s l}_{2}\right)} \cong \mu\left(\mathbb{C}^{2}\right)=\mathcal{N} \subset \mathfrak{g}^{*}
$$

where $\mathcal{N}$ is the nilpotent cone of $\mathfrak{g}$.

More generally, we have for $\mathfrak{g}$ simple, $k \in \mathbb{C}$,

$$
V^{k}(\mathfrak{g})=U(\widehat{\mathfrak{g}}) \otimes_{U\left(\mathfrak{g}\left[t, t^{-1}\right] \oplus \mathbb{C} K\right)} \mathbb{C}
$$

the universal affine vertex algebra associated with $g$ at level $k$ generarted by $x(z), x \in \mathfrak{g}$. The unique simple quotient $L_{k}(\mathfrak{g})$ of $V^{k}(\mathfrak{g})$ is called the simple affine vertex algebra associated with $\mathfrak{g}$ at level $k$. We have

$$
X_{V^{k}(\mathfrak{g})}=\mathfrak{g}^{*} \supset X_{L_{k}(\mathfrak{g})}, \quad G \text {-invariant, conic. }
$$

- $k \notin \mathbb{Q} \Rightarrow L_{k}(\mathfrak{g})=V^{k}(\mathfrak{g}) \Rightarrow X_{L_{k}(\mathfrak{g})}=\mathfrak{g}^{*}$. (In fact,

$$
L_{k}(\mathfrak{g})=V^{k}(\mathfrak{g}) \Longleftrightarrow X_{L_{k}(\mathfrak{g})}=\mathfrak{g}^{*}[\text { A.-Jiang-Moreau'21) }
$$

- $X_{L_{k}(\mathfrak{g})}=\{p t\} \Longleftrightarrow L_{k}(\mathfrak{g})$ is integrable $\Longleftrightarrow k \in \mathbb{Z}_{\geq 0}$.
- $L_{k}(\mathfrak{g})$ is quasi-lisse $\Longleftrightarrow X_{L_{k}(\mathfrak{g})} \subset \mathcal{N}$.


## (Kac-Wakimoto) admissible representations

$L_{k}(\mathfrak{g})$ is admissible
$\Longleftrightarrow k+h^{\vee}=\frac{p}{q} \in \mathbb{Q}_{>0}$ with $p, q \in \mathbb{N},(p, q)=1$,
$p \geq\left\{\begin{array}{ll}h^{\vee} & \text { if }\left(r^{\vee}, q\right)=1 \\ h & \text { if }\left(r^{\vee}, q\right) \neq 1,\end{array}\right.$ where $h^{\vee}$ is the dual Coxeter $\#, h$ is the
Coxeter \# of $\mathfrak{g}$, and $r^{\vee}$ is the lacing number of $\mathfrak{g}$.

## Theorem (A.'15)

For an admissible $L_{k}(\mathfrak{g})$,

$$
X_{L_{k}(g)}=\overline{\mathbb{O}}_{q}, \quad \exists \mathbb{O}_{q} \subset \mathcal{N} .
$$

More precisely,

$$
X_{L_{k}(\mathfrak{g})}= \begin{cases}\left\{x \in \mathfrak{g} \mid(\operatorname{ad} x)^{2 q}=0\right\} & \text { if }\left(r^{\vee}, q\right)=1 \\ \left\{x \in \mathfrak{g} \mid \pi_{\theta_{s}}(x)^{2 q / r^{\vee}}=0\right\} & \text { if }\left(r^{\vee}, q\right) \neq 1\end{cases}
$$

- Using [Ginzburg-Kumar'93,

Bendel-Nakano-Parshall-Pillen'14], one can show that

$$
X_{L_{k}(\mathfrak{g})} \cong \operatorname{Spec} H^{\bullet}\left(u_{\zeta}(\mathfrak{g}), \mathbb{C}\right)
$$

where $u_{\zeta}(\mathfrak{g})$ is the small quantum group at

$$
\zeta=e^{2 \pi i\left(k+h^{\vee}\right)}
$$

if $q$ is odd and not a bad prime for $\mathfrak{g}$ ([A.-van Ekeren-Moreau'22]).

- An admissible $L_{k}(\mathfrak{g})$ does appear from 4D theory if it is boundary admissible (i.e., $p$ is as small as possible.) [Xie-YanYau'16, Song-Xie-Yan'17, Wang-Xie'18].


## F-theory and Deligne exceptional series

$$
\{\text { isotrivial elliptic fibrations }\} \xrightarrow{\text { F-theory }}\{4 \mathrm{D} \mathcal{N}=2 \text { SCFTs }\}
$$

By Kodaira, the singularities of isotrivial elliptic fibrations are labelled by simply-laced members of the Deligne exceptional series (DES)

$$
A_{1} \subset A_{2} \subset G_{2} \subset D_{4} \subset F_{4} \subset E_{6} \subset E_{7} \subset E_{8}
$$

## Theorem (A.-Moreau'18)

For $\mathfrak{g} \in D E S, X_{L_{-h \vee / 6-1}(\mathfrak{g})} \cong \overline{\mathbb{O}}_{\text {min }}$.

- The above VOAs are the first examples of VOAs coming from 4D theory.


## Nlpotent Slodowy slices and W-algebras

For $f \in \mathcal{N}$, one can find an $\mathfrak{s l}_{2}$-triple $\{e, h, f\} \subset \mathfrak{g}$ by Jacobson-Morozov theorem. The affine space

$$
\mathcal{S}_{f}=f+\mathfrak{g}^{e} \subset \mathfrak{g}, \quad \mathfrak{g}^{e}=\{x \in \mathfrak{g} \mid[e, x]=0\}
$$

is transversal to G-orbits and is a Poisson variety called the Slodowy slice at $f$. For a nilpotent orbit $\mathbb{O}$,

$$
S_{\mathbb{O}, f}=\overline{\mathbb{O}} \cap \mathcal{S}_{f}
$$

is a hyperKähler cone ([Kronheimer]) and called a nilpotent Slodowy slice.

- For a simply-laced $\mathfrak{g}$ and a subregular nilpotent element $f_{\text {subreg }}, S_{\mathbb{D}_{\text {prin }}, f}=\mathcal{N} \cap S_{f_{\text {subreg }}}$ has the simple singularity as the same type as $\mathfrak{g}$ at $f_{\text {subreg }}$ ([Brieskorn-Slodowy]).


## $\mathbb{C}\left[\mathcal{S}_{f}\right]$

$\underset{\text { quantization }}{\longrightarrow}$ the finite $W$-algebra $U(\mathfrak{g}, f)$ ([Premet'02])
quantization
$\underset{\text { chiralization }}{\longrightarrow}$ the $W$-algebra $\mathcal{W}^{k}(\mathfrak{g}, f)$ ([Feigin-Frenkel'92,
Kac-Roan-Wakimoto'03]):

$$
\mathcal{W}^{k}(\mathfrak{g}, f)=H_{D S, f}^{0}\left(V^{k}(\mathfrak{g})\right)
$$

where $H_{D S, f}^{\circ}$ is the BRST cohomology associated with quantized Drinfeld-Sokolov reduction associated with ( $\mathfrak{g}, f$ ).

$$
X_{\mathcal{W}^{k}(\mathfrak{g}, f)} \cong \mathcal{S}_{f} \quad([\text { De-Sole-Kac'05] })
$$

## Theorem (A.'15)

$\tilde{X}_{H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)} \cong \tilde{X}_{L_{k}(\mathfrak{g})} \times{ }_{\mathfrak{g}^{*}} \mathcal{S}_{f}$ for any $\mathfrak{g}, f$ and $k$.
In particuzlar, $X_{H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)} \cong X_{L_{k}(\mathfrak{g})} \cap \mathcal{S}_{f}$.

- Conjecturally, $H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right) \cong \mathcal{W}_{k}(\mathfrak{g}, f)$, the simple quotient of $\mathcal{W}^{k}(\mathfrak{g}, f)$ ([Kac-Wakimoto]).
- For an admissible $L_{k}(\mathfrak{g}), X_{H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)} \cong S_{\mathbb{O}_{q}, f}$. The W-algebra $H_{D S, f}^{0}\left(L_{k}(\mathfrak{g})\right)$ appear from 4D SCFT if $L_{k}(\mathfrak{g})$ is boundary admissible [Xie-Yan- Yau'16, Song-Xie-Yan'17, Wang-Xie'18].
- $\mathcal{W}^{k}(\mathfrak{g}, f)$ has an interesting representation theory (cf. talks by Justine Fasquel, Naoki Genra, Anne Moreau, Sigenori Nakatsuka, Michael Penn at this conference).


## Symmetric powers of $\mathbb{C}^{2}$

$\mathfrak{S}_{n} \curvearrowright \mathbb{C}^{n}$
$\rightsquigarrow$ symplectic action $\mathfrak{S}_{n} \curvearrowright T^{*} \mathbb{C}^{n}$
$\rightsquigarrow \mathfrak{S}^{n} \mathbb{C}^{2}=\mathbb{C}^{2 n} / / \mathfrak{S}_{n}=\operatorname{Spec}\left(\mathbb{C}\left[\mathbb{C}^{2}\right]^{\otimes n}\right)^{\mathfrak{S}_{n}}$
A well-known resolution of singularity of $\mathfrak{S}^{n} \mathbb{C}^{2}$ is the Hilbert-Chow morphism

$$
\operatorname{Hilb}^{n} \mathbb{C}^{2} \rightarrow \mathfrak{S}^{n} \mathbb{C}^{2}
$$

where Hilb $^{n} \mathbb{C}^{2}$ is the Hilbert scheme of $n$ points in the place $\mathbb{C}^{2}$.

- [Kashiwara-Rouquier'08] constructed a sheaf of algebras on Hilb $^{n} \mathbb{C}^{2}$ whose global section is the natural qunantizion of $\mathfrak{S}^{n} \mathbb{C}^{2}$ (the spherical rational Cherednik algebra).
- A naive chiralization of [Kashiwara-Rouquier'08] does not seem to work.

On the other hand, it seems that the 4D/2D duality expects the existence of a sheaf of $\mathcal{N}=4$ vertex superalgebras on $\mathrm{Hilb}^{n} \mathbb{C}^{2}$ :

## "Theorem" (Ongoing work with Toshiro Kuwabara and

## Sven Möller])

There exists a natural sheaf $\mathcal{V}$ of $\mathcal{N}=4$ vertex superalgebras on Hilb $^{n} \mathbb{C}^{2}$ such that

$$
X_{\Gamma\left(\text { Hilb}^{n} \mathbb{C}^{2}, \mathcal{V}\right)} \cong \mathbb{S}^{n} \mathbb{C}^{2}
$$

- For $n=2, \Gamma\left(\operatorname{Hilb}^{n} \mathbb{C}^{2}, \mathcal{V}\right) \cong$ (the simple small $\mathcal{N}=4$ superconformal algebra at $c=-9$ ) $\otimes$ $\mathcal{D}^{c h}\left(\mathbb{C}^{2}\right) \otimes$ (symplecticfermions). We recover Drazen's realization of the simple small $\mathcal{N}=4$ superconformal algebra at $c=-9$ ([Adamovic'15]).


## Class $\mathcal{S}$ theory and Moore-Tachikawa varieties

The theory of class $\mathcal{S}(=\operatorname{six})$ ([Gaiotto'12])

$$
\left\{\begin{array}{cc}
\left.\left.S_{G}(\Sigma) \left\lvert\, \begin{array}{c}
\Sigma: \text { a punctured Riemann surface, } \\
G: \text { complex semisimple group }
\end{array}\right.\right\} .\right\} \text {. }
\end{array}\right\}
$$

- VOAs $\mathbb{V}\left(S_{G}(\Sigma)\right)$ are called chiral algebras of class $\mathcal{S}$ [Beem-Peelaers-Rastellib-van Rees'15].
- Moore-Tachikawa'12 gave a mathematical description of the Higgs branch of $S_{G}(\Sigma)$ in terms of 2D TQFT, up to a conjecture.
- The Moore-Tachikawa conjecture was proved by Ginzburg-Kazhdan and Braverman-Finkelberg-Nakajima'19. $\rightsquigarrow$ a new family of symplectic varieties.

For both chiral algebras of class $\mathcal{S}$ and Moore-Tachikawa vareities it is "enough" to describe them for genus zero $\Sigma$.

## Theorem (A.'18)

For each semisimple group $G$, there exists a unique family of vertex algebras $\left\{\mathbf{V}_{r} \mid r \geq 1\right\}$ satisfying the desired properties of genus zero chiral algebras of class $\mathcal{S}$. Moreover, the associated variety of $\mathbf{V}_{r}$ is isomorphic to the Moore-Tachikawa variety.

- $\mathbf{V}_{r}$ admits a commuting action of $r$-copies of $\widehat{\mathfrak{g}}$ at the critical level.
- $\mathbf{V}_{r}$ satisfies the associativity that is compatible with the gluing of Riemann surfaces.
- The character of $\mathbf{V}_{r}(=$ Schur index of class $\mathcal{S}$ theory) is closely related with multiple $q$-zeta values ([Milas'22]).


## Exmaples

$G=S L_{2}$
$\mathrm{MT}_{3}=\mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \mathbb{C}^{2}, \quad \mathbb{C}^{2} \curvearrowleft S L_{2}$
$\mathbf{V}_{3}=\mathcal{D}^{c h}\left(\left(\mathbb{C}^{2}\right)^{\otimes 3}\right), \beta \gamma$ system associated to the symplectic vector space $\left(\mathbb{C}^{2}\right)^{\otimes 3}$.
$\mathrm{MT}_{4}=\overline{\mathbb{O}_{\text {min }}}$ in $D_{4}$

$\mathbf{V}_{4}=L_{-2}\left(D_{4}\right)$, the simple affine vertex algebra associated with $D_{4}$ at level -2 (conjectured by $\left.\left[B L^{2} \mathrm{PRvR}\right]\right)$.

## Examples (contined)

The isomorphism $X_{L_{-2}\left(D_{4}\right)} \cong \overline{\mathbb{O}_{\text {min }}}$ reproves a previously stated result in [A.-Moreau'18].

The associativity gives:

- $\left(\left(\mathbb{C}^{2}\right)^{\otimes 3} \times\left(\mathbb{C}^{2}\right)^{\otimes 3}\right) / \Delta\left(S L_{2}\right) \cong \overline{\mathbb{O}_{\min }}$,
(ADHM construction of $\overline{\mathbb{O}_{\text {min }}}$ )
- $H^{\infty / 2+i}\left(\widehat{\mathfrak{s l}}_{2}, \mathfrak{s l}_{2}, \mathcal{D}^{c h}\left(\left(\mathbb{C}^{2}\right)^{\otimes 3}\right) \otimes \mathcal{D}^{c h}\left(\left(\mathbb{C}^{2}\right)^{\otimes 3}\right)\right) \cong \delta_{i, 0} L_{-2}\left(D_{4}\right)$.


## Examples (continued)

$G=S L_{3}$
$\mathrm{MT}_{3}=\overline{\mathbb{O}_{\text {min }}}$ in $E_{6}$.

$\mathbf{V}_{3}=L_{-3}\left(E_{6}\right)$.

In general, neither $\mathrm{MT}_{r}$ nor $\mathbf{V}_{r}$ has a simple description.

- We have in general

$$
\mathbb{V}_{2} \cong \mathcal{D}_{G,-h \vee}^{c h} \quad(\text { the cdo on } G \text { at the critical level }) .
$$

By [Arlhipov-Gatsigory'02],

$$
\mathcal{D}_{G,-h \vee}^{c h}-\bmod ^{G[[t]} \cong \mathcal{D}_{\mathrm{Gr}_{G}}-\bmod _{-h^{\vee}},
$$

where $\operatorname{Gr}_{G}=G((t)) / G[[t]]$, the affine Grassmanian.

Thank you!

